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ABSTRACT

Causal discovery with latent variables is an important and challenging problem.
To identify latent variables and infer their causal relations, most existing works
rely on the assumption that latent variables have pure children. Considering that
this assumption is potentially restrictive in practice and not strictly necessary in
theory, by introducing the concept of homologous surrogate, this paper eliminates
the need for pure child in the context of causal discovery with latent variables.
The homologous surrogate fundamentally differs from the pure child in the sense
that the latter is characterized by having strictly restricted parents while the former
allows for much more flexible parents. We formulate two assumptions involving
homologous surrogates and develop theoretical results under each assumption.
Under the weaker assumption, our theoretical results imply that we can determine
each variable’s ancestors, that is, partially recover the causal graph. The stronger
assumption further enables us to determine each variable’s parents exactly, that is,
fully recover the causal graph. Building on these theoretical results, we derive an
algorithm that fully leverages the properties of homologous surrogates for causal
graph recovery. Also, we validate its efficacy through experiments. Our work
broadens the applicability of causal discovery.

1 INTRODUCTION

Causality is a basic concept in natural and social sciences, playing a pivotal role in explanation, pre-
diction, decision making and control (Zhang et al., 2018). While the gold standard for uncovering
causality is conducting randomized experiments, this is usually prohibitively expensive and time-
consuming. Consequently, researchers have increasingly turned to causal discovery, which aims to
infer causal relations from observational data alone. Traditional causal discovery methods typically
assume that all task-relevant variables have been enumerated and measured (Spirtes & Glymour,
1991; Chickering, 2002; Shimizu et al., 2006; Hoyer et al., 2009; Zhang & Hyvärinen, 2009). How-
ever, this assumption is not always valid in real-world scenarios, prompting the development of
causal discovery with latent variables. These methods can be classified into three categories. The
first category assume that latent variables are mutually independent (Hoyer et al., 2008; Salehkaley-
bar et al., 2020; Maeda & Shimizu, 2020; Yang et al., 2022; Cai et al., 2023). The second category
allow the presence of causally-related latent variables but cannot identify latent variables, let alone
their causal relations (Spirtes et al., 1995; Claassen et al., 2013; Claassen & Bucur, 2022). The third
category not only allows the presence of causally-related latent variables but also can identify latent
variables along with their causal relations (Silva et al., 2006; Cai et al., 2019; Xie et al., 2020; Huang
et al., 2022; Chen et al., 2023; Jin et al., 2024). Our work belongs to the third category.

Recent works in the third category predominantly rely on the pure children assumption that latent
variables have pure children. They not only identify latent variables by locating their pure children
but also use their pure children as proxies to infer their causal relations. These works can be further
categorized into two groups. Some works (Silva et al., 2006; Shimizu et al., 2009; Kummerfeld &
Ramsey, 2016; Cai et al., 2019; Chen et al., 2022; Zeng et al., 2021; Xie et al., 2022; Chen et al.,
2023) make the special pure children assumption that each latent variable has multiple pure children.
Here, a variable is said a pure child of anther only if the latter is the only parent of the former. Other
works (Xie et al., 2020; 2024; Huang et al., 2022; Dong et al., 2024; Jin et al., 2024) make the
general pure children assumption that each latent variable belongs to a latent set (comprising one or
more latent variables) which has sufficient pure children. Here, a variable is said a pure child of a
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latent set only if all parents of the former are within the latter. It should be noted that the weaker
general pure children assumption is often accompanied by local unidentifiability: for multiple latent
variables within a latent set, even the existence (let alone directions) of the causal relations between
them might be undeterminable. In summary, the concept of pure children is characterized by having
strictly restricted parents.

Although the pure children assumption is widely employed for the sake of tractability, Adams et al.
(2021) argue that this assumption is restrictive in practice and prove that it is not necessary for iden-
tifiability of linear non-Gaussian acyclic models with latent variables. In this paper, by introducing
the concept of homologous surrogate, we eliminate the need for pure children. The homologous
surrogate fundamentally differs from the pure child in that the former allows for much more flexible
parents. For instance, if an observed variable 𝑂 is a pure child of a latent variable 𝐿, 𝑂 must have
only one parent 𝐿; but if 𝑂 is a homologous surrogate of 𝐿, 𝑂 is allowed to have other parents
besides 𝐿, such as other latent parents provided that they are all 𝐿’s ancestors. Taking Fig. 1 as an
example, although 𝑂3 has two parents 𝐿1, 𝐿2, it can still serve as a homologous surrogate of 𝐿2.
On the one hand, the existence of other parents is not mandatory, so if 𝑂 is 𝐿’s pure child, it is also
𝐿’s homologous surrogate1. On the other hand, even if 𝑂 is not 𝐿’s pure child, it might still be 𝐿’s
homologous surrogate. The latter case is quite common in practice. For instance, a company’s stock
price is caused by both its performance and macroeconomic environment, and macroeconomic en-
vironment also impacts its performance, so its stock price is a homologous surrogate but not a pure
child of its performance.

O6

L1 L2 L3

O4 O5 O7 O8

L4

O11O9 O10O3O2O1  

Figure 1: A causal graph that can be
fully recovered by our algorithm.

We begin with the assumption that each latent variable has
at least one (rather than multiple) homologous surrogate.
Under this assumption, we develop theoretical results im-
plying that the causal graph can be partially recovered, that
is, we can determine whether any variable is an ancestor
of any other variable. From these theoretical results, we de-
rive an algorithm that sequentially identifies latent variables
by locating their homologous surrogates, progressing from
roots to leaves, during which process the causal graph is also partially recovered. We then develop
further theoretical results under the above assumption plus an extra assumption that if a latent vari-
able is an ancestor of another, the latter must have two generalized homologous surrogates that are
not children of the former, where the generalized homologous surrogate is a variant of the homol-
ogous surrogate but is subject to fewer restrictions. These theoretical results imply that the causal
graph can be fully recovered, that is, we can determine whether any variable is a parent of any other
variable, from which we also derive an algorithm. Building on the partial recovery result, this al-
gorithm first locates latent variables’ generalized homologous surrogates, then uses them to infer
the causal relations between latent variables. Combining this information with the partial recovery
result, the causal graph can be fully recovered. A causal graph that can be fully recovered by our
algorithm is shown as Fig. 1, where no latent variable has multiple pure children.

The major innovations of our work are summarized as follows.
• We investigate a new problem setting where latent variables leave footprints in observed vari-

ables via homologous surrogates rather than conventional pure children. The homologous sur-
rogate fundamentally differs from the pure child in the sense that the latter is characterized by
having strictly restricted parents while the former allows for much more flexible parents.

• We formulate two assumptions involving homologous surrogates and develop novel theoretical
results under each assumption. These theoretical results imply that the causal graph can be
partially/fully recovered under the weaker/stronger assumption.

• Building on our theoretical results, we derive a systematic and innovative algorithm which fully
leverages the properties of homologous surrogates for causal graph recovery. We demonstrate
the efficacy of our algorithm through experiments.

In summary, our work broadens the applicability of causal discovery. It may not only inspire further
research in this direction but also benefit research in natural and social sciences.

1Strictly speaking, to derive “𝑂 is 𝐿’s homologous surrogate” from “𝑂 is 𝐿’s pure child”, we need an
additional condition that 𝑂 has no child. This condition is satisfied in most cases because “𝑂 is 𝐿’s pure child”
implies “𝑂 has no child” in most of the literature. Only in very few works (Dong et al., 2024; Jin et al., 2024),
an observed pure child of a latent variable is allowed to have children of its own.
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2 PRELIMINARY

In this paper, we focus on the linear non-Gaussian acyclic model (LiNGAM) with latent variables
whose causal graph G = (V,E) is a directed acyclic graph (DAG). V = L ∪ O where L and O
respectively denote the set of latent and observed variables. Each variable in L and O follows

𝐿𝑖 =
∑︁
𝐿 𝑗 ∈L

𝑎
𝐿 𝑗

𝐿𝑖
𝐿 𝑗 + 𝜖𝐿𝑖

, 𝑂𝑖 =
∑︁
𝐿 𝑗 ∈L

𝑎
𝐿 𝑗

𝑂𝑖
𝐿 𝑗 +

∑︁
𝑂 𝑗 ∈O

𝑎
𝑂 𝑗

𝑂𝑖
𝑂 𝑗 + 𝜖𝑂𝑖

. (1)

𝑎
𝑉𝑖

𝑉𝑗
denotes the direct causal strength from 𝑉𝑖 to 𝑉 𝑗 , 𝑎

𝑉𝑖

𝑉𝑗
≠ 0 if and only if 𝑉𝑖 is a parent of

𝑉 𝑗 . Given 𝑉 ∈ V, we denote its parents, children, neighbors, ancestors, and descendants by
Pa(𝑉),Ch(𝑉),Ne(𝑉),An(𝑉), and De(𝑉). Particularly, a variable’s ancestors/descendants do not
include itself. In the following, for any V′ ⊂ V, we abbreviate ∪𝑉∈V′Pa(𝑉) to Pa(V′). The latent
parents and observed parents of 𝑉 are denoted by PaL (𝑉) and PaO (𝑉) respectively. 𝜖𝑉 refers to the
exogenous noise of 𝑉 , all exogenous noises have non-Gaussian distributions and are independent of
each other. Without loss of generality, we assume that each exogenous noise has zero mean and the
exogenous noise of each latent variable has unit variance.

We can rewrite Eq. (1) in a matrix form as[
L
O

]
= A

[
L
O

]
+
[
𝜖L

𝜖O

]
, where A :=

[
AL

L 0
AL

O AO
O

]
(2)

is the adjacency matrix. For V1,V2 ⊂ V, AV1
V2

refers to the adjacent matrix from V1 to V2. Since
I − A is invertible (Shimizu et al., 2006), we can further rewrite Eq. (2) as[

L
O

]
= M

[
𝜖L

𝜖O

]
, where M = (I−A)−1 =

[
(I − AL

L)
−1 0

(I − AO
O)

−1AL
O (I − AL

L)
−1 (I − AO

O)
−1

]
:=

[
ML

L 0
ML

O MO
O

]
(3)

is the mixing matrix whose elements are called mixing coefficients. By convention, we assume the
distribution over V is Markov and rank-faithful to G, which means that 𝑚𝑉𝑖

𝑉𝑗
≠ 0 if and only if 𝑉𝑖 is

an ancestor of 𝑉 𝑗 or 𝑉𝑖 = 𝑉 𝑗 . In the latter case, 𝑚𝑉𝑖

𝑉𝑗
= 1.

Assumption 1. (Rank faithfulness) Given a probability distribution 𝑝 and a DAG G, 𝑝 is rank-
faithful to G if every rank constraint on a sub-covariance matrix that holds in 𝑝 is entailed by every
linear structural model with respect to G.

3 PARTIAL RECOVERY

Definition 1. (homologous surrogate) 𝑂 ∈ O is called a homologous surrogate of 𝐿 ∈ L, denoted
by 𝑂 ∈ HSu(𝐿), if 𝑂 ∈ Ch(𝐿), Ch(𝑂) = ∅, AnL (𝑂) = An(𝐿) ∪ {𝐿} and AnO (𝑂) ∩ DeO (𝐿) = ∅.

Example. In Fig. 1, HSu(𝐿1) = {𝑂2}, HSu(𝐿2) = {𝑂3}, HSu(𝐿3) = {𝑂6}, HSu(𝐿4) = {𝑂9}.
Remark. Given 𝑂 ∈ O and 𝐿 ∈ L, we detail the the connections and differences between “𝑂
is 𝐿’s pure child” and “𝑂 is 𝐿’s homologous surrogate” in the following. There is a consensus
among previous works that if an observed variable 𝑂 is a pure child of a latent variable 𝐿, then 𝑂

must have no other parent except 𝐿. On this basis, some studies (Silva et al., 2006; Kummerfeld
& Ramsey, 2016; Xie et al., 2023; Li et al., 2024) explicitly require that 𝑂 has no child while
others (Shimizu et al., 2009; Cai et al., 2019; Xie et al., 2020; 2022; Huang et al., 2022; Chen
et al., 2023) directly assume that there exists no edge between observed variables. 𝑂 is allowed to
have children of its own only in very few works (Dong et al., 2024; Jin et al., 2024). That is, if 𝑂
is a pure child of 𝐿 in most senses, then 𝑂 is also a homologous surrogate of 𝐿, but the reverse is
not necessarily true because 𝐿’s homologous surrogate is allowed to have other parents.

Intuition. Suppose 𝑂 is 𝐿’s homologous surrogate. If 𝐿 is a root variable, then 𝑂 has no child and
only one latent parent 𝐿 which is a root variable. Otherwise, with both 𝐿’s ancestors and observed
variables whose latent ancestors are a subset of 𝐿’s ancestors removed, 𝑂 still has no child and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

only one latent parent 𝐿 which is a root variable. Because of this, homologous surrogates can be
located from observed variables.

Assumption 2. ∀𝐿 ∈ L, HSu(𝐿) ≠ ∅ and |Ch(𝐿) | ≥ 2.

Example. The causal graph shown as Fig. 1 satisfies Asmp. 2.

Remark. In previous works making the pure children assumption, the number of latent variables
must be strictly smaller than their pure children. Instead, we only require one homologous surro-
gate per latent variable.

Intuition. Assuming that each latent variable has a homologous surrogate, latent variables can be
sequentially identified by locating their homologous surrogates, progressing from roots to leaves,
during which process the causal graph is also partially recovered. Also, we assume each latent
variable has multiple children, otherwise it can be modeled as a noise (Silva et al., 2006).

§ High-level Overview. First, we identify observed root variables (Thm. 1), estimate their effects
on others (Cor. 1), and then remove them (Cor. 2). Second, we identify latent root variables (Thm. 2,
Props. 1 and 2), estimate their effects on others (Cor. 3), and then remove them (Cor. 4). Repeating
these two procedures until all observed variables are removed, we can identify all latent variables
and partially recover the causal graph. During this process, all operations on latent variables are
implemented through their homologous surrogates.

