
SLTrain: a sparse plus low-rank approach
for parameter and memory efficient pretraining

Andi Han1 Jiaxiang Li2 Wei Huang1 Mingyi Hong2 Akiko Takeda1,3

Pratik Jawanpuria4 Bamdev Mishra4
1RIKEN AIP (andi.han@riken.jp, wei.huang.vr@riken.jp)

2University of Minnesota, Twin Cities (li003755@umn.edu, mhong@umn.edu)
3University of Tokyo (takeda@mist.i.u-tokyo.ac.jp)

4Microsoft, India (pratik.jawanpuria@microsoft.com, bamdevm@microsoft.com)

Abstract

Large language models (LLMs) have shown impressive capabilities across various
tasks. However, training LLMs from scratch requires significant computational
power and extensive memory capacity. Recent studies have explored low-rank
structures on weights for efficient fine-tuning in terms of parameters and memory,
either through low-rank adaptation or factorization. While effective for fine-tuning,
low-rank structures are generally less suitable for pretraining because they restrict
parameters to a low-dimensional subspace. In this work, we propose to parameter-
ize the weights as a sum of low-rank and sparse matrices for pretraining, which we
call SLTrain. The low-rank component is learned via matrix factorization, while
for the sparse component, we employ a simple strategy of uniformly selecting the
sparsity support at random and learning only the non-zero entries with the fixed
support. While being simple, the random fixed-support sparse learning strategy
significantly enhances pretraining when combined with low-rank learning. Our
results show that SLTrain adds minimal extra parameters and memory costs com-
pared to pretraining with low-rank parameterization, yet achieves substantially
better performance, which is comparable to full-rank training. Remarkably, when
combined with quantization and per-layer updates, SLTrain can reduce memory
requirements by up to 73% when pretraining the LLaMA 7B model.

1 Introduction

Large foundation models have achieved tremendous success in various domains, including linguistics,
computer vision and biology. In particular, large language models (LLMs), such as the GPT series
[39, 5] and the LLaMA family [51, 52] have reshaped the perception of how machine understands
human languages. The predominant success of these models is primarily due to the model size,
usually scaling to hundreds of billions of parameters. The scaling laws seem to suggest the capacity
of LLMs grows with the model size [25], but nonetheless requiring massive amount of resources for
pre-training, storing, and fine-tuning. Particularly, memory requirement for training an LLM imposes
a hard barrier for model deployment on commercial GPUs. For example, the LLaMA 7B model
requires a minimum memory cost of approximately 42G under 16-bit floating point, including 14G
of parameter state and 28G of optimizer state for momentum-based optimizers, like Adam [59, 28].

Building an LLM (from scratch) for downstream tasks typically involves two phases, i.e., pre-
training and fine-tuning. The goal of pretraining is to capture general language patterns and se-
mantics, enabling the model to acquire useful representations of words and sentences. Common
pretraining objectives include masked language modeling [26], next token prediction [39, 40], etc.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



3 4 5 6 7 8 9
Memory (GB)

0

50

100

150

Pe
rp

le
xi

ty

Full-Rank

Low-Rank

ReLoRAGaLoreSLTrain
250

500

750

1000

1250

Pa
ra

m
 S

ize
 (M

)

Figure 1: Shown are perplexity, memory, and pa-
rameter size for pretraining LLaMA 1B on the
C4 dataset with different methdods. The radius
and color of each circle scale with parameter size.
Overall, the methods which have smaller, lighter
circles on the left bottom corner are desirable for
pretraining. The details are in Section 5.1.

Fine-tuning then tailors the learned model repre-
sentations from pretraining to downstream tasks,
adjusting its weights to enhance performance on
specific objectives. Pioneered by LoRA [21],
recent works have popularized low-rank finetun-
ing of a given pretrained model (W0), where
W0 is generally full-rank (i.e., pretrained with-
out any constraints). The premise is that LLMs
usually adapt to downstream tasks in a low-
dimensional subspace, which allows to parame-
terize the update by low-rank factors. Low-rank
finetuning requires minimal trainable parame-
ters and significant reduction of memory and
computation resources [10, 12]. A number of
works [14, 53, 18, 29, 30, 34, 3] have emerged
to further improve the efficiency and adaptation
capacity of LoRA.

While most of the works have focused on ex-
ploiting low-rank structure for fine-tuning, only
a few [27, 24, 43, 47] have considered pretraining with low-rank weights. It has been observed that
the performance of low-rank training often lags behind full-rank training despite the great potential
for improving training and memory efficiency [47, 59]. This is because neural networks often exhibit
full-rank structure in the weights and imposing low-rank restrictions could significantly limit their
representation power. Hence, recent works have explored full-rank training with low-rank updates.
For instance, ReLoRA [32] periodically restarts LoRA, where the low-rank updates are merged with
the weights from the last period. However, ReLoRA also requires a warm-start full-rank training to
achieve competitive performance [32]. GaLore [59] takes a different route by enforcing a low-rank
structure not on the weights but on the gradients. This allows the Adam optimizer states to be stored
in a low-dimensional space. While being memory efficient, GaLore is not parameter efficient because
it still performs full parameter update with “projected-back” low-rank gradients.

