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Abstract

Adaptive algorithms like AdaGrad and AMSGrad are successful in nonconvex
optimization owing to their parameter-agnostic ability – requiring no a priori
knowledge about problem-specific parameters nor tuning of learning rates. How-
ever, when it comes to nonconvex minimax optimization, direct extensions of
such adaptive optimizers without proper time-scale separation may fail to work
in practice. We provide such an example proving that the simple combination
of Gradient Descent Ascent (GDA) with adaptive stepsizes can diverge if the
primal-dual stepsize ratio is not carefully chosen; hence, a fortiori, such adaptive
extensions are not parameter-agnostic. To address the issue, we formally introduce
a Nested Adaptive framework, NeAda for short, that carries an inner loop for
adaptively maximizing the dual variable with controllable stopping criteria and an
outer loop for adaptively minimizing the primal variable. Such mechanism can
be equipped with off-the-shelf adaptive optimizers and automatically balance the
progress in the primal and dual variables. Theoretically, for nonconvex-strongly-
concave minimax problems, we show that NeAda with AdaGrad stepsizes can
achieve the near-optimal eO(✏�2) and eO(✏�4) gradient complexities respectively in
the deterministic and stochastic settings, without prior information on the problem’s
smoothness and strong concavity parameters. To the best of our knowledge, this is
the first algorithm that simultaneously achieves near-optimal convergence rates and
parameter-agnostic adaptation in the nonconvex minimax setting. Numerically, we
further illustrate the robustness of the NeAda family with experiments on simple
test functions and a real-world application.

1 Introduction

Adaptive gradient methods, whose stepsizes and search directions are adjusted based on past gradients,
have received phenomenal popularity and are proven successful in a variety of large-scale machine
learning applications. Prominent examples include AdaGrad [17], RMSProp [31], AdaDelta [84],
Adam [41], and AMSGrad [69], just to name a few. Their empirical success is especially pronounced
for nonconvex optimization such as training deep neural networks. Besides improved performance,
being parameter-agnostic is another important trait of adaptive methods. Unlike (stochastic) gradient
descent, adaptive methods often do not require a priori knowledge about problem-specific parameters
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(such as Lipschitz constants, smoothness, etc.).2 On the theoretical front, some adaptive methods can
achieve nearly the same convergence guarantees as (stochastic) gradient descent [17, 79, 69].

Recently, adaptive methods have sprung up for minimax optimization:

min
x2Rd

max
y2Y

f(x, y) , E[F (x, y; ⇠)], (1)

where f is l-Lipschitz smooth jointly in x and y, Y is closed and convex, and ⇠ is a random vector.
Such problems have found numerous applications in generative adversarial networks (GANs) [25, 4],
Wasserstein GANs [4], generative adversarial imitation learning [32], reinforcement learning [14, 60],
adversarial training [74], domain-adversarial training of neural networks [21] , etc.

A common practice is to simply combine adaptive stepsizes with popular minimax optimization
algorithms such as Gradient Descent Ascent (GDA), extragradient method (EG) and the like; see
e.g., [23, 27, 24]. It is worth noting that these methods are reported successful in some applications
yet at other times can suffer from training instability. In recent years, theoretical behaviors of
such adaptive methods are extensively studied for convex-concave minimax optimization; see e.g.,
[6, 3, 1, 18, 72, 22, 58, 15]. However, for minimax optimization in the important nonconvex regime,
little theory related to adaptive methods is known.

Unlike the convex-concave setting, a key challenge for nonconvex minimax optimization lies in the
necessity of a problem-specific time-scale separation of the learning rates between the min-player
and max-player when GDA or EG methods are applied, as proven in [82, 50, 70, 8]. This makes
the design of adaptive methods fundamentally different from and more challenging than nonconvex
minimization. Several recent attempts [28, 33, 34] studied adaptive methods for nonconvex-strongly-
concave minimax problems; yet, they all require explicit knowledge of the problems’ smoothness
and strong concavity parameters to maintain a stepsize ratio proportional to the condition number.
Such a requirement evidently undermines the parameter-agnostic trait of adaptive methods. This then
raises a couple of interesting questions: (1) Without a problem-dependent stepsize ratio, does simple
combination of GDA and adaptive stepsizes still converge? (2) Can we design an adaptive algorithm
for nonconvex minimax optimization that is truly parameter-agnostic and provably convergent?

