
Structured Unrestricted-Rank Matrices for
Parameter Efficient Fine-tuning

Arijit Sehanobish1∗ Avinava Dubey2* Krzysztof Choromanski3,4*

Somnath Basu Roy Chowdhury5* Deepali Jain3 Vikas Sindhwani3 Snigdha Chaturvedi5
1Independent 2 Google Research 3Google DeepMind

4Columbia University 5UNC Chapel Hill

Abstract

Recent efforts to scale Transformer models have been successful across a wide
range of tasks [77]. However, fine-tuning these models for downstream tasks can be
expensive, as it requires updating a large number of parameters in the Transformer
model. Parameter-efficient fine-tuning (PEFT) approaches have emerged as a viable
alternative that allow us to fine-tune models by updating only a small number of
parameters. In this work, we propose a general framework for parameter efficient
fine-tuning using structured unrestricted-rank matrices (SURM), which can serve
as a drop-in replacement for popular approaches such as Adapters and LoRA.
Unlike other methods like LoRA, SURMs provides more flexibility in finding the
right balance between compactness and expressiveness. This is achieved by using
low displacement rank matrices (LDRMs), which has not been used in this context
before. SURMs remain competitive with baselines, often providing significant
quality improvements while using a smaller parameter budget. SURMs achieve
5-7% accuracy gains on various image classification tasks while replacing low-
rank matrices in LoRA. It also results in up to 12x reduction of the number of
parameters in adapters (with virtually no loss in quality) on the GLUE benchmark.

1 Introduction

In recent years, large-scale Transformer models have demonstrated impressive performance across a
wide range of domains, including natural language processing (NLP) [20, 8], vision [36], robotics [7],
and even multi-modal settings [81]. For many applications, a single large pre-trained model is
adapted for several downstream problems. Fine-tuning, where all the model parameters are updated,
is a popular way to adapt a pre-trained model to a new task or domain. However, fine-tuning large
models on specific downstream tasks requires significant computational resources and involves a
massive memory footprint, as each task necessitates storing its own set of parameters.

Parameter-efficient fine-tuning (PEFT) methods have emerged as the preferred methodology to adapt
pre-trained Transformers to different downstream tasks. PEFT methods often achieve performance on
par with full fine-tuning while training only a small number of parameters [80, 45]. PEFT techniques
involve either training a small subset of the model’s parameters [84, 42] or integrating small modular
layers while freezing the base model’s weights [26, 25]. There are two popular classes of methods
to inject additional parameters: (a) using small modular layers inside Transformers called adapter
layers [59], and (b) constraining the updates as low-rank matrices (LoRA) [26].

Although adapters and LoRA (including their variants) differ architecturally and conceptually, they
share a common reliance on low-rank matrices. The success of these methods has been attributed
to the low intrinsic dimensionality of the hidden representations in the pre-trained Transformer

∗Equal Contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

LowRank Kronecker Circulant Toeplitz0.60

0.65

0.70

0.75
Ap

pr
ox

im
at

io
n

Er
ro

r

Number of Parameters

Ac
cu
ra
cy

Full Fine-tuning

Attention
Tuning

 Transformer
Probing

Adapter
LoRA

KAdaptation

Lin. Probing

LePEBitFit

LoRA-Fix

LN Tuning

SURM

Figure 1: Left: Approximating a PSD matrix using a low rank matrix, Kronecker product of matrices,
circulant matrix, and Toeplitz matrix. We repeat our experiment 10 times and for each trial, we
observe that low rank matrix is the worst approximator followed by Kronecker product, circulant, and
Toeplitz. Right: The tradeoff between accuracy and parameter numbers of various PEFT methods.
Results are measured across 5 image datasets using CLIP-ViT. Our methods appear in the top right
corner (in blue) and achieve the best performance among various strong baseline methods.

models [1, 70]. These low-rank methods primarily aim to approximate updates, which, in general, are
not low rank. Hence, there’s no justification for imposing low-rank constraints on them. Motivated by
this insight, we explore alternative classes of matrices—ones that aren’t necessarily low rank but are
characterized by a linear number of parameters while exhibiting impressive approximations across
various matrix classes. We present Fig. 1 as a preview of the motivating results. In Fig. 1 (left), we
show that structured matrices (SURM) can approximate any random matrix better than low rank
matrices. In Fig. 1 (right), we show that when SURMs are used for parameter efficient fine-tuning it
outperforms existing PEFT methods (see more details in Sec. 4).

We propose a novel paradigm of parameter efficient fine-tuning that leverages Structured Unrestricted-
Rank matrices (or SURMs). SURMs provide similar efficiency gains as previous works in efficient
fine-tuning, but their more expressive structure paves the way for quality improvements. In this
work, we propose to perform parameter-efficient fine-tuning by parameterizing learnable weights as
structured matrices. We focus on the two sub-classes of SURMs: (1) Kronecker product of matrices
[3] and (2) low displacement rank matrices (LDRMs) [66, 6, 58, 54, 73]. To summarize, our primary
contributions are:

• We propose the class of Structured Unrestricted-Rank matrices (SURMs) (Section 3), for parameter
efficient fine-tuning of Transformers. SURMs include low-rank matrices used in LoRA, as special
cases. To the best of our knowledge, we are the first to apply LDRMs in this context.

• We demonstrate strong matrix approximation capabilities inherent in Low Displacement Rank
Matrices, with a specific focus on circulant and Toeplitz matrices (Section 4).

• We introduce a new class of adapter-layers using SURMs, achieving a 12x reduction in parameters
compared to adapters, with virtually no loss in quality on the GLUE benchmark (Section 6).

• We achieve 5-7% accuracy gains over LoRA on a wide variety of image datasets as well as in low
resource setting (VTAB-1k benchmark). In some cases SURMs outperform full fine-tuning, while
using only 55k training parameters (as shown in Fig. 1 (right)).

2 Related Work

With the introduction of BERT [20] and GPT-2 [8], Transformer models trained on general text
corpora have revolutionized the field of machine learning (ML). Since then, these models have
continued to increase in size, with open-source variants adopting various architectures. Examples
include encoder-decoder models such as T5 [64] with up to 20B parameters [67], and a range of
auto-regressive decoder models like Llama [69], Pythia [4], Mistral [28], among others, varying in
size from a few million to 180B parameters [2]. These models can be easily adapted to downstream
tasks by fine-tuning on task-specific data, resulting in state-of-the-art performance across a broad

2

spectrum of downstream tasks. Due to the computational infeasibility of fine-tuning all the parameters
of these models, in-context learning [8] and prompt engineering [11, 22] have emerged as attractive
alternatives to adapt models to downstream tasks. However, such adaptation results depend heavily on
the design of the input prompt and tend to vary greatly with small perturbations of the prompts [48].

Consequently, many works have proposed various PEFT techniques. One of the earliest methods
involves inserting the so-called adapter layers between existing layers in a neural network [25, 59]. An
adapter is typically an MLP with input, output, and a smaller middle layer, encoded by two low-rank
matrices, making it compact in terms of parameters. An extension of the adapter is Compacter [51],
which uses Tucker decomposition to parameterize the adapter layers and weight-sharing to reduce the
number of trainable parameters. Various modifications and extensions of the above methods have been
proposed [53, 24, 32, 52, 65]. Another popular PEFT technique is differentiable prompt-tuning (DPT),
which can be thought of as optimizing special tokens in the prompt [88]. However, these methods are
limited by the sequence length of the underlying models. Even though DPT was originally developed
for NLP, several works have extended it for computer vision tasks as well [83, 12, 27, 24].

One of the most popular PEFT methods is Low-Rank Adaptation (LoRA) [26], which imposes a
low-rank constraint on the weight updates. The main difference between adapters and LoRA is that
the learned LoRA weights can be merged with the frozen model weights during inference without
adding any latency. Given the popularity of LoRA, there have been many works on extending it to
different contexts like long-range modeling [13], multi-tasking [10] or improving its efficiency [19,
71, 46, 37, 31] among many others.

In general, low-rank matrices are studied extensively in various ML applications [57, 87, 44, 61].
The research on low displacement rank matrices (LDRMs) for ML is more narrow [89, 68, 41, 66,
15, 35, 62]. Although Kronecker matrices (a class of LDRMs) have been explored in the context of
LDRMs [21, 24, 51], the constituent matrices in the Kronecker product have low rank even in these
work. In this work, we use a fixed parameter budget but do not impose any rank-based condition.
To the best of our knowledge, we are the first to systematically explore the effectiveness of different
structured matrices and introduce LDRMs for parameter-efficient fine-tuning.

The rest of the paper is organized as follows: (a) We introduce the notion of Structured Unrestricted-
Rank Matrices (SURM) that are used in this work (Section 3), (b) We motivate the usage of SURM by
empirically showing the approximation qualities of these matrices (Section 4), (c) We use SURM as
drop-in replacement for popular approaches such as Adapters and LoRA (Section 5), (d) We validate
our approach across a wide range of vision and NLP tasks (Section 6).

3 Structured Unrestricted-Rank Matrices (SURM)

In this section, we will define the matrices that are used for parameter efficient fine-tuning. First, we
define the concept of a structured matrix, which is a generic term for a matrix A ∈ Rm×n that can
be represented by fewer than mn parameters. These matrices are useful because they reduce both
space and time complexity when performing matrix multiplications.

A simple example of a structured matrix is a low rank matrix of the form W = AB⊤ ∈ Rm×n,
where A ∈ Rm×r, B ∈ Rn×r with r ≪ min(m, n). In this work, our main focus is on those
classes of structured matrices that are not restricted to be low-rank, which we refer to as Structured
Unrestricted-Rank Matrices (SURM). Next, we present two classes of SURM matrices that we use
for parameter efficient fine-tuning.

Low Displacement Rank Matrices. Our first class of SURMs is low displacement rank matrices
(LDRMs). A matrix W ∈ Cm×n is said to have (A, B)-displacement structure if:

∇A,B(W) def= AW − WB = F, (1)

where A ∈ Cm×m, B ∈ Cn×n, F ∈ Cm×n and F has low rank r (as compared to min(m, n)). We
call ∇A,B the displacement rank operator, parameterized by A and B.