Parameter efficiency is a desirable property post-pretraining for model deployment, fine-tuning, and
model storage. On the other hand, memory efficiency is necessary for training models with lower
hardware requirements. Despite the importance of both parameter and memory efficiency, these two
goals are often pursued independently. While low-rank models achieve both parameter and memory
efficiency, as discussed earlier, they do not perform well in general [47, 59]. Therefore, a natural
question is:

how can we adapt low-rank training to achieve comparable performance as full-rank training while
maintaining both parameter and memory efficiency?

Contributions. In this work, we answer the above question by directly parameterizing the weights as
low-rank plus sparse factors for pretraining. It should be noted that both low-rank and sparse factors
individually facilitate parameter efficiency. Furthermore, their combination (usually) ensures that
the final pretrained model is of high rank. Existing strategies for sparse learning usually involve
prune-and-growth [13, 2, 58, 49] that iteratively train, prune, and grow neurons. Such a strategy is
usually not memory efficient due to the need of storing (and learning) a support and a dense weight
matrix. In contrast, we motivate and adopt a simpler strategy of fixing a uniformly random support
(for the sparse factor). This allows to only store indices and values for memory efficient training,
which scales with the number of nonzero entries. We show such a simple approach allows to further
reduce the memory consumption during pretraining compared to ReLoRA [32] and GaLore [59]
without sacrificing performance. We show this through an extensive set of experiments on the LLaMA
language models with varying model size from 60M up to 7B parameters. We call our proposed
sparse plus low-rank pretraining algorithm as SLTrain. In Figure 1, we observe that SLTrain obtains
perplexity score comparable to full-rank model with considerable memory and parameter efficiency.

We end this section by noting that the idea of marrying low-rank and sparse factors has been
explored for robust matrix recovery [6, 57, 4], attention matrix approximation [7], and neural network
compression [31]. However, it is introduced for pretraining LLMs for the first time in our work.

2



2 Background on low-rank pretraining

Existing pretraining works [24, 43] have explored low-rank parameterization of the layer weights
directly as W = BA. However, it has been empirically observed that vanilla low-rank parameter-
ization suffers from large performance degradation because of the limited representation capacity
[47, 32, 59]. Hence, motivated from low-rank adaptation (LoRA) [21] for fine-tuning, for pretraining,
ReLoRA [32] suggests to parameterize the layer weights as

W = W0 +

m∑
s=1

BsAs, (1)

where m represents the number of low-rank factors. This parameterization results in an overall
high-rank update compared to LoRA because the sum of low-rank matrices is generally a higher rank
matrix. The optimization is performed by training Bs, As iteratively, merging Ws ←Ws−1 +BsAs,
and then restarting the optimization for Bs+1, As+1. A key drawback of ReLoRA is that it stores the
full-rank matrix Ws throughout the training and inference stages. Hence, it is memory intensive and
not parameter efficient. While ReLoRA performs sequential low-rank updates in (1), a recent work
[22] has explored parallel low-rank updates and merging them for pretraining.

A more recent work, GaLore [59], imposes low-rank structure on the gradient. Specifically, GaLore
still optimizes full-rank weights and computes full-rank gradients Gt at iteration t, but updates Adam
moments Mt, Vt in a low-dimensional space, i.e.,

Mt ← β1Mt−1 + (1− β1)P
⊤
t Gt, Vt ← β2Vt−1 + (1− β2)(P

⊤
t Gt)

2

Wt+1 ←Wt − η PtMt/(
√

Vt + ϵ),

where Pt is a projection matrix constructed by taking the largest left singular vectors of Gt. To
reduce computational cost, Pt is computed every several iterations and is stored in the middle.
Although being memory efficient (as Mt and Vt are computed in the smaller dimension), GaLore is
not parameter efficient due to computation of PtMt for updating Wt.

3 SLTrain: proposed sparse plus low-rank pretraining

In order to achieve both parameter and memory efficiency, we propose to adapt low-rank parameteri-
zation by introducing a sparse factor. We model the weight matrices as a sum of sparse and low-rank
matrices. Our proposed modeling is referred to as SLTrain. Below, we discuss the motivation,
modeling details, and practical considerations for implementing SLTrain.

3.1 Motivation for sparse plus low-rank parameterization

Both low-rank and sparsity are parsimonious modeling strategies for exploring low-dimensional
weight matrices. The low-rank component aims to learn the low-dimensional bases or eigenspaces of
the weights. The sparse component, on the other hand, identifies effective neuron-wise interactions
and disregards non-expressive ones. In linear algebra terms, the low-rank component enforces sparsity
of singular values, whereas the sparse component enforces sparsity of individual entries. In general,
low-rank matrices are not sparse, and sparse matrices are not necessarily low-rank [6]. These concepts
provide complementary information that should be explored simultaneously.

Despite that low-rank modeling alone can have limited expressivity due to the low-rank structure
it imposes, we show in the below proposition that low-rank plus a uniform sparse matrix with only
Ω(log n/n) number of entries is full-rank with high probability.
Proposition 1. Consider a matrix S ∈ Rn×n with support S sampled uniformly at random with
probability δ ∈ (0, 1), i.e., P[(i, j) ∈ S] = δ, for all i, j ∈ [n]. Suppose δ = Ω(log n/n), then with
probability at least 1−O(1/n), BA+ S is full rank for arbitrary randomly generated B,A.