§ Initialization. We denoted the set of removed variables by J ∪ K where J ⊂ L,K ⊂ O. In
addition, for each 𝑂𝑖 ∈ O\K, there is an auxiliary variable 𝑂̃𝑖 which is a linear combination of 𝑂𝑖

and variables in K where the coefficient of 𝑂𝑖 is always 1 while that of each variable in K is not
fixed. Initially, we let J = K = ∅, so 𝑂̃𝑖 = 𝑂𝑖 for each 𝑂𝑖 ∈ O, it is trivial that Cond. 1 is valid.
Condition 1. (1) For each 𝑉 ∈ V\(J ∪ K), De(𝑉) ∩ (J ∪ K) = ∅. (2) For each 𝐿 ∈ J and 𝑂 ∈ K
where Ch(𝑂) ≠ ∅, 𝑚𝐿

𝑂̃𝑖

= 𝑚𝑂

𝑂̃𝑖

= 0.

§ Identifying Observed Root Variables. This can be accomplished based on Thm. 1.
Definition 2. (Pseudo-residual (Cai et al., 2019)) Given three variables𝑉1, 𝑉2, 𝑉3 s.t. Cov(𝑉2, 𝑉3) ≠
0, the pseudo-residual of 𝑉1, 𝑉2 relative to 𝑉3 is defined as

R(𝑉1, 𝑉2 |𝑉3) = 𝑉1 −
Cov(𝑉1, 𝑉3)
Cov(𝑉2, 𝑉3)

𝑉2. (4)

Intuition. Pseudo-residual is a simple variant of the conventional residual. The former reduces
to the latter when 𝑉2 = 𝑉3. Before Cai et al. (2019), similar concepts have already been used by
earlier works (Drton & Richardson, 2004; Chen et al., 2017).

Theorem 1. Suppose 𝑂𝑖 ∈ O\K, then An(𝑂𝑖) ⊂ (J ∪ K) if and only if ∀𝑂 𝑗 ∈ O\(K ∪ {𝑂𝑖}),
R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) ⫫ 𝑂̃𝑖 .

Intuition. The part before “if and only if” means that all ancestors of 𝑂𝑖 are in J ∪ K, that is, 𝑂𝑖

is a root variable among V\(J ∪ K); the part after “if and only if” means that 𝑂𝑖 satisfies certain
independence constraints. Therefore, this theorem provides a method for identifying observed root
variables via statistical analysis.

Example. Suppose the underlying causal graph is shown as Fig. 1. Initially, J = K = ∅. We can
identify 𝑂1 as an observed root because ∀𝑂 𝑗 ∈ {𝑂2, ..., 𝑂11},R(𝑂 𝑗 , 𝑂1 |𝑂̃1) ⫫ 𝑂̃1.

§ Estimating the Effects of Observed Root Variables. This can be accomplished based on Cor. 1.

Corollary 1. Suppose 𝑂𝑖 satisfies Thm. 1, then ∀𝑂 𝑗 ∈ O\(K ∪ {𝑂𝑖}), 𝑚𝑂𝑖

𝑂 𝑗
=

Cov(𝑂̃𝑖 ,𝑂 𝑗 )
Cov(𝑂̃𝑖 ,𝑂𝑖 )

.

Remark. With the rank-faithfulness assumption, 𝑂 𝑗 is a descendant of 𝑂𝑖 if and only if 𝑚𝑂𝑖

𝑂 𝑗
≠ 0.

§ Removing Observed Root Variables. This can be accomplished based on Cor. 2.

Corollary 2. Suppose 𝑂𝑖 satisfies Thm. 1, if we update K to K ∪ {𝑂𝑖} and 𝑂̃ 𝑗 to 𝑂̃ 𝑗 − 𝑚
𝑂𝑖

𝑂 𝑗
𝑂̃𝑖 for

each 𝑂 𝑗 ∈ O\K, Cond. 1 is still valid.
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Remark. With observed root variables removed, some observed non-root variables before removal
might become roots after removal, so we need to repeat the above three steps until there is no
observed root variable, that is, no observed variable satisfies Thm. 1.

§ Identifying Latent Root Variables. We identify latent root variables by locating their respective
homologous surrogates from observed variables. However, this cannot be achieved in a single step.
Instead, we first locate observed variables that might be homologous surrogates (called candidate
homologous surrogates) of latent root variables (Thm. 2), then check whether any two of them share
a common latent parent (Prop. 1), and finally find true homologous surrogates (Prop. 2).
Theorem 2. Suppose ∀𝑂 ∈ O\K,An(𝑂) ⊄ J ∪ K. Given 𝑂𝑖 ∈ O\K, then Ch(𝑂𝑖) = ∅,
PaO (𝑂𝑖)\K = ∅, |PaL (𝑂𝑖)\J| = 1, and An(PaL (𝑂𝑖)\J) ⊂ J if and only if ∀{𝑂 𝑗 , 𝑂𝑘} ⊂
O\(K ∪ {𝑂𝑖}) where Cov(𝑂̃𝑖 , 𝑂 𝑗 )Cov(𝑂̃𝑖 , 𝑂𝑘) ≠ 0, R(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫ 𝑂̃𝑖 .

Intuition. The part before “if and only if” means that 𝑂𝑖 has no child and only one latent parent in
J∪K which has no ancestor in J∪K. This is a necessary but not sufficient condition for 𝑂𝑖 being
a homologous surrogate of a latent root variable among J∪K (this is further explained in Remark
later); the part after “if and only if” means that 𝑂𝑖 satisfies certain independence constraints.
Therefore, this theorem provides a method for identifying candidate homologous surrogates of
latent root variables via statistical analysis.

Example. Suppose the underlying causal graph is shown as Fig. 1. After removing the observed
variable 𝑂1 based on Thm. 1, J = ∅,K = {𝑂1}. We can identify 𝑂2 as a candidate homologous
surrogate of a latent root because ∀{𝑂 𝑗 , 𝑂𝑘} ∈ {𝑂3, ..., 𝑂11},R(𝑂𝑖 , 𝑂 𝑗 |𝑂̃2) ⫫ 𝑂̃2.

L3 L1 L2

O2 O5

L4

O6O1O4O3

Figure 2: When J = {𝐿1, 𝐿2, 𝐿3}
and K = {𝑂1, 𝑂2, 𝑂3}, 𝑂4 satisfies
Thm. 2 but 𝑂4 ∉ HSu(𝐿4).

Remark. Based on Def. 1, it is trivial that the part before “if
and only if” is a necessary condition for 𝑂𝑖 being a homolo-
gous surrogate of a latent root variable among J ∪ K, so we
will not omit any homologous surrogate of any latent root
variable. Moreover, the part before “if and only if” is not a
sufficient condition for 𝑂𝑖 being a homologous surrogate of
a latent root variable among J ∪ K, an example is shown as
Fig. 2, so this theorem can only be used to locate candidate
homologous surrogate.

By the way, this theorem significantly differs from Thm. 2 in Cai et al. (2019) although they
both utilize pseudo-residuals to identify latent variables. With the pure children assumption, the
latter provides a sufficient and necessary condition for two observed variables 𝑂𝑖 , 𝑂 𝑗 to be pure
children of a same latent (not necessarily root) variable: for any other 𝑂𝑘 , 𝑅(𝑂𝑖 , 𝑂 𝑗 |𝑂𝑘) ⫫ 𝑂𝑘 .
In contrast, with the homologous surrogates assumption, the former only provides a necessary but
not sufficient condition for a single observed variables 𝑂𝑖 to be a homologous surrogate of a latent
root variable: for any other 𝑂 𝑗 and 𝑂𝑘 , 𝑅(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫ 𝑂̃𝑖 .

Proposition 1. Suppose 𝑂𝑖 and 𝑂 𝑗 satisfy Thm. 2, then PaL (𝑂𝑖)\J = PaL (𝑂 𝑗 )\J if and only if
Cov(𝑂̃𝑖 , 𝑂 𝑗 ) ≠ 0.
Proposition 2. Suppose𝑂𝑖 satisfies Thm. 2, then𝑂𝑖 ∈ HSu(PaL (𝑂𝑖)\J) if and only if∀𝑂 𝑗 satisfying
Thm. 2 and PaL (𝑂 𝑗 )\J = PaL (𝑂𝑖)\J, ∥MJ

{𝑂𝑖 } ∥0 ≤ ∥MJ
{𝑂 𝑗 } ∥0.

§ Estimating the Effects of Latent Root Variables. This can be accomplished based on Cor. 3.
Definition 3. (Cumulant) Given 𝑛 random variables 𝑉1, ..., 𝑉𝑛, the 𝑘-th order cumulant is defined
as a tensor of size 𝑛 × ... × 𝑛 (𝑘 times), whole element at position (𝑖1, ..., 𝑖𝑘) is

Cum(𝑉𝑖1 , ..., 𝑉𝑖𝑘 ) =
∑︁
𝜋

(−1) | 𝜋 |−1 ( |𝜋 | − 1)!
∏
𝐵∈𝜋
E

[∏
𝑗∈𝐵

𝑉 𝑗

]
, (5)

where 𝜋 is enumerated over all partitions of {𝑖1, ..., 𝑖𝑘}.

Remark. High-order cumulants have been widely used in the community of signal processing
since the last century, especially in the topic of independent component analysis (ICA) (Thi &
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Algorithm 1: Partial recovery of the causal graph under Asmp. 2.
Input: O
Output: An(𝑉) for each 𝑉 ∈ V, ML

O, MO
O

1 Initialize J = K = ∅, and Õ = O.
2 while K ≠ O do
3 while there exists 𝑂 ∈ O\K satisfying Thm. 1 do
4 Identify all observed root variables O′ based on Thm. 1.
5 Estimate MO′

O\K based on Cor. 1 and find De(𝑂′) for each 𝑂′ ∈ O′.
6 Remove O′ based on Cor. 2.
7 end
8 Identify all latent root variables L′ based on Thm. 2 plus Props. 1 and 2.
9 Estimate ML′

O\K based on Cor. 3 and find An(𝐿′),DeO (𝐿′) for each 𝐿′ ∈ L′.
10 Remove L′ based on Cor. 4.
11 end

Jutten, 1995; Hyvärinen & Oja, 1997; Belkin et al., 2013; Voss et al., 2013; Ge & Zou, 2016),
which is closely related to causal discovery (Shimizu et al., 2006; Hoyer et al., 2008).

Corollary 3. Suppose 𝑂𝑖 satisfies Thm. 2 and 𝑂𝑖 ∈ HSu(𝐿𝑖), then ∀𝑂 𝑗 ∈ O\(K ∪ {𝑂𝑖}),

𝑚
𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
= Cov(𝑂̃𝑖 , 𝑂 𝑗 ),

(𝑚𝐿𝑖

𝑂𝑖

𝑚
𝐿𝑖

𝑂 𝑗

)2
=

Cum(𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂 𝑗 )
Cum(𝑂̃𝑖 , 𝑂 𝑗 , 𝑂 𝑗 , 𝑂 𝑗 )

. (6)

Remark. Let 𝑚𝐿𝑖

𝑂𝑖
> 0 without loss of generality, we can obtain 𝑚

𝐿𝑖

𝑂𝑖
and 𝑚

𝐿𝑖

𝑂 𝑗
. With the rank-

faithfulness assumption, 𝑂 𝑗 is a descendant of 𝐿𝑖 if and only if 𝑚𝐿𝑖

𝑂 𝑗
≠ 0, 𝐿ℎ is an ancestor of 𝐿𝑖

if and only if 𝑚𝐿ℎ

𝑂𝑖
≠ 0 since An(𝐿𝑖) = AnL (𝑂𝑖)\{𝐿𝑖}.

§ Removing Latent Root Variables. This can be accomplished based on Cor. 4.

Corollary 4. Suppose 𝑂𝑖 satisfies Thm. 2 and 𝑂𝑖 ∈ HSu(𝐿𝑖), if we update J to J ∪ {𝐿𝑖}, K to
K ∪ {𝑂𝑖}, and 𝑂̃ 𝑗 to 𝑂̃ 𝑗 − (𝑚𝐿𝑖

𝑂 𝑗
/𝑚𝐿𝑖

𝑂𝑖
)𝑂̃𝑖 for each 𝑂 𝑗 ∈ O\K, Cond. 1 is still valid.

§ Summary. The algorithm is summarized in Alg. 1 with O(|O|4) complexity, its procedures are
shown as Fig. 3 and detailed below.
(1) Initially, J = K = ∅, 𝑂̃𝑖 = 𝑂𝑖 .
(2) First iteration shown as Fig. 3(b): Alg. 1 identifies 𝑂1 as an observed root (Thm. 1), calculates

𝑚
𝑂1
𝑂𝑖

(Cor. 1), and updates K := K∪ {𝑂1}, 𝑂̃𝑖 := 𝑂̃𝑖 −𝑚
𝑂1
𝑂𝑖
𝑂̃1 (Cor. 2). It determines De(𝑂1) =

{𝑂2} as 𝑚
𝑂1
𝑂2

≠ 0. Next, it identifies 𝐿1 as a latent root with HSu(𝐿1) = {𝑂2} (Thm. 2 and

Props. 1,2), calculates 𝑚
𝐿1
𝑂𝑖

(Cor. 3), and updates J := J ∪ {𝐿1}, K := K ∪ {𝑂2}, 𝑂̃𝑖 :=
𝑂̃𝑖 − (𝑚𝐿1

𝑂𝑖
/𝑚𝐿1

𝑂2
)𝑂̃2 (Cor. 4). It determines DeO (𝐿1) = {𝑂2, ..., 𝑂11} as 𝑚𝐿1

𝑂2
≠ 0, ..., 𝑚𝐿1

𝑂11
≠ 0.