For a given W, there can exist several pairs of (A, B) matrices satisfying Eq. 1 that produce a low-
rank matrix, F. Some examples of such (A, B) pairs include: (Z, Z), (Z, Z⊤), (Dx, Z⊤), (Dx, Dy)
(for x ̸= y). Here Z is a circulant-shift matrix and Dz is a diagonal matrix with nonzero entries
equal to z. Low displacement rank matrices (W in Eq. 1) enable fast (sub-quadratic) matrix-vector
multiplication and enhance the efficiency of other matrix operations, such as inversion. By selecting

3

c0 cn−1 … c2 c1
c1 c0 cn−1 … c2
⋮ c1 c0 ⋱ ⋮

cm−2 ⋮ ⋱ ⋱ ⋮
cm−1 cm−2 … … cm

a0 a−1 … … a−(n−1)

a1 a0 a−1 … ⋮
a2 a1 a0 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ a−1

am−1 … … a1 a0

a11B … a1nB
⋮ ⋱ ⋮

am1B … amnB

(a) Circulant (b) Toeplitz (c) Kronecker

Figure 2: A schematic diagram to illustrate the structure (a) Circulant, (b) Toeplitz, and (c) Kronecker
product of two matrices A and B.

more complex (A, B) pairs, such as those involving general Jordan form matrices, it is possible to
consider more unstructured W that still have compact representations and support efficient matrix
operations [56, 66]. In this paper, we focus on classic low displacement rank matrices: circulant and
toeplitz matrices, which are described below.

1. Circulant Matrices: A circulant matrix C ∈ Cm×n can be parameterized by its first row. The
following rows are obtained from the previous one by applying a right circulant shift. A schematic
visualization of a circulant matrix is shown in Fig 2 (a). Since we only need to store the first row,
circulant matrices can be trivially encoded in O(n) space. They also support fast matrix-vector
multiplication in O((n + m) log(n + m)) time using Fast Fourier Transform (FFT) [55].

2. Toeplitz Matrices: A toeplitz matrix T ∈ Cm×n is a matrix whose entries are constant along
each diagonal. A schematic visualization of a toeplitz matrix is shown in Fig 2 (b)). They can be
parameterized using only their first row and column, allowing them to be encoded in O(n + m)
space. Similar to circulant matrices, they support fast O((n + m) log(n + m)) matrix-vector
multiplication via FFT.

Kronecker Product of Matrices. Kronecker products are another class of structured unrestricted
rank matrices that have low storage complexity and admit efficient matrix-vector multiplication.
These matrices are obtained using a Kronecker product A ⊗ B of two matrices A and B, as shown
in Fig 2 (c). We provide more details about these matrices in Appendix A.3.

4 LDR-SURMs as General Approximators

In this section, we motivate the usage of structured unrestricted-rank matrices (SURMs) for parameter-
efficient fine-tuning. In general, the parameter updates ∆W can be arbitrary matrices, and an
effective parameterization of ∆W should be sufficiently expressive to approximate them. Since we
use structured update rank matrices (SURMs) to parameterize ∆W, we demonstrate that SURMs
can approximate various classes of matrices. Without loss of generality, in this section, we assume
that all our matrices have real entries and that weight matrices are square (n = m).

First, we recall the result from [66], which states that a broad class of low displacement rank matrices,
as well as linear combinations of Toeplitz (or their inverses) products2, can be parameterized as:

W(G, H) =
r∑

i=1
Z1(gi)Z−1(hi), (2)

where G = [g1, ..., gr], H = [h1, ..., hr] ∈ Rn×r, and Zf (v) (for any f ∈ R, v ∈ Rn) is defined as:

Zf (v) =

v0 fvn−1 · · · fv1
v1 v0 · · · fv2
...

...
... fvn−1

vn−1 · · · v1 v0

. (3)

When f = 1, Zf (v) is a circulant matrix and when f = −1, we refer to Zf (v) as a skew-circulant
matrix. Moreover, F can be decomposed as follows: F = GH⊤ for G = [g1, ..., gr], H =
[h1, ..., hr] ∈ Rn×r. One can think about rank r of F of controlling how “structured” W is.

2M1 · ... · Mt for r ≥ 2t and where each Mi is a Toeplitz matrix or its inverse.

4

Figure 3: A circulant matrix with the first column given by a vector (c0, c1, c2, c3, c4) can be re-written
as a linear combination of the orthogonal base circulant matrices (5 matrices with orange-entries
corresponding to one and other to zero). Such a closed-form decomposition is in general not possible
for matrices W(G, H) and thus optimal approximators are found by gradient-descent.

From the above result, we see that W(G, H) is the most expressive parameterization among the
ones discussed so far. To understand how they fare with SURMs in practice, we evaluate their
approximation qualities in two settings: (a) comparing W(G, H) with circulant and Toeplitz matrices,
and (b) comparing circulant and Toeplitz matrices with low-rank matrices.

4.1 Comparing W(G, H) with Circulant and Toeplitz Matrices

We test the approximation capabilities of matrices W(G, H) (Eq. 2) and compare it with popular
classes of SURMs: circulant and Toeplitz matrices (Section 3). Specifically, we use these structured
matrices to approximate three broad classes of matrices: (a) random, (b) near-low-rank, and (c) near-
low-intrinsic-rank. We denote the ground-truth matrix that we try to approximate as M ∈ R100×100

and parameterized structured matrix as A (see more details about the setup in Appendix A.7). For all
matrices, we obtain the parameters of A using gradient descent on the loss function: ∥A − M∥2

F. 3

100 101 102 103

Steps

100

101

Tr
ai

ni
ng

 L
os

s

LoRA
SURM (Circulant)
SURM (Toeplitz)
SURM (Symm. Toeplitz)
Full Fine-tuning

Figure 4: Fitting the pinwheel dataset with a
frozen embedding layer using various SURM-
based PEFT methods and LoRA.

In Figure 5, we report the relative Frobenius norm
error during training for different settings. In Fig 5
(top left), we use W(G, H) with different r (rank
of F in Eq. 1) is used to approximate random matri-
ces. While the best approximations are achieved for
larger values of r (specifically, r = 20), it is inter-
esting to note that the final error does not decrease
monotonically with increasing r. For the remaining
class of matrices M, which are close to low-rank and
therefore easier to approximate, we experiment with
smaller values of r and report the results in Figure 5
(left column, middle and bottom). In this case, we
observe that the three top-performing approximators
W(G, H) were trained with r = 1, 2, 4. These re-
sults indicate that for more structured ground truth
matrices (even if they are not necessarily low-rank),
LDRMs with a very low rank for the corresponding F are sufficient.

Motivated by the results showing that LDRMs with low r can serve as effective approximators, we
use circulant and Toeplitz matrices to approximate near-to-low-rank and low-intrinsic-rank matrices.
In the three plots shown in Fig. 5 (right column), we observe that approximations using Toeplitz
matrices (using twice as many parameters as circulant matrices) offer negligible gains and are only
beneficial in the near-low-rank case. For the low-intrinsic case, circulant matrices outperform Toeplitz
ones. Overall, circulant matrices with few parameters achieve strong performance in this setting.

4.2 Comparing Low Rank with Circulant and Toeplitz Matrices

In this section, we focus on the difference in approximation qualities between low rank matrices and
the circulant and Toeplitz matrices under a fixed parameter budget. We use the following settings:

3Please note that for circulant and Toeplitz matrices, it is also possible to obtain a closed-form solution for
the matrix (see Fig 3 & Appendix A.6).

5

Figure 5: Illustration of the approximation capabilities of different LDRMs. The y-axis depicts the
relative Frobenius norm error ∥A − M∥F/∥M∥F between the groundtruth M and the approximator
A. (Left Column Top): We approximate a random Gaussian matrix M with matrices W(G, H) using
different r (LDR: r). (Left Column Middle) We approximate near-low-rank matrices M using smaller
values of r. (Left Column Bottom): Similar setup to approximate near-low-intrinsic-rank matrices
M. (Right Column): We perform analogous studies with circulant and Toeplitz matrices, where the
ground truth has low rank or low-intrinsic rank.

Approximating Symmetric Positive Definite Matrices. We use a PSD matrix M ∈ R50×50 with
L2-normalized rows in this experiment. We compare the errors to approximate M using circulant,
(symmetric) Toeplitz, low-rank matrices, and Kronecker product of two matrices. We use a fixed
parameter budget and repeat this experiment 10 times. We report the results in Figure 1 (left). For
each of these 10 trials, we observe that the circulant and Toeplitz achieve the lowest error, therefore
the best approximation quality (see more details in Appendix A.7).

Fitting a Toy Dataset. We create a synthetic pinwheel dataset with 5 spokes as shown in Figure 9
(left). We fit this dataset using a simple neural network with one hidden layer with a matrix
W ∈ R64×64. In this experiment, we replace W with a rank 1 LoRA, a circulant, a symmetric
Toeplitz, and a Toeplitz matrix (with all parameterizations having the same number of training
parameters). In Fig 4), we report the training loss curves of this experiment. We observe that the
LoRA layer struggles to fit the data whereas the LDRMs show similar performance to full fine-tuning
(Fig 4). These results show the impressive expressive power of these matrices. Therefore, we
conclude that LDRMs with particularly low displacement rank serve as good approximators for
various matrices. We perform additional experiments and provide more details in Appendix B.

6

Table 1: ViT-experiments : Baseline numbers are taken from [24]. The best numbers are highlighted
in bold and the second-best numbers are underlined. Hyperparameter settings are followed from [24].
We find that SURM consistently outperform very strong baselines with 2-3x reduction in parameters.

