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Abstract

Although the transformer architecture has come to dominate other models for text
and image data, its application to irregularly-spaced longitudinal data has been
limited. We introduce a variant of the transformer that enables it to more smoothly
impute such functional data. We augment the vanilla transformer with a simple
module we call SAND (self-attention on derivatives), which naturally encourages
smoothness by modeling the sub-derivative of the imputed curve. On the theoretical
front, we prove the number of hidden nodes required by a network with SAND
to achieve an ϵ prediction error bound for functional imputation. Extensive exper-
iments over various types of functional data demonstrate that transformers with
SAND produce better imputations than both their standard counterparts as well as
transformers augmented with alternative approaches to encode the inductive bias
of smoothness. SAND also outperforms standard statistical methods for functional
imputation like kernel smoothing and PACE.

1 Introduction

Functional data analysis (FDA) offers a framework for analyzing complex data sampled from random
functions or curves. Such data are encountered in many applications including air pollution studies,
fMRI scans, growth curves, and sensor data from wearable devices. FDA has thus grown into an
established field in statistics [14, 6, 9, 24]. Functional data intrinsically have infinite dimensions
but are tractably handled by assuming they were generated from a smooth underlying process. The
simplest form is a univariate random curve x(t) defined on a compact set over the real line R. Without
loss of generality, it is typically assumed that x(t) is a smooth stochastic process over the [0, 1]
interval domain. Let xi(t), i ∈ {1, . . . , n} be a random sample of x(t), for instance, growth curves
corresponding to different subjects in a population. In practice, each xi(t) can only be observed
discretely over the time interval [0, 1], and often only at a few irregularly spaced ni time points,
namely {tij}ni

j=1. Moreover, the observed measurements are often noisy. Thus, the observed data
are D = {{(tij , yij)}ni

j=1}ni=1, where yij = xi(tij) + ϵij and ϵij are random noise effects. For many
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applications, it is reasonable to assume that the noise is independent over t and across subjects and
follows a zero mean distribution with finite variance.

The objective of this paper is to recover the latent processes xi(t), i ∈ {1, . . . , n}, using the
noisy/sparse observed data D. We introduce an estimator that is effective for both finely and
sparsely measured functional data (i.e. regardless of whether the number of measurements for the
i-th subject, ni, tends to infinity or is uniformly bounded by a constant). The latter case, supni < ∞,
is common in longitudinal studies and called sparse functional data in FDA. Accurate recovery
(imputation) of the underlying function from noisy/sparse observations can improve analyses of
longitudinal data across many sciences.

The conventional approach to imputing longitudinal data is to employ a parametric model with mixed-
effects, such as the linear mixed-effects model. This approach lacks the flexibility to capture the
shapes of more complex trajectories, so a nonparametric method is preferred for imputing functional
data. For instance, MICE [21] uses a chained equation approach, where the imputation of each
missing value is conditioned on the imputed values of the other variables, resulting in more accurate
and stable imputations compared to single imputation methods. However, the resulting imputed
functions may not be smooth and to get stable imputations, many iterations are required if the
percentage of missing values is high [17, 25].

A standard FDA approach that avoids this drawback is to first reduce each function to a finite but
possibly growing dimensional vector and then reconstruct the trajectory of each subject using a
particular set of basis functions associated with the dimension reduction approach [28]. Two widely
used dimension reduction methods are the basis expansion approach [16, 3] and Functional Principal
Component Analysis (FPCA) [2, 15, 18, 10, 27, 13, 12, 26]. Among these, FPCA provides the most
parsimonious approach. The most popular FPCA approach is PACE [24, 4], which estimates the top
principal component functions and the corresponding scores of each subject to reconstruct the latent
process of this subject through the Karhunen-Loève decomposition.

All aforementioned approaches use the combined data from all subjects to conduct the imputation for
each particular individual xi(·). Another approach that works well for densely observed functional
data is to apply a smoothing method to interpolate the data from an individual. While such smoothing
does not borrow information across subjects, it can be effective when the number of measurements
(ni) is large for all subjects (proper smoothing can denoise the observations).

Recent advancements in deep learning for functional data imputation include techniques like neural
processes [8] and GAIN [29]. Their applications to real data are however dwarfed by the widespread
use of transformer networks [23]. Using a self-attention mechanism to discerningly attend to
regional information across a domain, transformers offer a natural architecture for learning the right
information to rely on in order to best estimate xi(t) at t. Specifically, encoder-decoder transformers
use representations generated by the encoder to produce properly contextualized estimations through
the decoder. We note that imputing sparsely observed functional data can be viewed as a sequence-
to-sequence learning task, for which transformers should be well-suited. However, imputation via
transformers fails to yield a naturally smooth function. In this paper, we introduce a small modification
of transformers that addresses this issue and produces more accurate imputations.

