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ABSTRACT

Training a model that can be robust against adversarially-perturbed images with-
out compromising accuracy on clean-images has proven to be challenging. Re-
cent research has tried to resolve this issue by incorporating an additional layer
after each batch-normalization layer in a network that implements feature-wise
linear modulation (FiLM). These extra layers enable in-situ calibration of a trained
model, allowing the user to configure the desired priority between robustness and
clean-image performance after deployment. However, these extra layers signifi-
cantly increase training time, parameter count, and add latency which can prove
costly for time or memory constrained applications. In this paper, we present
Fast Learnable Once-for-all Adversarial Training (FLOAT) which transforms the
weight tensors without using extra layers, thereby incurring no significant increase
in parameter count, training time, or network latency compared to a standard ad-
versarial training. In particular, we add configurable scaled noise to the weight
tensors that enables a trade-off between clean and adversarial performance. Ad-
ditionally, we extend FLOAT to slimmable neural networks to enable a three-way
in-situ trade-off between robustness, accuracy, and complexity. Extensive exper-
iments show that FLOAT can yield state-of-the-art performance improving both
clean and perturbed image classification by up to ∼6.5% and ∼14.5%, respec-
tively, while requiring up to 1.47× fewer parameters with similar hyperparameter
settings compared to FiLM-based alternatives. Code for this project will be made
available shortly.

1 INTRODUCTION

As artifical intelligence (AI)-enabled applications proliferate, the robustness concerns of deep neural
networks (DNNs) has grown in importance Zhang et al. (2019). These concerns are largely asso-
ciated with the vulnerability of machine learning (ML) classifiers to adversarial examples, i.e., im-
ages that have well-crafted barely-visible perturbations from corresponding clean images and have
the ability to fool classifier models into making wrong predictions Carlini & Wagner (2017); Good-
fellow et al. (2014). With the growing usage of DNNs in safety-critical and sensitive applications
including autonomous-driving Bojarski et al. (2016) and medical image analysis Han et al. (2021),
it therefore becomes crucial that they have high accuracy on both adversarially-perturbed and clean
images. To improve the model performance of DNNs against such adversarial attacks, various de-
fense mechanisms have been proposed including hiding gradients Tramèr et al. (2017), adding noise
to parameters He et al. (2019), and detection of adversaries Meng & Chen (2017). In particular,
adversarial training Madry et al. (2017) has proven to be a consistently effective approach.

These defenses, however, come at various costs. Firstly, most of these methods suffer from in-
creased training time due to the additional back-propagation overhead to generate perturbed images.
Secondly, adversarial defenses sometimes cause a significant drop in clean-image accuracy Tsipras
et al. (2018), highlighting an accuracy-robustness trade-off that has been explored both theoretically
and experimentally Sun et al. (2019); Tsipras et al. (2018); Schmidt et al. (2018). Moreover, the
defenses rely on several hyperparameters whose settings force the model to work at a specific point
along this trade-off. This is disadvantageous in applications in which the desired trade-off depends
on context Wang et al. (2020).
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Figure 1: Normalized memory vs. test accuracy of FLOAT with existing state-of-the-art OAT for
(a) ResNet34, (b) WRN16-8, and (c) WRN40-2, respectively. CA and RA represent clean-image
classification accuracy and robust accuracy (accuracy on adversarial images), respectively. For each
dataset we normalized the memory requirement with the maximum model memory needed for that.

A naive solution to this problem is to use multiple networks trained with different priorities between
clean and adversarial images. However, this increases both training time and inference memory.
Alternatively, recent work has proposed training a once-for-all adversarial network (OAT) that sup-
ports conditional learning Wang et al. (2020), enabling the network to adjust to different input
distributions. In particular, after each batch-normalization (BN) layer, they add a feature-wise linear
modulation (FiLM) module Perez et al. (2018) whose weights are controlled by a parameter λ. For
inference, the user sets λ to enable an in-situ trade-off between accuracy and robustness. The disad-
vantage with this approach is that the added FiLM modules increase the parameter count, training
time, and network latency, limiting applicability in resource-constrained, real-time applications.