(3) Second iteration shown as Fig. 3(c): Alg. 1 identifies no observed root (Thm. 1). Next, it
identifies 𝐿2 as a latent root with HSu(𝐿2) = {𝑂3} (Thm. 2 and Props. 1,2), calculates 𝑚

𝐿2
𝑂𝑖

(Cor. 3), and updates J := J ∪ {𝐿2}, K := K ∪ {𝑂3}, 𝑂̃𝑖 := 𝑂̃𝑖 − (𝑚𝐿2
𝑂𝑖
/𝑚𝐿2

𝑂3
)𝑂̃3 based on

Cor. 4. It determines DeO (𝐿2) = {𝑂3, ..., 𝑂11} as 𝑚
𝐿2
𝑂3

≠ 0, ..., 𝑚𝐿2
𝑂11

≠ 0 and determines
An(𝐿2) = {𝐿1} as 𝑂3 ∈ HSu(𝐿2) and 𝐿1 ∈ An(𝑂3).

(4) The following iterations proceed similarly, which are shown as Fig. 3(d,e,f).

Theorem 3. Suppose the observed variables are generated by a LiNGAM with latent variables
satisfying Asmps. 1 and 2, in the limit of infinite data, Alg. 1 identifies latent variables and ancestral
relationships correctly.

6
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O4 O5 O7 O8 O11O9 O10O3O2O1

(c)
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(e)

O6
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L4

O11O9 O10O3O2O1   

(f)

Figure 3: Illustration of Alg. 1. (a) Ground truth. (b) Result of the first iteration. (c) Result of the
second iteration. (d) Result of the third iteration. (e) Result of the fourth iteration. (f) Result of the
fifth iteration.

4 FULL IDENTIFICATION

Definition 4. (Generalized homologous surrogate) 𝑂 ∈ O is called a generalized homologous
surrogate of 𝐿 ∈ L, denoted by 𝑂 ∈ GHSu(𝐿), if 𝑂 ∈ Ch(𝐿) and PaL (𝑂) ⊂ An(𝐿) ∪ {𝐿}.

Example. In Fig. 1, GHSu(𝐿1) = {𝑂2},GHSu(𝐿2) = {𝑂3, 𝑂4, 𝑂5},GHSu(𝐿3) = {𝑂6, 𝑂7,
𝑂8},GHSu(𝐿4) = {𝑂9, 𝑂10, 𝑂11}.
Remark. Trivially, if 𝑂 is 𝐿’s homologous surrogate, it must be 𝐿’s generalized homologous
surrogate, but the reverse is not necessarily true. This is why it is called “generalized” homologous
surrogate.

Intuition. With causal relations between observed variables removed, for every latent variable,
the ancestors of its each generalized homologous surrogate are exactly its ancestors plus itself.
Because of this, generalized homologous surrogates can be located from observed variables.

Assumption 3. Asmp. 2 holds and ∀{𝐿𝑖 , 𝐿 𝑗 } ⊂ L where 𝐿𝑖 ∈ An(𝐿 𝑗 ), ∃{𝑂 𝑗1 , 𝑂 𝑗2 } ⊂ GHSu(𝐿 𝑗 )
s.t 𝑂 𝑗1 ∉ Ch(𝐿𝑖) and 𝑂 𝑗2 ∉ Ch(𝐿𝑖).

Example. The causal graph shown as Fig. 1 satisfies Asmp. 3.

Remark. An extremely special case where this assumption holds is that each latent variable has
multiple observed pure children.

Intuition. Since Asmp. 2 holds, ML
O and MO

O can be estimated by Alg. 1. For every two latent
variables 𝐿𝑖 , 𝐿 𝑗 where 𝐿𝑖 is an ancestor of 𝐿 𝑗 , 𝑚𝐿𝑖

𝐿 𝑗
can be estimated through 𝐿 𝑗 ’s two generalized

homologous surrogates that are not 𝐿𝑖’s children, so we can also estimate ML
L. A can be readily

recovered from M composed of ML
L, 0,M

L
O,M

O
O, that is, the causal graph can be fully recovered.

§ High-level Overview. Building on the partial recovery result, we first remove causal relations
between observed variables. Second, with these relations removed, we locate generalized homolo-
gous surrogates of each latent variable (Lem. 1). Third, through these surrogates, we estimate ML

L
progressively (Thm. 4). Finally, given M composed of ML

L, 0,M
L
O,M

O
O, we recover A.

§ Removing Causal Relations Between Observed Variables. MO
O is estimated by Alg. 1, from

which AO
O can be recovered by AO

O = I−(MO
O)

−1 following Eq (3). Given AO
O, we can remove causal

relations between observed variables. Specifically, for each 𝑂𝑖 ∈ O, we let

𝑂∗
𝑖 = 𝑂𝑖 −

∑︁
𝑂 𝑗 ∈Pa(𝑂𝑖 )

𝑎
𝑂 𝑗

𝑂𝑖
𝑂 𝑗 . (7)

Note that ML
O is also estimated by Alg. 1, for each 𝐿 ∈ L,

𝑚𝐿
𝑂∗

𝑖
= 𝑚𝐿

𝑂𝑖
−

∑︁
𝑂 𝑗 ∈Pa(𝑂𝑖 )

𝑎
𝑂 𝑗

𝑂𝑖
𝑚𝐿

𝑂 𝑗
. (8)

7
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Algorithm 2: Full recovery of the causal graph under Asmp. 3.

Input: O, L, ML
O, MO

O returned by Alg. 1.
Output: A

1 Remove causal relations between O.
2 Locate generalized homologous surrogates of each latent variable based on Lem. 1.
3 𝑖 := 1
4 while there exists 𝐿 ∈ L s.t. De𝑖 (𝐿) ≠ ∅ do
5 Estimate 𝑚𝐿

𝐿′ and 𝑎𝐿
𝑂′ for each 𝐿 ∈ L, 𝐿′ ∈ De𝑖 (𝐿), 𝑂′ ∈ GHSu(𝐿′) based on Thm. 4.

6 𝑖 := 𝑖 + 1.
7 end
8 Recover A from M.

§ Locating Generalized Homologous Surrogates. This can be accomplished based on Lem. 1.

Lemma 1. ∀𝐿𝑖 ∈ L and 𝑂𝑖 ∈ O, 𝑂𝑖 ∈ GHSu(𝐿𝑖) if and only if 𝑚𝐿𝑖

𝑂∗
𝑖

≠ 0 and ∀𝑂 𝑗 ∈ O where

𝑚
𝐿𝑖

𝑂∗
𝑗

≠ 0, ∥ML
{𝑂∗

𝑖
} ∥0 ≤ ∥ML

{𝑂∗
𝑗
} ∥0. Besides, there is 𝑎𝐿𝑖

𝑂𝑖
= 𝑚

𝐿𝑖

𝑂∗
𝑖

.

§ Estimating ML
L. For ease of exposition, we introduce the concept of 𝑛-hop descendants (Def. 5).

ML
L is estimated in a progressive manner. Specifically, for each latent variable, we first estimate

the mixing coefficient from itself to its every 1-hop descendant (Thm. 4(1)) and then the direct
causal strength from itself to its every 1-hop descendant’ each generalized homologous surrogate
(Thm. 4(2)). On this basis, we investigate each latent variable’s 2-hop descendants. Repeating this
process, ML

L can be estimated finally.

Definition 5. (𝑛-hop descendant) Given {𝐿𝑖 , 𝐿 𝑗 } ⊂ L, we call 𝐿 𝑗 is an 𝑛-hop descendant of 𝐿𝑖 ,
denoted by 𝐿 𝑗 ∈ De𝑛 (𝐿𝑖), if 𝐿 𝑗 ∈ De(𝐿𝑖) and the longest directed path from 𝐿𝑖 to 𝐿 𝑗 has length 𝑛.

Intuition. Given any two latent variables, we can determine whether one is an ancestor of the
other based on the partial identification result. Therefore, we can find 𝑛-hop descendants for each
latent variable and each 𝑛.

Theorem 4. Suppose {𝐿𝑖 , 𝐿 𝑗 } ⊂ L, 𝐿 𝑗 ∈ De𝑛 (𝐿𝑖). ∀𝑂 𝑗 ∈ GHSu(𝐿 𝑗 ), let

𝜇
𝐿𝑖

𝑂∗
𝑗

= 𝑚
𝐿𝑖

𝑂∗
𝑗

−
∑︁

𝐿𝑘 ∈De(𝐿𝑖 )∩An(𝐿 𝑗 )
𝑚

𝐿𝑖

𝐿𝑘
𝑎
𝐿𝑘

𝑂 𝑗
. (9)

(a) There exists {𝑂 𝑗1 , 𝑂 𝑗2 } ⊂ GHSu(𝐿 𝑗 ) s.t. 𝜇𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
= 𝜇

𝐿𝑖

𝑂∗
𝑗2
/𝑎𝐿 𝑗

𝑂 𝑗2
and 𝑚

𝐿𝑖

𝐿 𝑗
= 𝜇

𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
.

(b) 𝑎
𝐿𝑖

𝑂 𝑗
= 𝜇

𝐿𝑖

𝑂∗
𝑗

− 𝑚
𝐿𝑖

𝐿 𝑗
𝑎
𝐿 𝑗

𝑂 𝑗
.

Intuition. Given 𝐿 𝑗 ∈ De𝑛 (𝐿𝑖) and 𝑂 𝑗 ∈ GHSu(𝐿 𝑗 ), if we have already investigated
De1 (𝐿), ...,De𝑛−1 (𝐿) for each 𝐿 ∈ L, then 𝑚

𝐿𝑖

𝐿𝑘
and 𝑎

𝐿𝑘

𝑂 𝑗
in RHS of Eq. (9) are known. Moreover,

𝑚
𝐿𝑖

𝑂∗
𝑗

in RHS of Eq. (9) can be derived from Eq. (8), so 𝜇
𝐿𝑖

𝑂∗
𝑗

in LHS of Eq. (9) is known. In fact,

𝜇
𝐿𝑖

𝑂∗
𝑗

is exactly 𝑎
𝐿𝑖

𝑂 𝑗
+𝑚𝐿𝑖

𝐿 𝑗
𝑎
𝐿 𝑗

𝑂 𝑗
(see Eq. (50) in App. C.3). With 𝜇

𝐿𝑖

𝑂∗
𝑗

known, (a) provides a method to

estimate 𝑚
𝐿𝑖

𝐿 𝑗
through 𝐿 𝑗 ’s some two generalized homologous surrogate 𝑂 𝑗1 and 𝑂 𝑗2 , where 𝑂 𝑗1

and 𝑂 𝑗2 are exactly those variables that are both not 𝐿𝑖’s children (see proof in App. C.3), and (b)
provides a method to estimate 𝑎

𝐿𝑖

𝑂 𝑗
for each 𝑂 𝑗 ∈ GHSu(𝐿 𝑗 ) using the just estimated 𝑚

𝐿𝑖

𝐿 𝑗
.

Example. In Fig. 1, 𝐿3 ∈ De2 (𝐿1) and GHSu(𝐿3) = {𝑂6, 𝑂7, 𝑂8}. According to Eq. (9), 𝜇𝐿1
𝑂∗

6
=

𝑚
𝐿1
𝑂∗

6
− 𝑚

𝐿1
𝐿2
𝑎
𝐿2
𝑂6

, 𝜇𝐿1
𝑂∗

7
= 𝑚

𝐿1
𝑂∗

7
− 𝑚

𝐿1
𝐿2
𝑎
𝐿2
𝑂7

, and 𝜇
𝐿1
𝑂∗

8
= 𝑚

𝐿1
𝑂∗

8
− 𝑚

𝐿1
𝐿2
𝑎
𝐿2
𝑂8

. Based on (a), since 𝜇
𝐿1
𝑂∗

7
/𝑎𝐿3

𝑂7
=

𝜇
𝐿1
𝑂∗

8
/𝑎𝐿3

𝑂8
, we have 𝑚

𝐿1
𝐿3

= 𝜇
𝐿1
𝑂∗

7
/𝑎𝐿3

𝑂7
. Based on (b), we have 𝑎

𝐿1
𝑂6

= 𝜇
𝐿1
𝑂∗

6
− 𝑚

𝐿1
𝐿3
𝑎
𝐿3
𝑂6

≠ 0, 𝑎𝐿1
𝑂7

=

𝜇
𝐿1
𝑂∗

7
− 𝑚

𝐿1
𝐿3
𝑎
𝐿3
𝑂7

= 0, 𝑎𝐿1
𝑂8

= 𝜇
𝐿1
𝑂∗

8
− 𝑚

𝐿1
𝐿3
𝑎
𝐿3
𝑂8

= 0.

8
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(d)
O*6

L1 L2 L3

O*4 O*5 O*7 O*8

L4

O*11O*9 O*10O*3O*2O*1

(e)

O6

L1 L2 L3

O4 O5 O7 O8

L4

O11O9 O10O3O2O1  

(f)

Figure 4: Illustration of Alg. 2, where solid arrow refers to parental relationship while dashed ar-
row refer to ancestral relationship. (a) Removing causal relations between observed variables. (b)
Identifying generalized homologous surrogates of each 𝐿 ∈ L. (c) Investigation to De1 (𝐿) for each
𝐿 ∈ L. (d) Investigation to De2 (𝐿) for each 𝐿 ∈ L. (e) Investigation to De3 (𝐿) for each 𝐿 ∈ L. (f)
Recovering A from M.

§ Recovering A. M is composed of ML
L, 0,M

L
O,M

O
O where ML

L is just estimated and ML
O,M

O
O are

estimated by Alg. 1, so we can readily recover A from M by M = (I − A)−1 following Eq (3).

§ Summary. The algorithm is summarized in Alg. 2 with O(|O|2 |L|2) complexity. With the result
returned by Alg. 1 as the input, its procedures are shown as Fig. 4 and detailed below.
(1) Fig. 4(a): Alg. 2 removes causal relations between observed variables (Eq. (7)).
(2) Fig. 4(b): Alg. 2 locates generalized homologous surrogates (Lem. 1). Specifically, it de-

termines GHSu(𝐿1) = {𝑂2}, GHSu(𝐿2) = {𝑂3, 𝑂4, 𝑂5}, GHSu(𝐿3) = {𝑂6, 𝑂7, 𝑂8},
GHSu(𝐿4) = {𝑂9, 𝑂10, 𝑂11}. Also, it obtains A{𝐿1 }

{𝑂2 } , A{𝐿2 }
{𝑂3 ,𝑂4 ,𝑂5 } , A{𝐿3 }

{𝑂6 ,𝑂7 ,𝑂8 } , A{𝐿4 }
{𝑂9 ,𝑂10 ,𝑂11 } .

