
Safe and Efficient Operation with Constrained
Hierarchical Reinforcement Learning

Felippe Schmoeller Roza
Fraunhofer IKS

Munich, Germany

Karsten Roscher
Fraunhofer IKS

Munich, Germany

Stephan Günnemann
Technical University of Munich

Munich, Germany

Abstract

Hierarchical Reinforcement Learning (HRL) holds the promise of enhancing sam-
ple efficiency and generalization capabilities of Reinforcement Learning (RL)
agents by leveraging task decomposition and temporal abstraction, which aligns
with human reasoning. However, the adoption of HRL (and RL in general) to solve
problems in the real world has been limited due to, among other reasons, the lack
of effective techniques that make the agents adhere to safety requirements encoded
as constraints, a common practice to define the functional safety of safety-critical
systems. While some constrained Reinforcement Learning methods exist in the
literature, we show that regular flat policies can face performance degradation
when dealing with safety constraints. To overcome this limitation, we propose a
constrained HRL topology that separates planning and control, with constraint opti-
mization achieved at the lower-level abstraction. Simulation experiments show that
our approach is able to keep its performance while adhering to safety constraints,
even in scenarios where the flat policy’s performance deteriorates when trying to
prioritize safety.

1 Introduction

Reinforcement Learning (RL), despite not being a new paradigm, has recently reemerged as a viable
alternative to tackle problems that are especially difficult solve using other Machine Learning (ML)
approaches. By gathering experience and learning while interacting with the environment, RL was
able to achieve robot control [31], human-level video-game playing [18, 28] and even defeated the
world champion at the game of go [25]. Amongst a plethora of approaches within the RL field,
Hierarchical Reinforcement Learning (HRL) has gained attention as a potential solution to improve
on known limitations of RL agents, including sample efficiency, scalability, generalization, and being
better at solving problems with long-term credit assignment and sparse rewards [26, 7]. HRL is
inspired by biological brains and leverages the concept of temporal abstraction, where complex
tasks are decomposed into a hierarchy of subtasks, allowing the agent to reason at different levels of
granularity, facilitating efficient exploration, and enabling transfer learning.

Despite such achievements and potential, a gap still exists regarding how to transfer HRL (and RL
in general) models to real-world systems, especially when considering safety-critical applications,
hindering the possibility of deploying such intelligent systems to automate on tasks that still rely
on human decision and control. Among different reasons, RL models generally lack strong robust-
ness and safety guarantees, especially when Deep Neural Networks (DNNs) are used as function
approximators [17]. RL agents, when left to explore and learn without explicitly accounting for
safety aspects, may encounter situations where a wrong action can lead to catastrophic consequences.
In domains such as healthcare, finance, and transportation, ensuring safety is essential, with bad
decisions or actions potentially incurring severe implications for the surrounding environment and
even for human lives.

16th European Workshop on Reinforcement Learning (EWRL 2023).

Safe RL methods, that seek to mitigate various concerns and challenges related to the safety of
intelligent systems, can be classified in different categories. For instance, safe exploration focuses on
the design of systems that ensure safety during the training phase of RL systems [19]. Constrained
RL concentrates on learning policies that respect a given set of constraints [2]. Shielding involves
the addition of a safety wrapper that verifies during runtime if the actions taken by the agent comply
with a set of safety requirements [4]. However, in most cases, these approaches are designed
around traditional flat-policy models. With the growing interest in leveraging hierarchical models
to solve problems that involve complexity and multi-level reasoning, it becomes crucial to find
ways to incorporate safety measurements into HRL architectures too. This integration opens up new
possibilities for leveraging the benefits of hierarchical reasoning and brings RL closer to being a
viable and effective solution for addressing real-world challenges.

The primary objective of this paper is to address the challenge of integrating constraint satisfaction ca-
pabilities in HRL agents to keep a safety signal bounded. That is done by extending goal-conditioned
algorithms by adding a safety layer that uses constraint dynamics models to predict safety violations
and to project the actions into a safe set. By disentangling planning and control and enforcing
safety constraints at the lower-level policy, our approach aims to achieve a better balance between
performance and safety when compared against a flat-policy baseline. We also show how the baseline
fails at learning in some scenarios when trying to keep the safety requirements. The experimental
results demonstrate the efficacy of our approach in achieving both safety and competitive performance.
The findings of this study have important implications for real-world applications, where safe and
reliable RL agents are essential.

