
Published as a conference paper at ICLR 2022

DIFFERENTIABLE EXPECTATION-MAXIMIZATION FOR
SET REPRESENTATION LEARNING

Minyoung Kim
Samsung AI Center Cambridge, UK
mikim21@gmail.com

ABSTRACT

We tackle the set2vec problem, the task of extracting a vector representation from
an input set comprised of a variable number of feature vectors. Although recent
approaches based on self attention such as (Set)Transformers were very successful
due to the capability of capturing complex interaction between set elements, the
computational overhead is the well-known downside. The inducing-point attention
and the latest optimal transport kernel embedding (OTKE) are promising remedies
that attain comparable or better performance with reduced computational cost, by
incorporating a fixed number of learnable queries in attention. In this paper we ap-
proach the set2vec problem from a completely different perspective. The elements
of an input set are considered as i.i.d. samples from a mixture distribution, and we
define our set embedding feed-forward network as the maximum-a-posterior (MAP)
estimate of the mixture which is approximately attained by a few Expectation-
Maximization (EM) steps. The whole MAP-EM steps are differentiable operations
with a fixed number of mixture parameters, allowing efficient auto-diff back-
propagation for any given downstream task. Furthermore, the proposed mixture set
data fitting framework allows unsupervised set representation learning naturally
via marginal likelihood maximization aka the empirical Bayes. Interestingly, we
also find that OTKE can be seen as a special case of our framework, specifically a
single-step EM with extra balanced assignment constraints on the E-step. Com-
pared to OTKE, our approach provides more flexible set embedding as well as
prior-induced model regularization. We evaluate our approach on various tasks
demonstrating improved performance over the state-of-the-arts.

1 INTRODUCTION

Effectively learning succinct and salient feature representation for complex structured data is a
central part of recent deep learning. In particular the set structured data, arising in many important
scientific tasks including bioinformatics and NLP tasks, poses several challenges to deal with varying
numbers of elements and the constraints of permutation invariance, in contrast with conventional
instance-based representation learning (Zaheer et al., 2017; Edwards & Storkey, 2017; Lee et al.,
2019a; Skianis et al., 2020). Perhaps the key to successful set representation learning is to capture the
interaction between elements effectively, implemented as self attention (Bahdanau et al., 2015) and
(set)transformer models (Vaswani et al., 2017; Lee et al., 2019a).

Despite their superb performance in numerous application problems, one well-known drawback of
the self-attention approaches is high computational (time and memory) overhead. Among others,
the inducing-point attention (Lee et al., 2019a) and the latest optimal transport kernel embedding
(OTKE) (Mialon et al., 2021) are promising remedies that attain comparable or better performance
with reduced computational cost. This is enabled by incorporating a fixed number of trainable
reference vectors as queries in attention, and especially OTKE, with the attention scheme based on
optimal transport, showed state-of-the-art results on several tasks in bioinformatics and NLP.

Although OTKE is motivated from self attention, in this paper we show that OTKE can be derived
from a completely different perspective: it is the maximum likelihood estimate of a Gaussian mixture
model obtained by a single Expectation-Maximization (EM) step (Dempster et al., 1977) with
some constraints on the E-step, which aims to model set elements as i.i.d. data samples. From this
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perspective we propose several interesting extension/generalization such as: i) we perform multiple
EM steps instead of a single one, ii) unlike treating the references (model parameters) just as an initial
iterate of the EM, we also place a prior distribution on the references to incorporate the prior effect
to the output embedding in a more principled Bayesian manner. With this generalization, our set
embedding function becomes a (differentiable) feed-forward network defined as a multi-step EM for
the maximum-a-posterior (MAP) estimate of a Gaussian mixture. Furthermore, the proposed mixture
set data fitting framework allows unsupervised set representation learning naturally via marginal
likelihood maximization aka the empirical Bayes.

On several set/sequence representation learning problems including biological sequence classification
problems and NLP tasks, our approach shows considerable improvement over the state-of-the-arts
including OTKE. Our main contributions are summarized below:

1. We derive OTKE by a novel EM-based mixture fitting perspective, which allows us to gener-
alize it to a more flexible and principled set embedding function that can offer more modeling
options, prior-induced model regularization, and unsupervised learning via empirical Bayes.

2. The whole MAP-EM steps are differentiable operations with a fixed number of mixture
parameters, enabling efficient auto-diff back-propagation for any given downstream task.

3. Our approach shows improved results over state-of-the-arts on various set embedding tasks
in bioinformatics and NLP that require effective interaction modeling among set elements.

2 BACKGROUND ON OTKE

OTKE (Mialon et al., 2021) is a computationally efficient trainable model for representing a variable-
length set, by aggregating a variable number of features/elements in a set into a fixed-size vector.
The input to the model is a set S = {x1, . . . , xn} (n varies from instance to instance), where each
xi ∈ Rd is an input feature vector which may be an output of some feature extractor network, thus
involving some trainable parameters in it. For instance, in the OTKE paper, they often consider a
parametric Nyström approximation of the RKHS ϕ(x) (Williams & Seeger, 2001). We abuse the
notation throughout the paper, denoting by x both a raw input element and an extracted feature ϕ(x),
where the distinction will be clear from context.

The OTKE model’s set embedding function, emb : S → RD where S ∋ S, is defined as follows:

emb(S) =
√
p · cat

(
n∑

i=1

Qi1xi, · · · ,
n∑

i=1

Qijxi, · · · ,
n∑

i=1

Qipxi

)
(1)

where cat() indicates concatenation of vectors in column, and hence the output is of dimension
D = d · p. The trainable parameters of the embedding function are the p reference vectors Z =
{z1, . . . , zp} with zj ∈ Rd, where they serve as queries to determine the weights Q in the attention
form (1). Instead of following the popular dot-product strategy (Vaswani et al., 2017), the weight
matrix Q is the (unique) solution of the optimal transport problem (Villani, 2008; Cuturi, 2013)
between S and Z with the cost matrix C defined as the negative kernel Cij = −k(xi, zj), that is,

min
Q

∑
ij

CijQij − ϵH(Q) s.t.
n∑

i=1

Qij =
1

p
, ∀j and

p∑
j=1

Qij = 1/n, ∀i (2)

where the objective is augmented with the entropic term (impact ϵ), H(Q) = −
∑

ij Qij logQij ,
allowing the efficient Sinkhorn-Knopp (SK) algorithm to be applied (Cuturi, 2013).

This OT-based weighting is shown to be more effective than the dot-product in the biological
application domain (Mialon et al., 2021). The key difference from dot-product is the balanced
assignment constraints

∑
i Qij = 1/p for all j = 1, . . . , p, and the main motivation for this is to

have all references zj contribute equally to describing the set S. This may be a reasonable strategy in
certain scenarios to prevent a small number of references from affecting the attention dominantly.

Note that (2) can be solved by a few fixed point matrix scaling iterations (SK algorithm): The SK
algorithm finds the optimal solution as Q = Diag(u)ADiag(v), where Aij = exp(−Cij/ϵ) and the
vectors u ∈ Rn

+ and v ∈ Rp
+ are the fixed points of ui =

1
n/(Av)i, vj = 1

p/(A
⊤u)j for i = 1, . . . , n,
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j = 1, . . . , p. The fixed point iteration usually converges quickly after a few iterations. Since the
whole SK iterations constitute the feed-forward pass for the final output (1), hence OT is differentiable.
Note that as the transport cost in OT is defined as the negative kernel, it becomes simply the dot-
product in the RKHS, i.e., k(x, z) = x⊤z (with the RKHS embedding notation, ϕ(x)⊤z), where z
lives in the same RKHS. OTKE can be extended to a multi-head network, for which we run the above
OTKE procedure multiple times independently, each with different parameters Z, then concatenate
the outputs.

OTKE has several notable advantages over the self attention. First, it is computationally efficient,
scalable to very large dataset. Unlike the quadratic cost of the self attention, OTKE uses a fixed
number (p) of references serving as queries. Secondly, it allows unsupervised learning where the
model parameters Z can be learned without target (class) labels via the Wasserstein (or k-means
alternatively) clustering of set elements as per the OT problem. This unsupervised learning can
also serve as pre-training for the potentially unknown target downstream tasks. We also note that
regarding the first benefit, the formula (1) is also very similar to the inducing-point attention of
SetTransformer (Lee et al., 2019a) (known as the PMA layer) except for the OT-based weighting
scheme. In Appendix B.2 we provide a proof showing that PMA is indeed a special case of OTKE.