Our contributions. In view of the concerns above, we present fast learnable once-for-all adversar-
ial training (FLOAT). In FLOAT, we train a model using a novel mechanism wherein each weight
tensor of the model is transformed by conditionally adding a noise tensor based on a binary param-
eter λ. This yields state-of-the-art (SOTA) test accuracy for clean and adversarial images by in-situ
setting λ = 0.0 and 1.0, respectively. For inference, we further show that model robustness can be
correlated to the strength of the noise-tensor scaling factor. This motivates a simple yet effective
noise re-scaling approach controlled by an added floating-point parameter that can help the user to
have a practical accuracy-robustness trade-off.

Because FLOAT does not require additional layers to perform conditioning, it incurs no increase in
latency and causes only a negligible increase in parameter count compared to the baseline models.
Moreover, compared to OAT, FLOAT training is up to 1.43× faster, as it does not explicitly require
learning intermediate fine-grained conditioning using different λs.

Moreover, we show how FLOAT can be extended to slimmable networks Yu et al. (2018) to enable
an in-situ inference trade-off across three dimensions, namely, accuracy, robustness, and complexity.

To evaluate the merits of FLOAT, we conduct extensive experiments on CIFAR-10, CIFAR-100,
Tiny-ImageNet, SVHN, and STL10 datasets with ResNet34 (on both CIFAR and Tiny-ImageNet
datasets), WRN16-8, WRN40-2, respectively. As shown in Fig. 1, compared to existing meth-
ods, FLOAT models can provide improved accuracy of up to ∼6.5%, and ∼14.5%, on clean and
perturbed images, respectively.

The remainder of this paper is organized as follows. Section 2 presents the necessary preliminaries
and prior work. We present our approach in Section 3 and analyze experimental results in Section
4. Finally, the paper concludes in Section 5 with discussions of broader impact in Section 6.

2 PRELIMINARIES

2.1 NOTATION

Consider a model Φ with L layers parameterized by Θ that learns a function fΦ(.). For a classifica-
tion task on dataset X with distribution D, the model parameters Θ are learned by minimizing the
empirical risk (ERM) as follows

minimize
Θ

L(fΦ(x,Θ; t)), (1)

where t is the ground-truth class label, x is the vectorized input drawn from X , and L is the cross-
entropy loss function.
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Figure 2: Comparison of a conditional layer between (a) existing FiLM based approach in OAT and
(b) proposed approach in FLOAT.

2.2 ROBUST MODEL TRAINING

Several forms of adversarial training (AT) have been proposed to improve robustness Madry et al.
(2017); Samangouei et al. (2018); Buckman et al. (2018). They all use both clean and adversarially-
perturbed images to train a model. Projected gradient descent (PGD) attack, recognized as one of
the strongest L∞ adversarial example generation algorithm Madry et al. (2017), is typically used to
create adversarial images during training. The perturbed image for a PGD-k attack with k as the
number of steps is given by,

x̂k = ProjPε(x)(x̂
k−1 + σ × sign(∇xL(fΦ(x̂k−1,Θ; t))) (2)

Here, the scalar ε corresponds to the perturbation constraint that determines the severity of the
perturbation. Proj projects the updated adversarial sample onto the projection space Pε(x) which is
the ε-L∞ neighbourhood of the benign sample x1. σ is the attack step-size. For PGD-AT, the model
parameters are then learned by the following ERM

minimize
Θ

[(1− λ)L(fΦ(x,Θ; t))︸ ︷︷ ︸
LC

+λL(fΦ(x̂,Θ; t))︸ ︷︷ ︸
LA

], (3)

where LC and LA corresponds to the clean and adversarial image classification loss components,
respectively, weighted by the scalar λ. Hence, for a fixed λ and adversarial strength, the model learns
a fixed tradeoff between accuracy and robustness. For example, an AT with λ value of 1 will allow
the model to completely focus on perturbed images, resulting in a significant drop in clean-image
classification accuracy. Another strategy to improve model robustness is through the addition of
noise to the model weight tensors. For example, He et al. (2019) introduced the idea of noisy weight
tensors with a learnable noise scaling factor to improve model robustness against gradient-based
attacks. However, this strategy also incurs a significant drop in clean accuracy.