Method # Param ViT-B CLIP(
×106) CIF-10 CIF-100 SUN397 DTD STL10 CIF-10 CIF-100 SUN397 DTD STL10

Fine-tuning 86.6 99.0 92.4 75.0 72.4 99.6 97.7 85.4 73.8 79.0 99.7

Attn. Tuning 28.4 93.9 85.7 73.8 69.2 99.2 96.8 81.8 73.1 75.0 97.6
Trans. Probing 3.2 86.9 86.9 76.7 72.0 99.0 95.6 80.1 74.3 75.9 98.5
Linear Probing 0.049 96.3 87.7 70.1 72.7 98.7 94.8 80.1 72.4 75.4 98.4
BitFit 0.358 92.3 81.0 71.8 72.6 99.0 92.1 76.0 70.8 75.9 98.8
Adapter 1.505 98.4 90.6 74.2 71.0 99.3 94.7 81.4 77.1 78.0 99.0
AdapterDrop 0.174 96.8 88.4 72.3 70.2 99.6 93.3 78.3 71.4 77.1 98.0
LORA 0.219 98.7 90.6 73.6 70.4 99.4 95.1 78.1 80.8 78.1 99.2
LORA-FIX 0.148 96.2 88.3 72.0 65.5 99.0 92.5 77.1 60.0 77.7 88.6
LN Tuning 0.075 92.2 71.7 72.0 69.0 98.8 82.5 76.6 66.7 72.4 99.1
LEPE 0.167 93.7 90.8 73.2 69.8 99.1 95.1 78.9 68.0 75.4 98.0
RPB 0.145 96.7 87.0 72.4 70.4 98.9 94.7 77.1 68.4 75.2 97.9
KAdaptation 0.114 97.9 91.2 75.1 71.4 99.4 95.9 84.8 74.0 78.1 99.2

SURM (Kronecker) 0.055 98.3 89.9 78.6 75.4 99.6 97.1 85.0 80.7 79.0 99.2
SURM (Toeplitz) 0.055 98.5 90.2 79.1 75.6 99.7 97.1 84.5 80.9 77.9 99.0
SURM (Circulant) 0.055 98.0 90.7 80.5 75.7 99.8 97.0 84.6 81.1 78.6 99.3

5 Integration of SURMs with PEFT

Motivated by the results from the previous section, we use SURMs as drop-in replacements for
various PEFT methods. In this section, we present the integration of SURMs in two popular classes
of PEFT methods: LoRA and Adapters.

5.1 Integration of SURMs in LoRA

LoRA [26] uses a low rank matrix to parameterize the weight matrix updates. Formally, given a
pre-trained weight matrix W, then the updated matrix is Ŵ = W + α∆W, where ∆W = AB⊤

and A ∈ Rm×r, B ∈ Rn×r for r ≪ min(m, n) and α is a fixed scaling parameter. For efficient
training, ∆W needs to be initialized as a zero-matrix. LoRA performs this by choosing initializing
A to be the zero matrix and B to be a random matrix. In this work, we propose to parameterize
∆W using structured unrestricted rank matrices. Next, we provide the details of parameterizing ∆W
using different SURM matrices (assuming m = n for simplicity).

Circulant Matrices. In this setting, we parameterize the updates as: W = C1 ⊙ C2, where
Ci ∈ Rn×n are circulant matrices encoded using a n-dimensional vector, ri ∈ Rn. We use
Hadamard products (C1 ⊙ C2) instead of conventional matrix products as it can be computed
efficiently. The construction of Hadamard products which is O(n) is quicker than the process involved
in efficient multiplication (which is O(nlog(n)). To enable zero-initialization, we initialize C1 as
a zero-vector and C2 as a random-vector. Additionally, this approach does not compromise the
expressiveness of the network, as the result of the Hadamard product is also a circulant matrix.

Toeplitz Matrices. Similar to the previous setting, we use two Toeplitz matrices to parameterize:
∆W = g(T2, g(T1, x)), where T1, T2 ∈ are Toeplitz matrices, and g is the operator that allows
efficient matrix-vector multiplication with Toeplitz matrices (see Appendix A.3). Each Toeplitz
matrix T ∈ Rn×n is parameterized using an n-dimensional vector r encoding its first row and an
n-dimensional vector c encoding its first column (2n − 1 total parameters). This formulation leads
to the 4n − 2 trainable parameters. To further reduce this number, we constrain the T1, T2 to be
symmetric, reducing the total number of trainable parameters to 2n. To enable zero-initialization, we
initialize T1 as a zero matrix and T2 is randomly initialized.

Kronecker Product of Matrices. In this setting, we parameterize: ∆W = A ⊗ B, where A ∈
Rr1×r2 , B ∈ R

n
r1

× n
r2 . The hyperparameters r1, r2 allow us to control the trainable parameter count

and the rank of ∆W. In contrast to low-rank matrix updates, we can create matrices ∆W of fairly
large ranks while keeping the number of trainable parameters small (see Appendix A.2). To enable
zero-initialization, we set A as a zero matrix and B as a random matrix.

7

Table 2: Results on the VTAB-1k benchmark. Baseline numbers are taken from [30] and [50]. Best
numbers are highlighted in bold and the second-best numbers are underlined. We observe that SURM
is one of the top-performing PEFT methods on almost all datasets.

Method # Params(
×106) CIF-100 Cal-101 DTD F-102 Pets SVHN Sun397 Cam. EuroSAT Res-45 Retino.

Fine-tuning 86.6 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9

Linear 0.049 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0
BitFit 0.013 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8
VPT-Shallow 0.063 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9
VPT-Deep 0.531 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4
Adapter 0.157 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5
AdaptFormer 0.157 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3
LoRA 0.295 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6
NOAH 0.361 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8
Fact-TK≤32 0.069 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7
SSF 0.240 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5
RepAdapter 0.110 70.7 91.6 72.5 99.1 91.3 88.5 54.2 84.1 95.7 85.1 74.6

SURM (Kronecker) 0.055 79.6 88.7 73.1 99.1 92.5 74.8 54.7 82.2 94.3 81.9 75.4
SURM (Toeplitz) 0.055 79.5 88.9 72.7 99.1 91.5 74.7 55.8 83.6 96.2 82.2 76.0
SURM (Circulant) 0.055 80.6 87.5 74.7 99.5 93.3 74.9 57.1 85.3 96.0 83.7 75.4

CIFAR-10 CIFAR-100 SUN397 DTD STL10

Ac
cu

ra
cy

 (%
)

Fraction of Training Data

Figure 6: Low Resource Training. Accuracy of SURM CLIP-ViT models as a function of the
training data fraction. The results show that SURM can achieve comparable accuracy with as low as
∼ 2% of the training data for easier tasks like CIFAR10 and ∼ 20% for harder tasks like SUN397.

In all the above settings, it is possible to increase the number of training parameters by relaxing
the structure of the matrix, ∆W. This can be performed by introducing more matrices in the
product chains, utilizing asymmetric Toeplitz matrices, adjusting the sizes of factors in the Kronecker
product, or employing sums of such matrices. Another way to enhance layer expressiveness is by
experimenting with combinations of different LDRMs, such as mixing circulant and skew-circulant
matrices. A broad class of matrices, including low-rank ones, can be represented as sums of these
matrices (see Theorem A.2 and the subsequent discussion).

5.2 Integration of SURMs in Adapters

Adapters [25] are small bottleneck networks into Transformer layers as shown below:

Y = X + σ(XB)A, (4)

where σ(·) is a non-linear activation function, X ∈ Rb×s×n represents input to the layer (b: batch
size, s: sequence length), A ∈ Rr×n, B ∈ Rn×r are low-rank matrices (r ≪ n) and Y is the output
of the layer. For simplicity, layer norms and bias terms are not included in the equation. We use
SURMs as a drop-in replacement for matrices A and B. Next, we will provide details of integrating
SURMs within the adapter setting. Additional details are provided in Appendix A.5.

Circulant Matrices. In this setting, we apply two circulant matrices C1, C2 (encoded by r1, r2),
resulting in the adapter block: Y = X+σ(f(r1 ⊙r2, X))+b, where f is an operator that efficiently
computes the matrix multiplication between input X and the circulant matrix encoded by the vector
r1 ◦ r2 (Appendix A.3). To enable zero-initialization, the vector r1 is initialized randomly while r2
and b are initialized as zero vectors.

Toeplitz Matrices. In this setting, we use two symmetric Toeplitz matrices T1, T2, where T1 and
b is initialized as a zero vector and T2 is initialized randomly. We then define the adapter layer
as: Y = X + σ(g(T1, g(T2, X))) + b, where g is an operator that efficiently computes the matrix
multiplication between an input X and a Toeplitz matrix.

8

Number of Parameters

Ac
cu
rac
y

Full Fine-tuning

Attention
Tuning

 Transformer
Probing

Adapter
LoRA

KAdaptation
Lin. Probing

LePEBitFit

LoRA-Fix
LN Tuning

SURM

Number of Parameters

Pe
rfo
rm
an
ce

AA

Parallel

MAM

Serial

LoRA

Prefix

AdaMix

BitFit

AutoPEFT

UniPEFT

CompacterFull fine-tuning

Adapter
(Pfeiffer)

Adapter
(Houlsby)

SURM (Adapter)

Number of Parameters

Pe
rfo

rm
an

ce

GLUEVision

Figure 7: Left: Tradeoff between performance and parameter count for various PEFT methods. We
report the average results across 5 image datasets using ViT-B (complete results in Table 1). Right:
Average performance across GLUE benchmark (see complete results in Table 5). SURMs appear in
the top right corner and perform best among various strong baseline methods in both settings.

Kronecker Product of Matrices. In this case, we rewrite Equation 4 as: Y = X+σ(X(B⊗A))+b,
where B ⊗ A is the Kronecker product. In this case, B is initialized randomly and A and b are
initialized by zeros. In all experiments using SURM-adapters, σ(·) is the GeLU non-linearity.

6 Experiments

In this section, we show the effectiveness of our proposed methods in a wide range of vision and NLP
tasks through extensive empirical studies.

Image Classification Experiments. We evaluate SURM on several vision datasets: CIFAR10,
CIFAR100 [39], SUN397 [79], DTD [16] and STL10 [17]. We experiment using ViT-B/16 [36]
& Clip-ViT-B/16 [63] as base models and inject trainable parameters Q, K, V matrices in the
LoRA setting. We report the results using ViTbase are presented in Table 1 (left). We observe that
SURM consistently outperforms 12 baseline methods (that use up to 10x parameters). On three
out of the five tasks, SURMs emerge as the top performers, surpassing LoRA by a margin of up to
5-7% while achieving competitive performance on the remaining tasks. We report the results using
Clip-ViT in Table 1 (right). In this setting, SURM is among the top two methods across all 5 tasks.
SURM also uses fewer trainable parameters, reducing them by 3.65x compared to LoRA and 2.4x
compared to LoRA-Fix.

Low Data Regime. We evaluate SURM in low data regime using VTAB-1k datasets [85] and the ViT
model. VTAB-1k is a diverse collection of vision datasets with only 1000 training examples. We
focus on the NATURAL and SPECIALIZED subsets of VTAB. In Table 2, we observe that SURMs are
among the top 2 methods on 10 datasets while being competitive on the remaining tasks.

