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ABSTRACT

When finetuning multiple tasks altogether, it is important to carefully weigh them
to get a good performance, but searching for good weights can be difficult and
costly. Here, we propose to aid the search with fast previews to quickly get a rough
idea of different reweighting options. We use model merging to create previews by
simply reusing and averaging parameters of models trained on each task separately
(no retraining required). To improve the quality of previews, we propose a Bayesian
approach to design new merging strategies by using more flexible posteriors. We
validate our findings on vision and natural-language transformers. Our work shows
the benefits of model merging via Bayes to improve multitask finetuning.

1 INTRODUCTION

Multitask finetuning has recently gained popularity due to the success of large pretrained models, but
a careful weighting of tasks is crucial to get good performances (Liu et al., 2023; Xu et al., 2024;
Chung et al., 2024). Similarly to the traditional multi-task learning (Caruana, 1997; Ruder, 2017), the
weighting is useful in tackling data imbalance, task interference, negative transfer, and also effects of
variable task difficulty (Raffel et al., 2020; Liu et al., 2023). When left unresolved, these can lead to
issues, for instance, regarding safety (Jan et al., 2024). Weighting is also useful for pre-finetuning
recently used for multi-lingual transfer and continual pretraining (Aghajanyan et al., 2021; Gemma
Team, 2024a; Martins et al., 2024; Fujii et al., 2024).

Despite its importance, little has been done to address task weighting for multitask finetuning. For
large models, an exhaustive search over weights is out of the question, but even if we could try a few
weighting configurations, which ones should we try? There is no guide for that. Weights are often
chosen arbitrarily and sometimes heuristically but these are not sufficient; see, for example, Liu et al.
(2023, Sec. 6). The weighting methods used for deep learning and pretraining can be adapted to
search for good weights (Ren et al., 2018; Chen et al., 2018; Raffel et al., 2020; Groenendijk et al.,
2021; Du et al., 2022; Yan et al., 2022; Xie et al., 2023; Thakkar et al., 2023), but a quick guidance
on reasonable search areas will still be useful to assist the search.

In this paper, we propose to aid the search with fast previews of performances, estimated to obtain
weights that improve accuracy of multitask finetuning. We use model merging to create the previews
where we train and store models on each task separately and reuse them later to create previews by
simply averaging the model parameter for a wide-range of weights (Fig. 1). Our main contribution is
a Bayesian approach to design new merging strategies that yield better previews over a wider range
of weights. This differs fundamentally from previous work which only focus on the best performing
weights (Don-Yehiya et al., 2023; Jiang et al., 2023; Feng et al., 2024; Stoica et al., 2024; Yang et al.,
2024). Such strategies do not always yield good-quality previews; see Fig. 2a for an illustration.

We propose a Bayesian approach where more flexible posteriors yield better previews but with
slightly higher costs (Figs. 2b and 2c). For instance, we show that Task Arithmetic (Ilharco et al.,
2023) for LLMs corresponds to isotropic Gaussian posteriors, while better (and slightly more costly)
Hessian-based methods (Daheim et al., 2024) employ more flexible Gaussian forms. We generalize
this result to generic exponential-family posteriors and present a recipe to derive new merging strategy.
We validate our method on several benchmarks on vision and natural-language transformers. For
example, we experiment with image classification using Vision Transformers (ViTs) (Dosovitskiy
et al., 2021) of 86M parameters and adding new languages to GEMMA with 2B parameters (Gemma
Team, 2024b) for machine translation. Our results consistently show that more flexible posteriors
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Figure 1: Our goal is to aid the search for good weights in weighted multitask finetuning. We show a
performance contour for 3 tasks with weights α1, α2 and α3. The well performing regions are in the
middle achieving around 90% accuracy. We create a cheap preview of the contours by using model
merging where previously trained models are quickly weighted with many α values. The preview
captures the rough shape of the true contours, encouraging a focus on the good regions.

(a) Parameter average (iso-Gaussian) (b) Full-Gaussian posterior (c) Mixture of Gaussian Posterior

Figure 2: An illustration of our Bayesian approach to improve preview quality for a toy multitask-
learning problem with 3 tasks. The losses ℓt defined over a 2-D θ space and are weighted by αt varied
in a fixed grid over [0, 1]. Panel (a) shows that parameter averaging

∑
t αtθt gives poor preview (red

region) of the true performances (gray contour). Each dot corresponds to a weighting option. The
quality is improved in panel (b) and (c) where merging strategies using full more flexible posteriors
are used, respectively. The cost is slightly increased because they need Hessians and ensembles.

produce better previews and helps us choose weights to perform more accurate multitask finetuning.
Our work combines ideas from model merging and Bayesian learning to improve multitask finetuning.

2 WEIGHTED MULTITASK FINETUNING

Multitask finetuning aims to finetune on multiple tasks altogether. For example, given a Large
Language Model (LLM) trained for English, we may want to finetune it on multiple languages (Muen-
nighoff et al., 2023), for instance, German, French, Chinese, Japanese, etc. Denoting the loss of each
task by ℓt(θ) for the model parameters θ, we want to finetune over a weighted loss

T∑
t=1

αtℓt(θ), where αt > 0 for t = 1, 2, . . . , T . (1)

We denote the loss-weight vector by α = (α1, α2, . . . , αT ) and the finetuned parameters obtained
with the weighting by θα. We will generally assume that αt sum to 1 but this is not strictly required.
Such multitask finetuning has recently become important for LLM alignment and usability. For
example, it is used for improving instruction-following abilities (Chung et al., 2024; Ouyang et al.,
2022), different kinds of safety tuning (Gemma Team, 2024a), combining coding tasks (Liu et al.,
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2023), and mixing coding and math skills into LLMs, which is useful even when they are designed
for other tasks like machine translation (Martins et al., 2024).