2.3 CONDITIONAL LEARNING

Conditional learning involves training a model with multiple computational paths that can be se-
lectively enabled during inference Wang et al. (2018). For example, Teerapittayanon et al. (2016);
Huang et al. (2017); Kaya et al. (2019) enhanced a DNN model with multiple early exit branches
at different architectural depths to allow early predictions of various inputs. Yu et al. (2018) intro-
duced switchable BNs that enable the network to adjust the channel widths dynamically, providing
a in-situ efficient trade-off between complexity and accuracy. Recently, Bulat & Tzimiropoulos
(2021) used switchable BNs to support runtime bit-width selection of a mixed-precision network.
Another conditional learning approach used feature transformation to modulate intermediate DNN
features Huang & Belongie (2017); Yang et al. (2019); De Vries et al. (2017); Wang et al. (2020). In
particular, Wang et al. (2020) used FiLM Perez et al. (2018) to adaptively perform a channel-wise
affine transformation after each BN stage that is controlled by the hyperparameter λ of Equation
3. Each FiLM module is composed of two fully-connected (FC) layers with leaky ReLU activation
functions and dimensions that match the output feature-map channel size. Despite requiring a rela-
tively small number of additional FLOPs, however, the FiLM module can significantly increase the
number of model parameters and associated memory access cost Horowitz (2014). Moreover, the in-
creased number of layers can significantly increase inference latency Singh et al. (2019), potentially
prohibiting its use in real-time applications.

1Note that the generated x̂ are clipped to a valid range which, for our experiments, is [0, 1].
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3 PROPOSED APPROACH

3.1 FLOAT

In this section, we disclose our fast learnable once-for-all adversarial training (FLOAT). We
first focus on defining the conditions for a model being trained on either clean or adversar-
ial images, as the two boundary conditions for training. We use a binary conditioning pa-
rameter λ, that during training, forces the model to focus on either of these two conditions.

Figure 3: Comparison of the nor-
malization statistics for a ResNet34
trained on CIFAR-10 with two differ-
ent λs. We plot the distribution by
taking the running mean and running
variance statistics from the last BN
layer placed before the FC layers.

To formalize our approach, consider a L-layer DNN param-
eterized by Θ and let θl ∈ Rkl×kl×cli×clo represent the layer
l weight tensor, where clo and cli represent the number of fil-
ters and channels per filter, respectively, and kl represents
the kernel height/width. We transform each parameter of
θl, by adding a noise tensor ηl ∈ Rkl×kl×cli×clo scaled by a
parameter αl and conditioned by λ, as follows,

θ̂l = θl + λ · αl · ηl; ηl∼N (0, (σl)2). (4)

Note that the standard deviation (σl) of the noise matches
that of its weight tensor. For λ = 0 and 1, we obtain the
original weight tensor or a noisy variant, respectively.

As illustrated in Algorithm 1, we train our models by par-
titioning an image batch B into two equal sub-batches B1

and B2, one with clean (IFMC) images and the other with
perturbed variants (IFMA) (lines 4 and 6 in Algorithm 1).
We use the PGD-7 attack to generate perturbations on the
image batch B2. As illustrated in Fig. 2(b), the original and noisy weight tensors are convolved only
with clean and perturbed variants, respectively. Similar to He et al. (2019), we also train the noise
scaling factor αl (line 9). As exemplified in Fig. 3, the post-convolution feature maps for clean
and adversarial inputs can differ significantly in their respective mean/variances Xie et al. (2020);
Xie & Yuille (2019). Therefore, the use of a single BN to learn both distributions may limit model
performance Wang et al. (2020). To solve this problem, we extend the λ-conditioning to choose
between two BNs, BNC and BNA, dedicated for IFMC and IFMA, respectively.

Figure 4: Post-training model
performance on both clean and
gradient-based attack-generated ad-
versarial images, with different
noise re-scaling factor λn.

This approach differs from previous efforts in several ways.
Earlier research performed noise-injection via regularization
Bietti et al. (2018); Lecuyer et al. (2019) and perturbed weight
tensors He et al. (2019) to boost model robustness at the cost
of a significant accuracy drop on clean images. In contrast, we
use noise tensors to transform a shared weight tensor yielding
a model that can be configured in-situ to provide SOTA ac-
curacy on either clean or perturbed images. Our approach is
similar to λ-conditioning used by Wang et al. (2020). How-
ever, instead of transforming activations using added FiLM-
based layers trained with multiple values of λ Wang et al.
(2020), we transform weight tensors using added noise con-
ditioned by binary λ. Compared to Wang et al. (2020), we
thus require models with significantly fewer parameters and
training scenarios, yielding faster training (up to 1.43×).