In this paper, we address these questions and make the following key contributions:

• We investigate two generic frameworks for adaptive minimax optimization: one is a simple
(non-nested) adaptive framework, which performs one step of update of x and y simulta-
neously with adaptive gradients; the other is Nested Adaptive (NeAda) framework, which
performs multiple updates of y after one update of x, each with adaptive gradients. Both
frameworks allow flexible choices of adaptive mechanisms such as Adam, AMSGrad and
AdaGrad. We provide an example proving that the simple adaptive framework can fail
to converge without setting an appropriate stepsize ratio; this applies to any of the adap-
tive mechanisms mentioned above, even in the noiseless setting. In contrast, the NeAda
framework is less sensitive to the stepsize ratio, as numerically illustrated in Figure 1.

• We provide the convergence analysis for a representative of NeAda that uses AdaGrad
stepsizes for x and a convergent adaptive optimizer for y, in terms of nonconvex-strongly-
concave minimax problems. Notably, the convergence of this general scheme does not
require to know any problem parameters and does not assume the bounded gradients. We
demonstrate that NeAda is able to achieve eO(✏�2) oracle complexity for the deterministic
setting and eO(✏�4) for the stochastic setting to converge to ✏-stationary point, matching best
known bounds. To the best of our knowledge, this seems to be the first adaptive framework
for nonconvex minimax optimization that is provably convergent and parameter-agnostic.

• We further make two complementary contributions, which can be of independent interest.
First, we propose a general AdaGrad-type stepsize for strongly-convex problems without
knowing the strong convexity parameters, and derive a convergence rate comparable to SGD.
It can serve as a subroutine for NeAda. Second, we provide a high probability convergence
result for the primal variable of NeAda under a subGaussian assumption.

2For distinction, we use “parameter-agnostic” to describe algorithms that do not ask for problem-specific
parameters in setting their stepsizes or hyperparameters; we refer to "adaptive algorithms" as methods whose
stepsizes are based on the previously observed gradients.
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Figure 1: Comparison between the two families of non-nested and nested adaptive methods on
function f(x, y) = �

1
2y

2 + 2xy � 2x2 with deterministic gradient oracles. r = ⌘
y
/⌘

x is a pre-fixed
learning rate ratio.

• Finally, we numerically validate the robustness of the NeAda framework on several test
functions compared to the non-nested adaptive framework, and demonstrate the effectiveness
of the NeAda framework on distributionally robust optimization task with a real dataset.

1.1 Related work

Adaptive algorithms. Duchi et al. [17] and Streeter and McMahan [73] introduce AdaGrad
for convex online learning and achieve O(

p
T ) regrets. Li and Orabona [48] and Ward et al. [79]

show an eO(✏�4) complexity for AdaGrad in the nonconvex stochastic optimization. There are an
extensive number of works on AdaGrad-type methods; to list a few, [59, 45, 2, 39, 65]. Another
family of algorithms uses more aggressive stepsizes of exponential moving average of the past
gradients, such as Adam [41] and RMSProp [31]. Reddi et al. [69] point out the non-convergence of
Adam and provide a remedy with non-increasing stepsizes. There is a surge in the study of Adam-
type algorithms due to their popularity in the deep neural network training [83, 11, 51]. Some work
provides the convergence results for adaptive methods in the strongly-convex optimization [78, 44, 62].
Line search and stochastic line search are another effective strategy that can detect the objective’s
curvature and have received much attention [75, 77, 76]. Notably, many adaptive algorithms are
parameter-agnostic [17, 69, 79].

Nonconvex minimax optimization. Stationary convergence of GDA in NC-SC setting was first
provided by Lin et al. [50], showing O(✏�2) oracle complexity and O(✏�4) sample complexity with
minibatch. Recently, Chen et al. [10] and Yang et al. [82] achieve this sample complexity in the
stochastic setting without minibatch. GDmax is a double loop algorithm that maximizes the dual
variable to a certain accuracy. It achieves nearly the same complexity as GDA [64]. Sebbouh et al.
[70] recently discuss the relation between the two-time-scale and number of inner steps for GDmax.
Very recently, Li et al. [47] show that time-scale separation is necessary for GDA to converge to
Stackelberg equilibrium. Besides NC-SC setting, some work provides convergent algorithms when
the objective is (non-strongly) concave about the dual variable[85, 55, 81]. Nonconvex-nonconcave
regime is only explored under some special structure [53, 15], such as Polyak-Łojasiewicz (PL)
condition [19]. All algorithms mentioned above require prior knowledge about problem parameters,
such as smoothness modulus, strong concavity modulus, and noise variance.