In practice, it is important to choose α carefully for reasons that are true for any multi-task learning
problem (Caruana, 1997; Ruder, 2017). For instance, one issue is due to data-imbalance: different
tasks may contain different types of information and some of higher quality than others. There is
also task interference, for example, a model that does math well, may not necessarily be the best at
languages. Additionally, learning some tasks might hurt the performances in the other tasks, and
then there is variability in task difficulty: some tasks are harder to learn and we do not want those to
impact the tasks that are relatively easier to learn.

The effects of these issues are often felt in practice. For example, adding too much safety data
can make the model more conservative and reduce its usefulness (Bianchi et al., 2024); too much
instruction finetuning can undo safety alignment and open new vulnerabilities (Qi et al., 2024; Jan
et al., 2024). Such problems can be avoided by careful task weighting. Weighting is also useful
during pre-finetuning where we try to balance multiple tasks differently during the last, say, 10% of
pretraining (Aghajanyan et al., 2021; Gemma Team, 2024a; Martins et al., 2024; Fujii et al., 2024).

Despite its importance, not much work has been done to find good ways to set the weights. Decades
of work exist for multitask learning but multitask finetuning is a relatively new area and is still
under-explored. Similarly to multi-task learning, an exhaustive search over the whole α-space is not
feasible when T is large. With little guidance, arbitrary values are tried to get an idea, for example,
Fujii et al. (2024) try only two values of α for continual pretraining. Sometimes heuristics are
used and meta-learning approaches are also adopted, but the results are not always satisfactory, for
example, see Liu et al. (2023, Sec. 6) who report such a result for LLMs trained for code generation.

Our goal in this paper is to provide a fast (and cheap) method to assist the search of good α values.
Such a guiding tool is useful to, for instance, restrict the search, to a few values and also to warm-start
the optimization process. For this, we need a fast but accurate approach to quickly estimate the
performance of θα for a wide-range of α values. Model merging is a useful tool for this, but the
choice of merging strategy matters to get a high quality preview. We show that simple merging
methods are not satisfactory because they can be quite inaccurate and may only yield good estimates
for a small region in the α space (see Fig. 2a). Our main technical contribution is to address this
with a Bayesian approach to expand the region by designing a more accurate merging strategy. The
quality is improved at the expense of cost but the approach still remains fast enough to be employed
in practice. Existing methods on model merging in this space only focus on the best performing
weights (Don-Yehiya et al., 2023; Jiang et al., 2023; Feng et al., 2024; Stoica et al., 2024; Yang et al.,
2024). Our work instead aims to design merging strategies that work for a wide range of α values.

3 FAST PREVIEWS VIA BAYESIAN MODEL-MERGING

Our goal is to create fast previews, that is, we want to estimate θα obtained by finetuning over∑
t αtℓt for a wide-variety of α values. The previews are useful to choose weights that give most

accurate results when used to finetune jointly on all task. Our approach does this in three steps.

1. Finetune T models (denoted by θt) each separately over their own task ℓt(θ).
2. Use Bayesian learning to build surrogate ℓt ≈ ℓ̂t by using θt.
3. Create previews by finetuning over

∑
t αtℓ̂t for many α values.

In step 2, we design accurate ℓ̂t by using exponential-family posteriors. Such posterior always has a
closed-form merging formula which enables step 3. We start by describing model merging.

3.1 MODEL MERGING AS A WEIGHTED-SURROGATE MINIMIZATION

Model merging uses simple parameter averaging but it can also be seen as minimization of a weighted
sum of surrogates. For example, consider the simple averaging (SA) (Wortsman et al., 2022),

θ̂SA
α =

T∑
t=1

αtθt = argmin
θ

T∑
t=1

αt

(
ℓt(θt) +

1
2∥θ − θt∥2

)︸ ︷︷ ︸
=ℓ̂t(θ)

+γ 1
2∥θ∥

2︸ ︷︷ ︸
R̂0(θ)

, (2)
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where the surrogate ℓ̂t is a quadratic function. The term ℓt(θt) is a constant and can be ignored.
TheR0 is a regularizer with γ = 1−

∑
t αt, which disappears if αt sum to 1. The equality can be

verified by setting the derivative to zero. Other merging techniques can also be interpreted this way.
For example, Task Arithmetic (TA) (Ilharco et al., 2023) finetunes over an LLM with parameters
θLLM and can be seen as the following weighted-surrogate minimization with a regularizer,

θ̂TA
α = θLLM +

T∑
t=1

αt(θt − θLLM) = argmin
θ

T∑
t=1

αt
1
2∥θ − θt∥2 + γ 1

2∥θ − θLLM∥2. (3)

Here, we removed the constant ℓt(θt) for clarity. In general, many model merging methods can be
interpreted as weighted-surrogate minimization, including Wortsman et al. (2022); Matena & Raffel
(2022); Jin et al. (2023); Ortiz-Jimenez et al. (2023); Daheim et al. (2024).

The interpretation highlights a major source of error when estimating performance over a wide range
of α values: the accuracy of the surrogates. The surrogates used above can be seen as a simplistic
Taylor approximation where we assume ∇ℓt(θt) to be zero (due to local optimality) and Hessian
∇2ℓt(θt) is set to identity,

ℓt(θ) ≈ ℓt(θt) +∇ℓt(θt)
⊤(θ − θt) +

1
2 (θ − θt)

⊤∇2ℓt(θt)(θ − θt)

≈ ℓt(θt) +
1
2∥θ − θt∥2.