3.2 FLOAT GENERALIZATION WITH NOISE RE-SCALING

One limitation of the FLOAT approach as proposed above is that it allows the user to choose between
two boundary conditions only. This limits applicability when the user is not confident about which
condition to use during inference. To motivate more continuous in-situ conditioning, we analyze
a ResNet20 model with noisy weight tensors trained with PGD-AT on CIFAR-10 He et al. (2019).
Post-training, we re-scaled αl for each layer l, using a new floating-point parameter λn to yield
λn · αl. Interestingly, as shown in Fig. 4, as the re-scaling factor decreases, the model robustness
decreases and the clean-image accuracy increases.
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Algorithm 1: FLOAT Algorithm
Data: Training setX∼D, model parameters Θ, trainable noise scaling factor α, binary conditioning

parameter λ, mini-batch size B.
1 Output: trained model parameters Θ, α.
2 for i← 0 to to ep do
3 for j← 0 to nB do
4 Sample clean image-batch of size B/2 (X0:B/2, Y0:B/2) ∼D
5 LC ← computeLoss(X0:B/2,Θ, λ = 0,α;Y0:B/2) // condition to use weights w/o noise
6 X̂B/2:B ← createAdv(XB/2:B,YB/2:B) // adversarial image creation
7 LA ← computeLoss(X̂B/2:B,Θ, λ = 1,α;YB/2:B) // condition to use transformed weights
8 L ← 0.5 ∗ LC + 0.5 ∗ LA

9 updateparam(Θ,α,∇L)
10 end
11 end

Based on this observation, we enable practical post-training in-situ calibration by adding the re-
scaling parameter λn to the inference model2. This allows us to enable a practical accuracy-
robustness trade-off in FLOAT during inference. We define a threshold λth such that for λn > λth
we select BNA to perform inference and select BNC otherwise. Wang et al. (2020) selected BNC
and BNA when λ = 0 and λ > 0, respectively. We follow a similar approach by setting λth = 0.

3.3 FLOAT EXTENSION TO DYNAMICALLY SWITCHABLE MODELS

Figure 5: Modified conditional layer of
FLOAT to support dynamic complexity
switch in FLOATS.

As mentioned earlier, deployed DNN models, particu-
larly on edge devices, can face dynamically changing
resource budgets Lou et al. (2021). To better adjust to
instantaneous budget changes, earlier research has pro-
posed the idea of slimmable neural networks Yu et al.
(2018) in which each layer’s channel width can be dy-
namically shrunk. Let Sf be the predefined set of sup-
ported slimming-factors. For each of the floating-point
slimming-factors w(w ∈ (0, 1]) in Sf , the model shrinks
each convolution layer by w using a different set of BNs.

To extend FLOAT to account for dynamically chang-
ing resource budgets, we herein present FLOAT Slim
(FLOATS) to yield models that, in-situ, can trade-off
between accuracy, robustness, and efficiency. Yu et al.
(2018) introduced the idea of switchable BNs by having
a dedicated BN for each slimming factor. Similarly, we create a dedicated set of BNA and BNC for
each slimming factor in Sf . In tandem, we scale the noise tensor along with the weight tensors by
the same factor to ensure the transformed noisy weights follow the same scaling. Fig. 5 shows an
example of a slimmable layer of FLOATS with Sf = 3 and slimming factors w1, w2, and w3, where
w1 = 1.0 and 1 > w2 > w3 > 0 that operate on the clean and perturbed feature maps of scaled
widths generated by the previous layer. Algorithm for FLOATS training is detailed in the Appendix.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Models and datasets. To evaluate the efficacy of FLOAT, we performed detailed experiments
on five popular datasets, CIFAR-10, CIFAR-100 Krizhevsky et al. (2009), Tiny-ImageNet Hansen
(2015) with ResNet34 He et al. (2016), SVHN Netzer et al. (2011) with WRN16-8 Zagoruyko

2During inference, we allow the user to control the trade-off using λn, since λ is binary in FLOAT. Also,
λn = 0 and λn = 1, matches the training boundary conditions. OAT, on the other hand, can reuse the variable
λ during both training and inference as it can assume any floating point value in [0, 1].
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& Komodakis (2016), and STL10 Coates et al. (2011) with WRN40-2 Zagoruyko & Komodakis
(2016).

