
EEGFormer: Towards Transferable and Explainable Large-Scale
EEG Foundation Model

Yuqi Chen1*, Kan Ren2, Kaitao Song1, Yansen Wang1,
Yifan Wang2, Dongsheng Li1, Lili Qiu1

1 Microsoft Research 2 ShanghaiTech University
yansenwang@microsoft.com renkan@shanghaitech.edu.cn

Abstract

Self-supervised learning has emerged as a highly effective
approach in the fields of natural language processing and
computer vision. It is also applicable to brain signals such as
electroencephalography (EEG) data, given the abundance of
available unlabeled data that exist in a wide spectrum of real-
world medical applications ranging from seizure detection to
wave analysis. The existing works leveraging self-supervised
learning on EEG modeling mainly focus on pretraining upon
each individual dataset corresponding to a single downstream
task, which cannot leverage the power of abundant data, and
they may derive sub-optimal solutions with a lack of gener-
alization. Moreover, these methods rely on end-to-end model
learning which is not easy for humans to understand. In this
paper, we present a novel EEG foundation model, namely
EEGFORMER, pretrained on large-scale compound EEG data.
The pretrained model cannot only learn universal represen-
tations on EEG signals with adaptable performance on vari-
ous downstream tasks but also provide explainable outcomes
of the useful patterns within the data. To validate the effec-
tiveness of our model, we extensively evaluate it on various
downstream tasks and assess the performance under differ-
ent transfer settings. Furthermore, we demonstrate how the
learned model exhibits transferable anomaly detection perfor-
mance and provides valuable explainability of the acquired
patterns via self-supervised learning.

Introduction
Scalp electroencephalography (EEG) is physiological sig-
nal data that provides valuable insight into the human brain
activities and has extensive applications in healthcare, e.g.,
disease diagnosis and medical monitoring (Lawhern et al.
2018; Tang et al. 2021, 2023; Li et al. 2023). Despite the
ease of collecting EEG signals, comprehending and inter-
preting them often requires extensive expertise from medical
professionals. To address this challenge, recent research has
focused on leveraging self-supervised learning techniques to
learn meaningful representations from EEG data (Yi et al.
2023; Wang et al. 2023; Li et al. 2022). These learned rep-
resentations can then be fine-tuned for various downstream
tasks, including seizure detection (Tang et al. 2021, 2023),
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abnormal detection (Darvishi-Bayazi et al. 2023), emotion
recognition (Yi et al. 2023; Ye, Chen, and Zhang 2022; Song
et al. 2021; Li, Wang, and Lu 2021), etc. However, these
existing works focus on pretraining upon each individual
dataset corresponding to a single downstream task and fail
to leverage the power of abundant data. In this paper, our pri-
mary interest lies in exploring the potential of self-supervised
learning using abundant large-scale unlabeled data without
human annotations.

Moreover, explainability is a crucial concern when apply-
ing machine learning models to real-world applications (Peng
et al. 2022; Ali et al. 2022; Leung et al. 2022), particularly in
the healthcare community (Mendoza-Cardenas, Meek, and
Brockmeier 2023; Gulamali et al. 2023). Prior research (Tang
et al. 2021; Wang et al. 2023) has predominantly relied on
end-to-end model learning, which poses challenges for hu-
man comprehension. Models that lack explainability have
the potential to yield unsafe and irrational outcomes, thereby
increasing the risk of severe medical malpractice.

To address the above issues, we introduce EEGFORMER
as a solution for large-scale EEG pretraining. Our primary
objective is to investigate a discrete representation learning
approach (Van Den Oord, Vinyals et al. 2017; Fortuin et al.
2018; Peng et al. 2022; Esser, Rombach, and Ommer 2021)
specifically designed for EEG pretraining. We provide ev-
idence that the utilization of vector-quantized Transformer
(Vaswani et al. 2017) model can learn universal representa-
tions on EEG signals with adaptable performance on various
downstream tasks compared to the conventional mask recon-
struction strategy (Nie et al. 2022). Furthermore, the learned
codebook and the discrete indices provide explainable out-
comes of the useful patterns within the data.