(3) Fig. 4(c): Alg. 2 investigates De1 (𝐿) for each 𝐿 ∈ L. Specifically, De1 (𝐿1) = {𝐿2}, De1 (𝐿2) =
{𝐿3}, De1 (𝐿3) = {𝐿4}. It first estimates 𝑚

𝐿1
𝐿2

, 𝑚𝐿2
𝐿3

, 𝑚𝐿3
𝐿4

and then A{𝐿1 }
{𝑂3 ,𝑂4 ,𝑂5 } , A{𝐿2 }

{𝑂6 ,𝑂7 ,𝑂8 } ,

A{𝐿3 }
{𝑂9 ,𝑂10 ,𝑂11 } (Thm. 4) where only 𝑎

𝐿1
𝑂3
, 𝑎

𝐿2
𝑂8
, 𝑎

𝐿3
𝑂11

are non-zero.

(4) Fig. 4(d): Alg. 2 investigates De2 (𝐿) for each 𝐿 ∈ L. Specifically, De2 (𝐿1) = {𝐿3}, De2 (𝐿2) =
{𝐿4}. It first estimates 𝑚

𝐿1
𝐿3

, 𝑚𝐿2
𝐿4

and then A{𝐿1 }
{𝑂6 ,𝑂7 ,𝑂8 } ,A

{𝐿2 }
{𝑂9 ,𝑂10 ,𝑂11 } (Thm. 4) where only

𝑎
𝐿1
𝑂6
, 𝑎

𝐿2
𝑂10

are non-zero.

(5) Fig. 4(d): Alg. 2 investigates De3 (𝐿) for each 𝐿 ∈ L. Specifically, De2 (𝐿1) = {𝐿4}. It first
estimates 𝑚𝐿1

𝐿4
and then A{𝐿1 }

{𝑂9 ,𝑂10 ,𝑂11 } (Thm. 4) where only 𝑎
𝐿1
𝑂9

is non-zero.
(6) Fig. 4(f): Alg. 2 recovers A from M (Eq. (3)).

Theorem 5. Suppose the observed variables are generated by a LiNGAM with latent variables sat-
isfying Asmps. 1 and 3, in the limit of infinite data, Algs. 1 and 2 together identifies latent variables
and parental relationships correctly.

5 EXPERIMENT

We first use four causal graphs shown as Fig. 5 to generate synthetic data. For each causal graph,
we draw 10 sample sets of size 2k, 5k, 10k respectively. Each direct causal strength is sampled from
a uniform distribution over [−2.0,−0.5] ∪ [0.5, 2.0] and each exogenous noise is generated from
exponential distribution. We compare our methods with GIN (Xie et al., 2020), LaHME (Xie et al.,
2022), and PO-LiNGAM (Jin et al., 2024), all of which focus on causal graph recovery of LiNGAMs
with latent variables. We use 3 metrics to evaluate their performances: (1) Error in Latent Variables,
the absolute difference between the estimated number of latent variables and the ground-truth one;
(2) Correct-Ordering Rate, the number of correctly estimated causal orderings divided by that of
ground-truth causal orderings; (3) F1-Score of causal edges. Results are summarized in Tab. 1,
where we also report the running time. In particular, we set the size of the largest atomic unit in GIN
and PO-LiNGAM to 1 for a fair comparison.

In case 1, each latent variable has at least two observed pure children, GIN demonstrates optimal
performance while our algorithm also reaches comparable performance. In other cases, the pure
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L1 L2

O2

L3

O1 O3 O7 O8O6O5O4

case 1

L4

O10O9

L5

O2O1 O3 O7 O8O6O5O4 O10O9 O11 O12 O13 O14 O15

L1 L2 L3 L4 L5

case 2

O3O2 O4 O8 O9O7O6O5 O10

L1 L2 L3 L4 L5

O3O2 O4 O6 O7O5 O8

L1 L2 L3 L4 L5

case 3 case 4

O1 O11 O1 O9

Figure 5: Causal graphs used to generate synthetic data.
Table 1: Comparison on synthetic data. ↑ means higher is better while ↓ means lower is better.

Error in Latent Variables ↓ Correct-Ordering Rate ↑ F1-Score ↑ Running Time(s) ↓
2k 5k 10k 2k 5k 10k 2k 5k 10k 2k 5k 10k

Case 1

GIN 0.0±0.0 0.2±0.4 0.0±0.0 1.00±0.00 0.95±0.11 1.00±0.00 1.00±0.00 0.97±0.07 1.00±0.00 1.56±0.13 1.74±0.14 2.07±0.18
LaHME 1.1±0.3 1.3±0.6 1.1±0.3 0.87±0.18 0.78±0.21 0.84±0.15 0.79±0.04 0.76±0.06 0.76±0.07 2.01±0.14 2.32±0.25 2.96±0.23

PO-LiNGAM 0.8±0.6 0.5±0.5 0.1±0.3 0.87±0.09 0.91±0.10 0.98±0.05 0.77±0.16 0.84±0.14 0.98±0.06 121.62±27.26 116.31±27.64 117.39±16.61
Ours 0.4±0.5 0.1±0.3 0.0±0.0 0.94±0.07 0.99±0.03 1.00±0.00 0.92±0.10 0.98±0.05 0.99±0.02 2.64±0.27 3.05±0.27 4.01±0.08

Case 2

GIN 3.8±0.4 3.9±0.3 4.1±0.5 0.07±0.04 0.06±0.03 0.05±0.04 0.18±0.07 0.15±0.05 0.13±0.08 3.13±0.31 3.47±0.33 4.13±0.44
LaHME 1.6±1.0 1.7±0.9 2.1±1.0 0.43±0.09 0.45±0.04 0.33±0.12 0.43±0.06 0.41±0.06 0.39±0.07 36.60±14.43 86.45±71.08 116.15±96.61

PO-LiNGAM 3.9±1.3 4.3±1.2 3.9±1.4 0.20±0.27 0.12±0.25 0.12±0.20 0.15±0.18 0.12±0.15 0.17±0.23 2214.19±779.92 2073.97±678.85 2482.57±704.83
Ours 1.2±0.6 0.7±0.8 0.2±0.4 0.82±0.09 0.91±0.10 0.97±0.05 0.77±0.11 0.88±0.13 0.94±0.07 6.27±0.54 7.72±0.33 9.69±0.72

Case 3

GIN 3.0±0.4 3.0±0.0 3.0±0.0 0.12±0.05 0.11±0.00 0.11±0.00 0.33±0.06 0.33±0.00 0.33±0.00 1.64±0.12 1.79±0.11 2.22±0.11
LaHME 2.0±1.0 2.5±1.0 2.7±0.9 0.37±0.24 0.24±0.17 0.19±0.09 0.58±0.15 0.48±0.10 0.46±0.07 6.36±1.18 8.64±1.13 10.26±1.19

PO-LiNGAM 1.5±0.7 0.8±0.9 0.6±0.9 0.53±0.19 0.56±0.17 0.60±0.17 0.48±0.13 0.52±0.08 0.54±0.07 295.43±79.55 289.59±40.06 369.12±31.68
Ours 1.4±0.8 0.8±0.4 0.5±0.5 0.71±0.15 0.84±0.07 0.91±0.08 0.63±0.17 0.76±0.06 0.81±0.07 2.58±0.34 3.23±0.28 4.36±0.38

Case 4

GIN 4.8±0.4 4.9±0.3 5.0±0.0 0.01±0.02 0.01±0.02 0.00±0.00 0.04±0.08 0.02±0.06 0.00±0.00 0.79±0.07 0.87±0.08 1.05±0.08
LaHME 4.0±0.0 4.2±0.4 4.1±0.03 0.11±0.00 0.09±0.05 0.10±0.03 0.30±0.00 0.24±0.12 0.27±0.09 11.88±1.48 13.61±1.67 17.51±0.95

PO-LiNGAM 4.9±0.3 4.8±0.4 4.9±0.3 0.01±0.03 0.02±0.04 0.01±0.02 0.03±0.01 0.04±0.08 0.02±0.06 63.39±16.79 69.07±17.81 89.61±26.58
Ours 2.1±1.1 2.1±1.1 3.0±0.0 0.44±0.21 0.41±0.18 0.25±0.01 0.53±0.16 0.53±0.09 0.50±0.02 1.68±0.28 1.85±0.11 2.30±0.08

children assumption is not valid, so previous methods cannot handle these cases properly. In case
2, Asmp. 3 is valid, so our algorithm significantly outperforms others. In case 3, although Asmp. 3
is invalid, Asmp. 2 holds, so our algorithm still reaches the best performance, especially a high
correct-ordering rate. In case 4, the violation of Asmp. 3 leads to a remarkable degradation in the
performance of our algorithm, although it still exhibits a remarkable advantage over others since
it can still identify 𝐿1 and 𝐿2. Moreover, in cases 2, 3, and 4, our algorithm is far more efficient
than both LaHME and PO-LiNGAM. This is because LaHME has factorial complexity w.r.t. the
number of variables in the worse case while PO-LiNGAM has exponential time complexity in the
worst case. In contrast, our algorithm has only polynomial time complexity.

Although our algorithm eliminates the need for pure children, we acknowledge that it cannot yield
satisfactory results when the sample size is small. For instance, in Case 2 where Asmp. 3 holds, our
algorithm can achieve 0 error in latent variables, 1 correct-ordering rate, and 1 F1-score theoretically,
but it performs poorly in practice when the sample size is 5k. This can be attributed to two main
factors. First, our algorithm estimates the mixing coefficients from latent to observed variables
through high-order cumulants. Compared to covariances, high-order cumulants are more sensitive
to extreme values and outliers, especially when the sample size is small. Second, our algorithm
operates in a progressive manner, of which each step builds upon the previous one, so errors are
propagated and amplified during this process.

Besides synthetic data, we also evaluate our algorithm on a real-world dataset Holzinger and Swine-
ford 1939 (Rosseel, 2012). Our algorithm correctly identifies the textual factor while merges the
visual factor and the speed factor into a single factor. This can be attributed to the fact that both the
visual factor and speed factor depends on innate abilities, while the textual factor highly depends on
learning experience. More details are provided in App. D.

6 CONCLUSION

In this paper, we investigate a new problem setting where latent variables leave footprints in observed
variables via their homologous surrogates rather than conventional pure children. We formulate
two assumptions involving homologous surrogates and develop a series of novel theoretical results
under each assumption, implying that the causal graph can be partially/fully recovered under the
weaker/stronger assumption. Also, building on our theoretical results, we derive an algorithm that
fully utilizes the properties homologous surrogates for causal graph recovery. Our work broadens
the applicability of causal discovery and may benefit research in natural and social sciences.

Limitations. First, our algorithm cannot handle the latent hierarchical structure where some latent
variables have no observed children. Second, this work does not accommodate non-stationary (Liu
& Kuang, 2023) and cyclic (Sethuraman et al., 2023) causal relations. We will endeavor to overcome
these limitations in the future.
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A RELATED WORKS

Most traditional causal discovery methods (Spirtes & Glymour, 1991; Colombo et al., 2014; Le
et al., 2016; Chickering, 2002; Shimizu et al., 2006; Hoyer et al., 2009; Zhang & Hyvärinen, 2009;
Peters et al., 2014; Mooij et al., 2016) assume the absence of latent variables. Since latent variables
are ubiquitous in real-world scenarios, extensive research has been devoted to causal discovery with
latent variables. Our work is most related to those that not only allow causally-related latent variables
but also can identify latent variables along with their causal relations, most of which make the
pure children assumption. More specifically, some works (Silva et al., 2006; Shimizu et al., 2009;
Kummerfeld & Ramsey, 2016; Cai et al., 2019; Chen et al., 2022; Zeng et al., 2021; Xie et al., 2022;
Chen et al., 2023) make the special pure children assumption that each latent variable has multiple
pure children, where a variable is said a pure child of anther only if the latter is the only parent of the
former. Others (Xie et al., 2020; 2024; Huang et al., 2022; Dong et al., 2024; Jin et al., 2024) make
the general pure children assumption that each latent variable belongs to a latent set (comprising one
or more latent variables) which has sufficient pure children, where a variable is said a pure child of
a latent set only if all parents of the former are within the latter. Although the general pure children
assumption is weaker than the special one, it comes at the cost of local unidentifiability. Specifically,
if a latent set contains multiple latent variables, none of which has its own pure children, even the
existence of causal relations between these latent variables cannot be determined, let alone their
directions. By introducing the concept of homologous surrogates, our work eliminates the need for
pure children, in stark contrast to the above studies.

Although the pure children assumption has been widely adopted by previous works, Adams et al.
(2021) argue that it is restrictive in practice and also not necessary for identifiability of linear latent
non-Gaussian models in theory. They develop a causal discovery algorithm under the assumption
which is exactly sufficient and necessary for identifiability. Unfortunately, this algorithm is un-
practical as acknowledged by themselves. First, it estimates MV

O via overcomplete independent
components analysis, which requires the number of latent variables as prior knowledge and is com-
putationally intractable. Second, to recover A from MV

O, it needs to test which submatrices’ singular
values are exact zeros, which is quite sensitive to noises. Recently, Li et al. (2024) suggest that a
pseudo-pure pair, composed of two adjacent observed variables that both become pure children of a
same latent variable if the edge between them is removed, can be transformed into two pure children
under certain assumption. Based on this finding, they propose a practical causal discovery algorithm
free from the pure children assumption. Clearly, our work diverges significantly from existing works
these two studies, offering a novel perspective on causal discovery with latent variables.