(4)

The surrogates ℓ̂t are tight at only one point and their inaccuracy increases as we move away from it.
Model merging can be seen as using

∑
t αtℓ̂t (along with the regularizer R̂0) as a proxy to estimate

the results of finetuning the original
∑

t αtℓt. However, when using a wide range of α values, these
inaccuracy can lead to poor estimates in some regions in the α space. Essentially, the errors in
different θ-regions become relevant and ultimately lead to a poor estimate.

Ideally, we would like the surrogates to be designed such that they are not only locally accurate
but also in a wider region. We expect such surrogates to give more accurate results and for a wider
regions too, but how can we design them? Is there a general recipe to do so? We will now propose a
Bayesian approach to answer this question.

3.2 A BAYESIAN APPROACH TO MODEL MERGING

The surrogate minimization approach can be seen as a special case of distributed Bayesian computa-
tion where there is a natural way to merge information distributed in different locations. We will first
describe this approach and then connect it to surrogate minimization to design better surrogates.

Consider a multitask setup in a Bayesian model where there are t tasks each using a likelihood
p(Dt|θ) over data Dt and a common prior p0(θ). For this case, there is closed-form expression to
quickly get the weighted multitask posterior. We first compute T posteriors pt(θ) ∝ p(Dt|θ)p0(θ),
separately over their own likelihood. The weighted posterior can be then simply be obtained by
reusing the posterior pt by using the fact that the likelihood can be written as the ratio of posterior
and prior p(Dt|θ) = pt(θ)/p0(θ). This is shown below,

pα(θ) ∝ p0(θ)

T∏
t=1

p(Dt|θ)αt ∝ p0(θ)
γ

T∏
t=1

pt(θ)
αt . (5)

The γ = 1−
∑

t αt is the same as the scalar used in front of the regularizer in Eqs. 2 and 3. Such
posterior merging is a popular method in Bayesian literature, for example, see Bayesian committee
machine (Tresp, 2000) or Bayesian data fusion (Mutambara, 1998; Durrant-Whyte & Stevens, 2001).

In fact, by choosing the Bayesian model appropriately, we can even exactly recover the solution for
the weighted multitask problems. For example, suppose we want to recover the minimizer θα by
minimizing the objective

∑
t αtℓt +R0, then we can choose

p(Dt|θ) ∝ exp(−ℓt(θ)), p0(θ) ∝ exp(−R0(θ)).

These choices are valid within the generalized-Bayesian framework (Zhang, 1999; Catoni, 2007;
Bissiri et al., 2016). With these choices, the minimizer θα is simply the maximum-a-posterior (MAP)
solution of the merged posterior pα, that is,

θα = arg max
θ∈RP

log pα(θ) = arg max
θ∈RP

T∑
t=1

αt log pt(θ)︸ ︷︷ ︸
=ℓ̂t(θ)

+γ log p0(θ)︸ ︷︷ ︸
=R̂0(θ)

. (6)
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Comparing this objective to Eqs. 2 and 3, we see that the Bayesian framework suggests to use the
surrogate ℓ̂(θ) = − log pt(θ) and regularizer R̂0(θ) = − log p0(θ). These surrogates are perfect in
the sense that using them recovers the exact solution, but obviously computing them is also difficult.
Our key idea is to use approximate Bayesian learning, specifically variational learning, to obtain
posterior approximations and use them as surrogates.

3.3 VARIATIONAL BAYESIAN LEARNING TO BUILD EXPONENTIAL-FAMILY SURROGATES

To build surrogates ℓ̂t for each task, we propose to use variational learning which finds posterior
approximation qt(θ) to the exact posterior pt(θ),

qt(θ) = argmin
q∈Q

Eq[ℓt(θ)] + DKL[q(θ) ∥ p0(θ)]. (7)

We chooseQ to the set of exponential-family approximations or their mixtures, for example, Gaussian
distribution. For such posteriors, we have good optimizers that can work at large scale (Khan &
Rue, 2023). For instance, for Gaussian, the above problem can be optimized by using Adam-like
optimizers (Shen et al., 2024). Even Adam can be seen as solving this problem (Khan et al., 2018)
which yields a Laplace approximation. We can just use such optimizers to compute the posterior qt.

Motivated by Eq. 6, we propose to use the approximate posterior to build the surrogate,

ℓ̂t(θ) = − log qt(θ). (8)

As for the prior R̂0, we will use a Gaussian prior. These choices not only recover existing model-
merging strategies but also leads to new and more accurate ones. For example, we can recover Eq. 2
by choosing qt to be the Gaussian approximation obtained using Laplace’s method at θt (Khan &
Rue, 2023, App. C.1) and we fix the covariance to be identity. This gives us the following,

qt(θ) = N (θ |θt, I) =⇒ ℓ̂t(θ) =
1
2∥θ − θt∥2 + const. (9)

The prior can be chosen to be isotropic Gaussian too: p0(θ) = N (θ | 0, I). Similarly, Task arithmetic
can be derived just by simply changing the prior to p0(θ) = N (θ |θLLM, I).

Next, Hessian-based merging methods are obtained by using a full-Gaussian posterior, again with the
Laplace’s method at θt and using Hessian Ht. That is, by using qt(θ) = N (θ |θt,Ht), we get the
Mahalanobis distance ∥θ − θt∥2Ht

as the surrogate. With this, we get a Hessian-based merging,

θ̂Hess
α =

(∑
t

αtHt

)−1∑
t

αtHtθt. (10)

Here, we used p0(θ) = N (θ | 0, I) and
∑

t αt = 1. If we make similar choices to the Task Arithmetic
case, we recover the method proposed by Daheim et al. (2024).