Adaptive algorithms in minimax optimization. There exist many adaptive and parameter-
agnostic methods designed for convex-concave minimax optimization as a special case of monotone
variational inequality [6, 3, 1, 18, 72, 22, 58, 15]. Most of them combine extragradient method, mirror
prox [63] or the like, with AdaGrad mechanism. Liu et al. [52] and Dou and Li [16] relax convexity-
concavity assumption to the regime where Minty variational inequality (MVI) has a solution. In these
settings, time-scale separation of learning rates is not required even for non-adaptive algorithms. For
nonconvex-strongly-concave problems, Huang and Huang [33], Huang et al. [34], Guo et al. [28]
propose adaptive methods, which set the learning rates based on knowledge about smoothness and
strong-concavity modulus and the bounds for adaptive stepsizes.
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2 Non-nested and nested adaptive methods
In this section, we investigate two generic frameworks that can incorporate most existing adaptive
methods into minimax optimization. We remark that many variants encapsulated in these two
families are already widely used in practice, such as training of GAN [24], distributionally robust
optimization [71], etc. These two frameworks, coined as non-nested and nested adaptive methods,
can be viewed as adaptive counterparts of GDA and GDmax. We aim to illustrate the difference
between these two adaptive families, even though GDA and GDmax are often considered “twins”.

Non-nested adaptive methods. In Algorithm 1, non-nested methods update the primal and dual
variables in a symmetric way. Weighted gradients m

x
t and m

y
t are the moving average of the past

stochastic gradients with the momentum parameters �x and �y. The effective stepsizes of x and y

are ⌘x/
p

vxt and ⌘y/
p

v
y
t , where the division is taken coordinate-wise. We refer to ⌘x and ⌘y as

learning rates, and v
x
t , v

y
t are some average of squared-past gradients through function  . Many

popular choices of adaptive stepsizes are captured in this framework, see also [69]:

(GDA) � = 0;  
�
v0, {g

2
i }

t
i=0

�
= 1, (AdaGrad) � = 0;  

�
v0, {g

2
i }

t
i=0

�
= v0 +

tX

i=0

g
2
i ,

(Adam)  
�
v0, {g

2
i }

t
i=0

�
= �

t+1
v0 + (1 � �)

tX

i=0

�
t�i

g
2
i ,

(AMSGrad)  
�
v0, {g

2
i }

t
i=0

�
= max

m=0,...,t
�
m+1

v0 + (1 � �)
mX

i=0

�
m�i

g
2
i .

Algorithm 1 Non-nested Adaptive Method
1: Input: x0 and y0

2: for t = 0, 1, 2, ... do
3: sample ⇠t and let

g
x
t = rxF (xt, yt; ⇠t) and

g
y
t = ryF (xt, yt; ⇠t)

4: // update the first moment
m

x
t+1 = �

x
m

x
t + (1 � �

x)gxt and
m

y
t+1 = �

y
m

y
t + (1 � �

y)gyt
5: // update the second moment

v
x
t+1 =  

�
v
x
0 , {(gxi )

2
}
t
i=0

�
and

v
y
t+1 =  

�
v
y
0 , {(gyi )

2
}
t
i=0

�

6: // update variables
xt+1 = xt �

⌘x
p

vx
t+1

m
x
t+1 and

yt+1 = yt +
⌘y

p
vy
t+1

m
y
t+1

7: end for

Algorithm 2 Nested Adaptive (NeAda) Method

1: Input: x0 and y
0
0

2: for t = 0, 1, 2, ... do
3: for k = 0, 1, 2, ... until a stopping criterion is

satisfied do
4: sample ⇠̂kt and g

y
t,k = ryF (xt, y

k
t ; ⇠̂

k
t )

5: m
y
t,k+1 = �

y
m

y
t,k + (1 � �

y)gyt,k
6: v

y
t,k+1 =  

y
�
v
y
t,0, {(g

y
t,i)

2
}
k
i=0

�

7: y
k+1
t = y

k
t + ⌘y

p
vy
t,k+1

m
y
t,k+1

8: end for
9: v

y
t+1,0 = v

y
t,k+1 and m

y
t+1,0 = m

y
t,k+1

10: sample ⇠t and g
x
t = rxF (xt, y

k+1
t ; ⇠t)

11: m
x
t+1 = �

x
m

x
t + (1 � �

x)gxt
12: v

x
t+1 =  

x
�
v
x
0 , {(gxi )

2
}
t
i=0

�

13: xt+1 = xt �
⌘x

p
vx
t+1

m
x
t+1

14: end for

Nested adaptive (NeAda) methods. NeAda, presented in Algorithm 2, has a nesting inner loop
to maximize y until some stopping criterion is reached (see details in Section 3). Instead of using a
fixed number of inner iterations or a fixed target accuracy as in GDmax [50, 64], NeAda gradually
increases the accuracy of the inner loop as the outer loop proceeds to make it fully adaptive.