While the works discussed above all focus on the linear case, several studies have ventured into
nonlinear problems, but most assume access to counterfactual data (Brehmer et al., 2022; Ahuja
et al., 2022) or interventional data (Ahuja et al., 2023; Jiang & Aragam, 2023; Buchholz et al., 2023;
Zhang et al., 2023). Notably, without structural restrictions such as our homologous surrogates
assumption, even linear causal models are unidentifiable without comprehensive interventional data
obtained by intervening on each latent variable individually (Squires et al., 2023). To the best of
our knowledge, only Kivva et al. (2021) and Kong et al. (2023) can handle non-linear problems
with latent variables using solely observational data, but they both make strong assumptions, e.g.,
all latent variables are discrete and the mapping from all exogenous noises to observed variables are
invertible. We leave further research on nonlinear problems to our future work.

B NOTATIONS

We summarize notations in Tab. 2
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Table 2: Summary of notations.

Notation Description First appeared

G Causal graph Sec. 2

L Set of latent variables Sec. 2

O Set of observed variables Sec. 2

V L ∪ O Sec. 2

𝐿𝑖 A latent variable Sec. 2

𝑂𝑖 An observed variable Sec. 2

𝑉𝑖 A latent or observed variable Sec. 2

𝜖𝑉𝑖
Exogenous noise of 𝑉𝑖 Sec. 2

Pa(𝑉) Parents of 𝑉 Sec. 2

Pa(V′) ⋃
𝑉∈V′ Pa(𝑉) Sec. 2

PaL (𝑉) Latent parents of 𝑉 Sec. 2

PaO (𝑉) Observed parents of 𝑉 Sec. 2

Ch(𝑉) Children of 𝑉 Sec. 2

Ne(𝑉) Neighbors of 𝑉 Sec. 2

An(𝑉) Ancestors of 𝑉 Sec. 2

De(𝑉) Descendants of 𝑉 Sec. 2

𝑎
𝑉𝑖

𝑉𝑗
direct causal strength from 𝑉𝑖 to 𝑉 𝑗 Sec. 2

𝑚
𝑉𝑖

𝑉𝑗
mixing coefficient from 𝑉𝑖 to 𝑉 𝑗 Sec. 2

AV1
V2

adjacency matrix from V1 to V2 Sec. 2

MV1
V2

mixing matrix from V1 to V2 Sec. 2

HSu(𝑉) Homologous surrogates of 𝑉 Def. 1 in Sec. 3

J Set of removed latent variables Sec. 3

K Set of removed observed variables Sec. 3

𝑂̃𝑖 Auxiliary variable of 𝑂𝑖 satisfying Cond. 1(2) Sec. 3

R(𝑉1, 𝑉2 |𝑉3) Pseudo-residual of 𝑉1, 𝑉2 relative to 𝑉3 Def. 2 in Sec. 3

GHSu(𝑉) Generalized homologous surrogates of 𝑉 Def. 4 in Sec. 4

𝑂∗
𝑖

𝑂𝑖 with its all observed parents removed Eq (7) in Sec. 4

De𝑛 (𝑉) 𝑛-hop descendants of 𝑉 Def. 5 in Sec. 4

K1 {𝑂 ∈ K|Ch(𝑂) ≠ ∅} Eq. (13) in App. C.2

K2 {𝑂 ∈ K|Ch(𝑂) = ∅} Eq. (14) in App. C.2

G∗ G with all causal relations between observed variables removed App. C.3

O∗ {𝑂∗ |𝑂 ∈ O} App. C.3
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C PROOF

C.1 IMPORTANT LEMMAS

Darmois-Skitovitch (D-S) Theorem. (Kagan et al., 1973) Suppose two random variables 𝑉1 and 𝑉2
are both linear combinations of independent random variables {𝑛𝑖}𝑖:

𝑉1 =
∑︁
𝑖

𝛼𝑖𝑛𝑖 , 𝑉2 =
∑︁
𝑖

𝛽𝑖𝑛𝑖 . (10)

Then, if 𝑉1 ⫫ 𝑉2, each 𝑛𝑖 for which 𝛼𝑖𝛽𝑖 ≠ 0 follows Gaussian distribution. That is, if there exists a
non-Gaussian 𝑛 𝑗 s.t. 𝛼 𝑗 𝛽 𝑗 ≠ 0, 𝑉1 ⫫∕ 𝑉2.
Lemma 2. If three variables 𝑉1, 𝑉2, 𝑉3 can be expressed as

𝑉1 = 𝛾1𝑒 + 𝑒1, 𝑉2 = 𝛾2𝑒 + 𝑒2, 𝑉3 = 𝛾3𝑒 + 𝑒3, (11)

where 𝑒 ⫫ {𝑒1, 𝑒2, 𝑒3}, 𝑒3 ⫫ {𝑒1, 𝑒2}, and 𝛾1𝛾2𝛾3 ≠ 0, then R(𝑉1, 𝑉2 |𝑉3) ⫫ 𝑉3.

Proof.

R(𝑉1, 𝑉2 |𝑉3) = (𝛾1𝑒 + 𝑒1) −
Cov(𝛾1𝑒 + 𝑒1, 𝛾3𝑒 + 𝑒3)
Cov(𝛾2𝑒 + 𝑒2, 𝛾3𝑒 + 𝑒3)

(𝛾2𝑒 + 𝑒2) = 𝑒1 −
𝛾1
𝛾2

𝑒2 ⫫ 𝑉3. (12)

□

Lemma 3. Given three variables 𝑉1, 𝑉2, 𝑉3 where Cov(𝑉1, 𝑉3)Cov(𝑉2, 𝑉3) ≠ 0, if ∃𝑉 ∈ V s.t. only
one of 𝑚𝑉

𝑉1
and 𝑚𝑉

𝑉2
is non-zero and 𝑚𝑉

𝑉3
is non-zero, then R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉3.

Proof. Since Cov(𝑉1, 𝑉3)Cov(𝑉2, 𝑉3) ≠ 0 and one of 𝑚𝑉
𝑉1

and 𝑚𝑉
𝑉2

is non-zero, R(𝑉1, 𝑉2 |𝑉3) con-
tains 𝜖𝑉 . Because 𝑚𝑉

𝑉3
≠ 0, R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉3 based on D-S Theorem. □

C.2 PROOF OF THEORETICAL RESULTS IN SEC. 3

Definition 1. (homologous surrogate) 𝑂 ∈ O is called a homologous surrogate of 𝐿 ∈ L, denoted
by 𝑂 ∈ HSu(𝐿), if 𝑂 ∈ Ch(𝐿), Ch(𝑂) = ∅, AnL (𝑂) = An(𝐿) ∪ {𝐿} and AnO (𝑂) ∩ DeO (𝐿) = ∅.

Assumption 2. ∀𝐿 ∈ L, HSu(𝐿) ≠ ∅ and |Ch(𝐿) | ≥ 2.

Remark. We can easily derive from Asmp. 2 that ∀𝐿 ∈ L, |DeO (𝐿) | ≥ 2.

Condition 1. (1) For each 𝑉 ∈ V\(J ∪ K), De(𝑉) ∩ (J ∪ K) = ∅. (2) For each 𝐿 ∈ J and 𝑂 ∈ K
where Ch(𝑂) ≠ ∅, 𝑚𝐿

𝑂̃𝑖

= 𝑚𝑂

𝑂̃𝑖

= 0.

Let K1 = {𝑂 ∈ K|Ch(𝑂) ≠ ∅} and K2 = {𝑂 ∈ K|Ch(𝑂) = ∅}. Based on Cond. 1, each
𝑂𝑖 ∈ O\K and corresponding 𝑂̃𝑖 (which, as mentioned in the main text, is a linear combination
of 𝑂𝑖 and variables in K where the coefficient of 𝑂𝑖 is always 1 while that of each variable in K is
not fixed) can be expressed as

𝑂𝑖 =
∑︁
𝐿𝑖∈J

𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+
∑︁

𝐿 𝑗 ∈L\J
𝑚

𝐿 𝑗

𝑂𝑖
𝜖𝐿 𝑗

+
∑︁

𝑂 𝑗1 ∈K1

𝑚
𝑂 𝑗1
𝑂𝑖

𝜖𝑂 𝑗1
+

∑︁
𝑂𝑘 ∈O\K

𝑚
𝑂𝑘

𝑂𝑖
𝜖𝑂𝑘

, (13)

𝑂̃𝑖 =
∑︁

𝐿 𝑗 ∈L\J
𝑚

𝐿 𝑗

𝑂𝑖
𝜖𝐿 𝑗

+
∑︁

𝑂 𝑗2 ∈K2

𝜆𝑖 𝑗2𝜖𝑂 𝑗2
+

∑︁
𝑂𝑘 ∈O\K

𝑚
𝑂𝑘

𝑂𝑖
𝜖𝑂𝑘

. (14)

Lemma 4. If ∃𝑉𝑖 ∈ V\(J ∪ K) and {𝑂𝑖 , 𝑂 𝑗 } ⊂ O\K s.t. 𝑚𝑉𝑖

𝑂𝑖
𝑚

𝑉𝑖

𝑂 𝑗
≠ 0, then Cov(𝑂𝑖 , 𝑂̃ 𝑗 ) ≠ 0.

Proof. Based on Eqs. (13) and (14),

Cov(𝑂𝑖 , 𝑂̃ 𝑗 ) =
∑︁

𝑉∈V\(J∪K)
𝑚𝑉

𝑂𝑖
𝑚𝑉

𝑂 𝑗
Var(𝜖𝑉 ). (15)

Suppose each nonzero element of M is positive, then Cov(𝑂𝑖 , 𝑂̃ 𝑗 ) ≠ 0. According to the rank-
faithfulness assumption, there is always Cov(𝑂𝑖 , 𝑂̃ 𝑗 ) ≠ 0. □
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Theorem 1. Suppose 𝑂𝑖 ∈ O\K, then An(𝑂𝑖) ⊂ (J ∪ K) if and only if ∀𝑂 𝑗 ∈ O\(K ∪ {𝑂𝑖}),
R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) ⫫ 𝑂̃𝑖 .

Proof sketch. If An(𝑂𝑖) ⊂ (J ∪ K), we can prove independence for 𝑂 𝑗 ∉ De(𝑂𝑖) easily (in this
case, R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) = 𝑂 𝑗 ⫫ 𝑂̃𝑖) and prove independence for 𝑂 𝑗 ∈ De(𝑂𝑖) based on Lem. 2 (𝜖𝑂𝑖

serves as 𝑒 in property (1)). Otherwise, there exists an 𝑂 𝑗 ∈ O\(K ∪ {𝑂𝑖}) s.t. Cov(𝑂̃𝑖 , 𝑂 𝑗 ) ≠ 0
and 𝑚

𝑂𝑖

𝑂 𝑗
= 0, so dependence can be proven by Lem. 3.

Proof. “Only if”: Based on Eqs. (13) and (14),

𝑂 𝑗 =
∑︁
𝐿𝑖∈J

𝑚
𝐿𝑖

𝑂 𝑗
𝜖𝐿𝑖

+
∑︁

𝐿 𝑗 ∈L\J
𝑚

𝐿 𝑗

𝑂 𝑗
𝜖𝐿 𝑗

+
∑︁

𝑂𝑘1 ∈K1

𝑚
𝑂𝑘1
𝑂 𝑗

𝜖𝑂𝑘1
+

∑︁
𝑂𝑙∈O\K

𝑚
𝑂𝑙

𝑂 𝑗
𝜖𝑂𝑙

, (16)

𝑂𝑖 =
∑︁
𝐿𝑖∈J

𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+
∑︁

𝑂𝑘1 ∈K1

𝑚
𝑂𝑘1
𝑂𝑖

𝜖𝑂𝑘1
+ 𝜖𝑂𝑖

, (17)

𝑂̃𝑖 =
∑︁

𝑂𝑘2 ∈K2

𝜆𝑖𝑘2𝜖𝑂𝑘2
+ 𝜖𝑂𝑖

. (18)

If 𝑚𝑂𝑖

𝑂 𝑗
= 0, then Cov(𝑂̃𝑖 , 𝑂 𝑗 ) = 0, R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) = 𝑂 𝑗 ⫫ 𝑂̃𝑖 . Otherwise, based on Lem. 2, there is

also R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) ⫫ 𝑂̃𝑖 , where 𝜖𝑂𝑖
serves as 𝑒 in Eq. (11).

“If”: We prove this part by contradiction. Suppose An(𝑂𝑖) ⊄ (J∪K). There are two possible cases
as follows.

1. Suppose AnO (𝑂𝑖) ⊄ K, let 𝑂 𝑗 ∈ (O\K) ∩ AnO (𝑂𝑖). An illustrative example is shown
as Fig. 6(a). As 𝑚

𝑂 𝑗

𝑂𝑖
𝑚

𝑂 𝑗

𝑂 𝑗
≠ 0, Cov(𝑂 𝑗 , 𝑂̃𝑖) ≠ 0 based on Lem. 4. Also, it is trivial that

Cov(𝑂𝑖 , 𝑂̃𝑖) ≠ 0. Since 𝑚
𝑂𝑖

𝑂𝑖
𝑚

𝑂𝑖

𝑂̃𝑖

≠ 0 and 𝑚
𝑂𝑖

𝑂 𝑗
= 0, we can derive R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) ⫫∕ 𝑂̃𝑖 based

on Lem. 3.