In general, we can use any exponential-family form the posterior and employ them as surrogate. Such
surrogates always have a closed-form solution. This is because of the form of the posterior,

qt(θ) ∝ eλ
⊤
t T(θ) =⇒ ℓ̂t(θ) = −λ⊤

t T(θ) + const.

where we denote sufficient statistics by T(θ) and natural parameter by λt. For example, for Gaussian
T(θ) = (θ,θθ⊤) giving rise to quadratic surrogates derived earlier. The merging has a closed
form solution because the minimizer of the weighted sum

∑
t αtℓ̂t is equivalent to the MAP of

an exponential family distribution. The MAP solution is always available in closed-form. This
is explained in App. A.1. The surrogates not only take flexible forms, but also are more globally
accurate. This is because they are obtained by solving Eq. 7 which is equivalent to minimizing the
KL divergence to the exact posterior pt. Minimizing the divergence ensures that the surrogates are
accurate not only locally at θt but also globally in regions where qt has high probability mass; see a
discussion in (Opper & Archambeau, 2009).

3.4 IMPROVED MERGING VIA MIXTURES OF EXPONENTIAL-FAMILIES

Here, we extend to mixture of exponential-family distributions which provide more expressive
posteriors and therefore even more accurate surrogates. For simplicity, we assume that

∑
t αt = 1,

5
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Algorithm 1 Fast and cheap multitask previews via mixture of Gaussian merging

Require: K different Gaussians for each of the T tasks N (θ |θtk, diag(1/htk)).
1: for all α values in the preview do
2: Initialize θ̂α and set πk = 1/K for all k.
3: while not converged do
4: For all t, k: compute ptk = πkN (θ̂α |θtk, diag(1/htk)); normalize π̂tk ← ptk∑

k′ ptk′

5: hα ←
∑

t,k π̂tkαthtk

6: θ̂α ← (
∑

t,k π̂tkαt htkθtk)/hα

7: end while
8: end for

so there is no regularizer. While mode finding for mixtures is still tractable, it requires an iterative
expectation-maximization (EM) procedure which should still be cheap if it converges within few steps.
We assume that the k’th mixture component is an EF with natural parameter λtk. Each component is
weighted by πk > 0 and

∑
k πk = 1. Then, the posterior and surrogate take the following form:

qt ∝
K∑

k=1

πke
λ⊤

tkT(θ)︸ ︷︷ ︸
∝ptk(θ)

=⇒ ℓ̂t(θ) = − log

K∑
k=1

πke
λ⊤

tkT(θ). (11)

Clearly, the surrogate is much more expressive than quadratics surrogates used in model merging.

Despite the non-concavity of the objective, we can maximize it using an iterative Expectation-
Maximization (EM) approach where each step has a closed-form solution. A detailed derivation is
in App. A.3. As a special case, consider mixture-of-Gaussians (MoG) posterior where the updates
take the following form similarly to Eq. 10:

θ(i+1) ← (H(i)
α )−1

∑
t,k

π̂
(i)
tk αtHtkθtk, where H(i)

α =
∑
t,k

π̂
(i)
tk αtHtk. (12)

The main difference is that each component is now weighted by π̂
(i)
tk ∝ πkN (θ(i) |θtk,H

−1
tk ), nor-

malized over k. This update generalizes the fixed-point algorithm of Carreira-Perpiñán (2000,
Section 5) which was proposed to find the modes of Gaussian mixtures.

3.5 PRACTICAL ALGORITHMS FOR FAST MULTITASK FINETUNING PREVIEWS

Here, we summarize easy recipes for fast previews of multitask finetuning. All recipes follow the
three step procedure shown at the beginning of Sec. 3 and first train models independently on each
task t for t = 1, . . . , T . These models are then reused for merging, where the merging algorithm is
determined by choosing a (mixture-of-) exponential family distribution and finding its mode. For
non-mixture-based distributions these are closed-form as shown in Eq. 10. These merging algorithms
can then directly be used with various combinations of αt to get many models with different task
weightings for preview. For mixture-based surrogates we outline a practical solution in Alg. 1, where
an EM algorithm for mode finding is shown. In practice, we only need to run this for 5-10 iterations
and 10-30 mixture components which is fast but can have larger training overhead for large models
due to having to train 10-30 models for each task. We use the following algorithms in experiments:

1. ADAMW-SG. For each task, compute a single Gaussian with mean at AdamW’s solu-
tion (Loshchilov & Hutter, 2019) and (inverse) diagonal variance given by squared gradients
computed by one extra pass through the data. Previews are calculated using Eq. 10 for all α.

2. IVON-HESS. For each task, we use a Gaussian with mean and diagonal variance obtained
by running the variational learning method IVON (Shen et al., 2024) meaning no additional
overhead. Previews are calculated by using Eq. 10 for all α.

3. MULTIIVON-HESS. For each task, construct a mixture-of-Gaussians obtained by indepen-
dent runs of IVON. May require up to K runs. Previews are obtained using Alg. 1.

The small-scale experiments in Fig. 2 and Sec. 4.1 use full Hessian computations and exact mixture-
of-Gaussian learning, and the details are described in Sec. 4.1 and Appendices B.1 and B.2.
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Simple Hessian Mixture
Figure Model Tasks Merging Weighted Weighted

CV Fig. 3 Logistic MNIST Imbalanced 0.2067 0.1528 0.0463
Fig. 9 Logistic MNIST Balanced 0.2015 0.1191 0.0809
Fig. 4 ResNet-20 CIFAR-10 0.0252 0.0098 0.0073
Fig. 5 ViT-B/32 RESISC45, GTSRB, SVHN 0.0388 0.0263 -

EuroSAT, Cars, SUN397 0.0084 0.0059 -

NLP Fig. 7 RoBERTa RT, SST-2, Yelp 0.0314 0.0281 -
Fig. 8 GEMMA-2B IWSLT2017de-en, fr-en 0.5380 0.4657 -

Table 1: MSE between performance metrics of models obtained with multitask finetuning and models
obtained with model merging for various task weightings. Model merging methods with better
posterior approximations more closely match the multitask finetuned models’ performances.
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Figure 3: Multitask Learning on MNIST. As the posterior approximation gets more expressive the
preview generated by the merged model resembles the exact solution better.