Summary of our contributions. (1) We show empirically that a vanilla transformer is promising for
functional data imputation – it outperforms PACE and neural processes but the imputations are not
differentiable/smooth. (2) We introduce a novel network layer, SAND (self-attention on derivatives),
that can be learned end-to-end with the rest of a transformer architecture. Extending the attention
module, our SAND layer guarantees smooth imputations and does not require any assumptions on the
data distribution. (3) We prove that imputations from SAND are first-order differentiable (Theorem
1), and derive an analytical expression relating the number of hidden nodes and prediction error of a
SAND network fit via empirical risk minimization (Theorem 2).

2 Related works

2.1 Sparse and intensively measured functional data

In most longitudinal studies involving human subjects, the number of measurements ni is often small
(bounded). This type of data is called sparse functional data. When ni is large and grows with the
sample size n to infinity, such functional data are called intensively measured functional data. We
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note that they are not time series data, which is a collection of data observed discretely on an equally
spaced time grid for a single subject. There is no smooth latent process that generates this time series.

For intensively measured functional data, we can apply a kernel smoother to smooth the noisy
observations individually for each subject to recover the underlying curve xi(t) and perform subse-
quent data analysis. Let K(·) be a kernel function (often a symmetric p.d.f). xi(t) is estimated by
the weighted sum of observed data, {xi(tij)}ni

j=1, where weights are computed using kernel K(·):
x̂i(t) =

∑ni

j=0 Kh(tij − t)xi(tij) with Kh(·) = K(·/h)/h. The bandwidth h that determines the
size of the related neighborhood can be decided by generalized cross-validation [31].

It is not possible to consistently reconstruct the underlying curves for sparse functional data, due
to the limited number of available observations per subject. It is however possible to consistently
estimate the mean µ(t) = E[x(t)] and covariance function G(s, t) = Cov(x(s), x(t)) from sparse
functional data [27]. Once we have a consistent estimate of the covariance function, we can perform
functional PCA and get the imputation of xi(t) as done in the popular PACE method [27]. Letting
{(λk, ϕk(·))}∞k=1 denote the eigen-components of the kernel operator defined by G(s, t) (which can
all be estimated consistently), PACE uses the Karhunen-Loéve series expansion of individual curves,

xi(t) = µ(t) +

∞∑
k=1

ξikϕk(t)

and replaces all unknowns with their estimates. To estimate the principal component scores ξik,
PACE uses the best linear predictor λkϕ

T

ikΣ
−1
yi

(yi − µi), where ϕik = (ϕk(tij))
ni
j=1, yi = (yij)

ni
j=1.

When xi(·) is a Gaussian process, we expect the best linear predictor PACE to shine and this is
reflected in the empirical results in Tables S9 and S10. These results further reveal that PACE
continues to outperform existing imputation methods, such as MICE [22], CNP [7] and GAIN [29],
when xi(·) is not Gaussian. This outstanding performance underscores the status quo, that PACE
is the state-of-the-art imputation method for functional data. However, PACE is a linear imputation
method, which may restrict its ability to estimate a more complex data structure. In this work, we
aim to replace this constraint with a more flexible model that uses our custom self-attention module.

2.2 Neural processes

The first study of deep learning for functional data imputation led to neural processes (NP) [7],
which perform imputation by modeling the distribution of a target xi(t) conditioning on the observed
contexts {(tij , yij)} via latent variables. From a set of observed data, the NP estimates a distribution
over functions from which these data points could have been sampled. This estimation is done more
flexibly than traditional Gaussian Process inference by utilizing a learned neural network. Variants
of this approach include the conditional neural process (CNP) [7] and attentive neural process [11].

While the NP appears promising, we empirically find that straightforward sequence-to-sequence
modeling via transformers yields more accurate functional imputations. Our proposed transformer
extension learns to recover smooth trajectories from a fixed set of sparse observations in a single-shot.
NP models are more complex and must learn their conditional distributions by iteratively sampling
observations from the process. At each training iteration of an NP, one first samples a random function
and then some observations from the function, repeating this procedure many times. In contrast,
our method specifically aims to recover smooth trajectories from a given (fixed) set of observations,
rather than relying on iterative sampling.

2.3 Self-attention

Transformer [23] comprises an encoder and a decoder, each consisting of stacks of attention and
feed-forward layers. [30] highlight the roles of these layers: self-attention captures contextual
mappings of the inputs and the feed-forward layer maps them to the desired output values. To provide
a general overview of the self-attention module, we consider a generic real-valued input matrix X
of size q ×m. Let hd be the number of hidden nodes and H be the number of heads used in a self-
attention module. For each head h, parameters W (h)

O ∈ Rq×hd and the key-value-query component
W

(h)
V ,W

(h)
Q ,W

(h)
K ∈ Rhd×q are learnable. Denote softmax(X) as applying the softmax operation
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to columns of X . A self-attention module defines a mapping from Rq×m to Rq×m:

Attn(X) = X +

H∑
h=1

{
W

(h)
O

(
W

(h)
V X

)
softmax

[(
W

(h)
K X

)T (
W

(h)
Q X

)/√
hd

]}T

. (1)

The input X can be viewed as a 2× ni matrix with the first and the second rows being (yij)
ni
j=1 and

(tij)
ni
j=1, respectively. The softmax operation generates a matrix with non-negative entries, where

the columns sum up to 1. By multiplying softmax on the right of X , we obtain a weighted sum of
the columns of X . This can be viewed as an interpolation method aiming to recover the underlying
process xi(t) simultaneously for all subjects, by pooling all observed data together to estimate the
weights WK and WQ. This approach proves to be more efficient and distinct from individually
interpolating each subject through a weighted sum of X .