We refer to the ratio between two learning rates, i.e. ⌘y/⌘x, as the two-time-scale. The current
analysis of GDA in nonconvex-strongly-concave setting requires two-time-scale to be proportional
with the condition number  = l/µ, where l and µ are Lipschitz smoothness and strongly-concavity
modulus [50, 82]. We provide an example showing that the problem-dependent two-time-scale is
necessary for GDA and most non-nested methods even in the deterministic setting.
Lemma 2.1. Consider the function f(x, y) = �

1
2y

2 + Lxy �
L2

2 x
2 in the deterministic setting. Let

r⌘
x = ⌘

y . (1) GDA will not converge to the stationary point when r  L
2:

rxf(xT , yT ) = rxf(x0, y0)
T�1Y

t=0

⇥
1 + ⌘

x(L2
� r)

⇤
.
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(2) Assume the averaging function  x and  y are the same, and satisfy that for any ⌧ , if v
x
t = ⌧v

y
t

and (gxt )
2 = ⌧(gyt )

2 then v
x
t+1 = ⌧v

y
t+1. With �x = �

y, v
x
0 = v

y
0 = 0 and m

x
0 = m

y
0 = 0 (which

are commonly used in practice), non-nested adaptive method will not converge when r  L:

rxf(xT , yT ) � rxf(x0, y0)
T�1Y

t=0


1 +

L⌘
x

p
vxt

(1 � �
x)(L � r)

�
.

When r = L, rxf(xt, yt) = rxf(x0, y0) for all t.
Remark 1. Most popular adaptive stepsizes we mentioned before, such as Adam, AMSGrad and
AdaGrad, have averaging functions satisfying the assumption in the lemma. Any point on the line
y = Lx is a stationary point for the above function, and the distance from a point to this line is
proportional to its gradient norm, so the divergence in gradient norm will also implies that of iterates.
In the proof, we will also show that the averaged or best iterate will still diverge under the same
condition. The lemma implies that for any given time-scale r, there exists a problem for which the
non-nested algorithm does not converge to the stationary point, so they are not parameter-agnostic.

We compare non-nested and nested methods combined with different stepsizes schemes: Adam,
AMSGrad, AdaGrad and fixed stepsize, on the function: �

1
2y

2 + 2xy � 2x2. In the experiments
of this section, we halt the inner loop when the (stochastic) gradient about y is smaller than 1/t

or the number iteration is greater than t. We observe from Figure 1 that the thresholds for the
non-convergence of non-nested methods (r = 2 for adaptive methods and r = 4 for GDA) are exactly
as predicted by the lemma. Although the adaptive methods admit a smaller two-time-scale threshold
than GDA in this example, it is not a universal phenomenon from our experiments in Section 4.
Interestingly, nested adaptive methods are robust to different two-time-scales and always have the
trend to converge to the stationary point.

3 Convergence Analysis of NeAda-AdaGrad

In this section, we reveal the secret behind the robust performance of NeAda by providing the
convergence guarantee for a representative member in the family. For sake of simplicity and clarity,
we mainly focus on NeAda with AdaGrad. Adam-type mechanism can suffer from non-convergence
already for nonconvex minimization despite its good performance in practice. Our result also sheds
light on the analysis of other more sophisticated members such as AMSGrad in the family.

NeAda-AdaGrad: Presented in Algorithm 3, NeAda-AdaGrad adopts the scalar AdaGrad scheme
[73] for the x-update in the outer loop and uses mini-batch in the stochastic setting. For the inner loop
for maximizing y, we run some adaptive algorithm for maximizing y until some easily checkable
stopping criterion is satisfied. We suggest two criteria here: at t-th outer loop: (I) the squard gradient
mapping norm about y is smaller than 1/(t + 1) in the deterministic setting, (II) the number of inner
loop iterations reaches t + 1 in the stochastic setting.

Algorithm 3 NeAda-AdaGrad

1: Input: (x0, y�1), v0 > 0, ⌘ > 0.
2: for t = 0, 1, 2, ..., T � 1 do
3: from yt�1 run an adaptive algorithm A for maximizing f(xt, ·) to obtain yt

(a) stopping criterion I (deterministic): stop when kyt � ProjY(yt + ryf(xt, yt))k2 
1

t+1

(b) stopping criterion II (stochastic): stop after t + 1 inner loop iterations.