4 EXPERIMENTS & RESULTS

In this section, we validate our methods through several multitask finetuning experiments but first
start with results on logistic regression (Sec. 4.1) which allows using exact Hessians and joint mixture-
of-Gaussian learning. We then study image classification using ResNets on CIFAR-10 (Sec. 4.2).
Then, we show that good previews can also be provided for image classification with vision trans-
formers (Sec. 4.3), text classification with masked language models (Sec. 4.4), and for adding new
languages for machine translation to LLMs (Sec. 4.5). An overview over our results is provided
in Table 1 which shows the mean squared error (MSE) between various weightings of joint training
and different merging methods: better posterior approximations result in better previews.

4.1 MULTITASK LEARNING ON MNIST

We consider MNIST broken into three tasks, each consisting of a different and disjoint subset of
classes. We use a logistic regression model in two settings: one imbalanced set where number of
classes per tasks vary and a balanced set. Results are shown in Fig. 3 and Fig. 9, respectively. In
both cases we compare isotropic Gaussian (Simple Merging), full Gaussian (Hessian-Weighted),
and mixture-of-Gaussian (Mixture-Weighted) posteriors. To compute the posterior approximations
and surrogate functions, we use VON (Khan & Rue, 2023) and for mixture-of-Gaussians the joint
learning algorithm from Lin et al. (2019), both with full Hessian. For Hessian-weighted merging we
use Eq. 10 for all α, for the mixture-of-Gaussians we use the EM algorithm outlined in Eq. 12.

We find that better posterior approximations generally give better models but, more importantly, also
more closely match the shape of the joint training solution. Simple merging would only show very
few weightings as good but in fact there is a large region with good weights which is better shown by
better posterior approximations. Notably, the mixture-based approach following Eq. 12 also picks up
the skew to the left shown in the joint solution for imbalanced tasks.
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Figure 4: Results on image classification using ResNet-20 on CIFAR-10 with three tasks constructed
from different sets of classes. Preview quality improves with the expressiveness of the posterior
approximation. Notably, more mixture components improve the preview. Hessian-weighted previews
generated with IVON-HESS and Mixture-Weighted with MULTIIVON-HESS. Histograms show that
the distribution of similar accuracy achieving weights also improves with better posteriors.

4.2 IMAGE CLASSIFICATION ON CIFAR-10

Next, we move to a neural network finetuning. We first pretrain ResNet-20 (He et al., 2016) with 260k
parameters on a subset of CIFAR-10 and then finetune this checkpoint on the remaining examples.
The finetuning tasks are: (1) airplane, car, ship, truck; (2) cat, dog; (3) deer, dog, frog, horse. We
compare Hessian-Weighted (IVON-HESS) and Mixture-Weighted (MULTIIVON-HESS) to simple
averaging and Exact Solution (Joint training). Hyperparameters are in App. B.3.

Results are shown in Fig. 4 and again show that better posterior approximations yield better previews.
For example, simple merging misses that performance is still good in any of the corners, especially
the top and bottom right one. Hessian-Weighted merging misses the best-performing region and
would suggest exploring a region slightly above it. Mixture-Weighted previews are much better and
improve with the number of components. Interestingly, the best-performing region of this approach
moves further down and right, that is, closer to that of the joint training solution.

4.3 VISION TRANSFORMERS

Next, we experiment with multitask finetuning ViT-B/32 models (Dosovitskiy et al., 2021) based on
CLIP (Radford et al., 2021) for image classification. First, we use GTSRB (Houben et al., 2013),
RESISC45 (Cheng et al., 2017) and SVHN (Netzer et al., 2011); then we use EuroSAT (Helber et al.,
2019), Stanford Cars (Krause et al., 2013) and SUN397 (Xiao et al., 2010). We compare Simple
merging to Hessian-Weighted (ADAMW-SG) and provide. Further details on training and evaluation
in App. B.4. The joint solution uses a grid with spacing 0.05 to explore the possible sets of α.

The results are shown in Fig. 5. In both cases, the joint solution is similar and shows that almost
all weightings that are not directly at the borders (where one of the tasks gets a very small weight)
have good performance. While for EuroSAT, Cars, SUN397 there is a smaller region with accuracy
over 84 points in accuracy, any weightings in the large contour of above 80 points will still be good.
Ideally this should be reflected by a preview from merging. Hessian-based merging shows the flat
triangular shape of the joint solution better than the simple method. Training times highlight the
usefulness: joint training for one weighted combination takes around 51 minutes while merging takes
only seconds (plus 14-17 minutes for each finetuning on separate tasks).
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Figure 5: Results using ViT-B/32 on GTSRB, RESISC45, SVHN (top) and EuroSAT, Cars, Sun397
(bottom). The exact solution shows a large triangular area of well-performing weightings which is
better captured by Hessian-weighted merging. Simple merging especially fails around the edges,
whereas Hessian-Weighted (ADAMW-SG) performs much better (right). Similarly we see on the
histograms that the Hessian uncovers more high accuracy weights than the simple merging.
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Figure 6: Merging of multitask finetuned RoBERTa models on pairs of sentiment analysis tasks.
Model merging provides good previews of weightings for multitask finetuning but some trends
(e.g. α1 ∈ [0.0, 0.5] for SST2&RT) are only picked up by better posteriors and Hessian-Weighted
merging (ADAMW-SG). First-named task is weighted by α1 and the other by 1− α1.