3 EXPECTATION MAXIMIZATION VIEW OF OTKE

While OTKE is motivated and derived from the attention mechanism, in this section we derive the
OTKE embedding formulas (1-2) from a completely different perspective, namely the EM-based
maximum likelihood learning of the Gaussian mixture for set data. Specifically we consider a mixture
of p Gaussians with equal mixing proportions and fixed shared spherical covariances, that is,

p(x|θ) =
p∑

j=1

(1/p)︸ ︷︷ ︸
p(c=j)

N (x; zj , ϵI)︸ ︷︷ ︸
p(x|c=j)

(3)

where c denotes the component latent variable, and the learnable parameters are only the means
θ = {z1, . . . , zp}. By regarding the set elements xi’s as i.i.d. data samples, the log-likelihood of the
set S = {x1, . . . , xn} under the model is log p(S|θ) =

∑
i log p(xi|θ).

Now we perform one E-step in the EM toward maximizing the log-likelihood, which is derived by
the following Jensen lower bound:

log p(S|θ) =
n∑

i=1

log

p∑
j=1

p(xi, ci = j) ≥
n∑

i=1

p∑
j=1

q(j|i) log p(xi, ci = j)

q(j|i)
(4)

where q(j|i) is the variational distribution and the bound is tight if q(j|i) = p(ci = j|xi). Although
the latter can be derived in a closed form, we aim to formulate an optimization problem for q(j|i).
We use a joint variational form instead, i.e., qij := q(j|i) · q(i) with q(i) := 1/n. Then maximizing
the lower bound in (4) with respect to the (n× p) matrix q = (qij) is equivalent to solving:

min
q

∑
ij

C ′
ijqij −H(q), where C ′

ij = − log p(xi, ci = j) =
||xi − zj ||2

2ϵ
+ const. (5)

By having the quadratic kernel k(x, z) = − 1
2 ||x − z||2 which is (conditionally) positive defi-

nite (Schölkopf & Smola, 2002), we see that (5) reduces to (2) except for the first constraints∑
i qij = 1/p (the other constraints

∑
j qij = 1/n are automatically met by construction). Note

that the quadratic kernel approximates the dot-product (in the RKHS) if the norms of the points are
roughly constant.

Hence the conventional E-step of the EM algorithm coincides with the OT-based attention weight
computation (2) without the balanced assignment constraints

∑
i qij = 1/p. Conversely, if we

consider to maximize the lower bound (4) with the extra balanced assignment constraints on the
variational distribution q = (qij), the corresponding E-step exactly reduces to the OT solution (2).

Once the E-step is done (i.e., q is found), we perform the M-step, that is, maximizing the lower bound
in (4) with respect to θ while q is fixed. This admits a closed-form update equation,

znewj =

∑n
i=1 qijxi∑n
i=1 qij

(j = 1, . . . , p). (6)
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Note that if we imposed the balanced assignment constraints, the denominator of (6) is constant (1/p),
and by concatenating znewj ’s, it exactly reduces to the OTKE formula (1) (up to a constant factor).
But, even without the constraints, the M-step in (6) suggests to normalize (balance) the scales of the
transformed vectors

∑
i qijxi across j = 1, . . . , p, according to the reference marginals

∑
i qij (how

many points are assigned to zj).

This establishes a very close connection between OTKE and the EM-updated mean parameters of
the Gaussian mixture. Note that our derivation showed that OTKE is recovered by just one EM step,
and there is possibility of extending it by taking multiple EM steps. Furthermore, this opens up
other interesting generalization of OTKE through the (EM) mixture set data fitting perspective. We
summarize below reasonable and interesting generalization/extension of OTKE in four folds:

1. Instead of fixing mixing proportions and (shared) covariances in the Gaussian mixture as in
(3), we can also incorporate them as parameters of the model in conjunction with the means.

2. Instead of just one EM step, we can take multiple (k) EM steps with k as a hyperparameter.
3. It becomes an option whether the E-step is solved with the balanced assignment constraints

(solving the OT problem) or not (regular E-step). This enables more flexible modeling.
4. OTKE can be seen as an (single-step) EM which starts from the references zj’s as an initial

iterate. Not just using them as an initial iterate, we can also place a prior distribution on
the Gaussian mixture parameters, that is, p(θ) which serves as learnable model parameters.
This allows us to define the embedding as the posterior distribution emb(S) = p(θ|S).

These extensions of OTKE are incorporated into a single framework, which becomes a novel set
embedding function viewed as a differentiable MAP Expectation-Maximization for a Gaussian
mixture.

4 DIFFERENTIABLE EM (DIEM)

Figure 1: DIEM’s graphical
model diagram.

We consider a Gaussian mixture model with non-fixed mixing propor-
tions and covariances:

p(x|θ) =
p∑

j=1

πjN (x; zj , Vj), θ = {πj , zj , Vj}pj=1 (7)

where the covariances Vj are typically chosen as diagonal (d × d)
matrices1 to reduce the computational overhead. Given the mixture θ,
the set elements are considered i.i.d., p(S|θ) =

∏n
i=1 p(xi|θ). Now we impose a prior distribution on

θ where the Dirichlet-Normal-Inverse-Wishart (Dir-NIW for short) would be a fairly natural choice:

p(θ|Λ) = Dir(π; η) ·
p∏

j=1

NIW(zj , Vj ;µj , λ,Σj , ν), Λ = {η, λ, ν, {µj ,Σj}pj=1}. (8)

This defines a graphical model (whose diagram shown in Fig. 1) where Λ generates mixture parameters
θ’s, one for each set S, and each θ generates x1, . . . , xn ∈ S. We emphasize that the reason we
consider the prior is that we can express the process of how the model parameters impact on the final
output in a more principled manner, beyond just having them as an initial iterate. For simplicity, the
prior parameters η, λ, ν are shared across the components. That is, Dir(π; η) ∝

∏
j π

η−1
j where η is

scalar, and NIW(zj , Vj) = N (zj ;µj , Vj/λ) · IW(Vj ; Σj , ν) for all j = 1, . . . , p, where λ, ν are
scalar, µj ∈ Rd, and Σj are positive diagonal matrices.

Then we define our set embedding function emb(S) → RD as the MAP estimate of the Gaussian
mixture θ, denoted by θMAP (S) := argmaxθ p(θ|S,Λ), which is approximated by the k-step EM
update. And the prior parameters Λ will constitute the model parameters of the embedding function
emb(S) to be trained. The EM update equations for the MAP can be derived in closed forms. More
specifically, from the following lower-bound of the log-posterior (“=c” means equal up to constant)

log p(θ|S,Λ) =c log p(θ|Λ) + log p(S|θ) ≥ log p(θ|Λ) +
∑
ij

q(j|i) log p(xi, j)

q(j|i)
, (9)

1In some of our experiments in Sec. 6, we used fixed spherical covariances instead which performed better.
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Figure 2: Network diagrams of our Differentiable EM (DIEM) model. (Left) θ = emb(S; Λ) as
a feed-forward network that performs the k-step MAP EM starting from the mode of the prior θ0.
(Right) Multi-head representation by MHP where we propose three strategies. See text for details.

the E-step maximizes the lower bound with respect to q (with θ fixed), which yields

E-step: q(j|i) = πjN (xi; zj , Vj)∑
j πjN (xi; zj , Vj)

or q(j|i) = n · SK(C = {− log p(xi, j)}, ϵ = 1). (10)

The former formula in (10) is the regular E-step without the balanced assignment constraints, and the
latter is the solution with the constraints where SK(C, ϵ) indicates the solution of the OT problem
via the SK algorithm (c.f., (2) and (5)). Note that we multiply the latter by n to have conditional
distributions q(j|i).
The M-step is the log-prior regularized weighted log-likelihood maximization with respect to θ (with
q fixed), which admits a closed-form solution (Appendix B.1 for derivations)

M-step: π′
j =

∑
i q(j|i) + τη
n+ p · τη

, z′j =

∑
i q(j|i)xi + µjτλ∑

i q(j|i) + τλ
,

V ′
j =

∑
i q(j|i)(x2

i − (z′j)
2) + Σjτ1 + (µ2

j − (z′j)
2)τλ∑

i q(j|i) + τν
(11)

where all operations including squaring are element-wise. The τ values originate from the prior,
defined as: τη = η − 1, τλ = λ, τ1 = 1, and τν = ν + d + 2. Note that τ ’s represent the strength
of the prior impact: turning them off to 0 completely ignores the prior and leads to the maximum
likelihood M-step update. Instead of dealing with them differently, we simplify it by collapsing them
into a single hyperparameter τ (= τη = τλ = τ1 = τν). Then the simplified M-step becomes:

π′
j =

∑
i q(j|i) + τ

n+ p · τ
, z′j =

∑
i q(j|i)xi + µjτ∑

i q(j|i) + τ
, V ′

j =

∑
i q(j|i)x2

i + (Σj + µ2
j )τ∑

i q(j|i) + τ
− (z′j)

2. (12)

Now we can control τ to impose the prior impact in the set embedding: smaller (larger) τ for lower
(higher, resp.) prior impact. We treat τ as the hyperparameter (e.g., chosen by validation) while
Λ = {µ,Σ} constitutes the learnable prior parameters.