Hyperparameters and training settings. In order to facilitate a fair comparison, for CIFAR-10,
SVHN, and STL10 we used similar hyperparameter settings as Wang et al. (2020)3. For CIFAR-100,
we followed same hyperparameter settings as that with CIFAR-10. For Tiny-ImageNet we trained
the model for 120 epochs with an initial learning rate of 0.1 with cosine decay. For adversarial
image generation, we used the PGD-k attack with ε and k set to 8/255 and 7, respectively, for
all experiments. We initialized the noise scaling-factor αl for layer l to 0.25 as described in He
et al. (2019). Further hyperparameter and model details are provided in the Appendix A.1 and A.2,
respectively. We used the PyTorch API Paszke et al. (2017) to implement our models and trained
them on a Nvidia GTX Titan XP GPU.

Evaluation metrics. Clean (standard) accuracy (CA): classification accuracy on the original clean
test images. Robust Accuracy (RA): classification accuracy on adversarially perturbed images gen-
erated from the original test set. We use RA as the measure of robustness of a model. To directly
evaluate the robustness vs accuracy trade-off, we evaluate the clean and robust accuracy values of
models generated through FLOAT at various λ values compared with those yielded through OAT
and PGD-AT. We used the average of the best CA and RA values over three different runs with
varying random seeds, for each λ values to report in our results.

4.2 PERFORMANCE OF FLOAT

Sampling λn. Unless stated otherwise, to evaluate the performance of FLOAT during validation we
chose a set of λns as Sλn = {0.0, 0.2, 0.7, 1.0}. Note that setting λn to 0.0 or 1.0 corresponds to
the values of λ used during training. Also, we measure the accuracy of FLOAT using two different
settings of λth, 0.0 (similar to OAT) and 0.5. For λth = 0.5, we update the noise scaling factor by
using the following simple equation

αlnew =

{
αl · 2 · λn; if λn ≤ 0.5

αl · 2 · (λn − 0.5); if 0.5 < λn ≤ 1.0
(5)

Figure 6: Performance of FLOAT on (a) CIFAR-10, (b) CIFAR-100, (c) Tiny-ImageNet, (d) SVHN,
and (e) STL10 with various λn values sampled from Sλn for two different λth for BNC to BNA
switching. The numbers in the bracket corresponds to (CA, RA) for the boundary conditions of
λ = 0 and λ = 1. λn varies from largest to smallest value from top-left to bottom-right point.

As depicted in Fig. 6 (a)-(e), the FLOAT models generalize well to yield a semi-continuous
accuracy-robustness trade-off. Also, across all the datasets, λth = 0.5 yields a more gradual transi-
tion between the two boundary conditions. Consider the setting where λn = 0.2. With λth = 0.5,
we observe a 4.95% improvement in CA and a reduction in RA of 12.37% on average over all five

3We followed the official repository https://github.com/VITA-Group/Once-for-All-Adversarial-Training
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Figure 7: Performance comparison of FLOAT with OAT and PGD-AT generated models on (a)
CIFAR10, (b) SVHN, and (c) STL10. λ varies from largest to smallest value in Sλ for the points
from top-left to bottom-right.

datasets when compared with λth = 0.0. The improvement in clean accuracy here can be attributed
to the use of BNC . However, this configuration shows a drop in CA and an improvement in RA
when compared to the configuration where λn = 0.0. This can be attributed to the use of noisy
weights (refer to Eq. 5) during inference. Thus, it can be concluded that a user who cares more
about clean image performance than adversarial robustness should set λth > 0.0 to see a less abrupt
drop in CA. Note that, because the generation of adversarial images is noisy, it is not always true that
increasing λ will always significantly improve robustness. Consequently, in some cases, we obtain
improved clean image performance without a significant drop in robustness.

4.3 COMPARISON WITH OAT AND PGD-AT

We trained the models by following OAT and PGD-AT with λs sampled from a set Sλ = Sλn on
three datasets, CIFAR-10, SVHN, and STL10.