3 Method

As our objective is to smoothly impute curves, a transformer with ReLU activation function (RT)
may not be the optimal choice as ReLU is not differentiable at 0. An alternative is to consider a
GeLU-activated transformer (GT). Since GT outperforms RT in our benchmarks (Tables S2 and S3),
we investigate GT and its variations and propose an architecture that equips GT with our SAND
module in the rest of this section.

3.1 Functional imputation via the vanilla transformer network

Let I = {0, 1
M−1 ,

2
M−1 , . . . , 1} be a discretization of [0, 1] where M is the number of points, T̃i

be an imputation on an output grid I for subject i, and A be the training index set with ∥A∥0 being
the cardinality. A transformer network f defines a mapping from R2×ni to RM through T̃i = f(Si)

where Si (source) is the input and T̃i (target) is the output. During training, the mean squared error
(MSE) loss between the observations yi and the imputations on {tij}ni

j=1 is minimized. Let ∥x∥2
denote the ℓ2 norm of x. We use the same T̃i as the imputation projected on (tij)

ni
j=1 and minimize

MSEA =
∑
i∈A

∥T̃i − yi∥22/∥A∥0. (2)

During the imputation, we select a sufficiently large M = 101 to ensure that T̃ accurately represents
the imputation within the interval [0, 1]. However, due to the universal approximation capabilities
of transformers [30] and the presence of noisy data during training, well-trained models can often
produce zigzag-like imputations that mimic the noise in the training data. Meanwhile, it’s essential
to note that when these models encounter testing data, which is also observed with noise, they may
continue to generate zigzag patterns if they have learned to replicate the noise patterns present in their
training data, as shown in the first two plots of Figure 1. This can result in imputations that fail to
capture the underlying, noise-free structure of the data.

A natural way to counter a non-smooth issue is to add a penalty. Let β denote the collection of all
parameters used in GT. By minimizing MSEA + λ∥β∥22 where λ is chosen by the validation dataset,
we reduce the complexity of the model by shrinking the parameters towards zero. This results in a
model that is less likely to fit the noise. However, it does not guarantee the smoothness of the target
function (see the third plot of Figure 1). Alternatively, we explicitly penalize the output function
by considering the objective function as MSEA + λ

∑
i∈A

∫ 1

0
[T̃

(2)
i (t)]2 dt/∥A∥02. This objective

function penalizes the curvature of the imputation and restricts its behavior. However, as illustrated
in the fourth plot of Figure 1, this penalization approach fails to resolve the non-smooth issue.

Another approach is to apply statistical methods that ensure the differentiability of the imputations
from transformers (either penalized or not). For instance, after the training of the network, we may
apply PACE to estimate the eigen-components of the non-smooth outputs and use them to reconstruct
the prediction output. A kernel smoothing can also individually smooth each of the outputs. However,
transformers with these methods are not typically preferred due to their lack of end-to-end training.
Related numerical results can be found in Section 5.1.

2In PyTorch, we use torch.diff and torch.cumsum to efficiently calculate the derivative and the integral.
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Figure 1: Close-ups of imputations generated by transformer variants (red curves) for testing data.
Green lines are the true underlying functions from which observations (blue dots) are sampled with
measurement errors. GT+l2w and GT+l2o are GTs regularized by the ℓ2 norm of its parameters and
the curvature of imputations, respectively. SAND is our proposed method.

Remark 1. Here, we incorporate positional encoding for functional data and prepare it as input
sequences for a transformer. Let nmax = maxi ni. For each subject i, the locations ti = (tij)

ni
j=1

and values yi = (yij)
ni
j=1 are both padded with (nmax − ni) zeros. To prevent attention modules

from attending to the padding, we use mask vectors in the encoder and decoder components. To
incorporate positional encoding, we define Ei ∈ Rp×nmax as the encoding of ti, with p being the
encoding dimension. (Ei)jk is computed as sin

(
(M − 1)tik/10000

(j+1)/p
)

for odd values of j,
and cos

(
(M − 1)tik/10000

j/p
)

for even values of j. Finally, we stack Si = [yi; ti;Ei] as an input.

3.2 Self-attention on derivative

To overcome the lack of smoothness in imputations, we introduce a new module called Self-AtteNtion
on Derivative (SAND). SAND is stacked after GT, taking the imputations from GT as inputs, and
outputting a smoother imputation in two steps: it first learns the derivative of the original imputation
through a novel operator Diff(·), which fathoms the derivative information and is inspired by the
self-attention module in (1); then, it reconstructs a smooth version of the imputation via the numerical
integral operator Intg(·). We describe these two operators after introducing necessary notations.