As an initial iterate θ0 of the EM, we use the mode of prior p(θ|Λ), which equals

Initial θ0: π0
j =

1

p
, z0j = µj , V 0

j =
Σj

τ + 1
. (13)

Note that θ0 is a function of Λ. We deal with multiple (k) EM steps, θ0 → θ1 → · · · → θk, each
following E-step (10) and M-step (12), and the final θk is a function of Λ. Overall, from Λ to the
final iterate θk constitutes a feed-forward pass, and it is composed of all differentiable operations.
The final output emb(S; Λ) = θk ≈ θMAP (S; Λ) is then transformed to a vector representation by
concatenating the parameters in θk in a fixed order (e.g., cat(πk

1 , z
k
1 , V

k
1 , πk

2 , z
k
2 , V

k
2 , . . . , πk

p , z
k
p , V

k
p )).

The feed-forward network of emb(S; Λ) is visualized in Fig. 2 (Left).

Multi-head representation. We can also extent the model to have multi-head representation, which
is simply done by replicating the process H times with different prior parameters Λ1, . . . , ΛH . See
Fig. 2 (Right). We have H outputs from the MAP-EM set embedding networks, denoted by θ(h) for
h = 1, . . . ,H . Then the final output is a pooling from these θ(h)’s, and we propose three different
options for this multi-head pooling (MHP): i) PC (parameter-concatenation) simply concatenates
θ(h)’s in a fixed order, ii) SB (select-best) computes the marginal data likelihood log p(S|Λh) for each
h and select/return the one with the largest score only, and iii) SB2 outputs the additional one-hot
encoding of the selected mixture’s ID in addition to SB’s output. Note that PC makes sense in that we
have the supports of the input set covered by all H mixtures together, while SB strategy is motivated
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from the conventional practice in EM learning where we run EM algorithm multiple times with
differential initial iterates and take the one with the highest likelihood score. SB2 additionally links
the output to the specific mixture parameters selected.

Unsupervised learning. DIEM can be typically used in supervised learning, where the output of
DIEM(S) is fed into subsequent layers (including the classification head) in a prediction network,
and updated in an end-to-end learning manner. Beyond this, DIEM can be trained with only sets
{S1, . . . , Sm} without target labels. This is naturally done by marginal data likelihood maximization
for mixture learning, where we maximize

∑m
i=1 log p(Si) with respect to the prior parameters Λ. We

can perform EM for optimizing the objective (in this case, the off-line EM until convergence with the
entire training sets, without the auto-diff backprop mode), or alternatively the k-means clustering.
The latter leads to the unsupervised learning algorithm similar to that of OTKE (Mialon et al., 2021).

5 RELATED WORK

Set representation learning. Prior to the attention-based approaches, the neural statistician (Edwards
& Storkey, 2017) aims to build a model that learns the statistics of an input set, while DeepSet (Zaheer
et al., 2017) has the element-wise nonlinear transformation followed by a simple mean or max pooling
to aggregate features. Although the universality of this network architecture was partially proved, the
limitation was found (Wagstaff et al., 2019), and network structures more suitable for exchangeability
and permutation invariance were suggested (Garnelo et al., 2018; Bloem-Reddy & Teh, 2019).

Attention-based methods. Self attention was shown to be very successful for modeling set-structured
data (Vinyals et al., 2016; Yang et al., 2018; Ilse et al., 2018; Kim et al., 2019). While there were
several sophisticated attempts to reduce the quadratic computational cost of self attention (Wang
et al., 2020; Kitaev et al., 2020), the inducing-point approaches that introduce learnable parameters
as queries are especially suitable for set inputs (Lee et al., 2019a; Pritzel et al., 2017; Skianis et al.,
2020; Mialon et al., 2021). The attention mechanism was analyzed rigorously in (Tsai et al., 2019)
providing unifying kernel interpretation. Applying multiple EM steps in our DIEM is architecturally
similar to the recent Perceiver model (Jaegle et al., 2021) with multiple latent-attention layers.

Mixture-based representation. There was an attempt to define the similarity between two images
(image as a set of fixed feature vectors, e.g., Fisher vectors (Perronnin et al., 2010)) using mixture
models about a decade ago (Liu & Perronnin, 2008). Similar to ours, they represent each image as a
MAP estimated mixture density, and the similarity between two images is measured as a divergence
between the corresponding mixture densities. However, instead of treating the pipeline of whole EM
steps as a differentiable object and learning the prior parameters as in our DIEM, they merely apply a
single MAP-EM step to obtain a fixed density for each image, where the initial mixture for EM is
also fixed from global offline learning with entire training images.

6 EVALUATION

We evaluate our DIEM model empirically on two different types of tasks: i) counting and clustering
problems (Sec. 6.1, 6.2) to verify the model’s capability of learning general set representations by
modeling interaction between set elements, ii) large-scale biological sequence classification and NLP
tasks (Sec. 6.3, 6.4, 6.5) to test the performance of the proposed model on real-world problems in
both supervised and unsupervised settings.

The hyperparameters in our DIEM include: p (the mixture order), H (the number of heads), k (the
number of EM steps), τ (prior impact), and the multi-head pooling strategy (either of PC, SB, or SB2).
We report the results of the best combinations that are selected by cross validation. The empirical
study on the impact of these hyperparameters is summarized in Appendix C.4. The other option is
the mixture modeling: we learn both means and covariances for counting, clustering, and SCOP 1.75
datasets, while covariances are fixed for SST-2 and DeepSEA.

6.1 OMNIGLOT UNIQUE CHARACTER COUNTING

This task, originally devised in (Lee et al., 2019a), is useful to verify capability of modeling interaction
between set elements. From the OMNIGLOT dataset (Lake et al., 2015) which contains 1,623
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Table 1: Unique character counting on OMNIGLOT. The averaged 0/1 accuracy results.
Method Small set Large set
DeepSet (Zaheer et al., 2017) 0.4617± 0.0076 0.1927± 0.0091

Dot-prod Attn (Yang et al., 2018; Ilse et al., 2018) 0.4471± 0.0076 N/A
SetTransformer (SAB + PMA) (Lee et al., 2019a) 0.6037± 0.0075 0.3191± 0.0050

OTKE (Mialon et al., 2021) 0.5754± 0.0130 0.3352± 0.0098

DIEM (Ours) 0.7153± 0.00670.7153± 0.00670.7153± 0.0067 0.4440± 0.00690.4440± 0.00690.4440± 0.0069

different handwritten characters with 20 examples each, we build a set by randomly selecting n
images, and the task is to predict the number of unique characters in the set. Following the data
construction protocol from (Lee et al., 2019a), we split the 1,623 characters into training/validation/test
splits so that the test dataset contains only unseen characters. Specifically, we randomly choose
the number of images n uniformly from {Nmin, . . . , Nmax}, then choose the number of unique
characters c randomly from {cmin, . . . , n}. Then we randomly sample c different classes (characters),
and sample n images from those classes while ensuring that all classes have at least one image. We
form two experimental settings: i) Small set (Nmin = 6, Nmax = 10, cmin = 1) originally used
in (Lee et al., 2019a) and ii) (a more challenging) Large set (Nmin = 11, Nmax = 30, cmin = 5).

For the models, we adopt a similar feature extractor architecture as (Lee et al., 2019a): first apply four
Conv-BN-ReLU layers to each (element) image to have feature representation ϕ(x), then perform
the set embedding emb(S) whose output is fed into a fully connected layer to return the Poisson
parameter λ. The final loss function is the negative Poisson log-likelihood − log p(c|λ). The batch
size is 32 (sets) for both datasets.