The contribution of the paper can be summarized as below:

• We propose a novel pretraining strategy for EEG data.
EEGFORMER adopts a discrete representation learning
algorithm along with reconstruction loss.

• We harness the plentiful EEG data available in the TUH
Corpus (Harati et al. 2014) to construct a foundational
EEG model. This marks the pioneering effort in pretrain-
ing with a massive 1.7TB EEG dataset.

• We conduct a comprehensive analysis of the pretrained
foundation model EEGFORMER, evaluating its perfor-
mance on four downstream corpora sourced from the
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Figure 1: Overview of EEGFORMER. Initially, multi-variate EEG signals are segmented into patches, which are then passed
through a Transformer encoder. Subsequently, a vector-quantized model is employed to generate discrete indices. These indices
are then fed into a shallow Transformer decoder.

TUH corpus. Additionally, we explore its transferability
by applying it to the Neonate dataset (Stevenson et al.
2019) for neonatal seizure detection.

• We provide an in-depth analysis of the learned codebook
and demonstrate that the pretraining algorithm can pro-
vide transferable and explainable representations.

Related Work
Pretraining for Time-Series Data Self-supervised learn-
ing for time-series data is a highly significant research hotspot.
Many non-Transformer models have been developed to learn
the representation of time series (Franceschi, Dieuleveut, and
Jaggi 2019; Tonekaboni, Eytan, and Goldenberg 2021; Yue
et al. 2022; Eldele et al. 2021). Recently, (Nie et al. 2022)
introduced a Transformer-based approach that segments time
series into patches, which leads to promising outcomes across
various forecasting datasets. Furthermore, researchers are
growing interested in utilizing pretrained large language mod-
els (LLMs) to enhance time series analysis (Zhou et al. 2023;
Gruver et al. 2023). These methods are mainly on forecasting
tasks and lack practical considerations of the model adapta-
tion to different downstream tasks.

Pretraining for EEG data Electroencephalograms (EEGs)
are widely employed for diagnosing neurological, and psy-
chiatric, as well as in brain-machine interface applications.
In the field of EEG signals, self-supervised learning has
emerged as a promising approach (Tang et al. 2021; Jiang
et al. 2021; Kostas, Aroca-Ouellette, and Rudzicz 2021). Se-
qCLR (Mohsenvand, Izadi, and Maes 2020) introduces a
set of data augmentations for EEG and extends the Sim-
CLR (Chen et al. 2020) framework to extract channel-wise
features on time-series EEG data. MMM (Yi et al. 2023)
focuses on spatial and topological modeling of EEG data
and breaks the boundaries between different EEG topologies.
However, these methods rely on end-to-end model learning,
which lacks explainability. In this paper, we propose a new
pretraining strategy that can provide an explainable represen-
tation. Moreover, these methods either apply self-supervision
within the same dataset or test for a single downstream task,
which cannot fully unleash the power of the self-supervised
pretraining paradigm. In this paper, our approach diverges

the existing methods by leveraging the extensive multiple
datasets of different tasks for pretraining purposes.

EEGFORMER: Vector-Quantized Pretraining
Transformer for EEG Data

This work aims to present a novel pretraining algorithm to
derive a universal, transferable, and explainable EEG foun-
dation model. In this paper, we focus on learning tempo-
ral patterns among multi-channel EEG data. Specifically,
we view EEG data as a multi-variate time series data, i.e.,
X ∈ RL×C , where L represents the length of the time se-
ries, and C represents the number of channels (or variates) 1.
Our primary goal is to develop a self-supervised learning
algorithm that optimally leverages unlabelled data while en-
hancing explainability. To accomplish this, we introduce a
customized vector-quantized pretraining approach designed
for EEG data, as illustrated in Figure 1. EEG signals can be
encoded into discrete tokens, enabling explanation through
the analysis of these tokens, as is discussed in experiments.
During the fine-tuning stage, the model and the codebook
can be further fine-tuned to integrate specific domain-specific
knowledge. In the subsequent subsections, we will provide
a detailed description of the overall framework, including
the preprocessing, EEG slicing, encoding module, decoding
module, training algorithm, and fine-tuning processes.