4.4 MASKED LANGUAGE MODELS

In this section, we show results when multitask finetuning masked language models for text classi-
fication. We follow Daheim et al. (2024) and train RoBERTa (Liu et al., 2019) first on the IMDB
sentiment classification task Maas et al. (2011). Then, we finetune on Rotten Tomatoes (RT) (Pang &
Lee, 2005), SST-2 (Socher et al., 2013), and Yelp (Zhang et al., 2015), and merge the resulting models.
We use two settings: the first merges all combinations of two of the three finetuned models; the
second merges all three. Due to heavy compute requirements, we run joint training with a coarser grid
than model merging in the latter. We compare Simple merging and Hessian-Weighted(ADAMW-SG).

Results for merging two models are shown in Fig. 6 where we see that even simple merging can
often produce good previews but fails for specific weightings. For example, on SST2 and RT the
best-performing factors for simple merging (α1 = 0.9) are the worst-performing in the joint solution.
Using a diagonal Gaussian instead of an isotropic one shows a more similar trend to this joint solution.
The results for merging all three tasks are shown in Fig. 7. Here, the exact solution again shows a
fairly triangular shape but this is not at all reflected in the simpler merging scheme.
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Figure 7: Preview of reweightings for RoBERTA multitask finetuned on three sentiment analysis tasks.
Hessian-Weighting achieves a better preview by showing a larger region of performant weightings.
The histogram shows that it more accurately recovers the trend of the weightings.
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Figure 8: Here, we merge LoRA-finetuned GEMMA-2B models trained on IWSLT2017de-en and
IWSLT2017fr-en. Again, model merging can faithfully preview the trends of joint training with
different weights. For this, better posterior approximations (Hessian-weighted with IVON-HESS)
are important, for example, around α = 0.4 on IWSLT2017fr-en.

4.5 MACHINE TRANSLATION WITH FINETUNED LLMS

Next, we show that our methods apply to LLMs with more than one billion parameters, also if they
are finetuned using parameter-efficient finetuning strategies such as LoRA. In particular, we merge
two GEMMA-2B-it (Gemma Team, 2024b) models finetuned on IWSLT2017 (Cettolo et al., 2017)
de-en and fr-en, respectively, and compare them to training jointly on both language pairs. We use
IVON-HESS for Hessian-Weighted merging. Details about the experimental set-up are in App. B.6.

Results are shown in Fig. 8. There, we find that simple merging does not always match the shape of
the joint training solution, especially around α = 0.4. Using Hessian-weighted merging improves
this. Overall, this shows that the our method can also scale to larger models and datasets, even if
only a small subset of the parameters is adapted during finetuning. One run of multitask finetuning
for a specific weight takes around 17 hours while merging takes just 1 minute (plus 8-9 hours for
finetuning on each task separately).

5 CONCLUSION

Multitask finetuning is a crucial ingredient in many neural network training recipes but good weight-
ings between tasks are hard and expensive to find. Here, we propose to aid the search for such
weightings with previews obtained from model merging, where single task models can be reused
for many weight combinations. We show that model merging strategies can be derived using a
Bayesian framework by defining suitable surrogate losses to the multitask objective for exponential-
family-based distributions. We use this to outline various preview and merging strategies, including a
new mixture-based algorithm for improved model merging. Along various experiments including
image classification with Vision Transformers and machine translation with LLMs we show that
model merging can effectively be used to preview multitask finetuning weightings. Flexible model
merging can improve the preview quality, but also increase the cost. For example, mixture posteriors
sometimes need too many mixture component to get improvements. This is not ideal for large model
where storing many models is not possible. We hope to address this limitation in the future.
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A DERIVATIONS

A.1 CLOSED-FORM EXPRESSION FOR MAP OF EXPONENTIAL-FAMILY DISTRIBUTION

It is clear that minimizing
∑

t αtℓ̂t is equivalent finding MAP of
∏

t qt(θ)
αt . Let us denote it by

pα. The mode of pα is available in closed-form because we can always rewrite the posterior in an
exponential form that allows us to compute the max. This is shown below where we first rewrite
the posterior with a log-partition function A(θ) and an alternate sufficient statistic t(λα), and then
simply take the derivative to get a closed-form expression for the Pareto solution,

pα ∝ exp(θ⊤t(λα)−A(θ)) =⇒ θα = argmax
θ

log pα(θ) = ∇A−1 (t(λα)) . (13)

The alternate form is essentially following the form of the conjugate prior (see Bishop (1995, Eq.
2.229)) written to match the form of the likelihood. For instance, in the Gaussian case,

pα ∝ exp(θ⊤ Hαmα︸ ︷︷ ︸
t(λα)

− 1
2θ

⊤Hαθ︸ ︷︷ ︸
A(θ)

) =⇒ Hα(θα)︸ ︷︷ ︸
∇A(θα)

= Hαmα︸ ︷︷ ︸
t(λα)

=⇒ θα = mα

Solutions of variational objectives always have this form (Khan & Rue, 2023, Sec. 5), while convexity
of A(θ) ensures that the mode always exists and can be easily found without retraining on individual
objectives. In summary, we can always get a closed-form expression as follows

1. Compute λt of individual objectives.
2. Aggregate them λα =

∑
t αtλt.