Let T̃ be an imputation on grid I with the first element (T̃ )1 and T̃c = T̃ − (T̃ )1 as T̃ being shifted
by (T̃ )1. Subsequently, let T̃ and T̃c be (1 + p)-by-M matrices where the first rows are T̃ and T̃c,
respectively, and the rest of rows are the p-dim positional encoding of I. The symbol cumsum(x) is
the vector of the cumulative summation of x. Its j-th element [cumsum(x)]j is

∑j
k=1 xk. Let W (h)

O ,
W

(h)
V , W (h)

K and W
(h)
Q be learnable parameters. The Diff and Intg operators are:

Diff(T̃ ) = D̃ =

H∑
h=1

W
(h)
O

(
W

(h)
V T̃c

)[(
W

(h)
K T̃c

)T (
W

(h)
Q T̃c

)/√
hd

]
, (3)

Intg(D̃) = cumsum [D̃/(M − 1)]. (4)

Denote T̂ as the output from SAND. Then, SAND can be precisely summarized as follows:

T̂ := SAND(T̃ ) = (T̃ )1 + Intg[Diff(T̃ )]. (5)

Figure 2 depicts the role of SAND: it takes an output T̃ from a transformer, learns its derivative via
Diff and Intg, and recovers the noise-free trajectory T̂ by minimizing the ℓ2 distance of T̂ and T̃ .

Figure 2: SAND’s pipeline. Dashed lines are underlying processes, dots are observations sampled
with errors, solid red curves are imputations, and solid orange curves are learned derivatives.

Diff(·) operator. The structure of Diff(·) is similar to the attention module defined in (1) where the
key-query product is scaled by

√
hd to prevent the product from growing with the hidden dimension.

However, Diff(·) removes the softmax operator on the key-query product because the product is
used as weights while approximating derivatives. It should not be restricted to be positive only as
the approximation of f ′(a) ≈ f(b)−f(a)

b−a , for any differentiable f and provided that b is close to a,
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involves a weighted sum of f(a) and f(b) with both positive and negative weights. We remark that
despite we don’t have the observed derivative information to guide Diff(·) during the training process,
we conduct a comparison using simulated data. Figure S1 compares the output from Diff with the
derivative of the underlying process and indicates that Diff(·) adeptly captures the overall shape.

Intg(·) operator. The function Intg(·) approximates the integral f(b)− f(a) =
∫ b

a
f ′(x) dx, where

f(·) is differentiable. At a high level, because Diff(·) is a continuous operator and the integration
of a continuous function is differentiable, the output of Intg(·) is continuously differentiable. This
result is formally developed in Theorem 1. Furthermore, the Intg(·) operator allows SAND to
impute the target process from any index k0. We let the k0th location serve the purpose of (a, f(a))
in the integral at the beginning of this paragraph, then the imputation from SAND at index k1 is
T̃k0

+ (−1)I(k1<k0)
∑

k∈K(D̃)k/(M − 1) where I(k1 < k0) is 1 if k1 < k0 and is 0 otherwise,
and K is the set of indices between k0 and k1 (inclusive). Hence, SAND imputes trajectories in a
bidirectional fashion. A similar approach, scheduled sampling, was explored by [1].
Remark 2. Conceptually, any machine learning model that handles vector inputs and outputs could
be utilized to enhance the coarse imputation from GT, as there are numerous viable options. The
attention module is adapted for two reasons:

Computational Efficiency. SAND is computationally efficient compared to other well-established
vector-to-vector models like recurrent networks or convolutional networks. This efficiency is crucial
in our choice, as highlighted by [23]. The attention module itself has demonstrated effectiveness
across diverse applications, thanks in great part to its scalability.

Achieving Smooth Outputs. Our objective is to produce a smooth curve, which requires that its
first derivative be continuous. Since most neural networks inherently model continuous functions,
they are suited to this task. The first derivative f ′(a) ≈ f(b)−f(a)

b−a involves a linear combination of
function values. In constructing SAND, we chose the attention module because it inherently performs
a weighted summation of its inputs, aligning well with our needs for modeling derivative.

4 Theoretical analysis

Theorem 1 demonstrates that the imputations from SAND are continuously differentiable. Theorem 2
establishes a crucial finding that highlights the improved accuracy of SAND: it can be viewed as a
dimension reduction technique. Proofs of all results in the section are provided in the supplement. To
begin Theorem 1, let C1(I) denote the set of continuously differentiable functions defined on I.
Theorem 1. Let T̂ denote the outputs from SAND. Then, T̂ is in C1([0, 1]) when M → ∞.

Theorem 1 implies that the imputation from SAND is continuously differentiable. This is in contrast
to GT, which is prone to overfitting and non-smoothness issues, as discussed in Section 3.1. The
assumption that M → ∞ is fairly mild as it could tend to ∞ at any rate, not depending on the sample
size n. In simulations, we validate our choice of M by reporting the total variation (TV) of the
difference between an imputation and its underlying process. This measure is defined as the average
of absolute differences between adjacent elements in the difference.