Feature Preprocessing Converting EEG signals to the fre-
quency domain is a common preprocessing technique. In-
spired by (Tang et al. 2021), given a time domain EEG sig-
nals, we perform fast Fourier transformation (FFT) to obtain
frequency domain amplitude as input features.

Slice & Encode To pretrain a time-series tokenizer, we first
apply instance normalization to the frequency domain inputs.
Then, we split each univariate time series into non-overlapped
(or overlapped) segments (Nie et al. 2022). Specifically, for
each variate (or channel), i.e., xc ∈ RL for the cth variate.
Denote the patch length as P and the stride as S, the patching

1We mitigate the sample rate discrepancy by resampling the
EEG data to a uniform rate of 250 Hz. Further, our analysis focuses
on fixed-length 12-second EEG data following (Tang et al. 2021).
Thus, throughout the experiment, L equals to 3000.



process will generate a sequence of patches xc ∈ RP×N ,
where N =

(
⌊L−P

S ⌋+ 2
)

indicates the number of patches.
Given the input EEG data xc ∈ RP×N for c ∈ [1, . . . , C], it
is necessary to add position embedding before input to the
Transformer encoder. Specifically, we map the dimension
to D via learnable weight matrix wp ∈ RP×D and adopt
learnable position embedding, i.e., wpos ∈ RN×D. Hence,
the input vector is given by x̂c = x⊤

c wp +wpos. Finally, we
forward x̂c into a stack of Transformer encoder layers in a
channel-independent manner (Nie et al. 2022).

Vector Quantizer The vector quantizer looks up the near-
est neighbor in the codebook for each patch representation
hi. Let {v1,v2, . . . ,vK} denote the embeddings in the code-
book. For the ith patch, its quantized code is calculated as
zi = argmin

j
∥hi − vj∥2, where j ∈ {1, 2, . . . ,K}. After

quantizing the hidden vectors to discrete tokens, we obtain
the codebook embeddings Vz = {vzi}

N
i=1.

Pretraining Stage: Decode & Reconstruct We further
forward the codebook embeddings from the vector quantizer
into a shallow Transformer model (Peng et al. 2022). Upon
passing through the decoder model, each variate generates an
output denoted as ĥc ∈ RN×D. We map the outputs to the
same shape as the input through wo ∈ RD×P and bo ∈ RP ,
i.e., xo = ĥcwo+bo. Finally, we reshape the output to match
the shape of X , denoted as Xrec. The pertaining objective of
EEGFORMER for each sample X ∈ D is to minimize

ℓrec = ∥Xrec −X∥22 + ∥ sg [H]− VZ∥22 + ∥H − sg [VZ ]∥22 ,
(1)

where sg[·] stands for the stop-gradient operator which is an
identity at the forward pass while having zero gradients dur-
ing the backward pass (Van Den Oord, Vinyals et al. 2017) 2.

Fine-tuning Stage: Decode & Linear To facilitate down-
stream fine-tuning, we utilize the pretrained model weights
of both the encoder and the decoder modules. After obtain-
ing the outputs Ĥ ∈ RC×N×D from the decoder model, we
concatenate all the outputs and transform them into c ∈ RK,
where K denotes the number of classes for the classification
task. The loss function for the fine-tuning stage is:

ℓcls = − log cl + ∥ sg [H]− VZ∥22 + ∥H − sg [VZ ]∥22 ,
(2)

where l is the label of the sample.

Experimental Results
Datasets Description We pretrain our model on the Tem-
ple University EEG Corpus (TUH Corpus) 3, which has col-
lected over 1.7TB of unlabelled EEG data that are suitable
for pretraining. We evaluate our model on five downstream
datasets. i) TUAB corpus for abnormal detection of EEG
data. ii) TUAR corpus for classifying artifacts. iii) TUSL
corpus for classifying slowing events. v) TUSZ corpus for

2In Eq. (1), H denotes the hidden vectors for all the variates,
whereas h stands for a single variate. Similarly for Z and z.