The rest of the paper is organized as follows. section 2 provides an overview of the related work in
safe RL and hierarchical RL with the preliminaries and background presented in section 3. section 4
explains the methodology and formulation of our HRL framework. section 5 presents the experimental
setup and results, followed by a discussion in section 6. Finally, section 7 concludes the paper and
highlights potential directions for future research.

2 Related Work

Safe RL. Safety is a crucial aspect in RL, particularly in scenarios where wrong decisions can have
severe consequences. The main aspects of Safe RL related to this paper are safe exploration and
constrained RL. Safe exploration involves designing RL agents able to explore the environment
within a predefined while still allowing for trial-and-error exploration, necessary to learn optimal or
sub-optimal policies. [12] pinpoints several attempts to derive safe techniques that oppose traditional
unsafe explorations/exploitation methods, including using teacher advice [14], providing initial
knowledge [14], and through risk-directed exploration [13].

On the other hand, constrained RL addresses the dual problem of maximizing utility while keeping a
safety signal under acceptable boundaries [5]. These different objectives might be conflicting, which
is often the case when dealing with safety constraints. Different approaches have been proposed to
achieve constrained control with RL. In [8] (and similarly in [22]), a safety wrapper is proposed to
allow safe exploration in continuous action spaces. The method consists of learning the constraint
dynamic models offline and using these models to predict future constraint values. If the proposed
action does not comply with the constraint predictions of the learned models an alternative safe action
is calculated. In [29], the authors propose SNO-MDP, a framework that uses Gaussian processes
to characterize the unknown constraint functions and explore the safety region before optimizing
over the cumulative reward. Constrained Policy Optimization (CPO) is another popular algorithm for
training RL in constrained environments, presenting guarantees for near-constraint satisfaction [2].

Hierarchical Reinforcement Learning. Different takes on HRL are present in the literature. The
Feudal RL architecture is composed of a manager, that chooses a direction to go in a latent state space,
and workers, that learn to follow that direction through actions in the environment [9, 27]. Another
popular HRL approach is the options framework, which formalizes temporally extended subpolicies
that the agent can choose from. Each option represents a sequence of low-level actions that are
executed until a termination condition is met [26]. The option-critic architecture extends this concept
by allowing discovering options rather than using pre-specified option policies [6]. Contrary to Feudal
Networks, here the high-level controller is trained with gradients coming directly from the worker
and no intrinsic reward is used. Hierarchical Reinforcement Learning with Off-Policy Correction

2

(HIRO), introduced in [20], enhances sample efficiency while maintaining high performance. To
achieve that, an off-policy correction is integrated into the hierarchical model, more data-efficient
when compared to on-policy methods. Another significant distinction between their method and prior
approaches is having the goals encoded as a state observation in their raw form, eliminating the need
for goal representation training.

Safe Hierarchical Reinforcement Learning. The core idea of our paper is to integrate safety
mechanisms into the HRL architecture. Literature covering this problem already exists, although
limited. In [30], the authors propose a two-level HRL method with the high-level agent consisting of
an adaptive path planner based on A* and RRT*, able to generate safe and efficient paths, and the
low-level ensures runtime safety with a Lyapunov-based safety monitor. In [16] a different approach
is taken by integrating a high-level RL method which learns how to select the best alternative among
non-learning safe low-level controllers. In [11], the Hierarchical Program Triggered Reinforcement
Learning (HPRL) is proposed to solve the problem of safe navigation control. In HPRL, a structured
program is responsible to trigger motion primitives that are trained using RL policies. The structured
program is embedded with rule-based safety specifications and formal verification is used to ensure
safety. Our model, in contrast, requires no handcrafted models and is composed of model-free agents
and constraint models trained in an end-to-end fashion.