Results. We report the 0/1 prediction accuracy averaged over 10 random runs in Table 1. OTKE, after
validation, uses (p = 100, H = 1) for the small set and (p = 50, H = 2) for the large set. Our DIEM
takes (p = 20, H = 3, k = 2, τ = 10−3, PC) for the small set and (p = 50, H = 2, k = 2, τ = 10−3,
PC) for the large set. For both datasets, our DIEM outperforms the competing approaches by large
margin. Unlike OTKE, we have prior regularization and multiple EM steps which appear to be
important to improve the performance.

6.2 AMORTIZED CLUSTERING

The task of amortized clustering is to learn a function f(S) → Θ where S = {x1, . . . , xn} is a
(data) set of n points, and Θ = {α,m,C} is the parameters of the mixture of Gaussians, p(x; Θ) =∑

j αjN (x;mj , Cj), best fit to the data. We follow the setup similar to (Lee et al., 2019a) where
instead of providing the supervised data of pairs2 {(S,Θ)}, we are only given the set data S, and
the loss function is the negative log-likelihood − log p(S|Θ). Following (Lee et al., 2019a), we form
two datasets: i) Synthetic dataset where n 2D data points are sampled from a randomly generated
mixture of four Gaussians, and ii) CIFAR-100 images where we first sample four classes out of
100, and sample n images from the classes to form a set S. In both cases n ∈ {100, . . . , 500}. For
CIFAR-100, each image is represented as a 512-dim vector from a VGG network pre-trained on the
training set (Simonyan & Zisserman, 2014).

For our DIEM (and OTKE), we first apply a simple linear layer transformation to have features ϕ(x).
Then the output of the set embedding emb(S) is fed into a fully connected layer to have the Gaussian
mixture parameters Θ. For the competing DeepSet and SetTransformer models, we faithfully follow
the network structures in (Lee et al., 2019a). The details are summarized in Appendix C.2.

Results. The results are reported in Table 2 where the test log-likelihood scores and the adjusted
rand index (ARI) are shown for the synthetic and CIFAR-100 datasets, respectively. As references,
we also report the oracle performances: (Synthetic) the true mixture used to generate the data,
and (CIFAR-100) the full offline EM-trained mixture model. Although SetTransformer greatly
outperforms DeepSet, our DIEM exhibits further improvement over SetTransformer by large margin.
Relatively poor performance of OTKE may be due to only one-step EM update, compared to our
DIEM that used k = 3 EM steps. For instance, DIEM also showed degraded performance when
k = 1 is used (Fig. 10 in Appendix C.4). Another reason of success of DIEM is the prior-induced
regularization (τ = 0.01) whereas OTKE has no such regularization (Fig. 11 in Appendix C.4).

2This is the typical setup for the research topic called deep amortized clustering (Lee et al., 2019b; Pakman
et al., 2020; Genevay et al., 2019), which is different from our general set representation learning.
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Table 2: Amortized clustering on 2D synthetic data and CIFAR-100. For CIFAR-100, since it was
difficult to obtain exactly the same pre-trained VGG network as in (Lee et al., 2019a), we ran all
models with our own pre-trained VGG network (about 71% test accuracy compared to 68.54%
from (Lee et al., 2019a)).

Method Synthetic CIFAR-100
Log-likelihood ↑ Adjusted rand index ↑

Oracle -1.4726 0.9842
DeepSet (mean pooling) (Zaheer et al., 2017) −1.7606± 0.0213 0.5736± 0.0117

DeepSet (max pooling) (Zaheer et al., 2017) −1.7692± 0.0130 0.5463± 0.0154

Dot-prod Attn (Yang et al., 2018; Ilse et al., 2018) −1.8549± 0.0128 N/A
SetTransformer (SAB + PMA) (Lee et al., 2019a) −1.5145± 0.0046 0.9246± 0.0113

SetTransformer (ISAB16 + PMA) (Lee et al., 2019a) −1.5009± 0.0068 0.9381± 0.0122

OTKE (p = 4, H = 5) (Mialon et al., 2021) −1.7803± 0.0028 0.8207± 0.0074

DIEM (p = 4, H = 5, k = 3, τ = 0.01, SB2) (Ours) −1.4873± 0.0018−1.4873± 0.0018−1.4873± 0.0018 0.9770± 0.00190.9770± 0.00190.9770± 0.0019

Table 3: SCOP 1.75 classification accuracies (top 1/5/10) for unsupervised and supervised learning.
Method Unsupervised Supervised
DeepSF (Hou et al., 2019) N/A 73.0 / 90.3 / 94.5
CKN (Chen et al., 2019a) 81.8± 0.8 / 92.8± 0.2 / 95.0± 0.2 84.1± 0.1 / 94.3± 0.2 / 96.4± 0.1
RKN (Chen et al., 2019b) N/A 85.3± 0.3 / 95.0± 0.2 / 96.5± 0.1
SetTransformer (Lee et al., 2019a) N/A 79.2± 4.6 / 91.5± 1.4 / 94.3± 0.6
Rep-the-Set (Skianis et al., 2020) N/A 84.5± 0.6 / 94.0± 0.4 / 95.7± 0.4
OTKE (Mialon et al., 2021) 85.8± 0.2 / 95.3± 0.1 / 96.8± 0.1 88.7± 0.3 / 95.9± 0.2 / 97.3± 0.1

DIEM (Ours) 86.4± 0.186.4± 0.186.4± 0.1 / 95.6± 0.195.6± 0.195.6± 0.1 / 97.1± 0.197.1± 0.197.1± 0.1 90.5± 0.290.5± 0.290.5± 0.2 / 96.6± 0.296.6± 0.296.6± 0.2 / 97.6± 0.297.6± 0.297.6± 0.2

6.3 PROTEIN FOLD CLASSIFICATION TASK ON SCOP 1.75

Protein fold classification is the well-known task in bioinformatics where the goal is to predict the
fold class for a given protein sequence. We use the preprocessed data of the SCOP version 1.75 and
2.06 from (Hou et al., 2019; Mialon et al., 2021), which consists of 19,245 sequences (14,699/2,013
training/validation from SCOP 1.75 and 2,533 test from SCOP 2.06). Each input protein is a sequence
of amino acids whose length ranges from tens to thousands, and each amino acid is represented as a
45-dimensional vector based on the PSSM, secondary structure, and more. It is a multi-classification
task to predict one of the 1,195 different folds to which a protein sequence belongs.

For the models, we adopt the overall network architecture from (Chen et al., 2019a; Mialon et al.,
2021): each input sequence is treated as a set S, each set element ϕ(x) is a learnable Gaussian kernel
mapping on 10-mers via Nyström RKHS approximation with L anchor points (we use L = 1024
for unsupervised learning, and L = 512/128 for supervised learning), and the output of the set
embedding emb(S) is fed into the final softmax linear classification layer. For the competing
methods, we replace the set embedding emb(S) by: the global mean pooling layer for CKN (Chen
et al., 2019a), the OTKE layer (Mialon et al., 2021), and our DIEM layer. In the unsupervised learning,
we sequentially train-then-fix the first two layers without class labels: train ϕ(x) via k-means, fix it,
do unsupervised training of emb(S), and fix it, after which the last classification layer is trained with
class labels. We use the k-means clustering for unsupervised learning. In the supervised learning
case, the whole network is trained end-to-end.

Results. Classification accuracy (top 1/5/10) for unsupervised and supervised learning are shown in
Table 3. In our DIEM, we fix the covariances V as identity and perform k = 1 OT E-step for the
unsupervised learning, while we learn priors for V and take k = 2 regular E-steps for the supervised
learning. The details of the hyperparameters are summarized in Table 12 of Appendix C.3. The result
shows that our approach outperforms all state-of-the-arts for both learning settings. Compared to
OTKE, the increased accuracy of our DIEM can be mainly attributed to the prior-induced model
regularization (τ = 10−3 for unsupervised learning) and multiple EM steps (k = 2 for supervised
learning). See also Fig. 12 in the Appendix for the hyperparameter impact analysis.