Since SAND aims at minimizing the ℓ2 distance between its output (T̂ ) and the imputation derived
from GT (its input, T̃ ), it is possible to drive its training error to zero by using a large number of
hidden nodes (hd). However, this needs to be avoided as the input T̃ contains random noise. Instead,
the goal for SAND should be to effectively disentangle the inherent smooth process from the random
noise in T̃ . Therefore, a small training error ϵ should be incorporated in SAND. The choice of
ϵ is tied to the number of hidden nodes hd, which can be determined by the fraction of variance
unexplained in FPCA [27]. We formally encapsulate this intuition in Theorem 2.

Theorem 2. Define A, T̃i, and T̃i,c as in section 3. Suppose that {λj}Mj=1 are the non-increasing
eigenvalues of

∑
i T̃

T
i,cT̃i,c. For any ϵ ≥ 0, let dϵ = min{d |

∑d
j=1 λj/

∑M
j=1 λj ≥ 1 − ϵ}. Then,

there exists a SAND satisfying: (1) hd ≥ dϵ; and (2) the positional encoding dimension being M , so
that for any imputation output T̂i from SAND, we have

1

∥A∥0

∑
i∈A

∥dmask
i ⊙ (T̃i − T̂i)∥22 ≤ ϵ

∥A∥0

∑
i∈A

∥T̃i,c∥22
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where dmask
i , the decoder masking for ith subject, is a vector of length M whose jth element is

1 if t = j
M−1 is observed in subject i and is 0 otherwise and u ⊙ v represents the element-wise

multiplication between vectors u and v.
The eigenvalues of

∑
i T̃

T
i,cT̃i,c in Theorem 2 are used to determine the number of hidden nodes in

SAND. As a consequence of Theorem 2, the following corollary shows the connection between
SAND and dimension reduction techniques of FPCA.

Corollary 1. Let SAND be defined as in Theorem 2 with hd = dϵ. Suppose that for all subjects, we
have full observations on the output grid I, i.e., all elements in dmask

i is 1. Then, SAND minimizes

min
P:rank(P)=dϵ

1

∥A∥0

∑
i∈A

∥T̃i,c − T̃i,cP∥22 =
ϵ

∥A∥0

∑
i∈A

∥T̃i,c∥22.

Remark 3. Corollary 1 shows that SAND can be seen as a dimension reduction technique by viewing
hd and ϵ as the fraction of variance unexplained and the number of principal components needed to
attain an ϵ-error in FPCA, respectively. However, because of the presence of the decoder masking, hd

and ϵ do not generally play the two roles. Still, Corollary 1 provides an intuitive insights of them.

5 Experiments

SAND is compared to seven baseline methods: PACE [27], FACE [26], mFPCA [13], MICE [22],
CNP [7], GAIN [29], and 1DS (one-dimensional kernel smoothing to impute each subject separately).
PACE estimates the Karhunen-Loéve presentation based on the function input. FACE imputes the
missing data through a different covariance smoothing method from PACE. mFPCA uses a likelihood-
based approach to estimate the functional principal components. MICE imputes the missing data
based on the fully conditional specification, where each incomplete variable is imputed by a separate
model. CNP parametrizes distribution over imputations giving a distributed representation of pairs of
time points and functional values. GAIN imputes the missing data using generative adversarial nets.
Due to the lack of available code, we did not include the methods of [16] and [10]. We discuss more
on them along with [13] in the supplementary materials.

Each baseline involves the choice of hyperparameters. In PACE and mFPCA, we let the fraction of
variance explained be 99%. FACE can select all hyperparameter automatically. In MICE, we impute
20 versions of data and take their mean, as suggested in [25]. In CNP, we implement [7] [link] using
PyTorch to train the model for 50,000 epochs. The code for GAIN is provided in [29][link]. We train
the model for a max of 10,000 epochs with 15 different random seed and take their mean. Finally, in
1DS, the bandwidth of the smoothing window is selected by cross-validation.

All transformers in Section 3 were trained for 5,000 epochs using a mini-batch of size 256 with
a learning rate of 3 × 10−4 and a 15% dropout rate. The penalty parameters are picked from a
data-driven grid containing 8 points. In SAND, hd is set to 128 and the dropout rate is 5%. See
the code in the supplement for details of the model configuration. To quantify the uncertainty of
the imputations, we add the pinball loss with the 10th and 90th target quantiles to the MSE in (2).
Training takes 8 hours on one Nvidia A100 with 10,000 samples.

Data splitting and evaluation of imputations. The dataset is divided into three parts: the first
90% is for training, the last 5% for testing, and the remaining 5% for validation. The error between
prediction and the underlying process on the testing data is reported for comparison. To evaluate the
performance of each method, we report the MSE on testing data using (2) along with its standard
error (SE). To validate Theorem 1 and our choice of M , we provide the mean and SE of the TV of
the difference between any imputation T̃i and the underlying process xi(·).

5.1 Simulation studies

Through simulations, we show that transformer-based models outperform other imputation methods.
Extensive simulation schemes varying in the number of basis functions, the number of points sampled
in a curve, the size of random noises, and the independence of the sampled points are considered. Our
simulations are purposely designed to probe the shorts of all baseline methods and neural networks.