3 Preliminaries

3.1 Reinforcement Learning

In RL, we consider an agent that sequentially interacts with an environment modeled as a Markov
Decision Process (MDP). An MDP is a tuple M := ⟨S,A, R, P ⟩, where S is the set of states, A is
the set of actions, R : S×A×S 7→ R is the reward function. P : S×A×S 7→ [0, 1] is the transition
probability function which describes the system dynamics, where P (st+1|st, at) is the probability of
transitioning to state st+1 given that the previous state was st and the agent took the action at. At
each time step the agent observes the current state st ∈ S, takes an action at ∈ A, transitions to the
next state st+1 drawn from the distribution P (st, at), and receives a reward Rt = R(st, at, st+1).

3.2 Constrained Markov Decision Process

The Constrained Markov Decision Process (CMDP) extends the MDP framework by adding a set of
K constraints, ci(st, at), ∀i ∈ [K] bounded by a set of thresholds hi, ∀i ∈ [K]. The goal of the RL
agent is to find the policy that maximizes the expected discounted return while keeping all constraints
bounded by their safe thresholds:

max
θ

E

[∞∑
t=0

γtR (st, µθ (st))

]
s.t. ci(st, µθ(st)) ≤ hi ∀i ∈ [K],

(1)

where γ is the discount factor and µθ : S 7→ A is the policy that maps states to actions, parametrized
by the vector of weights θ.

To simplify the notation, the index i will be dropped, since we will mostly consider problems with a
single constraint function.

3.3 Goal-conditioned Hierarchical Reinforcement Learning

Goal-conditioned HRL methods extend the MDP formulation above by adding a set of goals G, i.e.,
M := ⟨S,G,A, R, P ⟩. We will follow the HIRO formulation introduced in [20], which consists of
two hierarchies: a high-level controller with policy µθh and a low-level with policy µθl , parameterized
by neural networks with parameters θh and θl as function approximators. The high-level controller
aims to maximize the extrinsic reward Rt and generates a high-level action gt ∼ µθh(st) ∈ G every
k steps, granting temporal abstraction. The lower-level policy observes the state st and goal gt
and outputs a low-level atomic action at ∼ µθl(st, gt), which is applied to the environment. The
higher-level controller provides the lower-level with an intrinsic reward rt = r(st, gt, at, st+1),
which rewards the low-level controller when reaching the goal gt.

3

4 Methodology

In this section, we present our take on making goal-conditioned HRL architectures safer, by adding a
safety layer to filter unsafe actions in a two-level hierarchical model to keep a safety signal under a
predefined threshold. This approach allows us to strike a balance between performance optimization
and safety considerations. The overall architecture is shown in fig. 1, with the main building blocks
to be detailed next.

External
Environment

High-level
Controller

Low-level
Controller

Safety
Layer

extrinsic
reward

goalintrinsic
reward

action

observation

observation

cost
safe action

correction

Figure 1: Safe HRL proposed architecture.

4.1 Safe Hierarchical Reinforcement Learning

At the core of our approach is the two-level hierarchy, consisting of a manager that chooses high-level
goals and a low-level controller. The high-level policy is responsible to choose the goals that will
return the most long-term cumulative reward based on the state observation. High-level actions might
be encoded in different ways depending on the application, but for the locomotion tasks we define
the goals as intermediate 2D coordinates, i.e., qgoal = [xg, yg] (or a 3D coordinate if considering 3D
locomotion, where qgoal = [xg, yg, zg]). Therefore, the task of the high-level agent is to propose goal
positions that will guide the agent’s navigation to reach the positions necessary to fulfill the task (e.g.,
reach a goal position, pick an object, avoid an obstacle), analogous to a path planning algorithm.

To introduce safety into the framework, we incorporate a safety layer as proposed in [8]. This safety
layer projects the actions into a safe set using linearized cost models approximated by neural networks.
Although the high-level decisions could also be monitored, only the low-level actions have a direct
influence on the constraint function shown in eq. (1). To make the high-level agent safety aware, a
feedback signal with the safety layer’s action corrections was added, which will be detailed next.
The result is a closed-loop system that continuously monitors and adjusts the actions to maintain
safety while pursuing goals that are effective in solving the task and keeping safety intervention at a
minimum.

4.2 Safety Layer

Different authors proposed action projection into a safe set to achieve constraint satisfaction in RL
systems. We follow the approach described in [8] and, similarly, in [22]. It consists of training a
model fw, parametrized by w, the underlying dynamics that rule the evolution of the cost function
over time. With this model, and based on the current cost value ct and the action selected by the
agent at, it is possible to predict what the next step’s cost value, ct+1 will be. We will also use the

4

(a) Safety Ball Circle. (b) Safety Ball Run. (c) Safety Car Run.