6.4 NLP TASK: SENTIMENT CLASSIFICATION ON SST-2

The dataset (Socher et al., 2013) consists of 70,042 movie reviews with positive/negative binary
sentiment. We follow the experimental protocol from (Mialon et al., 2021) where the original 67,349
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Table 4: SST-2 sentiment classification accuracies for unsupervised and supervised learning.
Method Unsupervised Supervised
BERT [CLS] embedding (Devlin et al., 2019) 84.6± 0.3 90.3± 0.1
BERT mean pooling (Devlin et al., 2019) 85.3± 0.4 90.8± 0.190.8± 0.190.8± 0.1
SetTransformer (Lee et al., 2019a) N/A 87.9± 0.8
Approximate Rep-the-Set (Skianis et al., 2020) N/A 86.8± 0.9
Rep-the-Set (Skianis et al., 2020) N/A 87.1± 0.5
OTKE (Mialon et al., 2021) 86.8± 0.3 88.1± 0.8

DIEM (Ours) 87.6± 0.287.6± 0.287.6± 0.2 88.7± 0.4

training data are split into 80%/20% training/validation sets, and the 872 validation reviews form
a test set. This is because test evaluation on the original test set requires online submission in the
GLUE (Wang et al., 2019) leaderboard. Similar to (Mialon et al., 2021), we adopt the 768-dimensional
word vectors from the pre-trained BERT model (Devlin et al., 2019; Wolf et al., 2019), and use the
Gaussian RKHS mapping ϕ(x) approximated by the Nyström method with 2048 (unsupervised) or
64 (supervised) filters. Overall network architectures and learning options are also similar to (Mialon
et al., 2021).

Results. Table 4 summarizes the results. For the unsupervised learning, the proposed DIEM attains
the best accuracy, even outperforming the pre-trained BERT model with the popular [CLS] embedding
or mean pooling. Unlike OTKE that takes a large number of parameters (p = 300, H = 1), our
DIEM has far fewer parameters (p = 3, H = 2, k = 1 with PC multi-head pooling). When we trained
OTKE with the same complexity architecture, it only attained accuracy 86.6± 0.5. The improved
accuracy of DIEM over OTKE is mainly due to the prior-induced regularization (we use τ = 10−3)
and the regular E-step (with the OT E-step, the performance is on par, 86.3± 0.8). For the supervised
learning, both DIEM and OTKE has p = 30, H = 4, and the performance difference mainly comes
from the regular E-step taken by DIEM (τ = 10−6, SB). Although DIEM performs comparably well,
it falls short of the fine-tuned BERT model. As alluded in (Mialon et al., 2021), the set embedding
approaches may not be very attractive in this case due to short sentences (small cardinality sets).

6.5 CHROMATIN PROFILE DETECTION ON DEEPSEA

Table 5: Chromatin profile detection
results on DeepSEA.

Method auROC auPRC
DeepSEA 0.933 0.342
OTKE 0.936 0.360
DIEM (Ours) 0.936 0.360

Finally, we test our DIEM on the large-scale DeepSEA
dataset (Zhou & Troyanskaya, 2015) with about five mil-
lion genomic sequences. It is a multi-label classification task
to predict 919 chromatin profiles. As in (Mialon et al., 2021),
the overall network architecture follows the 1D Conv layer
from DeepSEA, while the pooling layer after the Conv is
replaced by the DIEM layer. The RKHS feature mapping is
not used (identity mapping), and the Gaussian positional encoding3 was adopted. The supervised
learning results are shown in Table 5, where we have marginal improvement over DeepSEA, and the
same performance as OTKE using the (p = 64, H = 1, k = 2, τ = 1) hyperparameter choice.

7 CONCLUSION

In this paper we proposed a novel differentiable EM model for set representation learning. Our model
is built from the perspective of fitting a Gaussian mixture model to the set data that are viewed as
i.i.d. samples, which offers more flexibility and prior-induced model regularization in a principled
Bayesian manner. The proposed model is also shown to generalize the recent set embedding models
based on optimal transport and attention, leading to a computationally efficient model with superb
performance on tasks in bioinformatics and NLP. The mixture fitting perspective can potentially
solve other important problems in set representation learning. For instance, deciding the number of
components/references can be translated into the mixture order selection problem, and tackled by
well-known information criteria methods. This will be left as interesting future research.

3As in (Mialon et al., 2021), the cost matrix in OT is multiplied by the RBF-like position similarity kernel
Pij = exp(−(i/n− j/p)/σ2). Alternatively we tried random feature extension (Rahimi & Recht, 2008) for
the position index i, and concatenated them to ϕ(xi), however, the results were more or less the same.
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Appendix
We provide some formal derivations, experimental details and additional results that are skipped in
the main paper.

A COMPLEXITY AND RUNNING TIME

In this section we analyze the complexity, especially the number of parameters and time complexity
for a forward pass, of our DIEM. We also compare the wall clock running time for OTKE (Mialon
et al., 2021) and our DIEM with different numbers of EM steps.

A.1 COMPLEXITY

Notation. First, we recall the notation: The input set S = {x1, . . . , xn} contains n d-dimensional
feature vectors xi ∈ Rd. We consider the OTKE model with p references {zj}pj=1 (each zj ∈ Rd) as
parameters. To be comparable, DIEM has p Normal-Inverse-Wishart (NIW) parameters {µj ,Σj}pj=1

(µj ∈ Rd, Σj is a (d × d) diagonal matrix), each of which defines a prior for each component
N (zj , Vj) in the Gaussian mixture. For simplicity, we assume single-head representations (i.e.,
H = 1) for both models, since multi-head (H heads) representation increases all compute and
memory linearly by H .

Numbers of parameters. The numbers of parameters are: pd (OTKE) vs. 2pd (DIEM), Hence
DIEM requires only twice as many parameters as OTKE.

Time complexity. First, one forward pass in OTKE consists of: [O1] computing the cost/kernel
matrix C which is (n× p) with Cij = −k(xi, zj), [O2] solving the OT problem (2) by the Sinkhorn-
Knopp (SK) matrix scaling algorithm, and [O3] performing attention-weighted sums (1) to have the
final embedding. The least amount of time for [O1] is O(npd) to inspect each element of xi and zj
once (e.g., linear kernels and squared-distance based kernels require O(npd)). Denoting the number
of SK iterations by M , [O2] takes O(npM), while [O3] requires O(npd). Thus, the time complexity
for one forward pass in OTKE is O(np(M + d)).

For DIEM with k EM steps, [D1] each E-step (10) amounts to computing the Gaussian likelihoods,
and additionally running the SK algorithm if the OT E-step is used. [D2] Each M-step (12) mainly
consists of the weighted sums. [D1] takes O(npd) for the regular E-step, and O(np(M + d)) for the
OT E-step, while [D2] requires only O(npd). Hence, the time complexity for one forward pass in
our DIEM is O(knp(M + d)), only k times as much as OTKE.

We summarize it in Table 6. The actual wall clock running times are compared in the next section.

A.2 (FORWARD PASS) RUNNING TIME

To measure the forward pass time for OTKE and our DIEM, we consider first the large-scale SCOP
1.75 dataset: the input feature dimension d = 512 (from Gaussian RKHS) and the set cardinality
n = 1091. To see the impact of the set cardinality, we inject random noise features to the sets to
make twice and four times larger sets (n = 2182 and n = 4364). For fair comparison, both OTKE
and DIEM use one head (H = 1) with the number of references (or mixture components) p = 100.
The batch size is 128. We run all models on the same machine, Core i7 3.50GHz CPU and 128 GB
RAM with a single GPU (RTX 2080 Ti).

Fig. 3 compares the average per-batch forward pass time for OTKE and DIEM with different EM
steps (k = 1 to 4). Although DIEM has an option to choose the E-step type (either regular E-step
or OT E-step), we take all OT E-steps to have fair comparison with OTKE. (For the running time
comparison between these two E-step types, please refer to Fig. 5.) As shown in Fig. 3, increasing
the number of EM steps in our DIEM incurs only a small amount of computational overhead. The
impact of the set cardinality n on the running time exhibits similar trends for both OTKE and DIEM.

In Fig. 4, we compare running time of OTKE, SetTransformer (Lee et al., 2019a), and DIEM (with
k = 3 EM steps). Here we use a minimal network structure for SetTransformer: one SAB block for
the encoder, one PMA and one SAB block for the decoder. For larger sets (×2 and ×4) we reduce
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Table 6: Numbers of parameters and time complexity of OTKE (Mialon et al., 2021) and DIEM. We
assume single-head models (H = 1). DIEM follows k EM steps. Here, n = input set cardinality,
d = input feature dimension, p = number of references (OTKE) or mixture components (DIEM),
and M = number of SK iterations. Time complexity for one forward pass.