3https://isip.piconepress.com/projects/tuh_eeg/

Figure 2: Influence of pretrain epochs on two TUH corpus.

seizure detection. vi) Neonate dataset (Stevenson et al. 2019)
for neonatal seizures detection. Notably, the Neonate dataset
is not a subset of the TUH dataset. Therefore, we consider
the transferability of our pretraining strategy.

Parameter Setting We vary the encoder layers from 6
to 12, and the codebook size, i.e., K, from 512 to 2048.
The decoder is a 3-layer Transformer. We set D to 128.
Specifically, EEGFORMER s adopts a 6-layer encoder and
K = 512, EEGFORMER b adopts an 8-layer encoder and
K = 1024, and EEGFORMER l adopts a 12-layer encoder
and K = 2048.

Compared Baselines We compare EEGFORMER with sev-
eral baselines specifically for EEG data. i) EEGNet (Lawhern
et al. 2018) adopts a fully convolution network for EEG
data. ii) TCN (Bai, Kolter, and Koltun 2018) adopts a di-
lated convolutional neural network. iii) EEG-GNN (Tang
et al. 2021) adopts a graph neural network for capturing spa-
tiotemporal dependencies in EEGs. v) GraphS4mer (Tang
et al. 2023) further adopts structured state space models or
multivariate biosignals. Additionally, we also compare EEG-
FORMER with self-supervised baselines. BrainBERT (Wang
et al. 2023) adopts neural signal processing techniques for
producing superresolution time-frequency representations
and pretrain with mask reconstruction loss.

Evaluation Metrics For detection tasks, we adopt the area
under the receiver operating characteristic (AUROC) and the
area under the precision-recall curve (AUPRC) for evaluation.
For multi-classification tasks, we adopt macro AUROC (M-
AUROC) and macro AUPRC (M-AUPRC) for evaluation.

Main Results The experimental results presented in Table
1 clearly illustrate the effectiveness of our pretraining strategy
in both in-dataset and transfer settings. Quantitatively, com-
pared with the best baseline results, EEGFORMER l achieves
a 9.02% improvement on the Neonate dataset and a 13.23%
on the TUSZ under the AUPRC metric. Additionally, we
conduct experiments with different model sizes. Specifically,
EEGFORMER s and EEGFORMER b demonstrate an aver-
age AUROC of 0.822 and 0.829, respectively, as well as an
average AUPRC of 0.575 and 0.574, respectively.

Influence of Pretrain Epochs We conducted experiments
to examine the impact of pretraining epochs on various down-
stream corpora. The results of these experiments are illus-



Table 1: Experimental results on various downstream tasks. Within the table, ∗ indicates a multi-classification task.

Model Pretrain Metric TUAB TUAR∗ TUSL∗ TUSZ Neonate

EEGNet %
(M-)AUROC 0.841 ± .011 0.752 ± .006 0.635 ± .015 0.820 ± .030 0.793 ± .019
(M-)AUPRC 0.832 ± .011 0.433 ± .025 0.351 ± .006 0.470 ± .017 0.499 ± .044

TCN %
(M-)AUROC 0.841 ± .004 0.687 ± .011 0.545 ± .009 0.817 ± .004 0.731 ± .020
(M-)AUPRC 0.831 ± .002 0.408 ± .009 0.344 ± .001 0.383 ± .010 0.398 ± .025

EEG-GNN %
(M-)AUROC 0.840 ± .005 0.837 ± .022 0.721 ± .009 0.780 ± .006 0.760 ± .010
(M-)AUPRC 0.832 ± .004 0.488 ± .015 0.381 ± .004 0.388 ± .023 0.419 ± .021

GraphS4mer %
(M-)AUROC 0.864 ± .006 0.833 ± .006 0.632 ± .017 0.822 ± .034 0.719 ± .007
(M-)AUPRC 0.862 ± .008 0.461 ± .024 0.359 ± .001 0.491 ± .001 0.374 ± .013