4: vt+1 = vt +
��� 1
M

PM
i=1 rxF (xt, yt; ⇠it)

���
2

where {⇠
i
t}

M
i=1 are i.i.d samples

5: xt+1 = xt �
⌘p
vt+1

⇣
1
M

PM
i=1 rxF (xt, yt; ⇠it)

⌘

6: end for

For the purpose of theoretical analysis, we mainly focus on the minimax problem of the form (1) under
the nonconvex-strongly-concave (NC-SC) setting3, formally stated in the following assumptions.

3Note that for other nonconvex minimax optimization beyond the NC-SC setting, even the convergence of
non-adaptive gradient methods has not been fully understood.
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Assumption 3.1 (Lipschitz smoothness). There exists a positive constant l > 0 such that
max

�
krxf (x1, y1) � rxf (x2, y2)k , kryf (x1, y1) � ryf (x2, y2)k

 
 l[kx1 � x2k + ky1 � y2k],

holds for all x1, x2 2 Rd
, y1, y2 2 Y .

Assumption 3.2 (Strong-concavity in y). There exists µ > 0 such that: f(x, y1) � f(x, y2) +
hryf(x, y1), y1 � y2i +

µ
2 ky1 � y2k

2
, 8x 2 Rd

, y1, y2 2 Y.

For simplicity of notation, define  = l/µ as the condition number, �(x) = maxy2Y f(x, y) as
the primal function, and y

⇤(x) = argmaxY f(x, y) as the optimal y w.r.t x. Since the objective is
nonconvex about x, we aim at finding an ✏-stationary point (xt, yt) such that Ekrxf(xt, yt)k  ✏

and Ekyt � y
⇤(xt)k  ✏, where the expectation is taken over the randomness in the algorithm.

3.1 Convergence in deterministic and stochastic settings

Assumption 3.3 (Stochastic gradients). rxF (x, y; ⇠) and ryF (x, y; ⇠) are unbiased stochastic
estimators of rxf(x, y) and ryf(x, y) and have variances bounded by �2

� 0.

We assume the unbiased stochastic gradients have the variance �2, and the problem reduces to the
deterministic setting when � = 0. Now we provide a general analysis of the convergence for any
adaptive optimizer used in the inner loop.
Theorem 3.1. Define the expected cumulative suboptimality of inner loops as E =

E
hPT�1

t=0
l2kyt�y⇤(xt)k2

2
p
v0

i
. Under Assumptions 3.1, 3.2 and 3.3, the output from Algorithm 3 satisfies

E

2

4

vuut 1

T

T�1X

t=0

krxf(xt, yt)k2

3

5 
2(A + E)

p
T

+
v

1
4
0

p
A + E

p
T

+
2
p
(A + E)�

(MT )
1
4

,

where A = 2�
⌘ +

⇣
4�p
M

+ 2l⌘
⌘ h

1 + 2 log
⇣
Poly

⇣
T, E ,

�
⌘ ,

�p
M

,l⌘, v0,
1
v0

⌘⌘i
.

Remark 2. The general analysis is built upon milder assumptions than existing work on AdaGrad
in nonconvex optimization, not requiring either bounded gradient in [79] or prior knowledge about
the smoothness modulus in [48]. This theorem implies the algorithm attains convergence for the
nonconvex variable x with any constant ⌘ > 0 and v0 > 0 that does not depend on any problem
parameter, so it is parameter-agnostic.

Remark 3. Another benefit of this analysis is that the variance � appears in the leading term T
� 1

4 ,
which means the convergence rate can interpolate between the deterministic and stochastic settings.
It implies a complexity of eO(✏�2) in the deterministic setting and eO(✏�4) in the stochastic setting
for the primal variable as long as the accumulated suboptimality for the inner-loops E is eO(1),
regardless of the batch size M . However, M can control the number of outer loops and there affect
the sample complexity for the dual variable.

In the next two theorems, we derive the total complexities, in the deterministic and stochastic settings,
of finding ✏-stationary point by controlling the cumulative suboptimality E in Theorem 3.1 for
subroutine A with specific convergence rate. In fact, we can also use any off-the-shelf adaptive
optimizer for solving the inner maximization problem up to the desired accuracy. Note that (stochastic)
GDmax fixes each inner-loop’s accuracy or steps to be related with µ, ` and ✏ so that E can be easily
bounded [50, 64]. In contrast, since we do not have access to the problem parameters and ✏, Algorithm
3 gradually increases the inner-loop accuracy. In the proof of the following theorems, we will show
that with our proposed stopping criteria and desired subroutines, E is bounded by O(log T ).
Theorem 3.2 (deterministic). Suppose we have a linearly-convergent subroutine A for maximizing
any strongly concave function h(·):

ky
k

� y
⇤
k
2

 a1(1 � a2)
k
ky

0
� y

⇤
k
2

where y
k is k-th iterate, y

⇤ is the optimal solution, and a1 > 0 and 0 < a2 < 1 are constants
that can depend on the parameters of h. Under the same setting as Theorem 3.1 with � = 0, for
Algorithm 3 with M = 1 and a subroutine A under stopping criterion I, there exists t