3. Compute θα using Eq. 13.

A.2 CLOSED FORM SOLUTION FOR THE BETA-BERNOULLI MODEL

To illustrate the process, we discuss another example of the Beta-Bernoulli model to model coin-flips
yt ∈ {0, 1} with probability π,

p(yt |π) ∝ πyt(1− π)1−yt , p(π) ∝ πa0−1(1− π)b0−1.

The unknown is then modeled as θ = log(π/(1 − π)), to get the posterior which is also a Beta
distribution with parameters

at = yt + a0, bt = 1− yt + b0, p(θ | Dt) ∝ πat−1(1− π)bt−1 ∝ exp(λ⊤
t T(θ))

where T(θ) = (log π, log(1− π)) and λt = (at − 1, bt − 1). With this, the aggregate posterior pα
is a Beta distribution natural parameter λα = (aα − 1, bα − 1) where aα and bα are simply a weight
average of at and bt respectively. To get the maximum of pα, we write it in an exponential form,

pα(θ) ∝ exp(θ aα − 1︸ ︷︷ ︸
t(λα)

− (aα + bα − 2) log(1 + eθ)︸ ︷︷ ︸
A(θ)

) =⇒ aα + bα − 2

1 + e−θPO︸ ︷︷ ︸
∇A(θPO)

= aα − 1︸ ︷︷ ︸
t(λα)

,

from which we get πPO = (aα − 1)/(aα + bα − 2).

A.3 DERIVATION OF THE EM ALGORITHM FOR MIXTURE POSTERIORS

To do so, we use the EM algorithm by viewing the summation over k in Eq. 11 as marginalization over
a discrete variable zk ∈ {1, 2, . . . ,K} of the joint p(θ, zt = k) = ptk(θ). Then, given parameters
θ(i) at each iteration i, we maximize the EM lower bound. The posterior over zk is

p(zt = k |θ(i)) = π̂
(i)
tk =

ptk(θ
(i))∑

k′ ptk′(θ(i))
.

Using this, we can write the following lower bound,
T∑

t=1

αt log

(
K∑

k=1

ptk(θ)

π̂
(i)
tk

π̂
(i)
tk

)
≥

T∑
t=1

K∑
k=1

αtπ̂
(i)
tk log ptk(θ) + c =

T∑
t=1

K∑
k=1

αtπ̂
(i)
tk λ

⊤
tk︸ ︷︷ ︸

=λ
(i)
α

T(θ) + c.
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The above corresponds to the log of an exponential family (denoted by p
(i)
α ) with natural parameter

λ(i)
α , which gives us the following iterative procedure:

θ(i+1) ← argmax
θ

T∑
t=1

K∑
k=1

π̂
(i)
tk αtλ

⊤
tkT(θ), (14)

where we use the posterior π̂(i)
tk = p(zt = k |θ(i)) ∝ ptk(θ

(i)) which is obtained by normalizing
over k. The iterates θ(i) converge to a local maximum which provides a solution for θ̂α. For K = 1,
the algorithm reduces to the exponential-family case.

B EXPERIMENTAL SETUP

B.1 ILLUSTRATIVE 2D EXAMPLE

The individual functions in Fig. 2 are of the form ℓt(θ) = log
(∑N

i=1 exp(a
⊤
itθ + bit)

)
where ait, bit

are chosen randomly from normal distributions for t = 1, 2 and uniformly for t = 3. We approximate
the Gibbs distributions exp(−ℓt(θ)) using the mixture-of-Gaussian algorithm described in Lin et al.
(2019, Section 4.1) with full Hessians, and we use the EM algorithm described in Eq. 12 to find the
mode of the mixture.

B.2 MERGING LOGISTIC REGRESSION MODELS

For parameter averaging we train each model using gradient-descent with learning-rate ρ = 3.0

for 2500 iterations, and use
∑

t αtθt to obtain each θ̂α. For the full-Gaussian method, which we
use for Hessian-weighted merging, we implement the variational online Newton method described
in Khan & Rue (2023, Section 1.3.2). We set the learning-rate ρt = 0.1, perform 3 Monte-Carlo
samples to estimate the expected gradient and Hessian and run for 25 iterations. The parameters
of the merged model are obtained via Eq. 10. The mixture of full-Gaussian trains each model by
the method described in Lin et al. (2019, Section 4.1) with a 20 component mixture. We set the
algorithm’s learning-rate of β = 0.02 for the mean µ and precision Σ−1, β = 3 × 10−6 for the
mixture weights π, while Monte-Carlo samples number of iterations are the same as full-Gaussian.
The test-accuracy in Fig. 3 and Fig. 9 is plotted on a grid ∆ with uniform spacing 0.02. The tasks are
for imbalanced (T1: {0, 1}, T2: {2, 3, 4} and T3: {5, 6, 7, 8, 9}); and for balanced: (T1: {0, 1, 2},
T2: {3, 4, 5, 6}, T3: {7, 8, 9}}).

B.3 MERGING VISION MODELS ON CIFAR-10

We pretrain the ResNet-20 model by running the IVON optimizer for 1000 epochs with 5 Monte-
Carlo samples to estimate expected gradients and Hessians and use IVON-HESS for previews. The
hyperparmeters of IVON are set as follows: learning-rate α = 0.1, momentum β = (0.9, 0.9999),
weight-decay δ = 10−3 and temperature/sample-size weighting λ = 50000. The batch-size is set to
50 and the estimated Hessian is initialized to 0.1.

The individual models are also finetuned with IVON, initialized at the pretrained posterior for
{25, 50, 75, 100, 125, 150} steps over 5 random seeds to obtain a soup of 30 models for each task.
This corresponds to the MULTIIVON-HESS method. Each step processes 1000 examples, where the
batch-size is set to 50. No weight-decay is used for finetuning, and we use a smaller learning-rate
α = 0.01. For the batch solution, we finetune on all data for 250 steps with the same hyperparameters.