We evaluate different variants of SURM and train it on a varying fraction of data on 5 datasets using
Clip-ViT model. We report the results in Figure 6. We observe that the circulant SURM works best
in low data regime. Furthermore, SURM achieves the performance of full fine-tuning trained on the
entire dataset with only a small fraction of the data. For more challenging datasets like SUN397, we
achieve comparable accuracy using approximately 20% of the training data, while for datasets such
as CIFAR10 and STL10, only about 2% is needed.

Large Data Regime. We perform experiments to show that SURM generalizes well in large data
regimes. On ImageNet [18] and iNat2021 [72], SURM achieves performance comparable to full
fine-tuning while using only 0.06% of the training parameters (see detailed results in Appendix B.2).

NLP Experiments. We extensively evaluate SURM models on the GLUE benchmark [74] using
BERTbase [20]. We compare with different adapter baselines and 11 other PEFT techniques. These
include full-finetuning, Adapter (Houlsby) and Adapter (Pfeiffer), among others (we report the
corresponding results from [59]). BiTFit results are taken from [84] (except QQP numbers which are
obtained from [9]) and the numbers for AA-adapters from [53]. Prefix, Serial, AdaMix, UniPELT,

9

Table 3: Image Segmentation results on the Synapse multi-organ segmentation dataset. SURMs
achieve comparable performance with specialized architectures developed for medical imaging while
being more parameter efficient.

Methods DSC Aorta Gallblad. Kid. (L) Kid. (R) Liver Pancreas Spleen Stomach

U-Net 76.85 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
Att-UNet 77.77 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
TransUnet 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUnet 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
SAMed 81.88 87.77 69.11 80.45 79.95 94.80 72.17 88.72 82.06
LORA (rank=1) 78.26 81.86 64.54 81.97 81.18 93.79 60.80 88.33 73.64
SURM (Circulant) 80.11 83.04 64.92 81.37 80.96 94.21 69.11 88.15 79.06

Parallel, MAM, and AutoPEFT numbers are taken from [90]. The results for the remaining baselines
are replicated by us. More experimental details can be found in Appendix B.

For brevity, we summarize the average performance across 8 tasks for SURM-adapters and compare
it to 11 baselines, in Fig 7 (right). We observe that SURM achieve much better performance while
using a fraction of the parameters (the complete results are reported in Appendix Table 5). We
also observe that SURM (integrated into LoRA) outperforms the baseline LoRA, under the same
parameter budget. This shows the effectiveness of using structured matrices as a drop-in replacement
for low rank matrices used in LoRA. We further analyze the representations learnt by SURMs and
LoRAs (Appendix B.4). We find that LoRA learns weights that are very similar to the pre-trained
weights whereas SURM is able to explore a larger parameter space (an observation similar to [91]).

0 20 40 60 80 100 120
Iterations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Tr
ai

ni
ng

 L
os

s
MoRA
LoRA
SURM (w/ Circulant)
SURM (w/ W(G, H))

Figure 8: Fitting the UUID dataset using
Llama-2-7b. We fit the data using various
SURM-based PEFT methods and LoRA.

Large-scale Experiments. In this setting, we inte-
grate SURMs in LLMs. Specifically, we use matrices
of the form W(G, H) (as described in Eqn 2) to in-
crease the number of training parameters. We use
the experimental setup introduced in [29], where the
LLM tries to fit a dataset of UUID pairs using the
Llama-2-7B model [69]. This was shown to be a
challenging task (UUID prediction is significantly
different from the pre-training tasks) that requires
higher rank values in LoRA. We report the results in
Fig. 8, demonstrating that SURMs is able to fit the
data, whereas other methods struggle to do so (see
more details in Appendix B.1).

Image Segmentation. Next, we focus on the ex-
tremely challenging task of medical image seg-
mentation using Synapse multi-organ segmentation
dataset [82]. Segment-Anything-Model (SAM) [34] is used as the foundation model for this task. We
follow [86] and adapt the Q, V in ViTbase image encoder in SAM. Finally, in this low data regime,
we use Circulant variant of SURM as it is the best performing variant (Fig. 6). We report the Dice
similarity coefficient (DSC) metric for each of the 8 organ segmentations and their average (higher is
better). For a fair comparison, we include LoRA with rank 1, matching the exact parameter count
of Circulant. The results are presented in Table 3. We report the baseline performance from [86].
SURMs compare favorably with specialized architectures developed for medical imaging like U-Net,
Attention U-Net, Transformer-based U-Net, and the Swin U-Net even though they have significantly
higher number of training parameters than our method (see details in Appendix B.1).

7 Conclusion

We introduce structured unrestricted-rank matrices (SURMs) as an alternative to low-rank matrices
for the parameter-efficient fine-tuning of large Transformer models. In this setting, structured matrices
form the cornerstone of a comprehensive framework, offering a solid base for various parameter
efficient fine-tuning methods, such as adapters and LoRA, with enhanced efficiency. SURMs improve
the overall effectiveness of PEFT, contributing to its efficient integration into diverse models and
domains. Based on extensive numerical experiments and theoretical insights, we conclude that the
Circulant variant is our most performing variant (in terms of speed and accuracy).

10

8 Author Contributions

AS designed the integration of SURM in Adapters and LoRA and ran the GLUE experiments. AD
helped in developing the integration and ran all image experiments. KC came up with the idea of
using LDRMs in the context of PEFT. SBRC helped in running various large-scale experiments and
writing the manuscript. All authors contributed to the writing of this manuscript.

References

[1] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains
the effectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li,
and Roberto Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7319–7328, Online, August 2021. Association for
Computational Linguistics.

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxan-
dra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin
Malartic, et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867,
2023.

[3] Michele Benzi and Valeria Simoncini. Approximation of functions of large matrices with
kronecker structure. Numerische Mathematik, 135(1):1–26, 2017.

[4] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[5] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[6] Richard P Brent. Stability of fast algorithms for structured linear systems. Fast reliable
algorithms for matrices with structure, pages 103–116, 1999.

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry
Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav
Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,
Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan,
Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun
Xu, Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at
scale. arXiv preprint arXiv:2212.06817, 2023.

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[9] Jin Cao, Chandana Satya Prakash, and Wael Hamza. Attention fusion: a light yet efficient late
fusion mechanism for task adaptation in NLU. In Marine Carpuat, Marie-Catherine de Marn-
effe, and Ivan Vladimir Meza Ruiz, editors, Findings of the Association for Computational
Linguistics: NAACL 2022, pages 857–866, Seattle, United States, July 2022. Association for
Computational Linguistics.

11

[10] Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. One-for-all:
Generalized lora for parameter-efficient fine-tuning. arXiv preprint arXiv: 2306.07967, 2023.

[11] Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the
potential of prompt engineering in large language models: a comprehensive review. arXiv
preprint arXiv:2310.14735, 2023.

[12] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping
Luo. Adaptformer: Adapting vision transformers for scalable visual recognition. arXiv preprint
arXiv:2205.13535, 2022.

[13] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024.

[14] Zhangchi Chen. On nonsingularity of circulant matrices. Linear Algebra and its Applications,
612:162–176, March 2021.

[15] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S. Chang. An exploration of
parameter redundancy in deep networks with circulant projections. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 2857–2865, Los Alamitos, CA, USA, dec 2015.
IEEE Computer Society.

[16] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild.
In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

[17] Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single Layer Networks in
Unsupervised Feature Learning. In AISTATS, 2011. https://cs.stanford.edu/~acoates/
papers/coatesleeng_aistats_2011.pdf.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[19] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[21] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

[22] Jindong Gu, Zhen Han, Shuo Chen, Ahmad Beirami, Bailan He, Gengyuan Zhang, Ruotong
Liao, Yao Qin, Volker Tresp, and Philip Torr. A systematic survey of prompt engineering on
vision-language foundation models. arXiv preprint arXiv:2307.12980, 2023.

[23] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. In International Conference on
Learning Representations, 2022.

[24] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. Parameter-
efficient model adaptation for vision transformers. arXiv preprint arXiv:2203.16329, 2022.

[25] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 2790–2799. PMLR, 09–15 Jun 2019.

12

https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

[26] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[27] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision (ECCV),
2022.

[28] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[29] Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. Mora: High-rank updating for
parameter-efficient fine-tuning. arXiv preprint arXiv:2405.12130, 2024.

[30] Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision
transformer. In Proceedings of AAAI Conference on Artificial Intelligence (AAAI), 2023.

[31] Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv
preprint arXiv:2312.03732, 2023.

[32] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. In Annual
Meeting of the Association for Computational Linguistics, 2021.

[33] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[34] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4015–4026,
2023.

[35] Matthias Kissel and Klaus Diepold. Structured matrices and their application in neural networks:
A survey. New Generation Computing, 41(3):697–722, Sep 2023.

[36] Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit,
Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain Gelly, Thomas
Unterthiner, and Xiaohua Zhai. An image is worth 16x16 words: Transformers for image
recognition at scale. In Ninth International Conference on Learning Representations. ICLR,
2021.

[37] Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing loRA using linear combination of random basis. In The
Twelfth International Conference on Learning Representations, 2024.

[38] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pages
3519–3529. PMLR, 2019.

[39] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www. cs. toronto. edu/kriz/cifar. html, 5(4):1, 2010.

[40] George Labahn and Tamir Shalom. Inversion of toeplitz matrices with only two standard
equations. Linear Algebra and its Applications, 175:143–158, 1992.

[41] Daniele Lazzaro and Stefania Morigi. Matrix completion for matrices with low-rank displace-
ment. Electronic Transactions on Numerical Analysis, 53:481–499, 2020.

[42] Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during
transformer fine-tuning. arXiv preprint arXiv:1911.03090, 2019.

13

[43] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597,
Online, August 2021. Association for Computational Linguistics.

[44] Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank
approximation via alternating minimization. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 2358–2367, New York, New York, USA,
20–22 Jun 2016. PMLR.

[45] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint arXiv: 2303.15647, 2023.

[46] Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
Forty-first International Conference on Machine Learning, 2024.

[47] I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

[48] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8086–8098, 2022.