To further motivate the sparse plus low-rank modeling, in Figure 2, we illustrate different statistics
from weight matrices of a pretrained LLaMA 60M model on C4 dataset (introduced later in Section
5). In Figure 2(a), we plot the singular values of weight matrices of different layers. The plot exhibits
a fast decay of the singular values followed by a more stable decay of (smaller) singular values. This
suggests that the top subspaces can be effective in model compression, and therefore, builds a case

3



0 200 400
Singular values index

0

2

4

6 Attn Q
Attn K
Attn V
Attn O
MLP down
MLP up

(a) (b)

0.00 0.02 0.04 0.06 0.08
 Residual (Attn O) Magnitude

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0.97

(c)

Figure 2: Illustration of the last attention layer of pretrained full-rank LLaMA 60M model on 1.1B
tokens. (a): singular value magnitudes of weight matrices where we observe a rapid decay of singular
values. (b): Visualization of full-rank pretrained attention output matrix W0 in magnitude and the
residual matrix after removing the best rank-r (r = 128) approximation of the W0 by SVD. We
observe the magnitudes of the residual vary smoothly across different neuron-neuron interactions.
(c): Cumulative density of the residual matrix in magnitude where we include a cut-off fraction at
0.97. We observe 97% entries in the residual matrix have magnitude less than 0.04.

for low-rank modeling. However, the tail singular value distribution shows that low-rank modeling
purely may not be sufficient. In order to better understand the tail part, in Figure 2(b), we visualize
the magnitude of the attention output weight matrix before and after we extract the top r-dimensional
subspaces (r = 128) for the last attention layer. It is apparent that, after removing the top subspaces,
both the magnitudes and the variation of the entries present in the residual matrix become smaller.
Plotting the magnitudes of the entries in Figure 2(c) we see that 97% of the entries have a magnitude
below 0.04. In Appendix B and C, we provide such visualizations for other layers of LLaMA 60M
and Pythia 70M to further corroborate the findings. Overall, the figures suggest that a sparse matrix
with random support can approximate the residual well given the magnitudes do not vary too much
across the entries.

In Table 1, we perform an ablation study that verifies the feasibility of using a random
sparse support for approximating the residual matrix. Specifically, we take L0 as the best
rank-r approximation (r = 128) for the pretrained weight matrix W0 and evaluate the
perplexity score (PPL) on the validation set. We see that compared to the full-rank pre-
trained model, low-rank approximation L0 suffers from a drastic performance drop. We
also augment the low-rank approximation L0 with either top 3% or random 3% of entries
of the residual matrix, which we label as top sparse or random sparse pruning, respectively.

Table 1: Perplexity (PPL) of training and pruning with
random versus top sparsity for LLaMA 60M on 1.1B
tokens.

PPL (↓)

Full-rank 34.06
Low-rank (L0) 36633.04
L0 + top sparse pruning 5293.93
L0 + random sparse pruning 29121.38

L0 + sparse training with top support 53.75
L0 + sparse training with random support 51.98

We observe that L0 plus top sparse prun-
ing performs better compared to L0 plus
random sparse pruning. Nonetheless,
both the performance is poor. We fur-
ther evaluate fixing the low-rank approx-
imation (to L0) and only optimizing the
sparse components with either top sup-
port or random support (both run for five
times). Averaged PPL (over the five runs)
for both the approaches improve and are
comparable. This shows that fixing a ran-
dom support for the sparse factor is a
promising strategy from both efficiency
and performance point of view. We ex-
plore learning both the sparse and low-
rank factors in the next section.

3.2 Our proposed modeling

Building on Section 3.1, we propose to parameterize weight matrices W ∈ Rd×p as

W = BA+ S,

4



where B ∈ Rd×r, A ∈ Rr×p are low-rank factors with r < min{d, p} being the rank parameter
and S ∈ Rm×n is a sparse matrix. The number of non-zero entries (nnz) in S is determined by
the sparsity level parameter δ ∈ (0, 1), i.e., nnz(S) = δdp. So, the total number of parameters for
the proposed parameterization is (d + p)r + δdp, which is much smaller than the full-rank layer
parameters dp when we choose δ ≪ 1. In addition to being parameter efficient, the optimization
states also cost less memory and scales with the number of trainable parameters. Finally, we note
that the overall rank of W will generally be high due to the presence of the sparse factor S, based on
Proposition 1.

The performance of such a parameterization highly depends on whether there exists an implementation
that is both computation and memory efficient. Nevertheless, modern GPU hardware is not suited for
sparse tensor multiplication Sx for given input x, as well as its gradient, especially when S presents
an unstructured sparsity pattern [7]. This causes increased computational bottleneck despite showing
memory advantage. Thus, existing works on sparse network and training mostly rely on learning and
storing a parameter mask (i.e., support) [48, 15, 33] by letting S = M ⊙U , where M ∈ {0, 1}d×p is
a binary mask and U ∈ Rd×p is a dense parameter. This allows to exploit GPU accelerator for dense
matrix computation. However, masking requires to store both the support and a dense parameter for
training, which significantly increases the memory cost.