OTKE DIEM
Number of parameters pd 2pd

Time complexity O(np(M + d)) O(knp(M + d))

1091(×1) ×2 ×4
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Figure 3: Average (per-batch) forward pass time (in milliseconds) for OTKE and DIEM with different
EM steps (k = 1 to 4) on the SCOP 1.75 dataset. In addition to the original set cardinality n = 1091
(denoted by ×1 on the left corner), we increase n by two (×2) and four times (×4). To be fair with
OTKE, we use OT E-steps during the k EM steps, denoted by sequences of 1’s in the legend (e.g.,
k = 4 (1111) indicates that four OT E-steps are used during k = 4 EM steps).

the batch size for SetTransformer to fit into the GPU memory. We need not reduce the batch size for
OTKE and DIEM as they fit into the GPU memory for all three set cardinalities.

The result shows that OTKE and DIEM are scalable to large sets whereas SetTransformer takes
significantly longer time, which is well aligned with the fact that self-attention suffers from quadratic
computational cost. In Fig. 5, we compare the running time between OT E-steps and regular E-steps
in our DIEM. The maximum number of Sinkhorn-Knopp iterations for solving the OT problem is set
to 10. While the regular E-step is consistently faster than the OT E-step, the increased overhead of
the OT E-step seems to be minor compared to the overall running time.

For smaller datasets, we consider the OMNIGLOT counting (large set) and CIFAR100 clustering
datasets. The running time of OTKE and DIEM on these two datasets is depicted in Fig. 6. For the
OMNIGLOT large set, we set p = 50, H = 2, d = 64 for both models where n ∈ {11, . . . , 30} and
batch size is 32 sets. For CIFAR-100 clustering, we test with p = 4, H = 5, d = 512 for both models
where n ∈ {100, . . . , 500} and batch size is 10 sets. Our DIEM takes regular E steps. We vary the
number of EM steps k in DIEM from 1 to 5. The additional forward pass time incurred by extra EM
steps in DIEM looks permissible, the overall running time of DIEM being constant factor comparable
to that of OTKE.

B MATHEMATICAL DERIVATIONS

In Appendix B.1, we provide detailed derivations for MAP EM update equations (10-11) in the
main paper. In Appendix B.2, we formally show that the inducing-point attention module of
SetTransformer (Lee et al., 2019a) known as PMA, is actually a special case of OTKE (Mialon et al.,
2021).

13



Published as a conference paper at ICLR 2022

1091(×1) ×2 ×4
Set cardinality (n)

10

15

20

25

30

35

Fo
rw

ar
d-

pa
ss

 ti
m

e 
(m

se
c)

DIEM k=3 (111)
OTKE
SetTransformer

Figure 4: Running time comparison among OTKE, SetTransformer, and DIEM. Average (per-batch)
forward pass time (in milliseconds) on the SCOP 1.75 dataset with three different set cardinalities
(original, ×2, and ×4). DIEM takes three EM steps (k = 3 (111) indicates that three OT E-steps are
used during k = 3 EM steps). SetTransformer uses a minimal network structure: one SAB block for
the encoder, one PMA block and one SAB block for the decoder.
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Figure 5: OT E-steps vs. regular E-steps in our DIEM. Average (per-batch) forward pass time on the
SCOP 1.75 dataset with three different set cardinalities (original, ×2, and ×4). We compare DIEM
with k = 3 (111) (all OT E-steps) with k = 3 (000) (all regular E-steps).
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Figure 6: Running time comparison between OTKE and DIEM with k = 1 to k = 5 EM steps on
(Left) OMNIGLOT counting (large set) and (Right) CIFAR-100 clustering.
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B.1 MAP EM DERIVATIONS

E-step is optimization of the lower bound in (9) with respect to q(j|i) with θ fixed. Hence it is
identical to the maximum likelihood E-step for the lower bound of (4). Now we derive the M-step,
maximizing the lower bound in (9) with respect to θ with q(j|i) fixed. That is,

argmax
θ

L(θ) := log p(θ|Λ) +
∑
ij

q(j|i) log p(xi, j). (14)

The log-prior term of the Dir-NIW density can be expanded as (“=c” refers to equality up to constant):

log p(θ|Λ) =c − ν + d+ 2

2
log |Vj | −

λ

2
(zj − µj)

⊤V −1
j (zj − µj)−

1

2
Tr
(
ΣjV

−1
j

)
+ (η − 1)

∑
j

log πj . (15)

The weighted log-likelihood term in (14) can be written as:∑
ij

q(j|i) log p(xi, j) =c

∑
ij

q(j|i)
(
log πj −

1

2
log |Vj | −

1

2
(xi − zj)

⊤V −1
j (xi − zj)

)
. (16)

Combining (15) and (16), we take derivatives with respect to θ and solve for θ as follows:

∂L

∂πj
=

η − 1

πj
+

∑
i q(j|i)
πj

= const =⇒ π′
j =

∑
i q(j|i) + η − 1

n+ p · (η − 1)
(17)

∂L

∂zj
= −λV −1

j (zj − µj)− V −1
j

∑
i

q(j|i)(zj − xi) = 0 =⇒ z′j =

∑
i q(j|i)xi + µjλ∑

i q(j|i) + λ
(18)

∂L

∂V −1
j

=
1

2

((
ν + d+ 2 +

∑
i

q(j|i)
)
Vj − λ(zj − µj)

2 − Σj −
∑
i

q(j|i)(xi − zj)
2

)
= 0

=⇒ V ′
j =

∑
i q(j|i)(xi − zj)

2 +Σj + λ(zj − µj)
2∑

i q(j|i) + ν + d+ 2
(19)

=

∑
i q(j|i)(x2

i − (z′j)
2) + Σj + λ(µ2

j − (z′j)
2)∑

i q(j|i) + ν + d+ 2
, (20)

where the equality between (19) and (20) can be easily verified from the optimal z′j in (18).

B.2 PMA OF SETTRANSFORMER IS A SPECIAL CASE OF OTKE

The PMA (inducing-point attention) module of SetTransformer (Lee et al., 2019a) is an attention
block that incorporates a fixed number of learnable parameters as queries, and plays an important role
in SetTransformer to have a fixed size vector representation for a variable-length input set. Formally,
PMA module has learnable p vectors Z = {z1, . . . , zp}, and for a given set S = {x1, . . . , xn}, it
performs the (dot-product) attention operation with each zj as a query and S as keys and values.
Hence each zj is transformed as follows:

zj →
n∑

i=1

exp
(
(Wqzj)

⊤(Wxi)/
√
d
)∑n

i=1 exp
(
(Wqzj)⊤(Wxi)/

√
d
)Wxi, (21)

where Wq and W are the weight matrices for queries and keys/values, respectively. Since zj itself is
a learnable parameter vector, it is redundant to introduce Wq , and we can subsume it under zj , which
leads to

PMA: zj →
n∑

i=1

exp
(
z⊤j (Wxi)/

√
d
)∑n

i=1 exp
(
z⊤j (Wxi)/

√
d
)Wxi. (22)

Next, we build a special OTKE module by having the RKHS feature mapping ϕ(xi) = Wxi, which
corresponds to the linear kernel k(xi, zj) = z⊤j ϕ(xi) = z⊤j Wxi. Furthermore, we consider the OT
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Table 7: (OMNIGLOT Small) Unique character counting on the OMNIGLOT small set. The averaged
0/1 accuracy results. In DIEM, k = 2(00) (or k = 1(0)) means 2 (or 1) EM steps used both with
regular E-steps.