Data-generating process. Let xi(t) =
∑K

k=1 [aik sin(2πkt) + bik cos(2πkt)]/k where t ∈ [0, 1],
i ∈ {1, . . . , 104} and aik, bik follow a zero-mean distribution. The actual observed data of the ith
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Table 1: MSE(SE) & TV(SE) on simulated data. Bold values indicate the top 2 performing methods.

ni = 30 ni = 8 to 12 ni = 3, 4, 5

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 189.9(4.3) 187.1(2.0) 450.0(15) 201.9(2.1) 795.5(33) 209.5(2.2)
FACE 284.6(8.8) 198.9(2.1) 488.2(16) 204.5(2.2) 807.1(32) 209.5(2.2)

mFPCA 224.7(5.8) 192.0(2.1) 480.3(16) 204.0(2.2) 787.1(31) 209.3(2.2)
MICE 176.7(3.7) 233.1(1.7) 721.6(27) 318.4(3.0) 1416(57) 332.7(2.8)
CNP 290.4(11) 198.9(2.0) 551.3(21) 207.6(2.1) 920.3(52) 211.9(2.2)

GAIN 261.9(6.8) 350.0(3.4) 1454(52) 413.1(5.1) 1862(51) 385.4(4.3)
1DS 262.9(6.0) 273.8(2.4) 735.3(22) 305.7(3.7) 1157(43) 263.3(3.1)

GeLU-activated transformers with penalties

GT1 169.8(3.2) 218.2(1.7) 436.7(15) 227.0(2.2) 798.6(35) 230.6(2.6)
GT1P 169.0(3.5) 179.9(2.0) 425.3(14) 199.4(2.1) 777.4(36) 210.2(2.2)
GT1S 169.8(3.2) 218.1(1.7) 436.7(15) 227.0(2.2) 796.5(35) 227.6(2.6)
GT1T 160.6(3.2) 171.9(1.9) 421.8(14) 196.8(2.1) 783.4(34) 211.8(2.2)

GT2 174.8(3.5) 223.0(1.7) 433.8(14) 221.9(2.1) 804.5(39) 226.1(2.4)
GT2P 179.9(3.9) 182.1(2.0) 422.6(13) 199.4(2.1) 788.9(39) 210.0(2.2)
GT2S 160.8(3.4) 168.5(1.5) 427.7(13) 208.8(2.1) 804.5(39) 226.1(2.4)
GT2T 167.5(3.5) 173.3(1.9) 419.9(13) 197.1(2.1) 792.3(39) 211.0(2.2)

GeLU-activated transformers with augmented modules

ATT 185.1(3.8) 220.0(1.7) 446.9(14) 220.6(2.1) 852.0(42) 224.0(2.5)
SAND 146.5(2.7) 164.6(1.8) 410.9(13) 196.8(2.0) 758.1(43) 206.8(2.2)

curve is a discrete data {yij}ni
j=1, where yij = xi(tij) + εij and εij follows N(0, σ2) independently.

The output grid [0, 1] is discretized in {j/100}100j=0 in all simulation. The experiment consists of 12
scenarios, varying in the distribution of the eigenvalues (aik and bik), the number of basis functions
2K, and the magnitude of σ2. The full simulation is provided in the supplement (Table S1). In the
main text, we only focus on the scenario when the eigenvalues follow an exponential distribution,
which stimulates heavy-tailed processes, the number of basis functions is set to 40, the time points
within any subject are sampled independently, and the signal-to-noise ratio (SNR) is set to 4. For
a function input f(t), we define SNR(f) as

∫
T f2(t) dt/σ2. Finally, each scenario comprises three

cases determined by ni: either ni = 30, ni = 8 to 12, or ni = 3, 4, 5.

Transformer-based models. In Table 1, GT1 and GT2 are GTs penalized with ℓ2 norm of parameters
and the curvatures of the imputations, respectively, where the penalties are chosen by the validation
dataset. For i being 1 or 2, GTiP, GTiS and GTiT use PACE, kernel smoothing and trend filtering [19],
respectively, to subsequently smooth the imputations obtained from GTi. GT variants are discussed
in Section 3.1. Moreover, we investigate the impact of adding an extra self-attention module after the
GT as it bears a similar structure to an interpolation method. We refer it as ‘ATT’ in our analysis.