In this work, we achieve memory efficiency by representing S in terms of its indices and values, i.e.,
(I,V) ∈ R2nnz(S). This is possible because we randomly (and uniformly) fix the support a priori.
The motivation for using a random (but fixed) support comes from the usefulness of random support
in Table 1. This ensures the memory scales with only the sparsity in S (i.e., the support size) rather
than the full size of S. Further, the forward pass involves computing

BAx+ Sx = (BA⊕I V)x,
where we denote W ⊕I V as scatter-adding V to W at the indices specified in I. Because this
operation results in a dense matrix, sparse matrix multiplication is avoided. Hence, this is GPU
friendly without requiring to store a binary mask.

We remark that despite we require to compute a dense matrix, which has the same size as the full-rank
matrix, we never store it for backpropagation. In particular, we can compute the gradient with respect
to B,A, V , and input x as

∇BL = ∇zLx⊤A⊤, ∇AL = B⊤∇zLx⊤, ∇VL = (∇zLx⊤)I , ∇xL = (BA⊕I V)⊤∇zL,
(2)

where we let z = (BA⊕I V)x and L denotes the loss function. We also denote WI as gathering the
values of W at indices I . In other words, we only need to store B,A, I,V for backpropagation. This
is illustrated in Algorithm 1 where we define a customized linear layer in SLTrain. We highlight that
such a parameterization is agnostic to the chosen optimizers and can easily be integrated with any
optimizer including Adam.

In comparison with the recent pretraining works based on low-rank factors/gradients, SLTrain is
more parameter and memory efficient than ReLoRA [32] and GaLore [59] as it only optimizes the
low-rank and sparse factors without the need for storing full-rank matrices.

3.3 Practical considerations

Initialization and scaling. We consider LoRA type of initialization for low-rank fac-
tors, i.e., Kaiming initialization [19] for A factor and zero initialization for B factor.

Algorithm 1 SLTrain for linear layer

1: Input: x, Bt, At, (I,Vt).
2: def forward(x,Bt, At, I,Vt):
3: save_for_backward(Bt, At, I,Vt)
4: return (BA⊕I V)x
5:
6: def backward(∇zL):
7: x,Bt, At, I,Vt ← saved_tensor
8: Compute gradient as in (2).
9: return ∇xL,∇BtL,∇AtL,None,∇VtL

For sparse factor, we adopt uniform initial-
ization for the values V in the range of
[−1/

√
din, 1/

√
din], where din denotes input

feature dimension. We choose the sparse sup-
port I uniformly at random up to the desired
sparsity level δ. Furthermore, in order to balance
the contribution of low-rank factor and sparse
factor, we follow LoRA [21] to scale the low-
rank factors by α/r where the balancing param-
eter α is a hyperparameter. This hyperparameter,
along with the stepsize has a joint effect on the
training speed of low-rank versus sparse factors.

5



Regularization and preconditioning. It is expected that the optimization of low-rank factors can
cause instability when using larger stepsize or larger balancing parameter α, an issue already present
in low-rank training [43]. This is primarily due to the multiplicative updates of B,A simultaneously.
Existing solutions, such as orthogonal constraints or regularization [43], preconditioning [50, 23, 56],
can be easily combined with the proposed modelling for more stable convergence.

Integration with other techniques. Since the proposed sparse plus low-rank approach pursues
memory saving from the perspective of reparameterization, SLTrain can be easily integrated with
optimizer-based techniques for further improving memory efficiency, including quantization [9] (that
uses lower-bits for storing moment states without sacrificing the performance), per-layer weight
updates [36] (that updates the parameters along with backpropagation), and activation checkpointing
(that recomputes the activation states instead of storing them). In addition, SLTrain can be even
combined with low-rank gradients in GaLore [59] for low-rank factors. This can further reduce the
memory footprint, especially for larger models where the rank r is set to be high. On the other hand,
because we use a simple strategy of fixed-support sparse learning, it may be beneficial to combine
with different techniques for dynamic support learning [2, 20].

4 Related works

Low-rank fine-tuning and training. Building on the idea of LoRA [21] that parameterizes the
update as low-rank factors, i.e., ∆W = BA, ROSA [14] dynamically adapts subspaces for training,
where the subspaces are selected by taking SVD of the current weight matrices. Chain of Lora [53]
decomposes the low-rank update into a sequence of small-size matrix product, ∆W =

∑k
j=1 BjAj .

NOLA [29] parameterizes the two small matrices as linear combination of two sets of random basis
respectively, B =

∑m
i=1 αiBi, A =

∑n
j=1 βjAj where Ai, Bj are fixed random matrices. NOLA

optimizes over the coefficients, thus further improving parameter efficiency. VeRA [30] considers a
similar parameterization as NOLA where B = diag(b)B̃, A = diag(a)Ã for fixed random matrices
B̃, Ã. DoRA [34] decomposes pre-trained weights into magnitude and directional components and
separately fine-tune with LoRA adopted for directional update. SoRA [11] introduces a dynamic rank
adaptation strategy for tuning LoRA rank. ResLoRA [46] adds a residual path for LoRA adaptors.
For pretraining, in addition to ReLoRA [32] and GaLore [59], Flora [17] demonstrates LoRA updates
approximate random projection of gradient, and by resampling the random projection, high-rank
training can be achieved. LTE [22] adopts the similar idea of parameterizing a high-rank matrix
through summation of low-rank matrices and adopts the parallel train-and-merge strategy as opposed
to sequential in ReLoRA [32].