The merged models θ̂α are computed using Alg. 1, where we take the models across 5 random seeds
with {100, 150}, {75, 100, 125, 150} and {25, 50, 75, 100, 125, 150} steps for the mixtures of size
10, 20 and 30. The test-accuracy in Fig. 4 is plotted on a grid ∆ with uniform spacing 0.1.

B.4 MERGING VISION TRANSFORMERS

The pretrained and finetuned checkpoints of ViT-B-32 a model based on CLIP (Radford et al.,
2021) on these downstream tasks (RESISC45 (Cheng et al., 2017), GTSRB (Houben et al., 2013),
SVHN (Netzer et al., 2011), EuroSAT (Helber et al., 2019), Stanford Cars (Krause et al., 2013)
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and SUN397 (Xiao et al., 2010)) were obtained based on the code from https://github.
com/mlfoundations/task_vectors. The squared-gradients approximation for the Hessian-
Weighted merge with ADAMW-SG is computed by

∑
i∇ℓi(θt)

2, where i is a sum over data examples
from the training data.

To generate the exact solution contours we start from the pretrained checkpoint and finetune on the
joint datasets with weights obtained by sampling from a grid ∆ with spacing 0.05. The optimizer
is AdamW, with learning rate of 10−5, set (β1, β2) = (0.9, 0.999) and decay the learning rate to 0
using a cosine decay with 500 warmup steps. Training is done for 15 epochs on RESISC45,GTSRB
and SVHN, while for EuroSAT, Stanford Cars and SUN397 this was set to 35, in both experiments
batch size is 128.

B.5 MERGING MASKED LANGUAGE MODELS

We pretrain RoBERTa with 125M parameters using AdamW on the IMDB dataset for sentiment
classification (Maas et al., 2011). We use a learning rate of 10−5 and set (β1, β2) = (0.9, 0.999) and
decay the learning rate to 0 using a cosine decay with 100 warmup steps. Training is done for 2
epochs with a batch size of 16.

We then finetune this model on Rotten Tomatoes (Pang & Lee, 2005), SST-2 (Socher et al., 2013),
and Yelp (Zhang et al., 2015), and train with a learning rate of 5 · 10−6 using a batch size of 16 and
for 5, 5, and 2 epochs each. We subsample the data of Yelp by taking the first 20% of the training
data to ease computational burden.

We do not use any weight decay in pretraining or finetuning. The squared gradient approximation is
calculated by doing one pass over the training data of each model and squaring the single-example
gradients for ADAMW-SG.

For the batch solution, we finetune for 3 epochs on the concatenation of the above-mentioned training
data after pretraining on IMDB as described above. Again, we use a learning rate of 5 · 10−6 and
a batch size of 16. Evaluation is done by averaging the accuracies over each individual dataset to
weigh each dataset the same.

The simplex in Fig. 7 is obtained by sampling from a grid ∆ with spacing 0.05. For the joint solution
we use a spacing of 0.1 due to the heavy computational load. The simple merged models are obtained
using Eq. 2. For diagonal Gaussians, we use the Hessian-based weighting of Daheim et al. (2024).

B.6 MERGING LLMS FOR MACHINE TRANSLATION

We finetune GEMMA-2B-it (Gemma Team, 2024b) on the IWSLT2017 de-en and fr-en splits (Cettolo
et al., 2017). Due to the model size we use LoRA (Hu et al., 2022) to finetune the models which
amounts to ca. 0.9M of new trainable parameters. The rest of the network is kept frozen. Accordingly,
only the LoRA weights are merged and the base model untouched.

We train the models using IVON with a learning rate of 0.05, (β1, β2) = (0.9, 0.99995), an effective
sample size of 1 · 107 for the single-task and 2 · 107 for the multitask model. We clip gradients
element-wise to 1 · 103 and to unit norm and use a weight decay of 10−6.

For the Hessian-weighted merging we use IVON-HESS. A comparison to using squared gradients
instead is found in App. C.2.

For all experiments, we use a grid with equal spacing of α1 ∈ [0.0, 0.05, . . . , 1.0] and always set
α2 = 1.0− α1.

C ADDITIONAL RESULTS

C.1 BALANCED SETTINGS FOR MULTITASK LEARNING

For the balanced setting there is no skew and the better combinations seem to concentrate around the
center of the simplex, which we see in Figure Fig. 9 is captured by all methods, however the more
complex posterior approximation allows Hessian-Weighting and Mixture-Weighting to show that
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Figure 9: Similar to the previous setting, on balanced tasks improving the posterior approximation
also will produce previews that capture more the the exact solution.
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Figure 10: Here, we merge LoRA-finetuned GEMMA-2B models trained on IWSLT2017de-en
and IWSLT2017fr-en. We show a comparison of using the squared gradient approximation of the
(diagonal) Fisher and the diagonal Hessian approximation obtained with IVON for Hessian-weighted
merging. Both methods perform similarly and could be used effectively for previews.

multiple combinations even beyond the center are also interesting which Simple Merging fails to
convey.

C.2 COMPARISON OF HESSIAN APPROXIMATIONS FOR LLM MERGING

Fig. 10 shows a comparison of using the squared gradient approximation of the (diagonal) Fisher
and the diagonal Hessian approximation obtained with IVON for Hessian-weighted merging. Both
methods are comparable and provide good previews for multitask finetuning. However, the Hessian
approximation from IVON comes for free during training while the squared gradient approximation
incurs overhead due to requiring an additional forward pass over at least a subset of the training data
after training.
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