⇤
 eO

�
✏
�2
�

such that (xt⇤ , yt⇤) is an ✏-stationary point. Therefore, the total gradient complexity is eO
�
✏
�2
�
.
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Remark 4. This complexity is optimal in ✏ up to logarithmic term [86], similar to GDA [50]. Note
that many adaptive and parameter-agnostic algorithms can achieve the linear rate when solving
smooth and strongly concave maximization problems; to list a few, gradient ascent with backtracking
line-search [75], SC-AdaNGD [44] and polyak stepsize [30, 54, 66] 4. Here we can also pick more
general subproblem accuracy in criterion I that only needs to scale with 1/t.

Theorem 3.3 (stochastic). Suppose we have a sub-linearly-convergent subroutine A for maximizing
any strongly concave function h(·): after K = k + 1 iterations

Eky
K

� y
⇤
k
2


b1ky

0
� y

⇤
k
2 + b2

k
,

where y
k is k-th iterate, y

⇤ is the optimal solution, and b1, b2 > 0 are constants that can depend on
the parameters of h. Under the same setting as Theorem 3.1, for Algorithm 3 with M = ✏

�2 and
subroutine A under the stopping criterion II, there exists t

⇤
 eO

�
✏
�2
�

such that (xt⇤ , yt⇤) is an
✏-stationary point. Therefore, the total stochastic gradient complexity is eO

�
✏
�4
�
.

Remark 5. This eO
�
✏
�4
�

complexity is nearly optimal in the dependence of ✏ for stochastic NC-SC
problems [46]. Here we set M = ✏

�2 for the simplicity of exposition, and a similar result also holds
for gradually increasing M . The sublinear rate specified above for solving the stochastic strongly
convex subproblem can be achieved by several existing parameter-agnostic algorithms under some
additional assumptions, such as FREEREXMOMENTUM [12] and Coin-Betting [13]5. Parameter-free
SGD [9] is partially parameter-agnostic that only requires the stochastic gradient bound rather than
the strongly-convexity parameter. Mukkamala and Hein [62] and Wang et al. [78] introduce the
variants of AdaGrad, RMSProp and Adam for strongly-convex online learning, but they need to know
both gradient bounds and strongly-convexity parameter for setting stepsizes. We will show in the
next subsection that AdaGrad with a slower decaying rate is parameter-agnostic. We note that the
analysis of this theorem is not the simple gluing of the outer loop and inner loop complexity, but
requires more sophisticated control of the cumulative suboptimality E .

With the popularity of computational resource demanding deep neural networks, in both minimization
and minimax applications, people find high probability guarantees for a single run of an algorithm
useful [40, 49]. Given the lack of such guarantee in the minimax optimization, we provide a high
probability convergence result for NeAda-AdaGrad in Appendix C, which shows a similar sample
complexity as Theorem 3.3 under the subGaussian noise.

3.2 Generalized AdaGrad for strongly-convex subproblem

We now introduce the generalized AdaGrad for minimizing strongly convex objectives, which can
serve as an adaptive subroutine for Algorithm 3, without requiring knowledge on the strongly convex
parameter. We analyze it for the more general online convex optimization setting: at each round t, the
learner updates its decision xt, then it suffers a loss ft(xt) and receives the sub-gradient of ft. The
generalized AdaGrad, described in Algorithm 4, keeps the cumulative gradient norm vt and takes
the stepsize ⌘/v

↵
t with a decaying rate ↵ 2 (0, 1]. When ↵ = 1/2, it reduces to the scalar version of

AdaGrad [73]; when ↵ = 1, it reduced to the scalar version of SC-AdaGrad [62].

Theorem 3.4. Consider Algorithm 4 for online convex optimization and assume that (i) ft is
continuous and µ-strongly convex, (ii) X is convex and compact with diameter D; (iii) kgtk  G for
every t. Then for 0 < ↵ < 1 with any ⌘ > 0, the regret of Algorithm 4 satisfies:

max
x2X

T�1X

t=0

(ft(xt) � ft(x))  c↵ + d↵

 
v0 +

T�1X

t=1

kgtk
2

!1�↵

,

4Levy [44] needs to know the diameter of Y . Hazan and Kakade [30], Loizou et al. [54], Orvieto et al. [66]
use polyak stepsize which requires knowledge of the minimum or lower bound of the function value. AdaGrad
achieves the linear rate if the learning rate is smaller than O(1/l), and O(1/k) rate otherwise [80].