Sparse fine-tuning, training and sparse networks. Sparse fine-tuning/training aims to selectively
update the weights with others fixed [48, 1, 2, 49, 15, 33]. This usually entails choosing a proper
subset of parameters either randomly [49], or based on approximate Fisher information [1], magnitude
of the change [48], gradients and momenta [2], as well as by learning a parameter mask (for storing
support) with sparsity regularization [15]. On the other hand, sparse networks, also known as model
pruning, directly search for a minimal architecture [16, 35] by removing redundant weights. We refer
to the survey [20] for complete discussions of sparse network pruning.

Sparse plus low-rank. Decomposing a matrix into the sum of low-rank and sparse matrix is a
classic optimization problem for matrix recovery [6, 54, 4]. Recently, some works also consider
harnessing both low-rank structure and sparsity for neural network compression. Scatterbrain
[7] considers approximating the attention matrix for faster inference with sparse plus low-rank
factors. More specifically, given Q,K, V ∈ Rn×d The main aim is to efficiently approximate
exp(QK⊤)V , which suffers from quadratic complexity in sequence length n. Hence, [7] proposes
to leverage a random feature map ϕ : Rd −→ Rm, defined as ϕ(x) = 1√

m
exp(Wx− ∥x∥2/2) with

entries of W sampled from Gaussian distribution N (0, 1), which defines a low-rank approximation
ϕ(Q)ϕ(K)⊤ ≈ exp(QK⊤). Then a sparse matrix is constructed based on locality sensitivity hashing
with the non-zero entries Si,j = exp(QK⊤)i,j − ϕ(Q)⊤i ϕ(K)j . However, the aim of [7] is to
approximate the attention matrix to reduce the computational cost while we aim to achieve memory
efficiency by directly parameterizing the weight matrix. More specifically, in the context of self-
attention where Q = XWQ,K = XWK , V = XWV , we directly parameterize each projection
matrix WQ,WK ,WV as low-rank plus sparse factors, e.g., WQ = BA+ S. In addition, LoSparse
[31] proposes to decompose the pretrained weights into low-rank plus sparse factors for structured

6



Table 2: Validation perplexity (PPL(↓)), number of parameters in millions (Param), and estimated
total memory cost in G (Mem). The perplexity results for all the baselines are taken from [59]. For
SLTrain, we use the same rank as other baselines and fix δ = 0.03.

60M 130M 350M 1B

r / d 128 / 512 256 / 768 256 / 1024 512 / 2048
Tokens 1.1B 2.2B 6.4B 13.1B

PPL Param Mem PPL Param Mem PPL Param Mem PPL Param Mem

Full-Rank 34.06 58 0.35 24.36 134 0.81 18.80 368 2.21 15.56 1339 8.04
Low-Rank [24] 78.18 43 0.24 45.51 94 0.57 37.41 185 1.11 142.5 609 3.66
ReLoRA [32] 37.04 58 0.36 29.37 134 0.84 29.08 368 1.85 18.33 1339 6.34
GaLore [59] 34.88 58 0.28 25.36 134 0.61 18.95 368 1.59 15.64 1339 4.76
SLTrain 34.15 44 0.26 26.04 97 0.60 19.42 194 1.24 16.14 646 4.16

compression. Nevertheless, they consider optimizing the sparse matrix via iterative thresholding,
which requires to store the full-size sparse matrix. We instead consider directly optimizing the sparse
matrix on its non-zero entries for memory-efficient pretraining.

Memory efficient training. To overcome the memory limitation of LLMs, many techniques have
been proposed, such as reduced-precision, quantization [9, 10], gradient checkpointing [42] and gra-
dient accumulation [8], and row-sum/column-sum of second-order statistics in Adafactor [45], among
many others. As has already been discussed, the proposed sparse plus low-rank parameterization is
orthogonal to these developments where the techniques can be easily integrated for further memory
reduction.

5 Experiments

This section validates the effectiveness of low-rank plus sparse structure for pretraining and fine-
tuning large language models. All the experiments are run on NVIDIA A100 GPUs. The code is
available on https://github.com/andyjm3/SLTrain.

5.1 Pretraining LLMs

Following [32, 59], we consider pretraining the LLaMA language models [51] with pre-normalization,
RMSnorm [55], and SwiGLU activation [44]. We train LLaMA LLMs on C4 (Colossal Clean Crawled
Corpus) dataset [41], which is specially designed for pretraining. The training is performed without
data repetition and we consider LLaMA with varying model sizes from 60M up to 7B parameters.

Baselines. We compare our SLTrain with the baselines which exploit low-rank structures.

• Full-Rank: This is the vanilla baseline that pretrains with full-rank weights using the Adam
optimizer.

• Low-Rank [24]: This is the low-rank parameterization of weights by factorizing W = BA where
optimization is on B,A.

• ReLoRA [32]: ReLoRA periodically restarts LoRA [21] by merging the learned low-rank adaptors
with layer weights and reinitializing the optimizer state and learning rate.

• GaLore [59]: GaLore explores low-rank structure for the gradients rather than for the parameters.

We implement SLTrain with Adam by reparameterizing the weights from all linear layers, including
fully-connected layers as well as query, key, value projection layers. The remaining parameters are
updated with full-rank parameterization. This is consistent with the setup used in [21, 32, 59].