Discussion on CA-RA trade-off. Fig. 7(a)-(c) show the comparison of FLOAT with OAT and
PGD-AT in terms of CA-RA trade-offs. The FLOAT models show similar or superior performance
at the boundary conditions as well as at intermediate sampled values of λ. In particular, compared
to OAT and PGD-AT models, FLOAT models can provide an improved RA of up to 14.5% (STL10,
λ = 0.2) and 34.92% (CIFAR-10, λ = 0.0), respectively. FLOAT also provides improved CA of up
to 6.5% (STL10, λ = 1.0) and 6.96% (STL10, λ = 1.0), compared to OAT and PGD-AT generated
models, respectively. Interestingly, for both FLOAT and OAT, in all the plots we generally see a
sharp drop in robustness while moving from top-left to bottom-right. This can be attributed to to the
switch from BNA to BNC based on the λth, in the forward pass of the inference model.

Discussion on training time and inference latency. Due to the presence of the additional FiLM

Figure 8: Comparison of FLOAT with OAT and PGD-AT in terms of (a) normalized training time
per epoch and (b) model parameter storage (neglecting the storage cost for the BN and α). Note
here, PGD-AT:1T yields 1 model for a specific λ choice.

modules, OAT requires more time than standard PGD-AT to train. However, a single PGD-AT
training can only provide a fixed accuracy-robustness trade-off. For example, to have trade-off
with 4 different λs PGD-AT training time increases proportionally by a factor of 4. FLOAT, on
the contrary, due to absence of additional layers, trains faster than OAT. In particular, Fig. 8(a)
shows the normalized per-epoch training time (averaged over 200 epochs) of OAT and PGD-AT are,
respectively, up to 1.43× and 1.37× slower than FLOAT. More results on FLOAT-OAT training
time is provided in Appendix A.6.

Network latency increases with the increase in the number of layers for both standard and mobile
GPUs Li et al. (2021); Singh et al. (2019), primarily because layers are operated on sequentially
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Singh et al. (2019). The additional FiLM modules in OAT significantly increase the layer count.
For example, for each bottleneck layer in ResNet34, OAT requires two FiLM modules, yielding a
total of four additional FCs per bottleneck. On the other hand, FLOAT, similar to a single PGD-
AT trained model, requires no additional layers or associated latency, making it more attractive for
real-time applications.

Discussion on model parameter storage cost. Unlike OAT, where the FiLM layer FCs significantly
increase the parameter count, the additional BN layers and scaling factors of FLOAT represent a
negligible increase in parameter count. In particular, assuming parameters are represented with 8-
bits, a FLOAT ResNet34 has only 21.28 MB memory cost compared to 31.4MB for OAT. Fig. 8(b)
shows that FLOAT models, similar to PGD-AT:1T, can yield up to 1.47× lower memory.

Discussion on FLOPs. Compared to the standard PGD-AT, FLOAT incurs additional compute cost
of addition of noise with the weight tensor during forward pass. For example, for ResNet34 with
∼21.28 M parameters, FLOAT needs similar number of additions for noisy weight transformation.
However, compared to the total operations of ∼1.165 GFLOPs, the transformation adds on 1.182%
additional computation. Moreover, as a single addition can be up to 32× cheaper than a single FLOP
Horowitz (2014), we can gracefully ignore such transformation cost in terms of FLOPs. OAT, on
the other hand, also incurs negligibly less FLOPs overhead of up to only ∼1.7% Wang et al. (2020).

4.4 PERFORMANCE OF FLOATS

To generate results with FLOATS we sample two representative slimming-factors 0.5 and 1.0 for
training and validations with ResNet34 on CIFAR-10. We further trained a model with OATS to
support above mentioned slimming-factors. As depicted in Fig. 9, FLOATS provides significantly
improved performance through-out the sampling λ trade-off for both the slimming-factors. In partic-
ular, a FLOATS model can provide an improved CA and RA of up to 3.71% and 14.5%, respectively,
compared to a model trained with OATS. Moreover, FLOATS enjoys 1.90× faster training time
compared to OATS along with the reduced latency and param. requirement as mentioned earlier.

Figure 9: Performance comparison of FLOATS with OATS on slimming-factor of (a) 1.0 and (b)
0.5. We used ResNet34 on CIFAR-10 to evaluate the performance. λ varies from largest to smallest
value in Sλ for the points from top-left to bottom-right.