BrainBERT !
(M-)AUROC 0.853 ± .002 0.753 ± .012 0.588 ± .013 0.814 ± .009 0.734 ± .019
(M-)AUPRC 0.846 ± .003 0.350 ± .014 0.352 ± .003 0.386 ± .018 0.398 ± .027

EEGFORMER l !
(M-)AUROC 0.876 ± .003 0.852 ± .004 0.679 ± .013 0.883 ± .005 0.833 ± .017
(M-)AUPRC 0.872 ± .001 0.483 ± .014 0.389 ± .003 0.556 ± .008 0.544 ± .026

Improvement (M-)AUROC +1.39% +1.79% -6.18% +7.42% +5.04%
(M-)AUPRC +1.16% -1.03% +2.10% +13.23% +9.02%

trated in Figure 2, Specifically, the results indicate that a
longer pretraining period leads to notable enhancements in
the performance of the downstream tasks.

Compared with Other Settings Table 2 compares the per-
formance of EEGFORMER l using fine-tuning, linear probing,
and supervising from scratch. By just fine-tuning the model’s
prediction head, i.e., linear probing), the performance of our
model is already comparable with the supervised model, i.e.,
GraphS4mer. Specifically, EEGFORMER l with linear probe
outperforms GraphS4mer by 1.73% on the TUAR dataset un-
der the M-AUPRC metric. Thus, we demonstrate that serves
as a strong foundation model for EEG data. Furthermore,
fine-tuning consistently surpasses the performance of both
supervised learning and linear probing, demonstrating the
effectiveness of large-scale pretraining.

Table 2: Linear probe results on TUSL and TUAR corpus.
Within the table, Sup stands for supervised learning from
scratch, FT stands for self-supervised and fine-tuned, and LP
stands for self-supervised and linear probing.

Model Type Metric TUAR TUSL

GraphS4mer Sup M-AUROC 0.833 ± .006 0.632 ± .017
M-AUPRC 0.461 ± .024 0.359 ± .001

EEGFORMER l Sup M-AUROC 0.822 ± .012 0.703 ± .033
M-AUPRC 0.447 ± .015 0.374 ± .003

EEGFORMER l LP M-AUROC 0.827 ± .000 0.657 ± .017
M-AUPRC 0.469 ± .002 0.359 ± .003

EEGFORMER l FT M-AUROC 0.852 ± .004 0.679 ± .013
M-AUPRC 0.483 ± .014 0.389 ± .003

Towards Seizure Localization After the pertaining state,
each EEG signal is discretized into multiple indices denoted
as I ∈ [1, . . . ,K]C×N . To perform seizure detection in the
TUSZ corpus using these pretrained indices, we first extract
n-gram features for each data (e.g., 2-gram, 3-gram, and
4-gram). Next, we adopt a naive Bayes classifier based on
n-gram features. Notably, we achieve an AUPRC of 0.292

time (second)
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time (second)
0            2            4            6            8            10             12

Figure 3: Explanation results from naive Bayes model.

and an AUROC of 0.741, without the need for fine-tuning
the pretrained weight. Additionally, we extract the top-3 sig-
nificant features with high posterior probability leading to
seizure events, from the naive Bayes model. Figure 3 presents
two cases, where the highlighted regions indicate the local-
ization of seizures. It is worth noting that in the right figure,
the highlighted segments correspond to the spike and slow
wave complex in all the frontal lobe (Fz), parietal lobe (Pz),
and temporal lobe (T3, T6), which indicates an epileptiform
discharge (EPSP) followed by the refractory period of the
affected neuron population after the large and synchronized
neuron EPSP, which is often treated as one of the most im-
portant patterns for the diagnosis of epilepsy and the onset
of a seizure event. Hence, these patterns are significant in
enhancing the explainability of the pretrained model.