Hyperparameters. For SLTrain, we fix the rank r to be the same as the baselines and fix sparsity
ratio δ = 0.03 across all the model sizes except for LLaMA 7B where we choose δ = 0.05, which
achieves a good balance between efficiency and performance. We tune and fix the stepsize to be

7

https://github.com/andyjm3/SLTrain


0.003 and tune α in the range of [8, 16, 32] for the LLaMA 60M, 130M, 250M, 1B models. We fix
the other parameters to their default settings. In particular, we choose α = 32 for the LLaMA 60M
model and α = 16 for the 130M and 350M models and α = 8 for 1B. For the LLaMA 7B model, we
choose stepsize to be 0.0005 and α = 8. Except for the 7B model, we directly inherit the perplexity
results from [59] and thus do not need to tune the hyperparameters from the baselines. We ensure the
comparison is fair based on the training token number.

Memory cost estimation. We compare the proposed SLTrain with the low-rank baseline models
in terms of estimated memory consumption. Following [59], we compute memory estimates with
bfloat16 format, where each floating point number occupies 2 bytes. We remark that SLTrain stores
the indices with int64 format, which occupies 8 bytes per digit. The memory cost for a training
algorithm consists of the parameter memory and optimizer state memory. The parameter memory
refers to the memory occupied by storing parameters, and the optimizer state memory refers to the
memory required to store the first and second-order moment statistics, e.g., in Adam. Table 2 reports
the total estimated memory cost for each method. The detailed breakdown of memory estimation can
be found in Appendix F.

Perplexity vs efficiency. In Table 2, we compare the performance of different methods in three aspects:
perplexity score, parameter size, and memory cost. We observe that SLTrain performs comparatively
as the full-rank training and GaLore [59] while achieving further reduction in parameter size and
memory cost. In addition, SLTrain only adds a small parameter and memory overhead to the low-rank
parameterization, yet significantly improves the perplexity score. Hence, learning the additional
sparse factor indeed helps in strengthening the representation capacity of SLTrain. This intuition is
also validated in Figure 10 (Appendix D), where we plot the singular value distribution for different
weight matrices. Due to the presence of the sparse factor, we observe that the spectrum of the
SLTrain weight matrices gets enhanced beyond r = 128.

350M 1B 7B0

10

20

30

40

50

60

70
M

em
or

y 
(G

B)

4.5

16.3

67.4

3.5

11.8

29.4

3.1

10.3

22

2.2
6.8

18.3

Adam
Adam8bit (per layer)
Galore8bit (per layer)
SLTrain8bit (per layer)

Figure 3: Actual memory consumption
across different model size and algo-
rithms on a single A100 80G GPU.

Measuring actual memory footprint. In Figure 3, we
record the actual memory footprint of different methods
across various model sizes, on a single A100 80G GPU.
We measure the memory of 8-bit SLTrain with per-layer
weight update using a single batch size and bfloat16
data type. Gradient checkpointing is not used for any
method. The baselines include Adam trained on full-rank
weights, 8-bit Adam, and 8-bit GaLore with per-layer
weight. From the figure, we see that SLTrain achieves
memory reduction by 51%, 58%, 73% for 350M, 1B,
7B models, respectively. Notably, compared to state-of-
the-art memory-efficient method GaLore [59], SLTrain
reduces the memory requirement by 29%, 34%, 17% when
pretraining 350M, 1B, 7B models, respectively.

Measuring throughput. We measure the throughput of SLTrain for pretraining on the LLaMA
350M and LLaMA 1B models with a token batch size of 256 on 1×80G A100 GPU and 4×80G
A100 GPUs, respectively. The throughput is averaged over 5000 training steps. We observe in
Table 3 that the throughput token of SLTrain is slightly lower than the full-rank and GaLore baselines.
This is mainly due to the retrieving and setting for the sparse entries. We believe more efficient
implementation can be developed in this regard.

Scaling to LLaMA 7B model. For pretraining the LlaMA 7B model, due to the resource constraints,
we only compare SLTrain with GaLore, implemented with 8-bit Adam [9] on 4×80G A100 GPUs,
without per-layer weight updates nor gradient checkpointing.1. We directly use the training scripts of
GaLore.2 In Table 4, we observe that SLTrain performs comparably to GaLore in terms of perplexity
and throughput while achieving significant memory reduction of 26% per GPU device.

Inference memory and throughput. In Table 5, we compare the inference memory usage and
throughput between SLTrain and the full-rank model across various model sizes, ranging from LLaMA
130M to 7B. A clear trade-off between memory and computational cost is observed. Specifically,
as the model size increases, the percentage of memory savings becomes more pronounced, while

1For full-rank model, 8-bit Adam throws out-of-memory error on 4×80G A100 GPUs.
2The scripts are available at https://github.com/jiaweizzhao/GaLore

8

https://github.com/jiaweizzhao/GaLore


Table 3: Throughput tokens/seconds for LLaMA
350M (on 1×80G A100 GPU) 1B (on 4×80G
A100 GPUs).

350M 1B
Full-Rank 32072 20630
GaLore 31747 20500
SLTrain 30293 20412

Table 4: Validation perplexity, actual mem-
ory footprint per GPU, and throughput to-
kens/seconds (Tokens/sec) for LLaMA 7B on
1.4B tokens.