4.5 GENERALIZATION ON VARIOUS PERTURBATION TECHNIQUES

Figure 10: Performance comparison of FLOAT with OAT on (a) PGD20 and (b) FGSM attack
generated images. We used WRN16-8 on SVHN to evaluate the performance. λ varies from largest
to smallest value in Sλ for the points from top-left to bottom-right.
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Figure 11: Performance compari-
son on autoattack with ResNet34 on
CIFAR-10.

To demonstrate the generalization ability of FLOAT mod-
els on different attacks, we show their performance on im-
ages adversarially-perturbed through PGD-20 and FGSM at-
tacks. We follow Wang et al. (2020) to generate the PGD-
20 perturbations and use the number of steps as 20, keeping
other hyperparameters the same as PGD-7. For FGSM, we
make ε = 8/255 following Wang et al. (2020). As shown
in Fig. 10, under both the attacks, FLOAT can achieve in-
situ accuracy-robustness trade-offs similar to that with OAT.
To further demonstrate FLOAT’s generalization ability on
even stronger attacks, we have also analyzed its robustness
with an ensemble of parameter-free attacks, namely autoat-
tack Croce & Hein (2020). In particular, we have used the
‘random’ variant of the autoattack4. Details of the autoattack hyperparameter is provided in the
Appendix. As depicted in 11, compared to the PGD-AT yielded models, FLOAT model consistently
provide better RA with similar or improved CA.

5 CONCLUSIONS

This paper aims at addressing a largely unexplored problem of achieving in-situ inference trade-offs
between accuracy, robustness, and complexity. We propose a fast learnable once-for-all adversarial
training (FLOAT) which uses a novel form of model conditioning to capture the different feature-
map distributions corresponding to clean and adversarial images. FLOAT transforms its weights
using conditionally added scaled noise and dual batch normalization structures to distinguish be-
tween clean and adversarial images. The approach avoids increasing the layer count, unlike other
state of the art alternatives, and thus does not suffer from increased network latency. We further
show how FLOAT can be coupled with recently proposed slimmable networks to extend the in-situ
trade-off to include model complexity. Extensive experiments show FLOAT’s superiority in terms
of improved CA-RA performance, reduced parameter count, and faster training time.

6 BROADER IMPACT

DNNs are well-known to be susceptible to adversarial images Szegedy et al. (2013). As their use
grows in various safety-critical applications, including autonomous driving Bojarski et al. (2016),
medical imaging Han et al. (2021) and household robotics Tritschler (2021) achieving model ro-
bustness without sacrificing clean image accuracy is increasingly important. This is particularly
important for scenarios that can change frequently such as in the case of a household robot. More-
over, the increasingly portable nature of these AI-enabled devices introduces stringent storage and
energy-budget limitations. To address these challenging problems, this paper presents FLOAT mod-
els which can perform in-situ configuration of the DNNs and allow an application to dynamically
adjust the model’s accuracy, robustness, and complexity based on the context and scenario. Our ap-
proach does not require iterative (re-)training as with standard PGD-AT and trains significantly faster
than SOTA alternatives. Moreover, for inference-only devices, our approach circumvents the need
for re-loading alternate model parameters from the cloud to support different scenarios, avoiding the
potentially significant data-transfer costs. With the increase of high-stake real-world applications
that require robustness, we believe this research will form the foundation for practical AI-driven ap-
plications that can efficiently adapt to their environment. Finally, we hope this paper will motivate
further work aimed at enhancing the continuity of the accuracy-robustness trade-off and developing
a theoretical basis that can explain the benefits and limitations of FLOAT and conditional learning
in general.

7 REPRODUCIBILITY

We have detailed our training algorithms for both FLOAT and FLOATS in Algorithm 1 and 2,
respectively. We have further provided detailed hyperparameter and model information in Section

4We have followed the official repo https://github.com/fra31/auto-attack, to generate the attack.
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4.1 as well as in the Appendix A.1. Finally, the code for this project will be made publicly available
shortly.
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A APPENDIX

A.1 HYPERPARAMETERS

We trained the models for 200 epochs with a starting learning rate (LR) of 0.1 and a cosine annealing
LR scheduler Loshchilov & Hutter (2016). We used the SGD optimizer with a weight decay and
momentum value of 5e − 4 and 0.9, respectively. For CIFAR-10, CIFAR-100, and SVHN we
used a batch-size of 128 and for STL-10 which has a comparatively larger resolution (96 × 96 as
image height/width compared to 32 × 32 of others), we used a batch-size of 64. We used half
of each image-batch as clean and the remaining half as perturbed (using PGD-7 attack). For test-
time random autoattack Croce & Hein (2020) generation we used L∞ norm with ε as 8/255. To
reproduce the results with OAT and OATS we used the official repository of Wang et al. (2020) and
used their recommended λ distribution, encoding dimension, sampling scheme as well as σ value
for attack.