Method Small set
DeepSet (Zaheer et al., 2017) 0.4617± 0.0076

Dot-prod Attn (Yang et al., 2018; Ilse et al., 2018) 0.4471± 0.0076

SetTransformer (SAB + PMA) (Lee et al., 2019a) 0.6037± 0.0075

OTKE (p = 100, H = 1) (Mialon et al., 2021) 0.5754± 0.0130

OTKE (p = 50, H = 2) (Mialon et al., 2021) 0.5686± 0.0187

OTKE (p = 20, H = 3) (Mialon et al., 2021) 0.5216± 0.0182

DIEM (p = 20, H = 3, k = 1(0), τ = 100, SB) (Ours) 0.6304± 0.0056

DIEM (p = 20, H = 3, k = 2(00), τ = 10−3, SB) (Ours) 0.6514± 0.0074

DIEM (p = 20, H = 3, k = 1(0), τ = 100, SB2) (Ours) 0.6229± 0.0114

DIEM (p = 20, H = 3, k = 2(00), τ = 10−3, SB2) (Ours) 0.6665± 0.0087

DIEM (p = 20, H = 3, k = 1(0), τ = 100, PC) (Ours) 0.6083± 0.0194

DIEM (p = 20, H = 3, k = 2(00), τ = 10−3, PC) (Ours) 0.7153± 0.00670.7153± 0.00670.7153± 0.0067

problem between Z and S without the second constraints
∑p

j=1 Qij = 1/n,∀i. That is,

min
Q

∑
ij

CijQij − ϵH(Q) s.t.
n∑

i=1

Qij =
1

p
, ∀j, (23)

with Cij = −k(xi, zj) = −z⊤j Wxi. We can solve (23) using the Lagrange multiplier,

L :=
∑
ij

CijQij − ϵH(Q)−
∑
j

λj

(∑
i

Qij − 1/p
)
. (24)

We set the derivative to 0 and solve for Qij as follows

∂L
∂Qij

= Cij − ϵ(logQij + 1)− λj = 0 =⇒ Qij = exp
(
− Cij/ϵ+ αj

)
, (25)

for some constant αj . Applying the constraints
∑n

i=1 Qij = 1/p determines αj and Qij as:

eαj =
1

p
∑

i exp
(
− Cij/ϵ

) , Qij =
1

p

exp
(
z⊤j (Wxi)/ϵ

)∑n
i=1 exp

(
z⊤j (Wxi)/ϵ

) . (26)

By choosing the entropic regularizer trade-off ϵ =
√
d and applying the OTKE embedding formula

zj →
√
p
∑

i Qijϕ(xi), we get

OTKE: zj →
1
√
p

n∑
i=1

exp
(
z⊤j (Wxi)/

√
d
)∑n

i=1 exp
(
z⊤j (Wxi)/

√
d
)Wxi, (27)

which is equivalent to PMA (22) up to a constant factor. Hence PMA of SetTransformer can be
viewed as an OTKE module without the equal element assignment constraints

∑p
j=1 Qij = 1/n,∀i.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 OMNIGLOT UNIQUE CHARACTER COUNTING

(Original) Small set. This experimental setup is the same as that of (Lee et al., 2019a). The sets of
OMNIGLOT images are generated by: set cardinality n ∼ {6, 7, 8, 9, 10} and the number of unique
characters k ∼ {1, . . . , n}. The batch is composed of 32 sets. The results are summarized in Table 7.

Large set. This large set experiment is built from the sets generated by: set cardinality n ∼
{11, 12, . . . , 30} and the number of unique characters k ∼ {5, . . . , n}. The batch is composed of 32
sets. The results are shown in Table 8.
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Table 8: (OMNIGLOT Large) Unique character counting on the OMNIGLOT large set. The averaged
0/1 accuracy results. In DIEM, k = 2(00) means 2 EM steps used both with regular E-steps.

Method Large set
DeepSet (Zaheer et al., 2017) 0.1927± 0.0091

SetTransformer (ISAB32 + PMA) (Lee et al., 2019a) 0.2456± 0.0068

SetTransformer (ISAB64 + PMA) (Lee et al., 2019a) 0.2836± 0.0087

SetTransformer (SAB + PMA) (Lee et al., 2019a) 0.3191± 0.0050

OTKE (p = 50, H = 2) (Mialon et al., 2021) 0.3352± 0.0098

DIEM (p = 50, H = 2, k = 2(00), τ = 10−6, SB2) (Ours) 0.3887± 0.0071

DIEM (p = 50, H = 2, k = 2(00), τ = 10−6, PC) (Ours) 0.4392± 0.0056

DIEM (p = 50, H = 2, k = 2(00), τ = 10−3, PC) (Ours) 0.4440± 0.00690.4440± 0.00690.4440± 0.0069

DIEM (p = 50, H = 2, k = 2(00), τ = 100, PC) (Ours) 0.3581± 0.0121

Table 9: Amortized clustering on synthetic data. The averaged test log-likelihood scores are shown.
In DIEM, k = 2(00) (or k = 3(000)) means 2 (or 3) EM steps used all with regular E-steps.

Method Synthetic
Oracle -1.4726
DeepSet (mean pooling) (Zaheer et al., 2017) −1.7606± 0.0213

DeepSet (max pooling) (Zaheer et al., 2017) −1.7692± 0.0130

Dot-prod Attn (Yang et al., 2018; Ilse et al., 2018) −1.8549± 0.0128

SetTransformer (SAB + PMA) (Lee et al., 2019a) −1.5145± 0.0046

SetTransformer (ISAB16 + PMA) (Lee et al., 2019a) −1.5009± 0.0068

OTKE (p = 4, H = 5) (Mialon et al., 2021) −1.7803± 0.0028

DIEM (p = 4, H = 5, k = 3(000), τ = 10−6, SB2) (Ours) −1.4883± 0.0021

DIEM (p = 4, H = 5, k = 3(000), τ = 0.01, SB2) (Ours) −1.4873± 0.0018−1.4873± 0.0018−1.4873± 0.0018

DIEM (p = 4, H = 5, k = 3(000), τ = 1, SB2) (Ours) −1.4960± 0.0039

DIEM (p = 4, H = 5, k = 2(00), τ = 0.01, SB2) (Ours) −1.5082± 0.0032

Network architectures and learning options. The feature vectors ϕ(x) of images (set elements)
are formed by applying four Conv(64,3,2,BN,ReLU) layers. For OTKE and our DIEM the output of
the set embedding emb(S) is fed into the fully-connected layers FC(64,ReLU) – FC(1,softplus) to
return the (scalar) Poisson parameter. For SetTransformer ϕ(x) is fed into SAB(64,4) – SAB(64,4) –
PMA(1,8,8) – FC(1,softplus) layers where SAB(d,h) means the set attention block with d/h units/-
heads, and PMA(k,d,h) is the Pooling Multihead Attention layer with k vectors and d/h units/heads.
When the inducing-point attention is used, SAB(64,4) blocks are replaced by ISAB(m,64,4) that has
m inducing points (m = 32 or 64) with 64/4 units/heads. For DeepSet, ϕ(x) is fed into FC(64,ReLU)
– FC(64,-) – Mean-Pool – FC(64,ReLU) – FC(1,softplus) layers. For all models, we use the Adam
optimizer (Kingma & Ba, 2015) with learning rate 10−4 and batch size = 32 sets, until 200K iterations.

C.2 AMORTIZED CLUSTERING

Synthetic 2D data clustering. The results are summarized in Table 9.

Synthetic small set data clustering. We test the models on sets with smaller cardinality: N ∼
{50, . . . , 100} instead of the previous N ∼ {100, . . . , 500}. The results are shown in Table 10.

CIFAR-100 clustering. Results are shown in Table 11.

Network architectures and learning options: For OTKE and our DIEM, we first apply a linear
layer FC(dh,-) to the din-dimensional input vectors to have features ϕ(x), where dh = 128, din = 2
for the synthetic dataset and the small synthetic dataset, and dh = 256, din = 512 for the CIFAR-
100. The output of the set embedding emb(S) is then fed into FC(dh,ReLU) – FC(dout,-) where
dout = 4 + 4 · din+ 4 for α, m, and C, respectively, in the order-4 spherical-covariance Gaussian
mixture parameter output Θ = {α,m,C}. We also apply softmax and softplus layers for α and C,
respectively. For SetTransformer, the din-dimensional inputs are fed into SAB(dh,4) – SAB(dh,4)
– PMA(4,dh,4) – SAB(dh,4) – SAB(dh,4) – FC(dout,-) layers, whereas for the inducing-point
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Table 10: Synthetic small set data clustering. The averaged test log-likelihood scores are shown. In
DIEM, k = 3(000) means 3 EM steps used all with regular E-steps.

Method Small Synthetic
DeepSet (Zaheer et al., 2017) −2.0955± 0.0054

SetTransformer (ISAB16 + PMA) (Lee et al., 2019a) −1.5846± 0.0077

SetTransformer (ISAB32 + PMA) (Lee et al., 2019a) −1.5277± 0.0083

SetTransformer (SAB + PMA) (Lee et al., 2019a) −1.5099± 0.0068

DIEM (p = 4, H = 5, k = 3(000), τ = 10−6, SB2) (Ours) −1.4297± 0.0027

DIEM (p = 4, H = 5, k = 3(000), τ = 10−5, SB2) (Ours) −1.4308± 0.0022

DIEM (p = 4, H = 5, k = 3(000), τ = 10−4, SB2) (Ours) −1.4274± 0.0015

DIEM (p = 4, H = 5, k = 3(000), τ = 10−3, SB2) (Ours) −1.4301± 0.0030

DIEM (p = 4, H = 5, k = 3(000), τ = 10−2, SB2) (Ours) −1.4253± 0.0010−1.4253± 0.0010−1.4253± 0.0010

DIEM (p = 4, H = 5, k = 3(000), τ = 10−1, SB2) (Ours) −1.4343± 0.0015

Table 11: Amortized clustering on CIFAR-100. The averaged test adjusted rand index (ARI) scores
are shown (the higher the better). In DIEM, k = 2(00) (or k = 3(000)) means 2 (or 3) EM steps
used all with regular E-steps.