Conclusion
In this paper, we present a novel method called EEGFORMER
for self-supervised learning using large-scale EEG data. Our
approach learns a discrete codebook and representations of
EEG signals simultaneously. We extensively evaluate our
pretraining algorithm on various downstream tasks to demon-
strate its effectiveness. Additionally, we conduct an analysis
to highlight the explainability of our pretraining model.



References
Ali, A.; Schnake, T.; Eberle, O.; Montavon, G.; Müller, K.-R.;
and Wolf, L. 2022. XAI for transformers: Better explanations
through conservative propagation. In International Confer-
ence on Machine Learning, 435–451. PMLR.
Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In International conference on machine learning,
1597–1607. PMLR.
Darvishi-Bayazi, M.-J.; Ghaemi, M. S.; Lesort, T.; Arefin,
M. R.; Faubert, J.; and Rish, I. 2023. Amplifying Pathological
Detection in EEG Signaling Pathways through Cross-Dataset
Transfer Learning. arXiv preprint arXiv:2309.10910.
Eldele, E.; Ragab, M.; Chen, Z.; Wu, M.; Kwoh, C. K.; Li,
X.; and Guan, C. 2021. Time-series representation learn-
ing via temporal and contextual contrasting. arXiv preprint
arXiv:2106.14112.
Esser, P.; Rombach, R.; and Ommer, B. 2021. Taming trans-
formers for high-resolution image synthesis. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 12873–12883.
Fortuin, V.; Hüser, M.; Locatello, F.; Strathmann, H.;
and Rätsch, G. 2018. Som-vae: Interpretable discrete
representation learning on time series. arXiv preprint
arXiv:1806.02199.
Franceschi, J.-Y.; Dieuleveut, A.; and Jaggi, M. 2019. Un-
supervised scalable representation learning for multivariate
time series. Advances in neural information processing sys-
tems, 32.
Gruver, N.; Finzi, M.; Qiu, S.; and Wilson, A. G. 2023. Large
language models are zero-shot time series forecasters. arXiv
preprint arXiv:2310.07820.
Gulamali, F. F.; Sawant, A. S.; Hofer, I.; Levin, M.; Singh,
K.; Glicksberg, B. S.; and Nadkarni, G. N. 2023. Clinically
Relevant Unsupervised Online Representation Learning of
ICU Waveforms. In ICLR 2023 Workshop on Time Series
Representation Learning for Health.
Harati, A.; Lopez, S.; Obeid, I.; Picone, J.; Jacobson, M.;
and Tobochnik, S. 2014. The TUH EEG CORPUS: A big
data resource for automated EEG interpretation. In 2014
IEEE signal processing in medicine and biology symposium
(SPMB), 1–5. IEEE.
Jiang, X.; Zhao, J.; Du, B.; and Yuan, Z. 2021. Self-
supervised contrastive learning for EEG-based sleep staging.
In 2021 International Joint Conference on Neural Networks
(IJCNN), 1–8. IEEE.
Kostas, D.; Aroca-Ouellette, S.; and Rudzicz, F. 2021.
BENDR: using transformers and a contrastive self-supervised
learning task to learn from massive amounts of EEG data.
Frontiers in Human Neuroscience, 15: 653659.
Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon,
S. M.; Hung, C. P.; and Lance, B. J. 2018. EEGNet: a compact
convolutional neural network for EEG-based brain–computer
interfaces. Journal of neural engineering, 15(5): 056013.