A.2 MODELS

We used ResNet34 to evaluate CIFAR-10 and CIFAR-100, WRN16-8 to evaluate SVHN, and
WRN40-2 to evaluate STL10. Table 1 shows the models’ parameter and FLOP count (contributed
by the convolutions and FC layers as they attribute to majority of the FLOPs and parameters).
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Table 1: Model parameters and FLOPs details.

Model type Parameters (M) FLOPs (G)
OAT FLOAT OAT FLOAT

ResNet34 31.4 21.28 1.18 1.165
WRN40-2 3.22 2.25 3 2.96
WRN16-8 15.43 10.97 2.1 2.01

A.3 TRAINED SCALING FACTORS

The trained noise scaling-factor αl for each layer of a FLOAT model is shown in Fig. 12. The αl
values are generally high at the initial layers of the models while and reduce to near zero at later
layers. He et al. (2019) has also observed a similar trend in trained alpha values while training
targeting only robustness.

Figure 12: Trained noise scaling factor value (layer-wise) for (a) ResNet34 on CIFAR-10, (b)
ResNet34 on CIFAR-100, and (c) WRN40-2 on STL10.

A.4 ALTERNATE RESULTS PLOTS IN TERMS OF λ VS. ACCURACY

To bolster Fig. 7 in Section 4, Fig. 13 show an alternate view of the CA-RA comparisons between
FLOAT, OAT, and PGD-AT.

A.5 FLOAT PERFORMANCE ON CW ATTACK

Here we present FLOAT’s performance on Carlini and Wagner (CW) attack Carlini & Wagner
(2017). In particular, we used CW∞ attack (optimized by PGD) with an attack step size of 20.
As depicted in 14, the FLOAT yielded models consistently outperforms than that generated through
PGD-AT. For example for λn = 0.0, FLOAT provides an improved robustness of up to 28.74% with
similar clean image performance.

A.6 TRAINING TIME AS A FUNCTION OF SIZE OF Sλ USED FOR TRAINING.

The comparison of training times of OAT and FLOAT as a function of different numbers of λs
is shown in Fig. 15. Because FLOAT always has two possible training λs, the time is constant.
However, for OAT, the training time increases when supporting more training λs. Note, in Section
4, we report the training time comparisons for OAT training with four training λs (0.0, 0.2, 0.7, 1.0).

A.7 FLOAT SLIM TRAINING ALGORITHM
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Figure 13: Comparison of trade-off between accuracy and robustness of FLOAT, OAT, and PGD-AT.
(a)-(c) and (d)-(f) show CA and RA plots vs different λ values, respectively.

Figure 14: Performance comparison on CW attack with ResNet34 on CIFAR-10.

Figure 15: Comparison of per epoch normalized training time between FLOAT and OAT for differ-
ent number of OAT training λs, on (a) CIFAR-10, (b) SVHN, and (c) STL10.
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Algorithm 2: FLOATS Algorithm
Data: Training setX∼D, model parameters Θ, trainable noise scaling factor α, binary conditioning

parameter λ, mini-batch size B, slimming-factor set Sf .
1 Output: trained model parameters Θ, α.
2 for i← 0 to to ep do
3 for j← 0 to nB do
4 Sample clean image-batch of size B/2 (X0:B/2, Y0:B/2) ∼D
5 for slimming-factor w in sorted Sf do
6 sampleSBN(w) //sample the BNC and BNA corresponding to w
7 LC ← computeLoss(X0:B/2,Θw, λ = 0,αw;Y0:B/2)

8 X̂B/2:B ← createAdv(XB/2:B,YB/2:B) // adversarial image creation
9 LA ← computeLoss(X̂B/2:B,Θw, λ = 1,αw;YB/2:B)

10 L ← 0.5 ∗ LC + 0.5 ∗ LA

11 accumulateGradient(L)
12 end
13 updateparam(Θ,α,∇L)
14 end
15 end
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