Method CIFAR-100
Oracle 0.9842
DeepSet (mean pooling) (Zaheer et al., 2017) 0.5736± 0.0117

DeepSet (max pooling) (Zaheer et al., 2017) 0.5463± 0.0154

SetTransformer (SAB + PMA) (Lee et al., 2019a) 0.9246± 0.0113

SetTransformer (ISAB16 + PMA) (Lee et al., 2019a) 0.9381± 0.0122

OTKE (p = 4, H = 5) (Mialon et al., 2021) 0.8207± 0.0074

DIEM (p = 4, H = 5, k = 2(00), τ = 0.01, SB2) (Ours) 0.9709± 0.0013

DIEM (p = 4, H = 5, k = 3(000), τ = 0.01, SB2) (Ours) 0.9770± 0.00190.9770± 0.00190.9770± 0.0019

DIEM (p = 4, H = 5, k = 3(000), τ = 0.01, SB) (Ours) 0.9688± 0.0022

DIEM (p = 4, H = 5, k = 3(000), τ = 10−6, SB2) (Ours) 0.9680± 0.0011

DIEM (p = 4, H = 5, k = 3(000), τ = 1.0, SB2) (Ours) 0.9630± 0.0024
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Table 12: SCOP 1.75 classification accuracies (top 1/5/10) for supervised learning. The hyperparame-
ter L in OTKE and DIEM indicates the number of Nyström anchor points for the approximation of
Gaussian RKHS embedding. In DIEM, k = 2(00) means 2 EM steps used both with regular E-steps.
The hyperparameter L is the number of anchor points used in the Nyström RKHS approximation of
the feature ϕ(x) through the Gaussian kernel mapping on 10-mers (subsequences of length 10).

Method Supervised
DeepSF (Hou et al., 2019) 73.0 / 90.3 / 94.5
CKN (Chen et al., 2019a) 84.1± 0.1 / 94.3± 0.2 / 96.4± 0.1
RKN (Chen et al., 2019b) 85.3± 0.3 / 95.0± 0.2 / 96.5± 0.1
SetTransformer (Lee et al., 2019a) 79.2± 4.6 / 91.5± 1.4 / 94.3± 0.6
Rep-the-Set (Skianis et al., 2020) 84.5± 0.6 / 94.0± 0.4 / 95.7± 0.4
OTKE (p = 50, H = 1, L = 128) (Mialon et al., 2021) 85.2± 0.4 / 94.5± 0.2 / 96.4± 0.2
OTKE (p = 10, H = 5, L = 512) (Mialon et al., 2021) 88.7± 0.3 / 95.9± 0.2 / 97.3± 0.1

DIEM (p = 50, H = 1, k = 2(00), τ = 10−6, L = 128) (Ours) 90.5± 0.290.5± 0.290.5± 0.2 / 96.6± 0.296.6± 0.296.6± 0.2 / 97.6± 0.297.6± 0.297.6± 0.2

DIEM (p = 50, H = 1, k = 2(00), τ = 10−6, L = 512) (Ours) 89.6± 0.3 / 96.4± 0.1 / 97.6± 0.1

attention, the first two SAB(dh,4) blocks are replaced by ISAB(m,dh,4). For DeepSet, the layers
are composed of kd FC(dh,ReLU) layers, Mean-Pool, and (kd − 1) FC(dh,ReLU), followed by
FC(dout,-), where kd = 4 for synthetic and kd = 6 for CIFAR-100. For all models, we use the
Adam optimizer with learning rate 10−3 (10−4 for CIFAR-100) and batch size = 10 sets, until 50K
iterations.

C.3 PROTEIN FOLD CLASSIFICATION TASK ON SCOP 1.75

Unsupervised learning. The best performing DIEM model is found with (p = 100, H = 1, k =
1, τ = 10−3) following the OT E-step. See also Fig. 12 for the results of different prior strength τ
values.

Supervised learning. The results for several different hyperparameter choices are shown in Table 12.

Network architectures and learning options. We faithfully follow (Mialon et al., 2021) for the
overall network architectures and learning options. For instance, the Adam optimizer is used with
batch size 128 for 100 epochs, and the learning rate is initially 0.01 and halved if there is no decrease
in validation loss for 5 consecutive epochs.

C.4 EMPIRICAL STUDY ON HYPERPARAMETER IMPACTS

We empirically analyze the impact of various hyperparameters used in our DIEM model. They are
summarized as follows.

OMNIGLOT (small). We first study the impact of prior strength τ and multi-head pooling strategy.
While fixing the number of EM steps as k = 2, we vary τ ∈ {10−6, 10−3, 100} and the multi-head
pooling strategy ∈ {PC,SB,SB2}. The results are shown in Fig. 7. We have the best accuracy when
τ is the middle value 10−3 compared to the extreme ones (10−6 lowest prior impact and 100 highest
impact). Regarding the multi-head pooling strategy, PC (parameter concatenation) performs the best
for small τ , while SB2 (select best with the selected mixture ID one hot encoding) is slightly better
than PC for τ = 100. Next we test the impact of the number of EM steps k and the prior impact τ .
For this we fix the multi-head pooling strategy as SB2 or PC. As shown in Fig. 8, having multiple
k = 2 EM steps consistently outperform a single EM step. Unlike k = 2, the single EM step models
attained the best performance with the strongest prior impact τ = 100.

Synthetic clustering. We also test the impact of multi-head pooling strategy and prior strength τ on
this synthetic clustering dataset for our DIEM model (p = 4, H = 5, k = 3). As shown in Fig. 9,
SB2 strategy outperforms the other two strategies for all τ values. For SB2, the impact of τ appears
to be minor, while for the other two strategies, we have opposite behavior; larger τ performs better
for PC, and smaller τ improves the performance for SB. Fig. 10 visualizes the impact of the number
of EM steps, where the model is with (p = 4, H = 5, τ = 0.01, SB2). It clearly shows that having
multiple EM steps significantly improve the performance over the single EM step. There is only a
little improvement from k = 2 to k = 3.
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Figure 7: Impact of the prior strength hyperparameter τ and the multi-head pooling strategy for
OMNIGLOT counting (small). The number of EM steps k = 2 fixed.
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Figure 8: Impact of the number of EM steps k and the prior impact τ for OMNIGLOT counting
(small). The multi-head pooling strategy is fixed as SB2 (LEFT) or PC (RIGHT).
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Figure 9: Impact of the prior impact hyperparameter τ and the multi-head pooling strategy for
synthetic clustering.
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Figure 10: Impact of k (the number of EM steps) for synthetic clustering. The model is with
(p = 4, H = 5, τ = 0.01, SB2).
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Figure 11: Impact of the prior strength hyperparameter τ on the CIFAR-100 clustering dataset with
the DIEM model (p = 4, H = 5, k = 3, SB2).

CIFAR-100 clustering. We vary the prior impact hyperparameter τ from 10−6 to 100, and the results
are depicted in Fig. 11. It indicates that choosing a moderate prior trade-off (10−2) yields the best
accuracy.

SCOP 1.75 protein fold classification. We test on the protein fold classification dataset the impact
of the prior strength τ . For the unsupervised learning setting, we vary τ and the results are shown
in Fig. 12. We have similar trend as CIFAR-100 clustering, where the moderate strength τ = 10−3

performs the best. Finally, we compare the types of E-steps performed for the supervised learning
setup. For the DIEM model (p = 50, H = 1, k = 2, τ = 10−6, L = 128), the k = 2 EM steps are
run in two different ways: the regular E-steps and the OT E-steps (i.e., without and with imposing
the balanced assignment constraints, respectively). The results are shown in Fig. 13, and the regular
E-steps are more effective than OT E-steps for this particular dataset.
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Figure 12: Impact of the prior strength hyperparameter τ on SCOP 1.75 unsupervised learning with
the DIEM model (p = 100, H = 1, k = 1(1)).
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Figure 13: Comparison of regular E-steps and OT E-steps on SCOP 1.75 supervised learning.
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