[49] Yuchen Lu, Zhen Liu, Aristide Baratin, Romain Laroche, Aaron Courville, and Alessandro
Sordoni. Using representation expressiveness and learnability to evaluate self-supervised
learning methods. Transactions on Machine Learning Research, 2023.

[50] Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and
Rongrong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106, 2023.

[51] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient
low-rank hypercomplex adapter layers. arXiv preprint arXiv: 2106.04647, 2021.

[52] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Scott Yih, and
Madian Khabsa. UniPELT: A unified framework for parameter-efficient language model tuning.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6253–6264, 2022.

[53] Nafise Moosavi, Quentin Delfosse, Kristian Kersting, and Iryna Gurevych. Adaptable adapters.
In Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 3742–3753, Seattle, United
States, July 2022. Association for Computational Linguistics.

[54] Bernard Mourrain and Victor Y. Pan. Multivariate polynomials, duality, and structured matrices.
J. Complex., 16(1):110–180, 2000.

[55] Henri J Nussbaumer and Henri J Nussbaumer. The fast Fourier transform. Springer, 1982.

[56] Vadim Olshevsky and Mohammad Amin Shokrollahi. Matrix-vector product for confluent
cauchy-like matrices with application to confluent rational interpolation. In F. Frances Yao and
Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing, May 21-23, 2000, Portland, OR, USA, pages 573–581. ACM, 2000.

[57] Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guaran-
tees for neural networks via harnessing the low-rank structure of the jacobian. arXiv preprint
arXiv:1906.05392, 2019.

[58] Victor Y. Pan. Structured matrices and polynomials: unified superfast algorithms. Springer-
Verlag, Berlin, Heidelberg, 2001.

14

[59] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP 2020): Systems Demonstrations, pages 46–54, Online, 2020. Association for
Computational Linguistics.

[60] Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. In International Conference on Learning
Representations, 2021.

[61] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi, and
Sanjeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural networks.
In Proc. Interspeech 2018, pages 3743–3747, 2018.

[62] Shikai Qiu, Andres Potapczynski, Marc Anton Finzi, Micah Goldblum, and Andrew Gordon
Wilson. Compute better spent: Replacing dense layers with structured matrices. In Forty-first
International Conference on Machine Learning, 2024.

[63] Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

[64] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[65] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7930–7946,
2021.

[66] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint
deep learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[67] Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Dara Bahri, Tal Schuster, Steven Zheng, et al. UL2: Unifying language learning
paradigms. In The Eleventh International Conference on Learning Representations, 2023.

[68] Anna Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning compressed
transforms with low displacement rank. Advances in neural information processing systems, 31,
2018.

[69] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[70] Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. arXiv
preprint arXiv:2302.00294, 2023.

[71] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. DyLoRA: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In
Andreas Vlachos and Isabelle Augenstein, editors, Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics, pages 3274–3287,
Dubrovnik, Croatia, May 2023. Association for Computational Linguistics.

[72] Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, and Oisin
Mac Aodha. Benchmarking representation learning for natural world image collections. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12884–12893, 2021.

15

[73] Ailong Zheng Victor Y. Pan. Superfast algorithms for cauchy-like matrix computations and
extensions. Linear Algebra and its Applications, 310(1–3):83–108, 2000.

[74] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 353–355, Brussels, Belgium, November 2018. Association for
Computational Linguistics.

[75] Qizhou Wang, Sarah M Erfani, Christopher Leckie, and Michael E Houle. A dimensionality-
driven approach for unsupervised out-of-distribution detection. In Proceedings of the 2021
SIAM International Conference on Data Mining (SDM), pages 118–126. SIAM, 2021.

[76] Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
Awadallah, and Jianfeng Gao. AdaMix: Mixture-of-adaptations for parameter-efficient model
tuning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pages 5744–5760, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.

[77] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

[78] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

[79] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 3485–3492, June 2010.

[80] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

[81] Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10):12113–12132, 2023.

[82] Z Xu. Multi-atlas labeling beyond the cranial vault-workshop and challenge. Synapse website,
2016.

[83] Bruce X. B. Yu, Jianlong Chang, Lin Liu, Qi Tian, and Changan Chen. Towards a unified view
on visual parameter-efficient transfer learning. ArXiv, abs/2210.00788, 2022.

[84] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 1–9,
2022.

[85] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

[86] Kaidong Zhang and Dong Liu. Customized segment anything model for medical image
segmentation. arXiv preprint arXiv:2304.13785, 2023.

[87] Meng Zhang, Fei Liu, and Dongpeng Weng. Speeding-up and compression convolutional neural
networks by low-rank decomposition without fine-tuning. J. Real-Time Image Process., 20(4),
may 2023.

16

[88] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang,
and Huajun Chen. Differentiable prompt makes pre-trained language models better few-shot
learners. In International Conference on Learning Representations, 2022.

[89] Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan. Theoretical properties
for neural networks with weight matrices of low displacement rank. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 4082–4090. PMLR, 06–11
Aug 2017.

[90] Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. arXiv preprint arXiv:2301.12132, 2023.

[91] Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-
lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint
arXiv:2309.02411, 2023.

17

A Implementation Details

In this section, we discuss the details of various algorithms and workflows within SURM.

Contents

A.1 Skew-Circulant Matrices . 18

A.2 Finding the Smallest Number of Training Parameters for Kronecker Layers 18

A.3 Efficient Matrix Vector Multiplication by Structured Matrices 19

A.4 Increasing Number of Training Parameters . 19

A.5 Integration of SURMs in Adapters . 20

A.6 Computing Approximations Using LDR Matrices 20

A.7 Additional Details on Approximation Errors by LDR 21

A.8 Invertible Toeplitz Matrices . 21

A.1 Skew-Circulant Matrices

In this section, we introduce another type of structured matrix that is characterized by a linear number
of parameters.
Definition A.1 (Skew-Circulant). A matrix S = (sjk)n−1

j,k=0 is said to be skew-circulant if sjk = sj−k

and s−l = −sn−l for 1 ≤ l ≤ n − 1.

This matrix can be represented visually as shown below:

S =

v0 −vn−1 · · · −v1
v1 v0 · · · −v2
...

...
... −vn−1

vn−1 · · · v1 v0

 (5)

This matrix is parameterized by a linear number of parameters and also enjoy sub-quadratic time
complexity matrix-vector multiplications (see Appendix A.3).

A.2 Finding the Smallest Number of Training Parameters for Kronecker Layers

Let W be a d × d matrix that can be written as W = A ⊗ B, where A ∈ Rm1×n1 , B ∈ Rm2×n2 .
We want to minimize the following objective:

m1n1 + m2n2, subject to m1m2 = n1n2 = d. (6)
We can rewrite the above as : m1 = d/m2 and n1 = d/n2. Plugging these back in Eq. 6, we get:

m1n1 + m2n2 = d2

m2n2
+ m2n2

= d2

m2n2
+ m2n2 − 2d + 2d

=
(

√
m2n2 − d

√
m2n2

)2
+ 2d

≥ 2d.

(7)

The equality is obtained when
√

m2n2 = d/
√

m2n2, thereby satisfying the constraint m2n2 =
m1n1 = d. Essentially this result shows that we can minimize the number of training parameters
when the matrices A and B are similarly sized. Furthermore, since both A (and B) have d training
parameters, we can maximize the rank of the matrix if we can make it close to a square matrix
(i.e. we choose 2 factors a, b of d, such ab = d and a is as close to b as possible). Note that
rank(A ⊗ B) = rank(A)rank(B). Thus, for our experiments with BERT and ViT models, we take A
to be a matrix of size 32 × 24 and B to be of size 24 × 32. This choice of matrix shapes allows us to
substantially reduce the computational complexity of matrix-vector multiplication (see Section A.3).

18

A.3 Efficient Matrix Vector Multiplication by Structured Matrices

One of our main advantages of using structured matrices is that they allow for sub-quadratic vector-
matrix multiplications. Matrix vector multiplication by a circulant matrix can be efficiently done via
FFT in O(n log n) time. This is done by the following steps : (a) take the FFT of the input vector v
and the vector representation of the circulant matrix c, and call them V and C respectively. (b) Take
the inverse Fourier transform of the Hadamard (element-wise) product of V and C.

For the sake of convenience, let us define this efficient multiplication operator to be f . The key insight
behind this approach is that the circular convolution in the time domain corresponds to element-wise
multiplication in the frequency domain after FFT. By leveraging FFT, the time complexity of the
multiplication is reduced from O(n2) to O(n log n).

The same ideas extend to the case of Toeplitz matrices, where one can embed the Toeplitz matrix
into a circulant matrix and use FFT as before for efficient matrix-vector multiplication. For ease of
reference, let us call the function g that embeds the Toeplitz matrix into a circulant matrix and use the
function f as described above to compute the matrix-vector product.

Next, we describe how vector multiplication by skew-circulant matrices can be efficiently performed
in O(n log n) time. If the skew-circulant matrix S is parameterized by the vector v, then the
multiplication is given by

y = S(v)x = η̄ ◦ ifft(fft(η ◦ v) ◦ fft(η ◦ x)) (8)

where η = [1, η, η2, · · · ηn−1], and η = (−1) 1
n = exp(iπ/n), the root of negative unity.

For the case of a matrix W = AB, where W ∈ Rm×n, A ∈ Rm×r and B ∈ Rr×n, then
multiplication by v takes O(r(m + n)) and one gets computation gains when r ≪ min{m, n}.
Finally, for a Hadamard product of matrices A ∈ Rr1×r2 , B ∈ Rk1×k2 , v ∈ Rr2k2 , (A ⊗ B)v =
vec(Br(v)⊤A⊤), where vec(·) is the vectorization operator that takes a matrix M ∈ Rm×n and
converts it to Rmn×1 column vector by stacking the columns of M on top of each other and r is the
PyTorch style reshape operator that reshapes the vector v to a matrix of shape r2 × k2. Choosing
max{ri, ki} ≪ riki, for i = 1, 2, one can substantially reduce the computational complexity.

A.4 Increasing Number of Training Parameters

In this section, we explain an elegant way to increase the number of training parameters. We use the
sum of product of circulant and skew-circulant matrices of the form

M =
r∑

i=1
AiBi (9)

where Ai and Bi is a circulant and a skew-circulant matrix respectively. Each factor of M has 2n
parameters thus M has 2nr parameters.