Results. Table 1 presents the imputation MSEs and TVs (scaled by 1,000) along with their SEs for all
4 cases. Transformer-based models consistently perform the best across all benchmarks, indicating
their efficacy for functional data imputation. We begin by examining GTs, which empirically
outperform other baseline methods (Table 1). Despite this, imputations from penalized transformers
still lack smoothness (Figure 1). Table 1 reinforces this observation by showing significantly higher
TV in the imputations from GT1 and GT2 compared to imputations from PACE, FACE, and CNP.
This lack of smoothness can be further mitigated by subsequently applying methods like PACE or
individual smoothing to further refine GT imputations. Table 1 confirms that total variations in all
GTs decrease, yet a closer look at the table reveals that PACE (GT1P and GT2P) can generally lower
MSE, but falls short, particularly when ni is large, where PACE’s posterior smoothing dramatically
escalates the MSE. Individual smoothing (GT1S and GT2S) can improve imputations for dense
functional data, yet has limited benefits for sparsely observed data. Although trend filtering methods
(GT1T and GT2T) consistently reduce MSE and TV, their performance is ultimately surpassed
by SAND. Lastly, using a self-attention module to boost GT doesn’t yield positive results in our
simulation. Figure 1 still displays non-smooth imputations, and MSEs increase across all scenarios,
compared to GT variants.
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Table 2: MSE(SE) and TV(SE) on real datasets. Bold values indicate the top 2 performing methods.

UK electricity Framingham study

ni = 30 ni = 8 to 12 ni = 3, 4, 5 ni = 3 to 11

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE) MSE∗(SE) TV∗(SE)

PACE 12.8(1.8) 19.0(1.1) 30.1(4.5) 21.1(1.2) 39.6(5.2) 21.9(1.2) 0.076(0.003) 0.04(0.002)
FACE 15.8(2.1) 21.3(1.2) 32.5(5.4) 22.6(1.2) 39.6(5.2) 23.0(1.2) 0.075(0.004) 0.03(0.002)

mFPCA 16.4(2.0) 22.2(1.2) 34.8(4.9) 23.2(1.2) 41.7(5.4) 23.3(1.2) 0.057(0.003) 0.04(0.002)
MICE 20.4(2.2) 67.8(3.3) 40.0(4.5) 65.4(2.8) 75.4(8.6) 71.4(1.5) 0.199(0.011) 0.32(0.013)
CNP 23.0(3.5) 21.4(1.2) 31.5(4.3) 22.1(1.2) 47.9(7.1) 22.7(1.2) 0.087(0.004) 0.04(0.002)

GAIN 31.9(3.7) 108(5.6) 75.4(8.2) 104(6.7) 99.6(15) 121(2.4) 0.190(0.01) 0.23(0.007)
1DS 17.3(2.2) 19.4(1.1) 50.0(7.0) 22.8(1.3) 105(18) 44.1(2.7) 0.075(0.004) 0.05(0.003)

GT 10.7(1.8) 20.6(1.1) 31.2(3.3) 23.2(1.3) 42.6(5.6) 38.5(2.5) 0.004(0.0002) 0.13(0.005)
SAND 10.0(1.9) 15.7(0.9) 26.7(3.0) 20.1(1.2) 38.3(5.1) 25.5(1.6) 0.019(0.001) 0.09(0.004)

In contrast, the SAND method we proposed consistently outperforms all other approaches, yielding
the lowest MSEs and TVs across all scenarios. Table 1 reflects that SAND effectively reduces MSEs
and TVs by an average of around 8% and 13%, respectively, compared to GT1. This is further
substantiated by Figure 1, which visually demonstrates the smoothness of SAND-generated outputs,
offering empirical support for the validity of Theorem 1. Within the domain of transformer-based
models, our focus is not solely on reducing MSE but also on improving the smoothness of imputations.
For this end, we recommend examining the SEs of TVs among different transformer-based models.
Upon reviewing TV columns in Table 1, it becomes evident that SAND significantly outperforms all
other transformer imputation methods. This highlights the effectiveness of SAND in enhancing the
smoothness of imputations. Furthermore, SAND achieves smaller TVs compared to PACE and FACE,
suggesting its capacity to capture underlying processes while maintaining low prediction errors.

5.2 Application to real datasets

UK household electricity dataset. We consider a dataset that records every half-hour the energy
consumption of 5,494 randomly selected households in London. This results in a total of 96
observations from 11/13 (Wed) to 11/14 (Thurs) of 20133. See [20] for details of the dataset. Our
objective is to recover the underlying process of households’ electricity usage where the underlying
process is the Gaussian 6-hour moving average of the complete data. To align with our simulation
designs, we randomly select the data into ni = 30, ni = 8 to 12, or ni = 3, 4, 5 and we sample
the time points in two ways - independently and dependently. Tables 2 and S11 report that SAND
consistently produces the best performance across all settings. When the observed data contain
errors, SAND excels in generating smooth trajectories, as illustrated in Figure S2. They also reveal a
substantial reduction in TVs when comparing SAND to GT in all cases. This shows the effectiveness
of SAND in enhancing the smoothness of imputations.

Framingham heart study. We apply SAND and the baseline methods to the longitudinal data from
the Framingham Heart Study [5]. We focus on n = 890 subjects who were live at age 70. Our goal is
to reconstruct BMI trajectories from ages 40 to 60 based on their irregular and sparse measurements
within this range (ni = 3 to 11). Here the MSE (marked by asterisks in Table 2) are measured
based on the observed data. Figure S3 shows the imputations of two testing data from SAND and
its main competitors (PACE, FACE, CNP and GT) and Table 2 highlights the substantial advantage
of employing SAND, which reduces MSE by at least 75% for all competitors except for GT. Here
GT has a lower MSE possibly due to overfitting as reflected in its TV and Figure S3. Regarding TV,
which represents the total variation of the imputation in this analysis, PACE, FACE and CNP have
smaller TVs than GT and SAND. Figure S3 indicates that they might undersmooth the trajectories.
Considering both MSE and TV, SAND emerges as the most robust model across various scenarios.