PPL Mem Tokens/sec
8-bit GaLore 26.87 62G 5924
8-bit SLTrain 27.59 46G 5877

Table 5: Inference memory and throughput comparison on a single 40G A100 GPU on a batch size of
128 for 130M, 350M, and a batch size of 32 for 1B, 7B. Compared to 1B model, higher memory for
350M model is due to the larger batch size.

130M 350M
Mem Tokens/s Mem Tokens/s

Full-Rank 8.09G 151360 11.06G 71324
SLTrain 7.95G 137058 10.44G 66616

(-1.73%) (-9.45%) (-5.61%) (-6.60%)
1B 7B

Mem Tokens/s Mem Tokens/s
Full-Rank 8.64G 18964 32.93G 9500
SLTrain 6.12G 17482 21.19G 8481

(-29.17%) (-7.81%) (-35.65%) (-10.73%)

the corresponding increase in computational cost is less significant. This underscores the growing
advantage of SLTrain when employing larger models.

0 10000 20000 30000 40000
Steps

30

40

50
60
70
80
90

Pe
rp

le
xi

ty
60M
130M

Figure 4: Convergence of
SLTrain in perplexity with dif-
ferent random support.

Varying random sparse support. In contrast to common pruning
strategies that require careful learning of sparse support, we show
that SLTrain works with randomly selected support. In this regard,
we perform pretraining on Llama 60M and 130M with five different
randomly selected support for the sparse factor S. The convergence
plots are shown in Figure 4, where we see that changing the ran-
dom support for the sparse factor does not materially affect the
performance.

How do rank r and sparsity δ affect performance? In Table 6,
we validate the performance of training the Llama 60M and 130M
models by varying the hyperparameters r and δ. We notice that, in
general, when more parameters are added (corresponding to higher r
and δ), the performance is better. However, this performance gain is also accompanied by an increase
in memory footprint. In our initial experiments, we also tried the extreme setting with r = 0, i.e.,
only the S component was learned but with a higher δ value. This setting demonstrated a reasonably
good performance. Further investigations in this direction are left for future work.

Further comparisons to full-rank performance. In this section, we evaluate the potential of
SLTrain to achieve performance comparable to full-rank models by adjusting the sparsity ratio, δ. As
shown in Table 7, we increase δ from 0.03 to 0.1 for the LLaMA 350M and 1B models. Our results
indicate that setting δ = 0.1 enables SLTrain to attain perplexity scores similar to those of full-rank
models, while maintaining memory and parameter efficiency. Notably, at δ = 0.1, SLTrain reduces
the parameter size by 42% for the 350M model and 45% for the 1B model. These results highlight
the effectiveness of SLTrain in significantly reducing model size without sacrificing performance.

6 Concluding Remarks

In this paper, we propose SLTrain for achieving both memory and parameter efficient pretraining of
LLMs. SLTrain combines two complementary parsimonious structures, low-rank and sparsity, for

9



Table 6: Ablation comparison with low-rank and sparse parameterization along with change of rank r
and sparsity δ. Validation perplexity (↓) and parameter size and estimated memory cost in brackets.

60M 130M
1.1B 2.2B

Full-Rank 34.06 (0.35G) 24.36 (0.81G)
SLTrain r = 96, δ = 0.03 34.80 (0.25G) r = 224, δ = 0.03 26.25 (0.58G)
SLTrain r = 128, δ = 0.01 34.81 (0.26G) r = 256, δ = 0.01 26.50 (0.58G)
SLTrain r = 128, δ = 0.03 34.15 (0.26G) r = 256, δ = 0.03 26.04 (0.60G)
SLTrain r = 128, δ = 0.05 33.41 (0.28G) r = 256, δ = 0.05 25.72 (0.62G)
SLTrain r = 160, δ = 0.03 33.20 (0.28G) r = 288, δ = 0.03 25.93 (0.63G)

Table 7: Results training LLaMA 350M (with batch size=128 per GPU) and LLaMA 1B (with batch
size=32 per GPU). Validation perplexity (PPL) (↓), number of parameters in millions (Param) and
actual max memory allocated per GPU in G (Mem).

350M 1B
PPL Param Mem PPL Param Mem

Full-Rank 18.80 368 59.34 15.56 1339 39.97
SLTrain (δ = 0.03) 19.42 194 (-47%) 57.90 (-2.4%) 16.14 646 (-52%) 33.77 (-15.5%)
SLTrain (δ = 0.05) 19.24 200 (-45%) 58.00 (-2.2%) 15.97 670 (-50%) 34.30 (-14.2%)
SLTrain (δ = 0.1) 18.72 215 (-42%) 58.25 (-1.8%) 15.59 730 (-45%) 35.36 (-11.5%)

learning models with high representation capacity. While low rank is modeled via the product BA of
r-dimensional matrices, the support of the sparse factor S is obtained by uniformly random sampling
over indices. The matrices B,A, S are learned for different layers via backpropagation. Empirically,
we achieve state-of-the-art memory reduction during pretraining while maintaining competitive
performance. Although we show results on the LLaMA language models (with varying size from
60M to 7B parameters), we believe SLTrain could also help to improve memory efficiency for vision
foundation models and multi-modal foundation models, such as diffusion models [37] and CLIP
[38]. The significant improvements shown by SLTrain also motivates future works to understand the
theoretical guarantees of training with both low-rank and sparse factors, such as convergence and loss
landscape. We hope this work initiates exploration on combination of other parsimonious structures
for pretraining such as Kronecker product or structured sparsity (e.g., block-diagonal, group-lasso).