The class of n × n matrices M which can be written via Equation 9 is rich and contains many
important classes of matrices.
Theorem A.2 (Expressivity). The set of matrices M which can be written as in Equation 9 contains:

• All n × n Circulant and Skew-Circulant matrices for r ≥ 1

• All n × n Toeplitz and Inverses of Toeplitz matrices for r ≥ 2.

• All n × n matrices for r = n.

• All linear combinations of the form
∑p

j=1 βiA(j)
1 · · · A(j)

t where r ≥ 2tp, and A is either a
Toeplitz or the inverse of a Toeplitz matrix.

This is Theorem 3.1 in [66]. Efficient multiplication by matrices of this form can be done in
sub-quadratic time by simply combining the results from Sec A.3.

Moreover, we note that by choosing a slightly different parameterization of displacement operators,
one can obtain low rank matrices and orthogonal polynomial transforms, including the Discrete
Fourier and Cosine Transforms (see Proposition 2 in [68]).

19

Thus our framework encompasses many important classes of matrices including low rank matrices
and thus generalizes LoRA.

A.5 Integration of SURMs in Adapters

In this section, we provide additional details about SURMintegration in Adapters.

For simplicity, we follow the Houlsby configuration [25], but our work is also readily applicable in
Pfeiffer configuration as well [59]. Recall the definition of Adapter layers:

Y = X + σ(XB)A, (10)

where σ(·) is a non-linear activation function applied point-wise, X ∈ Rb×s×n represents input to
the layer (b is the batch size and s is the sequence length), A ∈ Rr×n, B ∈ Rn×r are two low-rank
matrices (r ≪ n) and Y is the output of the layer. Similar to LoRA, matrix B is initialized randomly,
whereas A is initialized as a zero-matrix. For convenience, layer norms and bias terms are not
included in the equation.

SURMs can be used in place of low rank A and B. The integration and design choices of various
LDRs in this setting mimic that of LoRA.

Circulant Matrices. Similar to the LoRA setting, we apply two circulant matrices C1, C2, resulting
in the following equation of the adapter block:

Y = X + σ(f(r1 ⊙ r2, X)) + b, (11)

where f is an operator multiplying input matrix X with the circulant matrix obtained by multiplying
two circulant matrices encoded by r1 and r2 (Appendix A.3). The vector r1 is initialized randomly
while r2 and b are initialized as zero vectors. Note that we apply the non-linearity after we multiply
X with both the circulant matrices. This may hurt the expressiveness of the network but improves
computational complexity. Moreover, we only need to save one vector defining the first row of a
circulant matrix and not both: r1 and r2. This results in lower storage costs and faster deployment.
This design choice works well in practice as evidenced from the results on the GLUE benchmark (see
Table 5).

Toeplitz Matrices. Similar to the case of Toeplitz matrices within LoRA, we use two symmetric
Toeplitz matrices T1, T2, where T1 and b is initialized as a zero vector and T2 is initialized
randomly. We then define the adapter layer to be:

Y = X + σ(g(T1, g(T2, X))) + b. (12)

The position of the non-linear mapping σ is chosen such that we can merge the two trained matrices
resulting in smaller storage costs and fast deployment.

Finally, note that the Toeplitz variant is slower than the circulant variant, as it requires two applications
of the fast matrix-vector operator, whereas the circulant variant requires only one.

A.6 Computing Approximations Using LDR Matrices

In this section, we show how we can approximate any matrix D ∈ Rn×n using Circulant, Toeplitz
matrices, and symmetric Toeplitz matrices. We note that each class of structured matrices forms
a vector space. Therefore, finding the closest point in the appropriate subspace becomes a convex
optimization problem and is given by the orthogonal projection onto the basis vectors of the subspace.
More explicitly, if {e1, · · · , en} are a set of orthogonal vectors spanning a subspace W, then the
closest vector to v in W is given by

v̂ = (v, e1)
∥e1∥2 e1 + . . . + (v, en)

∥en∥2 en. (13)

The space of circulant matrices has dim n, so spanned by the orthogonal set
{(1, · · · , · · · 0), (0, · · · 1, · · · 0), (0, · · · , · · · 1)}. Using the above formula, one can write down a
simplified expression of the circulant matrix as Ĉ := (ĉ1, · · · ĉn) that approximates D

ĉ1 = 1
n

n∑
j=1

djj , ĉk = 1
n

k−1∑
j=1

dj(1+j+n−k) +
n∑

j=k

dj(j−k+1)

 , where k = {2, . . . , n}.

20

Note that the same set as before spans the space of symmetric Toeplitz matrices. This yields a
compact formula for the approximating Toeplitz matrix:

T̂ :=
(

1
n

n∑
i=1

ai,i

)
In +

(
1

n − 1

n−1∑
i=1

ai,i+1

)
M2 +

(
1

n − 2

n−2∑
i=1

ai,i+2

)
M3 + · · · + a1,nMn,

where Mi is the symmetric Toeplitz matrix generated by the i-th element in the set above. Finally the
set {((1, 0, · · · , 0), (0, · · · , 0)), · · · ((0, · · · , 1, · · · , 0), (0, · · · , 0)), ((0, · · · , 0), (0, · · · , 1, · · · , 0) }
spans all Toeplitz matrices where the first element in each tuple denotes the first row and the second
element the first column. Note that since the a11 entry is shared by both first row and column we
treat the first vector as n-dimensional vector and the second as n − 1 dimensional vector. Thus
the dimension of the space is 2n − 1. Using FFT and the projection formula, one can compute the
approximation by a Toeplitz matrix.

A.7 Additional Details on Approximation Errors by LDR

In this section, we present additional details on the various experiments on approximation by LDR
matrices presented in Section 4.1.

• Random: The first class, with entries taken independently at random from N (0, 1), represents a
completely unstructured family.

• Near-low rank: Each matrix from the second class was chosen from the distribution: GH⊤ + ϵR,
where G, H ∈ Rn×r for r ≪ n, R ∈ Rn×n, ϵ = 0.05, and the entries of G, H, R are taken
independently at random from N (0, 1).

• Near-low intrinsic rank: Matrices from the third class are constructed as follows. First we sample:
t0, ..., tn−1

iid∼ N (0, 1). The i-th row of the resulting matrix is of the form: (sin(1 · ti), sin(2 ·
ti), ..., sin(n · ti)) + gi, wheare either all gi are zero-vectors or they are taken independently at
random from ϵ ∗ N (0, In). Note that even though that matrix is not necessarily low-rank, it is taken
from the vicinity of the n-dimensional manifold, since it is fully determined by the sampled tuple
(t0, ..., tn−1). Matrices from all the classes are taken from R100×100.

Optimizing Circulant and Toeplitz Matrices. In general, an optimal approximation (e.g. with
respect to the Frobenius norm as a distance) of a given matrix by a matrix W(G, H) is not given by
the closed-form expression. Thus we will thus construct good-quality approximators via gradient-
based optimization (see: Sec. 4.1).

Details on Approximation Experiments in Section 4.2. Now we provide additional details on the
experiments that explicitly compare LDRMs with low-rank matrices. For these experiments, we
construct a PSD matrices M ∈ R50×50 with L2 normalized rows. We fix a parameter budget of
n = 50. The low-rank approximation, in that case, becomes an outer product by a vector v. For the
Kronecker product, we choose a factor A ∈ R10×5. To maintain the parameter budget, the other
factor becomes A⊤. If M̂ is the approximating matrix, then we define error = ||M̂ − M||F , where
|| · ||F is the Frobenius norm.

We use the closed-form formula for the optimal circulant and symmetric Toeplitz matrices approx-
imating M and use gradient descent to find the optimal low-rank matrix and Kronecker product
of matrices. We use a learning rate of 0.1 while computing the optimal low-rank matrix and the
Kronecker product of matrices.

A.8 Invertible Toeplitz Matrices

Inverses of Toeplitz matrices can be effectively found [40]. We recall the celebrated result of Gohberg
and Semencul.

Theorem A.3. Let A := (ap−q)n
p,q=1 be a Toeplitz matrix. If the following systems of equations

n∑
q=1

ap−qxq = δp,1,

n∑
q=1

ap−qyq = δp,n, where p = {1, 2 . . . n}

is solvable and x1 ̸= 0, then A is invertible.

21

Figure 9: Experiment on fitting the pinwheel dataset. Left: Visualization of the pinwheel dataset. Right:
Results of fitting the pinwheel dataset using regular training, where all network parameters are trained. A
network with a low-rank hidden layer matrix struggles to fit the data, while those with SURMmatrices achieve a
successful fit.

In our case, we consider only symmetric Toeplitz matrices. Thus the above equation really boils
down to solving the first system of equations as the next system can be solved by using the first, i.e.
by setting xn−i+1 = yi i = 1, 2, · · · n. The first system of equations can be efficiently solved by
Gaussian elimination.

B Experiments

In this section, we describe our experimental setup and present additional analysis experiments to eval-
uate the functioning of SURM. Our code is available at https://github.com/arijitthegame/
structured-matrices-PEFT.

Contents

B.1 Hyperparameters . 22

B.2 Additional Experiments . 24

B.3 Comparison of SURM Kronecker Adaptations with Baselines 25

B.4 Analysis of Weight Matrices in Fine-tuned Models 26

B.5 Guidance for Practitioners . 27

B.1 Hyperparameters

In this section, we provide the details of the hyperparameters used in our experiments. For GLUE
tasks, we use the LORA hyperparameters that are used in the original LoRA paper except we use
r = 1 to parameter match our methods as well as α = 1.

For all the experiments, we use AdamW optimizer [47] with a warmup ratio of 0.06, a linear learning
rate scheduler, and a sequence length of 128. For our methods and the Compacter baseline, we
use a batch size of 64. We report the rest of the hyperparameters in Table 4. The code to run NLP
experiments is developed using PyTorch using Huggingface, Adapter-transformer, PEFT libraries,
and the original LoRA codebase. For ViT experiments, we use JaX [5] and the open-sourced JAX
implementation of ViT.

Additional Details on the Pinwheel Experiment. First, we provide a figure of the pinwheel dataset
used to showcase the approximation qualities to LDRMs (see Fig 9 left). We provide additional
details on the pinwheel experiment. We tried out 2 settings : (a) simple neural network training for
2000 epochs, (b) the embedding (bottom) layer is frozen and the rest of the network is trained for
2000 epochs. This can be thought of fitting a feature extractor on top of a randomized projection.
The setting (b) is presented in the main paper while setting (a) is presented in Appendix B.2. Next,
we provide additional details for our text and vision experiments.