2. Suppose AnO (𝑂𝑖) ⊂ K, then AnL (𝑂𝑖) ⊄ J. Let 𝐿𝑖 ∈ AnL (𝑂𝑖) ∩ (L\J), there are two possible
sub-cases as follows.

(a) Suppose DeO (𝑂𝑖) = ∅, let 𝑂 𝑗 ∈ DeO (𝐿𝑖)\{𝑂𝑖}. An illustrative example is shown as
Fig. 6(b). As 𝑚

𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
≠ 0, Cov(𝑂 𝑗 , 𝑂̃𝑖) ≠ 0 based on Lem. 4. Also, it is trivial that

Cov(𝑂𝑖 , 𝑂̃𝑖) ≠ 0. Since 𝑚
𝑂𝑖

𝑂𝑖
𝑚

𝑂𝑖

𝑂̃𝑖

≠ 0 and 𝑚
𝑂𝑖

𝑂 𝑗
= 0, we can derive R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) ⫫∕ 𝑂̃𝑖

based on Lem. 3.
(b) Suppose DeO (𝑂𝑖) ≠ ∅, let 𝑂 𝑗 ∈ HSu(𝐿𝑖), it is trivial that 𝑂 𝑗 ∉ De(𝑂𝑖) ∪ {𝑂𝑖}. An

illustrative example is shown as Fig. 6(c). As 𝑚
𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
≠ 0, Cov(𝑂 𝑗 , 𝑂̃𝑖) ≠ 0 based on

Lem. 4. Also, it is trivial that Cov(𝑂𝑖 , 𝑂̃𝑖) ≠ 0. Since 𝑚
𝑂𝑖

𝑂𝑖
𝑚

𝑂𝑖

𝑂̃𝑖

≠ 0 and 𝑚
𝑂𝑖

𝑂 𝑗
= 0, we can

derive R(𝑂 𝑗 , 𝑂𝑖 |𝑂̃𝑖) ⫫∕ 𝑂̃𝑖 based on Lem. 3.

This finishes the proof. □

Corollary 1. Suppose 𝑂𝑖 satisfies Thm. 1, then ∀𝑂 𝑗 ∈ O\(K ∪ {𝑂𝑖}), 𝑚𝑂𝑖

𝑂 𝑗
=

Cov(𝑂̃𝑖 ,𝑂 𝑗 )
Cov(𝑂̃𝑖 ,𝑂𝑖 )

.

Proof. Based on Eqs. (13) and (14),

𝑂̃𝑖 =
∑︁

𝑂𝑘2 ∈K2

𝜆𝑖𝑘2𝜖𝑂𝑘2
+ 𝜖𝑂𝑖

. (19)

𝑂 𝑗 =
∑︁
𝐿𝑖∈J

𝑚
𝐿𝑖

𝑂 𝑗
𝜖𝐿𝑖

+
∑︁

𝐿 𝑗 ∈L\J
𝑚

𝐿 𝑗

𝑂 𝑗
𝜖𝐿 𝑗

+
∑︁

𝑂𝑘1 ∈K1

𝑚
𝑂𝑘1
𝑂 𝑗

𝜖𝑂𝑘1
+

∑︁
𝑂𝑙∈O\K

𝑚
𝑂𝑙

𝑂 𝑗
𝜖𝑂𝑙

, (20)

𝑂𝑖 =
∑︁
𝐿𝑖∈J

𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+
∑︁

𝑂𝑘1 ∈K1

𝑚
𝑂𝑘1
𝑂𝑖

𝜖𝑂𝑘1
+ 𝜖𝑂𝑖

, (21)
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OiOj

(a) Case 1

OjOi

Li

(b) Case 2(a)

OjOi

Li

(c) Case 2(b)

Figure 6: Illustration of “If” part in proof of Thm. 1. A dotted arrow from 𝑉1 to 𝑉2 means that
𝑉2 ∈ De(𝑉1).

Therefore,

Cov(𝑂̃𝑖 , 𝑂 𝑗 )
Cov(𝑂̃𝑖 , 𝑂𝑖)

=
𝑚

𝑂𝑖

𝑂 𝑗
Var(𝜖𝑂𝑖

)
Var(𝜖𝑂𝑖

) = 𝑚
𝑂𝑖

𝑂 𝑗
. (22)

□

Corollary 2. Suppose 𝑂𝑖 satisfies Thm. 1, if we update K to K ∪ {𝑂𝑖} and 𝑂̃ 𝑗 to 𝑂̃ 𝑗 − 𝑚
𝑂𝑖

𝑂 𝑗
𝑂̃𝑖 for

each 𝑂 𝑗 ∈ O\K, Cond. 1 is still valid.

Proof. Based on Thm. 1, it is trivial that Cond. 1(1) is valid.

Based on Eq. (14), before removal

𝑂̃𝑖 =
∑︁

𝑂𝑘 ∈K2

𝜆𝑖𝑘𝜖𝑂𝑘
+ 𝜖𝑂𝑖

, (23)

𝑂̃ 𝑗 =
∑︁

𝐿𝑖∈L\J
𝑚

𝐿𝑖

𝑂 𝑗
𝜖𝐿𝑖

+
∑︁

𝑂𝑘 ∈K2

𝜆 𝑗𝑘𝜖𝑂𝑘
+

∑︁
𝑂𝑙∈O\K

𝑚
𝑂𝑙

𝑂 𝑗
𝜖𝑂𝑙

, (24)

Let 𝜆′
𝑗𝑘

= 𝜆 𝑗𝑘 − 𝑚
𝑂𝑖

𝑂 𝑗
𝜆𝑖𝑘 , then

𝑂̃ 𝑗 − 𝑚
𝑂𝑖

𝑂 𝑗
𝑂̃𝑖 =

∑︁
𝐿𝑖∈L\J

𝑚
𝐿𝑖

𝑂 𝑗
𝜖𝐿𝑖

+
∑︁

𝑂𝑘 ∈K2

𝜆′𝑗𝑘𝜖𝑂𝑘
+

∑︁
𝑂𝑙∈O\(K∪{𝑂𝑖 })

𝑚
𝑂𝑙

𝑂 𝑗
𝜖𝑂𝑙

, (25)

so Cond. 1(2) is also valid. □

Lemma 5. If ∀𝑂 ∈ O\K,An(𝑂) ⊄ J ∪ K, then ∀𝑂 ∈ O\K,AnL (𝑂) ⊄ J.

Proof. We prove it by contradiction. Suppose ∃𝑂𝑖 ∈ O\K s.t. AnL (𝑂𝑖) ⊂ J, then since An(𝑂) ⊄
J∪K, AnO (𝑂𝑖) ⊄ K. Let 𝑂 𝑗 ∈ AnO (𝑂𝑖)\K s.t. AnO (𝑂 𝑗 ) ∩ (AnO (𝑂𝑖)\K) = ∅, that is, AnO (𝑂 𝑗 ) ⊂
K. In addition, AnL (𝑂 𝑗 ) ⊂ AnL (𝑂𝑖) ⊂ J, so An(𝑂 𝑗 ) ⊂ J ∪ K, which leads to contradiction. □

Theorem 2. Suppose ∀𝑂 ∈ O\K,An(𝑂) ⊄ J ∪ K. Given 𝑂𝑖 ∈ O\K, then Ch(𝑂𝑖) = ∅,
PaO (𝑂𝑖)\K = ∅, |PaL (𝑂𝑖)\J| = 1, and An(PaL (𝑂𝑖)\J) ⊂ J if and only if ∀{𝑂 𝑗 , 𝑂𝑘} ⊂
O\(K ∪ {𝑂𝑖}) where Cov(𝑂̃𝑖 , 𝑂 𝑗 )Cov(𝑂̃𝑖 , 𝑂𝑘) ≠ 0, R(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫ 𝑂̃𝑖 .

Proof sketch. If 𝑂𝑖 satisfies the graphical condition, we can prove independence based on Lem. 2
(let PaL (𝑂𝑖)\J = {𝐿}, 𝜖𝐿 serves as 𝑒 in property (1)). Otherwise, there exists 𝑉 ∈ V\(J ∪ K) and
{𝑂 𝑗 , 𝑂𝑘} ⊂ O\(K ∪ {𝑂𝑖}) s.t. Cov(𝑂̃𝑖 , 𝑂 𝑗 )Cov(𝑂̃𝑖 , 𝑂𝑘) ≠ 0, 𝑚𝑉

𝑂̃𝑖

𝑚𝑉
𝑂 𝑗

≠ 0, and 𝑚𝑉
𝑂𝑘

= 0, so
dependence can be proven by Lem. 3.
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Proof. “Only if”: Let PaL (𝑂𝑖)\J = {𝐿𝑖}, note that {𝑂 𝑗 , 𝑂𝑘} ∩ De(𝑂𝑖) = ∅, based on Eqs. (13)
and (14),

𝑂̃𝑖 = 𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+
∑︁

𝑂𝑙2 ∈K2

𝜆𝑖𝑙2𝜖𝑂𝑙2
+ 𝜖𝑂𝑖

. (26)

𝑂 𝑗 =
∑︁
𝐿 𝑗 ∈J

𝑚
𝐿 𝑗

𝑂 𝑗
𝜖𝐿 𝑗

+
∑︁

𝐿𝑘 ∈L\J
𝑚

𝐿𝑘

𝑂 𝑗
𝜖𝐿𝑘

+
∑︁

𝑂𝑙1 ∈K1

𝑚
𝑂𝑙1
𝑂 𝑗

𝜖𝑂𝑙1
+

∑︁
𝑂𝑚∈O\(K∪{𝑂𝑖 })

𝑚
𝑂𝑚

𝑂 𝑗
𝜖𝑂𝑚

, (27)

𝑂𝑘 =
∑︁
𝐿 𝑗 ∈J

𝑚
𝐿 𝑗

𝑂𝑘
𝜖𝐿 𝑗

+
∑︁

𝐿𝑘 ∈L\J
𝑚

𝐿𝑘

𝑂𝑘
𝜖𝐿𝑘

+
∑︁

𝑂𝑙1 ∈K1

𝑚
𝑂𝑙1
𝑂𝑘

𝜖𝑂𝑙1
+

∑︁
𝑂𝑚∈O\(K∪{𝑂𝑖 })

𝑚
𝑂𝑚

𝑂𝑘
𝜖𝑂𝑚

. (28)

Since Cov(𝑂̃𝑖 , 𝑂 𝑗 )Cov(𝑂̃𝑖 , 𝑂𝑘) = (𝑚𝐿𝑖

𝑂𝑖
)2𝑚𝐿𝑖

𝑂 𝑗
𝑚

𝐿𝑖

𝑂𝑘
(Var(𝜖𝐿𝑖

))2 ≠ 0, there is 𝑚
𝐿𝑖

𝑂 𝑗
𝑚

𝐿𝑖

𝑂𝑘
≠ 0. Based

on Lem. 2, R(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫ 𝑂̃𝑖 , where 𝜖𝐿𝑖
serves as 𝑒 in Eq. (11).

“If”: We prove this part by contradiction.

1. Suppose Ch(𝑂𝑖) ≠ ∅, let 𝑂 𝑗 ∈ Ch(𝑂𝑖). Based on Lem. 5, AnL (𝑂𝑖) ⊄ J and let 𝐿𝑖 ∈
AnL (𝑂𝑖)\J. Besides, let 𝑂𝑘 ∈ HSu(𝐿𝑖), it is trivial that 𝑂𝑘 ∉ {𝑂𝑖 , 𝑂 𝑗 } and 𝑂𝑖 ∉ An(𝑂𝑘). An
illustrative example is shown as Fig. 7(a). As 𝑚𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
𝑚

𝐿𝑖

𝑂𝑘
≠ 0, Cov(𝑂 𝑗 , 𝑂̃𝑖)Cov(𝑂𝑘 , 𝑂̃𝑖) ≠ 0

based on Lem. 4. Since 𝑚
𝑂𝑖

𝑂̃𝑖

𝑚
𝑂𝑖

𝑂 𝑗
≠ 0 and 𝑚

𝑂𝑖

𝑂𝑘
= 0, we can derive R(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫∕ 𝑂̃𝑖 based

on Lem. 3.

2. Suppose Ch(𝑂𝑖) = ∅ and PaO (𝑂𝑖)\K ≠ ∅, let 𝑂 𝑗 ∈ PaO (𝑂𝑖)\K. Based on Lem. 5, AnL (𝑂 𝑗 ) ⊄
J and let 𝐿𝑖 ∈ AnL (𝑂 𝑗 )\J. Besides, let 𝑂𝑘 ∈ HSu(𝐿𝑖), it is trivial that 𝑂𝑘 ∉ {𝑂𝑖 , 𝑂 𝑗 }
and 𝑂 𝑗 ∉ An(𝑂𝑘). An illustrative example is shown as Fig. 7(b). As 𝑚

𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
𝑚

𝐿𝑖

𝑂𝑘
≠ 0,

Cov(𝑂 𝑗 , 𝑂̃𝑖)Cov(𝑂𝑘 , 𝑂̃𝑖) ≠ 0 based on Lem. 4. Since 𝑚
𝑂 𝑗

𝑂̃𝑖

𝑚
𝑂 𝑗

𝑂 𝑗
≠ 0 and 𝑚

𝑂 𝑗

𝑂𝑘
= 0, we can

derive R(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫∕ 𝑂̃𝑖 based on Lem. 3.

3. Suppose Ch(𝑂𝑖) = PaO (𝑂𝑖)\K = ∅ and |PaL (𝑂𝑖)\J| ≥ 2, let {𝐿𝑖 , 𝐿 𝑗 } ⊂ PaL (𝑂𝑖)\J. Without
loss of generality, let 𝐿 𝑗 ∉ An(𝐿𝑖). Let 𝑂 𝑗 ∈ De(𝐿 𝑗 )\{𝑂𝑖} and 𝑂𝑘 ∈ HSu(𝐿𝑖). It is trivial that
𝑂𝑘 ∉ {𝑂𝑖 , 𝑂 𝑗 } and 𝐿 𝑗 ∉ An(𝑂𝑘). An illustrative example is shown as Fig. 7(c). As 𝑚𝐿 𝑗

𝑂 𝑗
𝑚

𝐿 𝑗

𝑂𝑖
≠

0 and 𝑚
𝐿𝑖

𝑂𝑘
𝑚

𝐿𝑖

𝑂𝑖
≠ 0, Cov(𝑂 𝑗 , 𝑂̃𝑖)Cov(𝑂𝑘 , 𝑂̃𝑖) ≠ 0 based on Lem. 4. Since 𝑚

𝐿 𝑗

𝑂̃𝑖

𝑚
𝐿 𝑗

𝑂 𝑗
≠ 0 and

𝑚
𝐿 𝑗

𝑂𝑘
= 0, we can derive R(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫∕ 𝑂̃𝑖 based on Lem. 3.