5FREEREXMOMENTUM [12] and Coin-Betting [13] can achieves O(log k/k) convergence rate when the
stochastic gradient is bounded in Y . If the subroutine has additional logarithmic dependence, it suffices to run
the subroutine for t log2(t) times using criterion II (see Appendix B).
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Algorithm 4 Generalized AdaGrad for Strongly-convex Online Learning
1: Input: x0, v0 > 0 and 0 < ↵  1 .
2: for t = 0, 1, 2, ... do
3: receive gt 2 @ft(xt)

4: vt+1 = vt + kgtk
2

5: xt+1 = PX

⇣
xt �

⌘
v↵
t+1

gt

⌘

6: end for
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Figure 2: Comparison between the two families of non-nested and nested adaptive methods on
McCromick function with stochastic gradient oracles. � = 0.01, ⌘y = 0.01 and r = ⌘

y
/⌘

x.

and for ↵ = 1 with ⌘ �
G2

2µ ,

max
x2X

T�1X

t=0

(ft(xt) � ft(x))  c↵ + d↵ log

 
v0 +

T�1X

t=1

kgtk
2

!
,

where c↵ and d↵ are constants depending on the problem parameters, ↵ and ⌘.

The theorem implies a logarithmic regret for the case ↵ = 1, but the stepsize needs knowledge about
problem’s parameters µ and G; similar results are shown for SC-AdaGrad [62] and SAdam [78].
When ↵ < 1, the algorithm becomes parameter-agnostic and attains an O(T 1�↵) regret. Such
parameter-agnostic phenomenon for smaller decaying rates is also observed for SGD in stochastic
optimization [20]. Proving the regret bound for the generalized AdaGrad with ↵ < 1 in the online
setting is challenging, since the adversarial gt can lead to a “sudden” change in the stepsize. In the
proof, we bound the possible number of times such “sudden” change could happen.

To the best of our knowledge, this is the first regret bound for adaptive methods with general decaying
rates in the strongly convex setting. By online-to-batch conversion [38], it can be converted to
O(T�↵) rate in the strongly convex stochastic optimization. Xie et al. [80] prove the O(1/T )
convergence rate, or a linear convergence rate when the smoothness parameter is known, for AdaGrad
with ↵ = 1/2 in this setting, but under a strong assumption — Restricted Uniform Inequality of
Gradients (RUIG) — that requires the loss function with respect to each sample ⇠ to satisfy the error
bound condition with some probability.

4 Experiments

To evaluate the performance of NeAda, we conducted experiments on simple test functions and a
real-world application of distributional robustness optimization (DRO). In all cases, we compare
NeAda with the non-nested adaptive methods using the same adaptive schemes. For notational
simplicity, in all figure legends, we label the non-nested methods with the names of the adaptive
mechanisms used. We observe from all our experiments that: 1) while non-nested adaptive methods
can diverge without the proper two-time-scale, NeAda with adaptive subroutine always converges; 2)
when the non-nested method converges, NeAda can achieve comparable or even better performance.
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Figure 3: Experimental results of distributional robustness optimization task on synthetic dataset.

4.1 Test functions

In Section 2, we have compared NeAda with non-nested methods on a quadratic function in Figure 1
and the observations match Lemma 2.1. Now we consider a more complicated function that is
composed of McCormick function in x, a bilinear term, and a quadratic term in y,

f(x, y) = sin(x1 + x2) + (x1 � x2)
2

�
3

2
x1 +

5

2
x2 + 1 + x1y1 + x2y2 �

1

2
(y2

1 + y
2
2),

For this function, we compare the adaptive frameworks in the stochastic setting with Gaussian noise.
As demonstrated in Figure 2, non-nested methods are sensitive to the selection of the two-time-scale.
When the learning rate ratio is too small, e.g., ⌘y/⌘x = 0.01, non-nested Adam, AMSGrad and GDA
all fail to converge. We observe that GDA converges when the ratio reaches 0.03, while non-nested
Adam and AMSGrad still diverge until 0.05. Although non-nested adaptive methods require a smaller
ratio than GDA in Lemma 2.1, this example illustrates that adaptive algorithms sometimes can
be more sensitive to the time separation. In comparison, NeAda with adaptive subroutine always
converges regardless of the learning rate ratio.