Figure 2: Testing environments.

simplification of approximating the cost function by the first-order Taylor expansion with respect to
the action at:

ct+1 = ct + fw(st)
⊤ · at, (2)

where · represents the vector dot product.

The model fw is pre-trained in a supervised manner with samples (st, at, ct, ct+1) experienced
through environment interaction. With the cost model available, a safe action a∗t can be calculated
using the following constraint optimization problem:

a∗t = argmin
x

1

2
∥x− at∥2

s.t. ct + fw(st) · a⊤t ≤ h.
(3)

Solving this optimization problem can be done using convex optimization solvers or integrating
convex optimization layers to the policy model, as proposed in [3]. For problems with a single
constraint active at a time, a closed for solution using the Lagrange multiplier can also be used.

4.3 High-level controller

The high-level controller is equivalent to what is seen in other goal-conditioned HRL methods, with
the addition of another feedback signal that is the action correction given by the safety layer. This
correction is calculated as the difference between the low-level controller action and the safe action,
accounting for actions of multiple dimensions using the Euclidean norm, i.e., correctiont = ||at -
a∗t ||. By introducing this correction, we aim to enable the high-level model to learn how to choose
high-level actions that will incur in less safety-layer activations while optimizing the extrinsic reward,
to mitigate negative impacts on performance caused by constraining the actions in detriment of safety.

Different options could be taken for enforcing the agent to minimize the action correction, but we
opted to use reward shaping to punish the agent for high correction values. This is an effective
alternative that requires no modification on the policy model or the training algorithm. A weight
factor η was added to adjust the importance of the correction in the total shaped reward. The adjusted
reward R∗

t is given by the equation below.

R∗
t = Rt − η correctiont. (4)

5 Experiments

We conducted our experiments using the Bullet-Safety-Gym suite [15], an open-source benchmark
suite inspired by the Safety-Gym benchmark [23]. The Bullet-Safety-Gym leverages the Bullet
physics engine as its backend and is specifically designed to evaluate the performance of RL algo-
rithms in constrained environments. Our experimental evaluation involved three distinct environments:
(i) Safety Ball Circle, (ii) Safety Ball Run, and (iii) Safety Car Run.

5

The Safety Circle tasks, as introduced in [2], require agents to navigate along a circular path in a
clockwise direction. The agent’s reward is densely distributed and increases based on its velocity and
proximity to the circle’s boundary. In the Safety Run tasks, the agent’s objective is to navigate through
a corridor to reach a goal positioned at the opposite end. The reward in these tasks is proportional
to the agent’s progress towards the goal along the corridor. Both the Safety Circle and Safety Run
environments incorporate safety zones bounded by two yellow walls. It is important to note that these
walls are not rigid, allowing the robots to traverse them, and are located at fixed positions.

In our experiments, we employed two types of agents: the Ball agent, featured in environments (i)
and (ii), and the Car agent, which offers a more complex representation of a mobile robot. The Ball
agent simulates a rolling ball controlled by a two-dimensional force vector. On the other hand, the
Car agent is designed as a simplified version of the MIT RaceCar model, allowing actuation over
linear velocity and steering angle [1].

In order to integrate the safety layer, the original discrete cost functions provided by the benchmark
were transformed into continuous functions. This modification was necessary due to the convex
optimization techniques used for calculating safe actions. The revised cost function incorporates
the tan−1 operator, which takes into account the distance between the agent and the closest wall
boundary, denoted as q̂wall. Specifically, the cost at time step t is defined as Ct = tan−1(qt − q̂wall).
When the agent’s state lies within the safe region, the cost function returns negative values. However,
if the agent crosses the safety limits, positive costs are assigned.

The experimental comparison will involve four different algorithms, comprising a goal-conditioned
hierarchical reinforcement learning (HRL) approach an comparable flat policy and their safe variants
integrating the safety layer. On the HRL side, we used the HIRO algorithm. The results include the
vanilla HIRO, as presented in the original paper, as well as the safe HIRO variant that integrates
our proposed safe architecture to the HIRO model. For a comparison with flat policies, we will
include the TRPO algorithm [24], as well as safe-TRPO, which incorporates a safety layer to ensure
constraint satisfaction, as demonstrated in [23].