4. Suppose Ch(𝑂𝑖) = PaO (𝑂𝑖)\K = ∅, |PaL (𝑂𝑖)\J| = 1, and An(PaL (𝑂𝑖)\J) ⊄ J. Let
PaL (𝑂𝑖)\J = {𝐿𝑖}, 𝐿 𝑗 ∈ An(𝐿𝑖)\J, 𝑂 𝑗 ∈ De(𝐿𝑖)\{𝑂𝑖}, and 𝑂𝑘 ∈ HSu(𝐿 𝑗 ). It is trivial
that 𝑂𝑘 ∉ {𝑂𝑖 , 𝑂 𝑗 } and 𝐿𝑖 ∉ An(𝑂𝑘). An illustrative example is shown as Fig. 7(d). As
𝑚

𝐿 𝑗

𝑂𝑖
𝑚

𝐿 𝑗

𝑂 𝑗
𝑚

𝐿 𝑗

𝑂𝑘
≠ 0, Cov(𝑂 𝑗 , 𝑂̃𝑖)Cov(𝑂𝑘 , 𝑂̃𝑖) ≠ 0 based on Lem. 4. Since 𝑚

𝐿𝑖

𝑂̃𝑖

𝑚
𝐿𝑖

𝑂 𝑗
≠ 0 and

𝑚
𝐿𝑖

𝑂𝑘
= 0, we can derive R(𝑂 𝑗 , 𝑂𝑘 |𝑂̃𝑖) ⫫∕ 𝑂̃𝑖 based on Lem. 3.

This finishes the proof. □

Proposition 1. Suppose 𝑂𝑖 and 𝑂 𝑗 satisfy Thm. 2, then PaL (𝑂𝑖)\J = PaL (𝑂 𝑗 )\J if and only if
Cov(𝑂̃𝑖 , 𝑂 𝑗 ) ≠ 0.

Proof. Let PaL (𝑂𝑖)\J = {𝐿𝑖} and PaL (𝑂 𝑗 )\J = {𝐿 𝑗 }. Based on Eqs. (13) and (14),

𝑂̃𝑖 = 𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+
∑︁

𝑂𝑙2 ∈K2

𝜆𝑖𝑙2𝜖𝑂𝑙2
+ 𝜖𝑂𝑖

. (29)

𝑂 𝑗 =
∑︁
𝐿𝑘 ∈J

𝑚
𝐿𝑘

𝑂 𝑗
𝜖𝐿𝑘

+ 𝑚
𝐿 𝑗

𝑂 𝑗
𝜖𝐿 𝑗

+
∑︁

𝑂𝑙1 ∈K1

𝑚
𝑂𝑙1
𝑂 𝑗

𝜖𝑂𝑙1
+ 𝜖𝑂 𝑗

. (30)

Obviously, 𝐿𝑖 = 𝐿 𝑗 if and only if Cov(𝑂̃𝑖 , 𝑂 𝑗 ) = 𝑚
𝐿𝑖

𝑂𝑖
𝑚

𝐿 𝑗

𝑂 𝑗
Cov(𝜖𝐿𝑖

, 𝜖𝐿 𝑗
) ≠ 0. □
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Oj

Li
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(a) Case 1
Oi

Li

OjOk

(b) Case 2

Oj
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Lj

(c) Case 3

Oj

Lj

OiOk

Li

(d) Case 4

Figure 7: Illustration of “If” part in proof of Thm. 2. A dotted arrow from 𝑉1 to 𝑉2 means that
𝑉2 ∈ De(𝑉1).

Proposition 2. Suppose 𝑂𝑖 satisfies Thm. 2, then 𝑂𝑖 ∈ HSu(PaL (𝑂𝑖)\J) if and only if ∀𝑂 𝑗 satisfy-
ing Thm. 2 and PaL (𝑂 𝑗 )\J = PaL (𝑂𝑖)\J, ∥MJ

{𝑂𝑖 } ∥0 ≤ ∥MJ
{𝑂 𝑗 } ∥0.

Proof. Let PaL (𝑂𝑖)\J = {𝐿𝑖}.
“Only if”. For each 𝑂 𝑗 satisfying 𝑂 𝑗 ∈ De(𝐿𝑖), there is An(𝑂 𝑗 ) ∩ J ⊃ An(𝐿𝑖) ∩ J. Since 𝑂𝑖 ∈
HSu(𝐿𝑖), An(𝐿𝑖) ∩ J = An(𝑂𝑖) ∩ J. Therefore, ∥MJ

{𝑂𝑖 } ∥0 ≤ ∥MJ
{𝑂 𝑗 } ∥0.

“If”. We prove this part by contradiction. Suppose 𝑂𝑖 ∉ HSu(𝐿𝑖). Let 𝑂 𝑗 ∈ HSu(𝐿𝑖), then
∥MJ

{𝑂𝑖 } ∥0 ≤ ∥MJ
{𝑂 𝑗 } ∥0 and ∥MJ

{𝑂 𝑗 } ∥0 = |An(𝐿𝑖) ∩ J|. Since 𝑂𝑖 ∈ De(𝐿𝑖), ∥MJ
{𝑂𝑖 } ∥0 ≥ |An(𝐿𝑖) ∩

J|. Therefore, ∥MJ
{𝑂𝑖 } ∥0 = ∥MJ

{𝑂 𝑗 } ∥0, that is, An(𝑂𝑖) ∩ J = An(𝑂 𝑗 ) ∩ J = An(𝐿𝑖), note that 𝑂𝑖

satisfies Thm. 2, so 𝑂𝑖 ∈ HSu(𝐿𝑖), this leads to contradiction. □

Definition 3. (Cumulant) Given 𝑛 random variables 𝑉1, ..., 𝑉𝑛, the 𝑘-th order cumulant is defined as
a tensor of size 𝑛 × ... × 𝑛 (𝑘 times), whole element at position (𝑖1, ..., 𝑖𝑘) is

Cum(𝑉𝑖1 , ..., 𝑉𝑖𝑘 ) =
∑︁
𝜋

(−1) | 𝜋 |−1 ( |𝜋 | − 1)!
∏
𝐵∈𝜋
E

[∏
𝑗∈𝐵

𝑉 𝑗

]
, (31)

where 𝜋 is enumerated over all partitions of {𝑖1, ..., 𝑖𝑘}.
Corollary 3. Suppose 𝑂𝑖 satisfies Thm. 2 and 𝑂𝑖 ∈ HSu(𝐿𝑖), then ∀𝑂 𝑗 ∈ O\(K ∪ {𝑂𝑖}),

𝑚
𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
= Cov(𝑂̃𝑖 , 𝑂 𝑗 ),

(𝑚𝐿𝑖

𝑂𝑖

𝑚
𝐿𝑖

𝑂 𝑗

)2
=

Cum(𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂 𝑗 )
Cum(𝑂̃𝑖 , 𝑂 𝑗 , 𝑂 𝑗 , 𝑂 𝑗 )

. (32)

Proof. Note that 𝑂 𝑗 ∉ De(𝑂𝑖), based on Eqs. (13) and (14),

𝑂̃𝑖 = 𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+
∑︁

𝑂𝑙2 ∈K2

𝜆𝑖𝑙2𝜖𝑂𝑙2
+ 𝜖𝑂𝑖

. (33)

𝑂 𝑗 =
∑︁
𝐿 𝑗 ∈J

𝑚
𝐿 𝑗

𝑂 𝑗
𝜖𝐿 𝑗

+
∑︁

𝐿𝑘 ∈L\J
𝑚

𝐿𝑘

𝑂 𝑗
𝜖𝐿𝑘

+
∑︁

𝑂𝑙1 ∈K1

𝑚
𝑂𝑙1
𝑂 𝑗

𝜖𝑂𝑙1
+

∑︁
𝑂𝑚∈O\(K∪{𝑂𝑖 })

𝑚
𝑂𝑚

𝑂 𝑗
𝜖𝑂𝑚

. (34)

Clearly,
Cov(𝑂̃𝑖 , 𝑂 𝑗 ) = 𝑚

𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
Var(𝜖𝐿𝑖

) = 𝑚
𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
. (35)
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The second equation holds because we assume the exogenous noise of each latent variable has unit
variance.

Because we assume each exogenous noise has zero mean, E[𝑂̃𝑖] = E[𝑂 𝑗 ] = 0. There is

Cum(𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂 𝑗 ) = E[𝑂̃3
𝑖𝑂 𝑗 ] − 3E[𝑂̃𝑖𝑂 𝑗 ]E[𝑂̃2

𝑖 ] . (36)

Let 𝑒𝑖 = 𝑂̃𝑖 −𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

and 𝑒 𝑗 = 𝑂 𝑗 −𝑚
𝐿𝑖

𝑂 𝑗
𝜖𝐿𝑖

. It follows that 𝜖𝐿𝑖
, 𝑒𝑖 , 𝑒 𝑗 are independent of each other.

Therefore,
Cum(𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂 𝑗 )

=E[(𝑚𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+ 𝑒𝑖)3 (𝑚𝐿𝑖

𝑂 𝑗
𝜖𝐿𝑖

+ 𝑒 𝑗 )]︸                                     ︷︷                                     ︸
E[𝑂̃3

𝑖
𝑂 𝑗 ]

−3E[(𝑚𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+ 𝑒𝑖) (𝑚𝐿𝑖

𝑂 𝑗
𝜖𝐿𝑖

+ 𝑒 𝑗 )]︸                                    ︷︷                                    ︸
E[𝑂̃𝑖𝑂 𝑗 ]

E[(𝑚𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+ 𝑒𝑖)2]︸                 ︷︷                 ︸
E[𝑂̃2

𝑖
]

= (𝑚𝐿𝑖

𝑂𝑖
)3𝑚𝐿𝑖

𝑂 𝑗
E[𝜖4

𝐿𝑖
] + 3𝑚𝐿𝑖

𝑂𝑖
𝑚

𝐿𝑖

𝑂 𝑗
E[𝜖2

𝐿𝑖
𝑒2
𝑖 ]︸                                               ︷︷                                               ︸

E[ (𝑚𝐿𝑖
𝑂𝑖

𝜖𝐿𝑖+𝑒̃𝑖 )3 (𝑚𝐿𝑖
𝑂𝑗

𝜖𝐿𝑖+𝑒 𝑗 ) ]

−3
(
(𝑚𝐿𝑖

𝑂𝑖
)3𝑚𝐿𝑖

𝑂 𝑗
(E[𝜖2

𝐿𝑖
])2 + 𝑚

𝐿𝑖

𝑂𝑖
𝑚

𝐿 𝑗

𝑂 𝑗
E[𝜖2

𝐿𝑖
]E[𝑒2

𝑖 ]
)︸                                                         ︷︷                                                         ︸

E[ (𝑚𝐿𝑖
𝑂𝑖

𝜖𝐿𝑖+𝑒̃𝑖 ) (𝑚
𝐿𝑖
𝑂𝑗

𝜖𝐿𝑖+𝑒 𝑗 ) ]E[ (𝑚
𝐿𝑖
𝑂𝑖

𝜖𝐿𝑖+𝑒̃𝑖 )2 ]

=(𝑚𝐿𝑖

𝑂𝑖
)3𝑚𝐿𝑖

𝑂 𝑗
(E[𝜖4

𝐿𝑖
] − 3(E[𝜖2

𝐿𝑖
])2). (37)

The second equation holds because for any two mutually independent random variables 𝑉1, 𝑉2 with
E[𝑉1] = E[𝑉2] = 0,

E[𝑉1𝑉2] = Cov(𝑉1, 𝑉2) + E[𝑉1]E[𝑉2] = 0, (38)

E[𝑉3
1𝑉2] = Cov(𝑉3

1 , 𝑉2) + E[𝑉3
1 ]E[𝑉2] = 0, (39)

where 𝑉1, 𝑉2 can refer to any two of 𝑒𝑖 , 𝑒 𝑗 , 𝜖𝐿𝑖
.

The third equation holds because for any two mutually independent random variables 𝑉1, 𝑉2 with
E[𝑉1] = E[𝑉2] = 0,

E[𝑉2
1𝑉

2
2 ] − E[𝑉

2
1 ]E[𝑉

2
2 ] = Cov(𝑉2

1 , 𝑉
2
2 ) = 0, (40)

where 𝑉1, 𝑉2 refer to 𝜖𝐿𝑖
, 𝑒𝑖 respectively.

Similarly,
Cum(𝑂̃𝑖 , 𝑂 𝑗 , 𝑂 𝑗 , 𝑂 𝑗 ) = 𝑚

𝐿𝑖

𝑂𝑖
(𝑚𝐿𝑖

𝑂 𝑗
)3 (E[𝜖4

𝐿𝑖
] − 3(E[𝜖2

𝐿𝑖
])2). (41)

Therefore, (𝑚𝐿𝑖

𝑂𝑖

𝑚
𝐿𝑖

𝑂 𝑗

)2
=

Cum(𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂̃𝑖 , 𝑂 𝑗 )
Cum(𝑂̃𝑖 , 𝑂 𝑗 , 𝑂 𝑗 , 𝑂 𝑗 )

. (42)

□

Corollary 4. Suppose 𝑂𝑖 satisfies Thm. 2 and 𝑂𝑖 ∈ HSu(𝐿𝑖), if we update J to J ∪ {𝐿𝑖}, K to
K ∪ {𝑂𝑖}, and 𝑂̃ 𝑗 to 𝑂̃ 𝑗 − (𝑚𝐿𝑖

𝑂 𝑗
/𝑚𝐿𝑖

𝑂𝑖
)𝑂̃𝑖 for each 𝑂 𝑗 ∈ O\K, Cond. 1 is still valid.

Proof. Based on Thm. 2, it is trivial that Cond. 1(1) is valid.