5.3 Advantage of SAND: Enhancing Downstream Prediction Tasks

This section demonstrates better imputations lead to better downstream predictions in two scenarios:
(1) predicting the average energy consumption on November 15, 2013 based on the imputed trajecto-
ries of energy consumption of the previous two days, (2) forecasting the average BMI between age 61

3During this period, the number of households that had complete observations was maximized.
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and 65 in the Framingham Heart Study using the imputed trajectory of the same subject between age
40 and 60. To predict those outcomes, we leverage AdaFNN [28], a machine learning model capable
of learning optimal basis representations between the imputations and the targets. Table 3 shows the
result of SAND along with the three top competitors in imputation tasks, PACE, FACE and GT. It’s
evident that SAND consistently achieves the lowest MSE across all prediction tasks and the principle
that better imputations yield more accurate downstream predictions. These findings position SAND
as a promising tool for enhancing downstream prediction tasks across diverse domains.

Table 3: MSE(SE) on downstream tasks. Bold font marks the smallest MSE across methods.

UK electricity Framingham study

ni = 30 ni = 8 to 12 ni = 3, 4, 5 ni = 3 to 11

PACE 5.77(0.9) 11.8(2.2) 15.5(2.9) 2.23(0.7)
FACE 7.23(1.4) 10.8(2.1) 13.7(2.3) 2.10(0.6)

GT 6.22(1.1) 8.01(1.3) 12.0(1.9) 2.31(0.6)
SAND 5.19(0.6) 7.39(1.1) 12.0(2.0) 1.76(0.5)

6 Discussion

This paper introduces a novel SAND layer in a transformer for imputing sparse and noisy functional
data. SAND, when paired with a vanilla transformer, constitutes an end-to-end learning mechanism
that involves two main operations: Diff (3) and Intg (4). Initially, Diff takes the noisy imputed function
from a vanilla transformer and concentrates on the sub-derivative of the imputation. Following this,
Intg constructs a differentiable imputation, utilizing the fundamental theorem of calculus. SAND
minimizes the ℓ2 distance between the imputed and the original transformer-estimated functions,
eliminating the need to estimate the derivative of a noisy function.

From a theoretical perspective, we prove the smoothness of the imputation from SAND and explicitly
determine the necessary number of hidden nodes for SAND to achieve an ϵ prediction error boundary
on training data (up to a constant). Interestingly, the error boundary serves the role of the fraction
of variance unexplained in FPCA literature. Traditional imputation methods, such as FPCA, em-
ploy a dimension-reduction strategy to learn trajectories via a finite-dimensional vector. Empirical
benchmarks reveal that SAND surpasses FPCA when the curves aren’t a Gaussian process with a low
number of basis function. SAND effectively smooths noisy imputations from a vanilla transformer,
and yields more accurate imputations than other techniques to encourage smoothness.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3.1 addresses the limitations of using a vanilla transformer for imputa-
tion tasks. Section 3.2 introduces SAND as a solution. Theoretical properties of SAND are
rigorously discussed in Section 4, and numerical study results are presented in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of SAND are discussed in Section 2.3 of the supplementary
material due to space constraints in the main text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumptions for the theoretical results are stated in Section 4, and the
complete proofs are provided in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The supplementary zip file includes the code for generating simulated data
with a fixed seed, ensuring reproducibility. The real data is provided in the designated folder,
with explicit file names. A sketch of the training instructions is given in Section 5.1, and
detailed training instructions are available in the README file. Additionally, the random
seed is fixed in the training procedure to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary materials include open access to both the data and the code.
Detailed instructions for reproducing the main experimental results are provided, including
a fixed random seed for the training procedure to ensure reproducibility. The real data is
organized in clearly labeled folders, and comprehensive training instructions are outlined in
Section 5.1 and detailed further in the README file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Key training settings are described in Section 5.1, with detailed information
provided in the README file.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard error of the mean square error estimation is provided in all tables.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Sufficient information on the computer resources is provided in the second
paragraph of Page 7 in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors cite all references to the datasets used and include the licenses for
the code employed to run some of the baseline methods.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: This paper focuses on proposing a new layer and primarily emphasizes
theoretical and simulation results for imputing missing values in functional data. Given the
scope and focus of the paper, the discussion of negative societal impacts is deemed irrelevant
and therefore not included.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve text or image datasets, nor does it deal with
high-risk models. The focus is solely on functional data imputation, which does not present
significant misuse risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators and original owners of all assets used.
Links to the relevant GitHub repositories are provided in the main text, and the licenses are
explicitly included in the supplementary zip file. All usage complies with the respective
licenses.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduced any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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