5.1 Learning the constraint functions

The constraint functions are approximated by neural networks trained with data sampled from the
environment, allowing the method to scale to complex and high-dimensional problems. Like most
DNNs trained in a supervised learning manner, training the constraint models might require lots of
data, ranging from a few thousand samples for simple models up to millions when considering larger
DNNs and more complex data representations (as an example., in [21] 50 · 106 data samples are used
to train a model predictive control (MPC) model for robot manipulation tasks). When simulation
environments are available and acquiring data can be done at a low cost, a suitable approach is to
let an agent explore the environment to acquire the necessary data, either by taking random actions
or following some other exploratory policy. Collecting data in the real world is more complicated
since one cannot simply let the agent explore taking random actions without compromising safety.
Using imitation learning (e.g., collecting data from human operators), or letting a safe and verifiable
controller control the system while the data is being collected are possible approaches. If acquiring
the data is too expensive or difficult, it is important to consider if designing the constraint models
using other means aside from learning them might be a more suitable approach.

5.2 Hyperparameters

The constraint models are fully connected networks composed of two hidden layers with dimensions
of [64, 64] respectively. A dropout layer was added to minimize the risk of 500,000 data points were
randomly sampled to train each constraint model offline. The training was done with a learning rate
of 1 · 10−3. Each model was trained for 10 epochs with a batch size of 512.

The HIRO agent is composed of two TD3 agents, one for each controller in the hierarchy, and the
hyperparameters follow what is shown in [10]: For both high- and low-level agents, an actor learning
rate of 1 · 10−4 and a critic learning rate of 1 · 10−3 were used. The policy noise parameter σ of 0.2
is used, i.e., N (0, 0.2) is added to the actions, with the noise level being clipped to (-0.5, 0.5). The
delayed policy updates happen every d = 2 iterations. The target networks are updated with τ = 0.005.
A discount factor γ of 0.99 was used. Finally, η = 0.1 was set to the high-level reward correction
weight.

6

0 1,000 2,000 3,000 4,000 5,000

−2,000

−1,000

0

1,000

2,000

3,000

episode

re
w

ar
d

TRPO
Safe TRPO
HIRO
Safe HIRO

(a) Ball Run - return.

0 1,000 2,000 3,000 4,000 5,000

−200

0

200

400

episode

re
w

ar
d

TRPO
Safe TRPO
HIRO
Safe HIRO

(b) Ball Circle - return.

0 1,000 2,000 3,000 4,000 5,000

0

1,000

2,000

3,000

episode

re
w

ar
d

TRPO
Safe TRPO
HIRO
Safe HIRO

(c) Car Run - return.

0 1,000 2,000 3,000 4,000 5,000

−600

−400

−200

0

200

400

episode

co
st

TRPO
Safe TRPO
HIRO
Safe HIRO

(d) Ball Run - cost.

0 1,000 2,000 3,000 4,000 5,000

−400

−200

0

200

episode

co
st

TRPO
Safe TRPO
HIRO
Safe HIRO

(e) Ball Circle - cost.

0 1,000 2,000 3,000 4,000 5,000

−600

−400

−200

0

200

episode

co
st

TRPO
Safe TRPO
HIRO
Safe HIRO

(f) Car Run - cost.

Figure 3: Results for the simulation environments. Comparison between the vanilla HIRO, safe-HIRO,
TRPO, and safe-TRPO methods. The results regarding the episodic cumulative rewards can be seen
in the first row (figs. 3a to 3c) while the episodic cumulative costs values are shown in the row below
(figs. 3d to 3f.)

The results, shown in fig. 3, are averaged over 3 successful runs obtained with distinct seeds.

5.3 Results

The results obtained in the Ball Run environment are shown in figs. 3a and 3d. We can see that for
this environment both constrained methods (safe-HIRO and safe-TRPO) can keep the system inside
the safe region, i.e., with the cost values negative. By analyzing the safe-TRPO curves it becomes
clear that the performance drops drastically when constraining the TRPO model. Safe-HIRO presents
a few spikes in the cost values from episodes 2000 and 3000 which is probably caused by errors in
the constraint model since a perfect model would always give a safe action able to avoid the system
to cross the safety boundaries. Overall, the system can retain the same performance as HIRO (slightly
above 1,000 of return) while satisfying the safety constraints.