Leung, K. K.; Rooke, C.; Smith, J.; Zuberi, S.; and Volkovs,
M. 2022. Temporal dependencies in feature importance for
time series prediction. In The Eleventh International Confer-
ence on Learning Representations.
Li, R.; Wang, Y.; and Lu, B.-L. 2021. A multi-domain adap-
tive graph convolutional network for EEG-based emotion
recognition. In Proceedings of the 29th ACM International
Conference on Multimedia, 5565–5573.
Li, R.; Wang, Y.; Zheng, W.-L.; and Lu, B.-L. 2022. A
Multi-view Spectral-Spatial-Temporal Masked Autoencoder
for Decoding Emotions with Self-supervised Learning. In
Proceedings of the 30th ACM International Conference on
Multimedia, 6–14.
Li, Z.; Fang, Y.; Li, Y.; Ren, K.; Wang, Y.; Luo, X.; Duan, J.;
Huang, C.; Li, D.; and Qiu, L. 2023. Protecting the Future:
Neonatal Seizure Detection with Spatial-Temporal Modeling.
arXiv preprint arXiv:2307.05382.
Mendoza-Cardenas, C. H.; Meek, A.; and Brockmeier, A. J.
2023. Labeling EEG Components with a Bag of Waveforms
from Learned Dictionaries. In ICLR 2023 Workshop on Time
Series Representation Learning for Health.
Mohsenvand, M. N.; Izadi, M. R.; and Maes, P. 2020. Con-
trastive representation learning for electroencephalogram
classification. In Machine Learning for Health, 238–253.
PMLR.
Nie, Y.; Nguyen, N. H.; Sinthong, P.; and Kalagnanam, J.
2022. A time series is worth 64 words: Long-term forecasting
with transformers. arXiv preprint arXiv:2211.14730.
Peng, Z.; Dong, L.; Bao, H.; Ye, Q.; and Wei, F. 2022. Beit
v2: Masked image modeling with vector-quantized visual
tokenizers. arXiv preprint arXiv:2208.06366.
Song, T.; Liu, S.; Zheng, W.; Zong, Y.; Cui, Z.; Li, Y.; and
Zhou, X. 2021. Variational instance-adaptive graph for EEG
emotion recognition. IEEE Transactions on Affective Com-
puting.
Stevenson, N. J.; Tapani, K.; Lauronen, L.; and Vanhatalo,
S. 2019. A dataset of neonatal EEG recordings with seizure
annotations. Scientific data, 6(1): 1–8.
Tang, S.; Dunnmon, J. A.; Liangqiong, Q.; Saab, K. K.;
Baykaner, T.; Lee-Messer, C.; and Rubin, D. L. 2023. Mod-
eling Multivariate Biosignals With Graph Neural Networks
and Structured State Space Models. In Conference on Health,
Inference, and Learning, 50–71. PMLR.
Tang, S.; Dunnmon, J. A.; Saab, K.; Zhang, X.; Huang,
Q.; Dubost, F.; Rubin, D. L.; and Lee-Messer, C. 2021.
Self-supervised graph neural networks for improved elec-
troencephalographic seizure analysis. arXiv preprint
arXiv:2104.08336.
Tonekaboni, S.; Eytan, D.; and Goldenberg, A. 2021. Unsu-
pervised representation learning for time series with temporal
neighborhood coding. arXiv preprint arXiv:2106.00750.
Van Den Oord, A.; Vinyals, O.; et al. 2017. Neural discrete
representation learning. Advances in neural information
processing systems, 30.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention
Is All You Need. arXiv:1706.03762.



Wang, C.; Subramaniam, V.; Yaari, A. U.; Kreiman, G.;
Katz, B.; Cases, I.; and Barbu, A. 2023. BrainBERT: Self-
supervised representation learning for intracranial recordings.
arXiv preprint arXiv:2302.14367.
Ye, M.; Chen, C. P.; and Zhang, T. 2022. Hierarchical dy-
namic graph convolutional network with interpretability for
EEG-based emotion recognition. IEEE Transactions on Neu-
ral Networks and Learning Systems.
Yi, K.; Wang, Y.; Ren, K.; and Li, D. 2023. Learning
Topology-Agnostic EEG Representations with Geometry-
Aware Modeling. In Thirty-seventh Conference on Neural
Information Processing Systems.
Yue, Z.; Wang, Y.; Duan, J.; Yang, T.; Huang, C.; Tong, Y.;
and Xu, B. 2022. Ts2vec: Towards universal representation
of time series. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, 8980–8987.
Zhou, T.; Niu, P.; Wang, X.; Sun, L.; and Jin, R. 2023. One
Fits All: Power General Time Series Analysis by Pretrained
LM. arXiv preprint arXiv:2302.11939.