22

https://github.com/arijitthegame/structured-matrices-PEFT
https://github.com/arijitthegame/structured-matrices-PEFT

Table 4: Hyperparameters used for our GLUE experiments

Method Hyperparameters RTE MRPC QNLI QQP SST-2 MNLI STSB COLA

LoRA
Batch Size 32 16 32 16 16 16 16 32
Epochs 80 30 25 25 60 30 40 80

Learning Rate 5e-4 4e-4 4e-4 5e-4 5e-4 5e-4 4e-4 4e-4

Kronecker-
LoRA

Weight Decay 0.0 0.25 0.1 0.1 0.1 1e-3 0.25 0.1
Epochs 60 70 60 80 60 80 70 70

Learning Rate 7e-4 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.1

Circulant-
LoRA

Weight Decay .25 .15 .1 .1 .1 .1 .25 .1
Epochs 70 60 80 80 60 80 80 70

Learning Rate 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3
Dropout 0.15 0.0 0.1 0.1 0.1 0.1 0.1 0.0

Toeplitz-
LoRA

Weight Decay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Epochs 70 60 80 80 60 80 70 60

Learning Rate 7e-4 5e-4 7e-4 7e-4 7e-4 7e-4 7e-4 7e-4
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Kronecker-
Adapter

Weight Decay 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Epochs 70 70 80 80 60 80 70 60

Learning Rate 2e-3 2e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Circulant-
Adapter

Weight Decay 1e-4 0.0 1e-4 1e-4 1e-4 1e-4 0.2 0.0
Epochs 70 70 80 80 60 80 70 60

Learning Rate 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 3e-3 2e-3
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Toeplitz-
Adapter

Weight Decay 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2
Epochs 70 70 80 80 60 80 70 60

Learning Rate 2e-3 2e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Compacter # Epochs 70 70 80 80 60 80 70 60
Learning Rate 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3

NLP Experiments. We train the LoRA-BERT using PEFT library from Huggingface [78]. The
hyperparameters used by the original authors are used in this setting. For experiments comparing
with the LoRA baseline, we parameter match the LoRA updates with our SURMs, thus the LoRA
updates are given by rank 1 matrices. we inject the LoRA modules in query, key, value projection
matrices and also show ablations where we remove the adaptation from the key matrix.

For the adapter setting, we apply the GeLU non-linearity. Kronecker-based adapter, though similar to
various other methods, was never tested in the BERT-setting and thus we implement it here. And
in all cases, we add an (optional) dropout on the representations coming from these adaptive layers.
We train the compacter baseline using the adapter-transformers library [59]. For the compacter
parameters, we use n = 4 (number of terms in the Tucker decomposition) and the reduction factor to
create the low rank matrices to be 16. All our methods have the same number of training parameters
2d (excluding bias terms), which gives the reader a holistic overview of how these matrices perform
when injected into different PEFT paradigms. All the baseline methods use a batch size of 32,
whereas our methods use a batch size of 64. AdamW [47] optimizer is used for all experiments.

Image Classification Experiments. For the image experiments, we use Adam optimizer [33] with
20k max iterations per dataset with a batch size of 64. The learning rate used is 5e-5 except for SVHN
where we use a learning rate of 5e-4. The experiments are run on TPUv4 4 × 2 compute resources.

Large Scale Experiments. In this experiment, we investigate if large ranks are needed for learning
new tasks. To circumvent the pre-trained knowledge in the Transformers, following [29], we generate
random 10K pairs of Universally Unique Identifiers (UUIDs), each pair comprising two UUIDs with
32 hexadecimal values. The task requires the LLM to generate the corresponding UUID based on the
input UUID. We use LLaMA-2 7B as base model [69] for this experiment. For the LoRA setting, we
apply rank 256 matrices to only the linear layers in the attention layer. For MoRA, we use the same
setting as in [29]. However, note that in [29], the authors apply adaptation to all linear layers.

23

Table 5: Performance of SURM and other baselines on GLUE benchmark. We report the MCC score
CoLA, F1 score for MRPC, Spearman correlation for STSB, and accuracy scores for the other tasks.
All results are obtained by averaging over 3 seeds. Best numbers are highlighted in bold and the
second best numbers is underline.

Method # Params RTE MRPC QNLI QQP SST-2 MNLI STSB COLA(
×106) 2.5k 3.7k 105k 364k 67k 393k 7k 8.5k

BERT-baseline [20] 110 66.2 90.5 91.3 91.4 92.6 84.1 88.8 59.5
Adapter (Houlsby) [59] 1.8 69.8 91.5 91.2 90.8 92.8 84.1 89.2 59.1
Adapter (Pfeiffer) [59] 0.9 70.8 89.7 91.3 90.5 92.2 84.1 89.0 58.9
AA [53] 0.7 64.25 85.09 89.96 88.09 91.31 82.89 88.25 51.44
BitFit [84] 0.1 72.3 90.4 90.2 85.6 92.1 81.4 89.2 58.8
Compacter [51] 0.11 72.84 90.18 91.08 90.6 92.1 83.26 88.64 59.6
LORA [26] 0.06 71.12 90.43 90.45 90.1 92.66 83.06 88.69 57.83
Prefix [43] 0.19 70.54 89.93 90.76 89.12 91.93 82.78 85.93 58.86
Serial [90] 0.89 68.01 88.65 91.06 90.52 91.93 84.18 84.75 59.73
AdaMix [76] 0.89 70.11 90.91 91.52 90.22 92.06 84.25 86.86 59.11
UniPELT [52] 1.38 67.07 88.72 91.09 90.69 92.52 84.28 84.22 60.13
Parallel [90] 7.67 68.52 90.72 90.83 90.74 92.13 73.93 86.52 58.72
MAM [23] 7.67 69.10 91.46 90.85 90.76 83.94 83.31 89.01 47.87
AUTOPEFT [90] 1.54 72.35 91.5 91.12 90.64 92.22 84.01 89.17 60.92
SURM (Kronecker-Adapter) 0.06 72.96 91.11 90.53 89.86 92.66 83.01 88.94 58.77
SURM (Toeplitz-Adapter) 0.06 72.92 91.08 90.47 89.54 92.55 83.04 89.08 59.56
SURM (Circulant-Adapter) 0.06 72.12 91.55 91.24 89.97 93.0 83.45 88.78 59.2
SURM (Kronecker-LoRA) 0.06 71.35 90.08 90.87 90.0 92.78 83.02 88.91 60.35
SURM (Toeplitz-LoRA) 0.06 71.4 90.96 90.56 89.95 92.4 82.54 88.74 58.83
SURM (Circulant-LoRA) 0.06 71.84 91.02 90.64 90.15 92.68 82.87 89.18 59.97

For the SURM methods, we follow the same setting as applying the adaptation to only the attention
layers. The number of factors of W(G, H) is chosen to be 4 (i.e. same number of parameters as a
rank 4 matrix). This experiment also highlights that for effective transfer learning LoRA needs to be
applied to all linear layers (which is well-known in the LLM community). In Fig. 8, we observe that
LoRA and MoRA struggles to fit the data whereas our method converges.

Image Segmentation Experiments. For this experiment, we use Synapse multi-organ segmentation
dataset. 30 abdominal CT scans in the MICCAI 2015 Multi-Atlas Abdomen Labeling Challenge are
divided into 18 training cases and 12 test cases. There are 3779 axial contrast-enhanced abdominal CT
images in total and the training set contains 2212 axial slices. All the CT volumes contain 85 ∼ 198
slices and each slice includes 512 × 512 pixels with a spatial resolution of ([0.54 ∼ 0.54] × [0.98 ∼
0.98] × [2.5 × 5.0]mm3). We use the Segment-Anything-Model (SAM) [34] as the foundation model
for this task. There has been a number of works in adapting various PEFT methods to fine tuning
SAM. We follow the training details in [86]. More specifically, we adapt the Q, V in ViT-B image
encoder in the SAM and normally finetune the small decoder head. Finally, in this small data regime,
we use the Circulant variant as it is our most performant variant in this case (see Fig. 6). We report the
Dice similarity coefficient (DSC) metric for each of the 8 organ segmentation as well as the average
DSC score for all (higher is better). The SAMed model uses a LoRA rank 4 in Q, V. For a fair
comparison, we include LoRA rank 1, matching the exact parameter count of Circulant. We use an
A100 40GB GPU for this experiment.

B.2 Additional Experiments

In this section, we provide additional experiments to showcase the efficacy of SURMs.

Experiments on Large Scale Data Next, we conduct additional experiments on the ImageNet-1k
dataset [18]. The goal is to show how our methods can scale up to extremely large datasets. We
observe that SURM achieves comparable performance to other PEFT methods and even achieving
comparable performance to the full fine-tuning results (see Table 6).

We further evaluate the performance of SURM in a large-scale setting using the iNat2021 dataset [72],
which contains over 2.7 million training images, 100K validation images, and 500K test images,
spanning 10, 000 species (classes). Fine-tuning a ViT model on this dataset achieves an accuracy
of 69.98%, while SURM (circulant) achieves 69.01%. Notably, our method requires only 55K

24

Table 6: Comparison of the performance of SURM and baseline PEFT methods on ImageNet-1k
SURM (Kronecker) SURM (Toeplitz) SURM (Circulant) Linear Prob. VPT-Shallow VPT-Deep Fine-tuning SSF

Params (M) 0.055 0.055 0.055 0.049 0.063 0.531 86.63 0.240

Accuracy 83.14 80.17 82.67 82.04 82.08 82.45 84.1 83.10

(a) (b) (c)

(d) (e) (f)

Figure 10: Figures showing the effect of using bias on various adapters on the GLUE tasks. The red
dashed line is the full fine-tuning baseline which is almost 2000x larger than our adapters.

parameters, compared to 86M for full fine-tuning, demonstrating its efficiency in parameter usage
while maintaining comparable accuracy.