Similar results were obtained in the Ball Circle environment, as shown in figs. 3b and 3e. In this plot,
it becomes even more evident the difference in stability while learning. TRPO is very consistent and
stable on the learning curves, while the HRL models displayed greater variation in reward over time.
Despite the noisy results, the safe-HIRO accompanies HIRO in the reward curve while effectively
managing the associated costs. On the other hand, safe-TRPO’s performance is not even comparable
to any of the other methods, despite having a better cost reduction and more stable curves than
safe-HIRO.

For the Car Run environment, presented in figs. 3c and 3f, The TRPO model exhibited remarkable
results with its strong performance while both HRL models perform relatively poorly when compared
to it. However, despite the lower overall performance, once more there is no significant degradation in
the HRL models’ performance when the safety layer is activated, leading to a significant improvement
in terms of constraint satisfaction. On the other hand, the safe TRPO overall performance lags behind
the other models, although successfully keeping the cost values low.

7

6 Limitations

As shown in the previous section, the proposed HRL architecture was successful in creating models
that learn how to minimize the cost for the constraint functions while keeping a comparable perfor-
mance to the unconstrained counterpart. The optimization of these constraint functions serves as a
proxy for ensuring safety in the given examples. Nevertheless, it is essential to acknowledge that the
system does have its limitations, which are outlined below:

One-step-ahead monitoring. Estimating how much impact the agent’s actions will have in the future
is important for both performance and safety concerns. Real-world results might differ substantially
since some of the simplifications from the simulation environments are not present (e.g., absence of
noise, unclipped actions). If we expect this method to be deployed in real robots, a larger constraint
prediction horizon should be considered, similar to model predictive control (MPC) approaches, to
allow the agent to safely plan ahead and account for physical limitations when controlling the system.

Constraint model uncertainties. The safety layer works by monitoring if the actions taken by
the low-level controller will lead to a safety violation. Therefore, safety assurance is completely
dependent on the ability of the constraint models to correctly learn the constraint dynamics and make
assertive predictions. However, determining the reliability and robustness of DNN models is difficult
and considered an open question for most applications. Integrating a good uncertainty estimation
could help to mitigate this issue.

Increased number of parameters. The proposed hierarchical reinforcement learning (HRL) ar-
chitecture introduces a more intricate structure compared to a flat policy, resulting in an increased
number of parameters. As a consequence, a higher number of hyperparameters have to be tuned.
Moreover, we observed that finding a parameter configuration for achieving convergence in the HRL
agent is notably more challenging compared to its flat policy counterpart, which is most likely related
to the higher complexity.

7 Conclusion and Future Work

In this paper, we showed that flat RL policies can suffer from performance loss when methods
to enforce safety constraints are used and that a hierarchical model proved less susceptible to
this degradation in our test scenarios. This conclusion comes from results obtained in simulation
experiments with constrained navigation tasks. The proposed constrained HRL architecture is simple,
as shown in fig. 1, and scalable since both constraint models and RL agents use deep neural networks
as function approximators.

By implementing a strategy to penalize the high-level controller when action corrections are required,
the system was able to learn how to generate goals that minimize intervention from the low-level
policy. The introduction of this penalty mechanism enabled the hierarchical architecture to exhibit
improved adaptability and reduced reliance on corrective actions. TRPO, on the other hand, is
affected to a greater extent, as its policy is represented by a single end-to-end model that lacks the
flexibility to make decisions at various levels of abstraction.