4.2 Distributional robustness optimization

To justify the effectiveness of NeAda on real-world applications, we carried out experiments on
distributionally robust optimization [71], where the primal variable is the model weights to be learned
by minimizing the empirical loss while the dual variable is the adversarial perturbed inputs. The dual
variable problem targets finding perturbations that maximize the empirical loss but not far away from
the original inputs. Formally, for model weights x and adversarial samples y, we have:

min
x

max
y=[y1,...,yn]

f(x, y), where f(x, y) :=
1

n

nX

i=1

fi(x, yi) � �kyi � vik
2
,

where n is the total number of training samples, vi is the i-th original input and fi is the loss function
for the i-th sample. � is a trade-off parameter between the empirical loss and the magnitude of
perturbations. When � is large enough, this problem is nonconvex-strongly-concave, and following
the same setting as [71, 70], we set � = 1.3. For NeAda, we use both stopping criterion I with
stochastic gradient and criterion II in our experiments. For the results, we report the training loss
and the test accuracy on adversarial samples generated from fast gradient sign method (FGSM) [26].
FGSM can be formulated as xadv = x + ✏ · sign (rxf(x)) , where ✏ is the noise level. To get
reasonable test accuracy, NeAda with Adam as subroutine is compared with Adam with fixed 15
inner loop iterations, which is consistent with the choice of inner loop steps in [71], and such choice
obtains much better test accuracy than the completely non-nested Adam. Our experiments include a
synthetic dataset and MNIST [43] with code modified from [56].

Results on Synthetic Dataset. We use the same data generation process as in [71]. The inputs
are 2-dimensional i.i.d. random Guassian vectors, i.e., xi ⇠ N (0, I2), where I2 is the 2 ⇥ 2 identity
matrix. The corresponding yi is defined as yi = sign(kxik2 �

p
2). Data points with norm in range
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Figure 4: Results of distributional robustness optimization task on MNIST. ✏ is the noise level.

(
p
2/1.3, 1.3

p
2) are removed to make the classification margin wide. 10000 training and 4000 test

data points are generated for our experiments. The model we use is a three-layer MLP with ELU
activations.

As shown in Figure 3(a), when the learning rates are set to different scales, i.e., ⌘x = 0.01, ⌘y = 0.08
(red curves in the figure), both methods achieve reasonable test errors. In this case, NeAda has higher
test accuracy and reaches such accuracy faster than Adam. If we change the learning rates to the
same scale, i.e., ⌘x = 0.01, ⌘y = 0.01 (blue curves in the figure), NeAda retains good accuracy while
Adam drops to an unsatisfactory performance. This demonstrates the adaptivity and less-sensitivity
to learning rates of NeAda. In addition, Figure 3(b) illustrates the convergence speeds on the loss
function, and NeAda (solid lines) always decreases the loss faster than Adam. Note that Adam with
the same learning rates converges to a lower loss but suffers from overfitting, as shown in Figure 3(a)
that its test accuracy is only about 68%.

Results on MNIST Dataset. For MNIST, we use a convolutional neural network with three
convolutional layers and one final fully-connected layer. Following each convolutional layer, ELU
activation and batch normalization are used.

We compare NeAda with Adam under three different noise levels and the accuracy is shown in
Figures 4(a) to 4(c). Under all noise levels, NeAda outperforms Adam with the same learning rates.
When we have proper time-scale separation (the red curves), both methods achieve good test accuracy,
and NeAda achieves higher accuracy and converges faster. After we change to the same learning rates
for the primal and dual variables (the blue curves), the accuracy drop of NeAda is slighter compared
to Adam, especially when ✏ = 0.1. As for the training loss shown in Figure 4(d), NeAda (the solid
curves) is always faster at the beginning. We also observed that with proper time-scale separation,
NeAda reaches a lower loss.

5 Conclusion
Both non-nested and nested adaptive methods are popular in nonconvex minimax problems, e.g., the
training of GANs. In this paper, we demonstrate that non-nested algorithms may fail to converge
when the time-scale separation is ignorant of the problem parameter even when the objective is
strongly-concave in the dual variable with noiseless gradients information. We propose fixes to this
problem with a family of nested algorithms–NeAda, that nests the max oracle of the dual variable
under an inner loop stopping criterion. The proper stopping criterion will help to balance the outer
loop progress and inner loop accuracy. NeAda-AdaGrad attains the near-optimal complexity without
a priori knowledge of problem parameters in the nonconvex-strongly-concave setting. It can be a
future direction to design parameter-agnostic algorithms for nonconvex-concave minimax problems
or more general regimes by leveraging recent progress in nonconvex minimax optimization and the
adaptive analysis in this paper. Another interesting direction is to investigate the convergence behavior
of Adam-type algorithms with general decaying rates in the strongly convex online optimization.
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