Ablation Experiments. Here, we show the effect of various design choices. Figure 10 illustrates the
impact of incorporating the bias term in our adapters. Bias term provides a boost across all tasks and
the adapters, the boost being smaller on the Kronecker adapter. Without the bias terms, the sizes of
the adapters are around .04M, providing an even lightweight but still capable method. Therefore, if
there are concerns regarding storage and latency, opting for adapters without bias is a viable option.
Moreover, we show the effect on only adapting Q, V instead of Q, K, V as shown in the main paper.
Table 7 shows that on GLUE tasks, there is a minimal effect for not adapting the K matrix.

B.3 Comparison of SURM Kronecker Adaptations with Baselines

As mentioned earlier, adaptation using Kronecker product is not new and has been investigated in
several works [51, 21, 24]. In both [51] and [24], the authors use the Kronecker decomposition of the
weight matrix (in the first case, the weight matrix belongs to an adapter layer and in the second case
the weight matrix refers to updates as in the case of LoRA). Write W =

∑n
i=1 Ai ⊗Bi. Furthermore,

the authors assume that Bi is low rank and can be written as Bi := uijv⊤
ij . The weights Ai can also

be assumed to low weights or be shared among various layers leading to substantial efficiency gains.
Our method is a simplified version of the above where n = 1. Other main difference between the
above methods and ours are : the matrices considered in the above works are square matrices whereas
they are almost never square unless the dimension of the transformer is a perfect square and is set
up such that the number of parameters are reduced while the rank is as high as possible, contrary to
the above. Similar considerations of low rank factors in tensor decomposition are also used in [30].
Our Kronecker adaptation is same as that of [21] in the LoRA setting. In the adapter setting, our
implementation follows closely the Houlsby architecture and is a little different than that of [21].
Thus, we implement the Kronecker adaptation in both LoRA and adapter settings and showcase its

25

Table 7: LoRA ablation experiments on GLUE benchmarks. MCC score is reported for CoLA, F1
score is reported for MRPC, and Spearman correlation is reported for STSB. Accuracy scores are
reported for the other tasks. All results are obtained by averaging over 3 seeds. The best results are in
bold and the second best results are underlined.

Params (×106) RTE MRPC QNLI QQP SST-2 MNLI STSB COLA

Bert-baseline [20] 110 66.2 90.5 91.3 91.4 92.6 84.1 88.8 59.5
LoRA [26] 0.04 70.76 89.02 89.4 89.27 92.2 80.27 88.89 59.08
SURM (Kronecker) 0.04 70.04 89.06 90.54 89.35 91.74 80.41 88.74 59.6
SURM (Toeplitz) 0.04 72.56 91.04 89.65 89.67 92.14 80.93 88.77 58.05
SURM (Circulant) 0.04 71.14 90.48 89.91 89.83 92.2 80.6 88.76 59.16

Figure 11: Left: Cosine similarity between the query matrices and Right: cosine similarity between
value matrices for the BERT model on MRPC dataset.

versatility across both vision and language. Moreover, we present this approach as an example of a
principled approach to tackle the problem of PEFT.

B.4 Analysis of Weight Matrices in Fine-tuned Models

In this section, we analyze the weights of various fine-tuned models. Even though prior works
have found the updates of the weight matrices to have low intrinsic dimension [1] (ID), the updates
themselves are of high rank. This is confirmed by looking at the fine-tuned BERT models on various
GLUE tasks as well as ViT models fine-tuned on CIFAR10, CIFAR100, and ImageNet. Moreover,
we simulate a high-rank LoRA setting on GLUE where we freeze all the weights excepts except
for Q, K, V. In that scenario, we manage to replicate the full fine-tuning performance using fewer
training epochs than that of LoRA. A quick analysis of the updates reveal that they have full rank.

Many works have delved into intrinsic dimensionality for well-known image classification
datasets [60]. These works show that the images have low intrinsic dimensionality compared
to the pixel spaces but the dimensionality increases when augmentations like Gaussian noise is
added. Recent work [49] studies the intrinsic dimensions of various self-supervised image models.
Comparing their results with that of fully supervised ViT models, we observe that the self-supervised
models exhibit slightly higher IDs. This is not surprising as the SSL encourages the representations
to be spread over an unit hyper sphere. Thus, we believe that various low rank adaptations may fail in
situations where the IDs might be high (in case of OOD data) [75].

Encouraged by this analysis, we next investigate the trained weights emerging from our methods. We
observe that they have high rank across all vision and text tasks and various fine-tuning strategies.
The largest possible rank of the Kronecker matrices considered in this work is 576 and all of our
trained matrices are of rank 576. For rational circulant matrices C, the non-singularity of such
matrices is related to divisibility by cyclotomic polynomials. More generally, if we denote by
c = (c0, ..cn−1) the first column of C, then:

det(C) =
n−1∏
j=0

(
c0 + c1ωj + c2ω2

j + · · · cn−1ωn−1
j

)
,

26

Table 8: CKA between full finetuned weights and the SURM weights
LoRA Circulant Symmetric Toeplitz Toeplitz

CKA 0.014 0.1821 0.1343 0.1618

where ωj = e
2πij

n and i2 = −1 (for more details see [14]). This fact allows us to efficiently test
for the non-singularity of the circulant matrices. In all our cases, we found our matrices to be non-
singular. Regarding Toeplitz matrices, there is a large body of literature that discusses the inversion
of such matrices (see Appendix A.8). Using the methods discussed above, we find that the Toeplitz
adaptations are invertible, thus full-rank. Therefore, we hypothesize that the high rank compensates
for the deficiency of training parameters.

To further explore the differences between the parameters learned by LoRA vs. that learned by
SURM methods we performed another set of experiments. We calculate the cosine similarity between
the weights learned by the PEFT methods (Ŵ = W + α∆W) and W (pre-trained weights). A
smaller cosine similarity would tell us that SURMs help us in exploring parameters further away
from the pre-trained weights (W).

We test our hypothesis on the BERT model finetuned on the MRPC dataset by SURMas well as by
LoRA. We report the (1-cosine similarity(Ŵ, W)) for both query and key across multiple layers (see
Fig 11). We see that LoRA-learnt weights are very similar to the pretrained weights whereas SURMs
explore a larger space (as shown by higher dissimilarity). This observation is not too dissimilar to
that of [91].

Analysis of trained weight matrices for Pinwheel data. We also want to answer the question: Q:
How similar are the representations learned by networks with the SURM layers compared to the full
finetuned networks?

We evaluate the CKA similarity [38] between the full fine-tuned network and the network with the
LDR layers. CKA is a widely used metric to compare representations coming from different neural
networks. We observe that LDR networks have higher CKA similarity with fully finetuned networks
than their LoRA counterparts.

B.5 Guidance for Practitioners

To translate our framework into actionable insights, we aim to highlight several key properties of the
various classes of SURMs that help us in making the final recommendation. In all our experiments,
we found that on average that circulant variant achieves the largest number of best performances
across multiple datasets (Figure 1, Table 1, 2, 3). Moreover, in the low data regime, it is clear that the
circulant is the most performant variant as well (Figure 6).

The time complexity of LDR matrices is sub-quadratic, in particular, time complexity for both: the
circulant and the Toeplitz variant is the same but the Toeplitz one is slower by a factor of 2. The
gradients allow for a very simple formula, which is computed in sub-quadratic time (see eq 14 in [15]
for the circulant matrix and Proposition 3.6 in [66] for the Toeplitz matrix). Therefore, our general
recommendation to practitioners is to use the circulant variant of SURM. It is relatively fast and our
most accurate variant.

C Broader Impact & Limitations

Fine-tuning large pre-trained Transformers for downstream tasks requires substantial computational
resources. We hope that this work addresses this important problem by reducing the overall compu-
tational budget while maintaining high accuracy. We believe that SURMs will make Transformers
accessible to researchers and academics world wide and also reduce the carbon footprint associated
with training these models. While democratizing powerful Transformers’ technologies with those
methods, one must still be cautious of the potential harmful biases, inherent to models pre-trained on
the internet-scale data. One of the main limitations is the absence of custom kernels for our meth-
ods. Despite their theoretical speed advantage, popular methods like LoRA have been extensively
optimized by the machine learning community for efficient execution on hardware.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide extensive empirical evidence in Section 6 as well additional
motivating experiments in Figure 4

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our work is detailed in Appendix C.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28

Answer: [NA]

Justification: The paper does not contain any new theoretical results but builds on the main
theorem in [66].

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the hyperparameters to replicate the experiments in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide access to the code on building the adapter layers using SURM and
their integration into pretrained transformers.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the hyperparameters to replicate the experiments in Appendix B.1
and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Given the sheer volume of experiments along with the baselines that we had to
replicate, it was too expensive for us to run these experiments for multiple seeds. However,
we report error bars for the smaller toy experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors have reviewed NeurIPS Code of Ethics and the research conducted
in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of our work is detailed in Appendix C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

31

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We are not releasing any new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the authors who created the original data and algorithms that
are used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.

32

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the main code detailing the creation of the SURM layers leveraging
fast matrix-vector multiplication and their integration in pretrained Transformers.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not use any crowd sourcing and human subjects. The multi-
organ segmentation downloaded from synapse and we adhere to the rules of the usage of
this data.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not IRB approval for the use of the multi-organ segmentation dataset.
This can be freely downloaded from the internet once one signs up on synpase. We strictly
adhere to the rules of the usage of data.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

33

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Related Work
	Structured Unrestricted-Rank Matrices (SURM)
	LDR-SURMs as General Approximators
	Comparing W(G,H) with Circulant and Toeplitz Matrices
	Comparing Low Rank with Circulant and Toeplitz Matrices

	Integration of SURMs with PEFT
	Integration of SURMs in LoRA
	Integration of SURMs in Adapters

	Experiments
	Conclusion
	Author Contributions
	Implementation Details
	Skew-Circulant Matrices
	Finding the Smallest Number of Training Parameters for Kronecker Layers
	Efficient Matrix Vector Multiplication by Structured Matrices
	Increasing Number of Training Parameters
	Integration of SURMs in Adapters
	Computing Approximations Using LDR Matrices
	Additional Details on Approximation Errors by LDR
	Invertible Toeplitz Matrices

	Experiments
	Hyperparameters
	Additional Experiments
	Comparison of SURM Kronecker Adaptations with Baselines
	Analysis of Weight Matrices in Fine-tuned Models
	Guidance for Practitioners

	Broader Impact & Limitations