This work opens up exciting avenues for further research and investigation. Ensuring safety while
maintaining a satisfactory functionality level is essential to solving safety-critical problems with
artificial intelligence and the obtained results address this issue successfully. However, the method is
not perfect and the main limitations were also outlined. One important direction to explore is the
integration of larger prediction horizons. As we strive to tackle real-world problems, extending the
planning and prediction capabilities to react to situations far in the future becomes crucial. Dealing
with model uncertainties is also an open point for inspection. Real-world environments often exhibit
complex dynamics and inherent uncertainties, which can pose challenges to safe decision-making.
Developing techniques to handle and mitigate these uncertainties within the hierarchical framework
would enhance the robustness and reliability of the agent’s behavior. Furthermore, extending the
safe hierarchical framework to multi-agent scenarios presents an exciting topic for future inspection.
In such settings, each agent has its own decision-making process, and ensuring safety becomes a
localized concern. Developing approaches that enable agents to communicate, coordinate, and reason
about safety within a collaborative framework would be valuable for real-world applications involving
multiple interacting agents.

8

Acknowledgments This work was funded by the Bavarian Ministry for Economic Affairs, Regional
Development and Energy as part of a project to support the thematic development of the Institute for
Cognitive Systems.

References
[1] Mit racecar mobile platform, 07 2022.

[2] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In International
conference on machine learning, pages 22–31. PMLR, 2017.

[3] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex
optimization layers. Advances in neural information processing systems, 32, 2019.

[4] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe reinforcement
learning via shielding. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[5] E. Altman. Constrained Markov decision processes. PhD thesis, INRIA, 1995.

[6] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, volume 31, 2017.

[7] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
event dynamic systems, 13(1-2):41–77, 2003.

[8] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[9] P. Dayan and G. E. Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

[10] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[11] B. Gangopadhyay, H. Soora, and P. Dasgupta. Hierarchical program-triggered reinforcement
learning agents for automated driving. IEEE Transactions on Intelligent Transportation Systems,
2021.

[12] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

[13] C. Gehring and D. Precup. Smart exploration in reinforcement learning using absolute temporal
difference errors. In Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems, pages 1037–1044, 2013.

[14] A. Geramifard, J. Redding, and J. P. How. Intelligent cooperative control architecture: a
framework for performance improvement using safe learning. Journal of Intelligent & Robotic
Systems, 72:83–103, 2013.

[15] S. Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. 2022.

[16] J. Li, L. Sun, J. Chen, M. Tomizuka, and W. Zhan. A safe hierarchical planning framework
for complex driving scenarios based on reinforcement learning. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 2660–2666. IEEE, 2021.

[17] B. Lütjens, M. Everett, and J. P. How. Certified adversarial robustness for deep reinforcement
learning. In Conference on Robot Learning, pages 1328–1337. PMLR, 2020.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[19] T. M. Moldovan and P. Abbeel. Safe exploration in markov decision processes, 2012.

9

[20] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
Advances in neural information processing systems, 31, 2018.

[21] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe. Safe and fast tracking on a robot
manipulator: Robust mpc and neural network control. IEEE Robotics and Automation Letters,
5(2):3050–3057, 2020.

[22] T.-H. Pham, G. De Magistris, and R. Tachibana. Optlayer-practical constrained optimization
for deep reinforcement learning in the real world. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6236–6243. IEEE, 2018.

[23] A. Ray, J. Achiam, and D. Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7:1, 2019.

[24] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[25] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[26] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[27] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
Feudal networks for hierarchical reinforcement learning. In International Conference on
Machine Learning, pages 3540–3549. PMLR, 2017.

[28] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M. Czarnecki, A. Dudzik,
A. Huang, P. Georgiev, R. Powell, et al. Alphastar: Mastering the real-time strategy game
starcraft ii. DeepMind blog, 2, 2019.

[29] A. Wachi and Y. Sui. Safe reinforcement learning in constrained markov decision processes. In
International Conference on Machine Learning, pages 9797–9806. PMLR, 2020.

[30] Z. Xiong, I. Agarwal, and S. Jagannathan. Hisarl: A hierarchical framework for safe reinforce-
ment learning. In SafeAI@ AAAI, 2022.

[31] K. Zhu and T. Zhang. Deep reinforcement learning based mobile robot navigation: A review.
Tsinghua Science and Technology, 26(5):674–691, 2021.

10

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Constrained Markov Decision Process
	Goal-conditioned Hierarchical Reinforcement Learning

	Methodology
	Safe Hierarchical Reinforcement Learning
	Safety Layer
	High-level controller

	Experiments
	Learning the constraint functions
	Hyperparameters
	Results

	Limitations
	Conclusion and Future Work