Based on Eq. (14), before removal

𝑂̃𝑖 = 𝑚
𝐿𝑖

𝑂𝑖
𝜖𝐿𝑖

+
∑︁

𝑂𝑘 ∈K2

𝜆𝑖𝑘𝜖𝑂𝑘
+ 𝜖𝑂𝑖

. (43)

𝑂̃ 𝑗 =
∑︁

𝐿 𝑗 ∈L\J
𝑚

𝐿 𝑗

𝑂 𝑗
𝜖𝐿 𝑗

+
∑︁

𝑂𝑘 ∈K2

𝜆 𝑗𝑘𝜖𝑂𝑘
+

∑︁
𝑂𝑙∈O\(K∪{𝑂𝑖 })

𝑚
𝑂𝑙

𝑂 𝑗
𝜖𝑂𝑙

, (44)

Let 𝜆′
𝑗𝑘

= 𝜆 𝑗𝑘 −
𝑚

𝐿𝑖
𝑂𝑗

𝑚
𝐿𝑖
𝑂𝑖

𝜆𝑖𝑘 for each 𝑂𝑘 ∈ K2 and 𝜆′
𝑗𝑖
= −

𝑚
𝐿𝑖
𝑂𝑗

𝑚
𝐿𝑖
𝑂𝑖

, then

𝑂̃ 𝑗 −
𝑚

𝐿𝑖

𝑂 𝑗

𝑚
𝐿𝑖

𝑂𝑖

𝑂̃𝑖 =
∑︁

𝐿 𝑗 ∈L\(J∪{𝐿𝑖 })
𝑚

𝐿 𝑗

𝑂 𝑗
𝜖𝐿 𝑗

+
∑︁

𝑂𝑘 ∈K2∪{𝑂𝑖 }
𝜆′𝑗𝑘𝜖𝑂𝑘

+
∑︁

𝑂𝑙∈O\(K∪{𝑂𝑖 })
𝑚

𝑂𝑙

𝑂 𝑗
𝜖𝑂𝑙

, (45)

so Cond. 1(2) is also valid. □
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Theorem 3. Suppose the observed variables are generated by a LiNGAM with latent variables
satisfying Asmps. 1 and 2, in the limit of infinite data, Alg. 1 identifies latent variables and ancestral
relationships correctly.

Proof. Based on Thm. 1, Cors. 1 and 2, Alg. 1 correctly estimates MO
O. Based on Thm. 2, Props. 1

and 2, Cors. 3 and 4, Alg. 1 correctly identifies latent variables by locating their respective ho-
mologous surrogates and estimates ML

O. Furthermore, given any two latent variable 𝐿𝑖 , 𝐿 𝑗 , Alg. 1
correctly determines whether 𝐿𝑖 is an ancestor of 𝐿 𝑗 by checking whether 𝐿𝑖 is an ancestor of 𝐿 𝑗 ’s
homologous surrogates. □

C.3 PROOF OF THEORETICAL RESULTS IN SEC. 4.

Definition 4. (Generalized homologous surrogate) 𝑂 ∈ O is called a generalized homologous
surrogate of 𝐿 ∈ L, denoted by 𝑂 ∈ GHSu(𝐿), if 𝑂 ∈ Ch(𝐿) and PaL (𝑂) ⊂ An(𝐿) ∪ {𝐿}.
Assumption 3. Asmp. 2 holds and ∀{𝐿𝑖 , 𝐿 𝑗 } ⊂ L where 𝐿𝑖 ∈ An(𝐿 𝑗 ), ∃{𝑂 𝑗1 , 𝑂 𝑗2 } ⊂ GHSu(𝐿 𝑗 )
s.t 𝑂 𝑗1 ∉ Ch(𝐿𝑖) and 𝑂 𝑗2 ∉ Ch(𝐿𝑖).
As mentioned in the main text, we can remove causal relations between observed variables given
AO

O. Specifically, for each 𝑂𝑖 ∈ O, we let

𝑂∗
𝑖 = 𝑂𝑖 −

∑︁
𝑂 𝑗 ∈Pa(𝑂𝑖 )

𝑎
𝑂 𝑗

𝑂𝑖
𝑂 𝑗 . (46)

We denote by G∗ the causal graph among L∪O∗ where O∗ = {𝑂∗
𝑖
}𝑖 . Also, we use Pa∗ (𝑉) to denote

𝑉’s parents in G∗.
Lemma 6. Given 𝐿 ∈ L and 𝑂 ∈ O, 𝑂 ∈ GHSu(𝐿) if and only if An∗ (𝑂∗) = An∗ (𝐿) ∪ {𝐿}.

Proof. This can be readily derived from the definition of generalized homologous surrogates. □

Lemma 1. ∀𝐿𝑖 ∈ L and 𝑂𝑖 ∈ O, 𝑂𝑖 ∈ GHSu(𝐿𝑖) if and only if 𝑚𝐿𝑖

𝑂∗
𝑖

≠ 0 and ∀𝑂 𝑗 ∈ O where

𝑚
𝐿𝑖

𝑂∗
𝑗

≠ 0, ∥ML
{𝑂∗

𝑖
} ∥0 ≤ ∥ML

{𝑂∗
𝑗
} ∥0. Besides, there is 𝑎𝐿𝑖

𝑂𝑖
= 𝑚

𝐿𝑖

𝑂∗
𝑖

.

Proof. “Only if”. For each 𝑂∗
𝑗

where 𝑚
𝐿𝑖

𝑂∗
𝑗

≠ 0, there is An∗ (𝑂∗
𝑗
) ⊃ An∗ (𝐿𝑖) ∪ {𝐿𝑖}. Based on

Lem. 6, An∗ (𝑂∗
𝑖
) = An∗ (𝐿𝑖) ∪ {𝐿𝑖}, so ∥ML

{𝑂∗
𝑖
} ∥0 ≤ ∥ML

{𝑂∗
𝑗
} ∥0.

“If”. We prove this part by contradiction. Suppose 𝑂𝑖 ∉ GHSu(𝐿𝑖). Let 𝑂 𝑗 ∈ GHSu(𝐿𝑖), then
∥ML

{𝑂∗
𝑖
} ∥0 ≤ ∥ML

{𝑂∗
𝑗
} ∥0 and ∥ML

{𝑂∗
𝑗
} ∥0 = |An∗ (𝐿𝑖) ∪ {𝐿𝑖}| based on Lem. 6. Since 𝑚

𝐿𝑖

𝑂∗
𝑖

≠ 0,

𝑂∗
𝑖
∈ De∗ (𝐿𝑖), that is, ∥ML

{𝑂∗
𝑖
} ∥0 ≥ |An∗ (𝐿𝑖) ∪ {𝐿𝑖}|. Therefore, ∥ML

{𝑂∗
𝑖
} ∥0 = ∥ML

{𝑂∗
𝑗
} ∥0, that is,

An∗ (𝑂∗
𝑖
) = An∗ (𝐿𝑖) ∪ {𝐿𝑖}, based on Lem. 6, this leads to contradiction.

Finally, based on Lem. 6, it is trivial that if 𝑂𝑖 ∈ GHSu(𝐿𝑖), 𝑎𝐿𝑖

𝑂𝑖
= 𝑚

𝐿𝑖

𝑂∗
𝑖

because there is only one
directed path from 𝐿𝑖 to 𝑂∗

𝑖
in G∗, which is exactly 𝐿𝑖 → 𝑂∗

𝑖
. □

Theorem 4. Suppose {𝐿𝑖 , 𝐿 𝑗 } ⊂ L, 𝐿 𝑗 ∈ De𝑛 (𝐿𝑖). ∀𝑂 𝑗 ∈ GHSu(𝐿 𝑗 ), let

𝜇
𝐿𝑖

𝑂∗
𝑗

= 𝑚
𝐿𝑖

𝑂∗
𝑗

−
∑︁

𝐿𝑘 ∈De(𝐿𝑖 )∩An(𝐿 𝑗 )
𝑚

𝐿𝑖

𝐿𝑘
𝑎
𝐿𝑘

𝑂 𝑗
. (47)

(a) There exists {𝑂 𝑗1 , 𝑂 𝑗2 } ⊂ GHSu(𝐿 𝑗 ) s.t. 𝜇𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
= 𝜇

𝐿𝑖

𝑂∗
𝑗2
/𝑎𝐿 𝑗

𝑂 𝑗2
and 𝑚

𝐿𝑖

𝐿 𝑗
= 𝜇

𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
.

(b) 𝑎
𝐿𝑖

𝑂 𝑗
= 𝜇

𝐿𝑖

𝑂∗
𝑗

− 𝑚
𝐿𝑖

𝐿 𝑗
𝑎
𝐿 𝑗

𝑂 𝑗
.
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Proof sketch. We can derive that 𝜇𝐿𝑖

𝑂∗
𝑗

= 𝑎
𝐿𝑖

𝑂 𝑗
+ 𝑚

𝐿𝑖

𝐿 𝑗
𝑎
𝐿 𝑗

𝑂 𝑗
, so (b) holds naturally. For (a), based on

the rank-faithfulness, 𝜇𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
= 𝜇

𝐿𝑖

𝑂∗
𝑗2
/𝑎𝐿 𝑗

𝑂 𝑗2
if and only if 𝑎𝐿𝑖

𝑂 𝑗1
= 𝑎

𝐿𝑖

𝑂 𝑗2
= 0, that is, 𝑂 𝑗1 ∉ Ch(𝐿 𝑗 )

and 𝑂 𝑗2 ∉ Ch(𝐿 𝑗 ). In this case, 𝜇𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
= 𝑚

𝐿𝑖

𝐿 𝑗
trivially.

Proof. For any 𝐿 ∈ L and 𝑂∗ ∈ O∗, there is

𝑚𝐿
𝑂∗ = 𝑎𝐿𝑂 +

∑︁
𝐿𝑖∈De∗ (𝐿)∩Pa∗ (𝑂∗ )

𝑚𝐿
𝐿𝑖
𝑎
𝐿𝑖

𝑂
. (48)

Given 𝑂 𝑗 ∈ GHSu(𝐿 𝑗 ), based on Lem. 6, Pa∗ (𝑂∗
𝑗
) ⊂ An∗ (𝑂∗

𝑗
) = An∗ (𝐿 𝑗 ) ∪ {𝐿 𝑗 }, so

(
De∗ (𝐿𝑖) ∩

Pa∗ (𝑂∗
𝑗
)
)
\{𝐿 𝑗 } ⊂ De∗ (𝐿𝑖) ∩ An∗ (𝐿 𝑗 ) = De(𝐿𝑖) ∩ An(𝐿 𝑗 ). We can rewrite Eq. (48) as

𝑚
𝐿𝑖

𝑂∗
𝑗

= 𝑎
𝐿𝑖

𝑂 𝑗
+

∑︁
𝐿𝑘 ∈De(𝐿𝑖 )∩An(𝐿 𝑗 )

𝑚
𝐿𝑖

𝐿𝑘
𝑎
𝐿𝑘

𝑂 𝑗
+ 𝑚

𝐿𝑖

𝐿 𝑗
𝑎
𝐿 𝑗

𝑂 𝑗
(49)

because 𝑚
𝐿𝑖

𝐿𝑘
𝑎
𝐿𝑘

𝑂 𝑗
= 0 if 𝐿𝑘 ∉ De∗ (𝐿𝑖) ∩ Pa∗ (𝑂∗

𝑗
). Therefore,

𝜇
𝐿𝑖

𝑂∗
𝑗

= 𝑚
𝐿𝑖

𝑂∗
𝑗

−
∑︁

𝐿𝑘 ∈De(𝐿𝑖 )∩An(𝐿 𝑗 )
𝑚

𝐿𝑖

𝐿𝑘
𝑎
𝐿𝑘

𝑂 𝑗
= 𝑎

𝐿𝑖

𝑂 𝑗
+ 𝑚

𝐿𝑖

𝐿 𝑗
𝑎
𝐿 𝑗

𝑂 𝑗
. (50)

Let {𝑂 𝑗1 , 𝑂 𝑗2 } ⊂ GHSu(𝐿 𝑗 ). On the one hand, if 𝑂 𝑗1 ∉ Ch(𝐿𝑖) and 𝑂 𝑗2 ∉ Ch(𝐿𝑖), then 𝑎
𝐿𝑖

𝑂 𝑗1
=

𝑎
𝐿𝑖

𝑂 𝑗2
= 0, so 𝜇

𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
= 𝜇

𝐿𝑖

𝑂∗
𝑗2
/𝑎𝐿 𝑗

𝑂 𝑗2
= 𝑚

𝐿𝑖

𝐿 𝑗
. On the other hand, if 𝑂 𝑗1 ∈ Ch(𝐿𝑖) or 𝑂 𝑗2 ∈ Ch(𝐿𝑖),

based on the rank-faithfulness assumption, 𝜇𝐿𝑖

𝑂∗
𝑗1
/𝑎𝐿 𝑗

𝑂 𝑗1
≠ 𝜇

𝐿𝑖

𝑂∗
𝑗2
/𝑎𝐿 𝑗

𝑂 𝑗2
. Therefore, (a) holds.

Besides, based on Eq. (50), it is trivial that (b) holds. □

Theorem 5. Suppose the observed variables are generated by a LiNGAM with latent variables sat-
isfying Asmps. 1 and 3, in the limit of infinite data, Algs. 1 and 2 together identifies latent variables
and parental relationships correctly.

Proof. Based on Thm. 3, Alg. 1 correctly identifies latent variables and estimates MO
L and MO

O.
Based on Thm. 4, Alg. 2 correctly estimates ML

L. Therefore, M is estimated correctly, from which
A can be derived based on Eq. (3). □

D EXPERIMENT ON REAL-WORLD DATA

The Holzinger and Swineford 1939 dataset consists of mental ability test scores of seventh- and
eighth-grade children from two different schools (Pasteur and Grant-White). There are 9 variables,
which can be categorized into three dimensions: Visual (𝑂1, 𝑂2, 𝑂3), Textual (𝑂4, 𝑂5, 𝑂6), and
Speeded (𝑂6, 𝑂7, 𝑂8). The result returned by our algorithm is shown as Fig. 8. Our algorithm
correctly identifies the textual factor while merges the visual factor and the speed factor into a single
factor. This can be attributed to the fact that both the visual factor and speed factor depends on innate
abilities, while the textual factor highly depends on learning experience.

L1

O2O1 O3 O7 O8O6O5O4 O9

L2

Figure 8: The output of our algorithm on the Holzinger and Swineford dataset.
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