Acknowledgments

M. Hong and J. Li are supported partially by NSF under the grants EPCN-2311007 and CCF-1910385,
and an Amazon Research Award.

References
[1] Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning

for cross-lingual transfer. In ACL (Volume 1: Long Papers), 2022.

[2] Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
fine-tuning to large language models. Technical report, arXiv preprint arXiv:2401.16405, 2024.

[3] Alexandre Audibert, Massih R Amini, Konstantin Usevich, and Marianne Clausel. Low-rank
updates of pre-trained weights for multi-task learning. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 7544–7554, 2023.

[4] Dimitris Bertsimas, Ryan Cory-Wright, and Nicholas AG Johnson. Sparse plus low rank matrix
decomposition: A discrete optimization approach. Journal of Machine Learning Research,
2023.

10



[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 2020.

[6] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. Willsky. Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

[7] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. In NeuIPS, 2021.

[8] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. Technical report, arXiv preprint arXiv:1604.06174, 2016.

[9] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In ICLR, 2022.

[10] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
finetuning of quantized llms. NeurIPS, 2023.

[11] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong
Sun. Sparse low-rank adaptation of pre-trained language models. In EMNLP, 2023.

[12] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nature Machine Intelligence, 5(3):220–235, 2023.

[13] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In ICLR, 2019.

[14] Marawan Gamal and Guillaume Rabusseau. ROSA: Random orthogonal subspace adaptation.
In ICML 2023 Workshop on Efficient Systems for Foundation Models, 2023.

[15] Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. In ACL (Volume 1: Long Papers), 2021.

[16] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015.

[17] Yongchang Hao, Yanshuai Cao, and Lili Mou. FLORA: Low-rank adapters are secretly gradient
compressors. In ICML, 2024.

[18] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large
models. In ICML, 2024.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In ICCV, 2015.

[20] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR,
2022.

[22] Minyoung Huh, Brian Cheung, Jeremy Bernstein, Phillip Isola, and Pulkit Agrawal. Training
neural networks from scratch with parallel low-rank adapters. Technical report, arXiv preprint
arXiv:2402.16828, 2024.

[23] Xixi Jia, Hailin Wang, Jiangjun Peng, Xiangchu Feng, and Deyu Meng. Preconditioning matters:
Fast global convergence of non-convex matrix factorization via scaled gradient descent. In
NeurIPS, 2023.

11



[24] Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, and
Aidan N Gomez. Exploring low rank training of deep neural networks. Technical report, arXiv
preprint arXiv:2209.13569, 2022.

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. Technical report, arXiv preprint arXiv:2001.08361, 2020.

[26] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[27] Mikhail Khodak, Neil A. Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and
regularization of factorized neural layers. In ICLR, 2021.

[28] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[29] Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Networks as linear combination of low rank random basis. In ICLR, 2024.

[30] Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random
matrix adaptation. In ICLR, 2024.

[31] Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
LoSparse: Structured compression of large language models based on low-rank and sparse
approximation. In ICML, 2023.

[32] Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReLoRA:
High-rank training through low-rank updates. In ICLR, 2024.

[33] Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
new latency. In ACL, 2023.

[34] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In
ICML, 2024.

[35] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks
through l0 regularization. In ICLR, 2018.

[36] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. In ACL (Volume 1: Long Papers),
2024.

[37] William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

[39] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. Technical report, OpenAI, 2018.

[40] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[42] Elvis Rojas, Albert Njoroge Kahira, Esteban Meneses, Leonardo Bautista Gomez, and Rosa M
Badia. A study of checkpointing in large scale training of deep neural networks. Technical
report, arXiv preprint arXiv:2012.00825, 2020.

[43] Dayana Savostianova, Emanuele Zangrando, Gianluca Ceruti, and Francesco Tudisco. Robust
low-rank training via approximate orthonormal constraints. In NeurIPS, 2023.

12



[44] Noam Shazeer. Glu variants improve transformer. Technical report, arXiv preprint
arXiv:2002.05202, 2020.

[45] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In ICML, 2018.

[46] Shuhua Shi, Shaohan Huang, Minghui Song, Zhoujun Li, Zihan Zhang, Haizhen Huang, Furu
Wei, Weiwei Deng, Feng Sun, and Qi Zhang. ResLoRA: Identity residual mapping in low-rank
adaption. Technical report, arXiv preprint arXiv:2402.18039, 2024.

[47] Yang Sui, Miao Yin, Yu Gong, Jinqi Xiao, Huy Phan, and Bo Yuan. ELRT: Efficient low-
rank training for compact convolutional neural networks. Technical report, arXiv preprint
arXiv:2401.10341, 2024.

[48] Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
NeurIPS, 2021.

[49] Vithursan Thangarasa, Abhay Gupta, William Marshall, Tianda Li, Kevin Leong, Dennis
DeCoste, Sean Lie, and Shreyas Saxena. SPDF: Sparse pre-training and dense fine-tuning for
large language models. In UAI, 2023.

[50] Tian Tong, Cong Ma, and Yuejie Chi. Accelerating ill-conditioned low-rank matrix estimation
via scaled gradient descent. Journal of Machine Learning Research, 22(150):1–63, 2021.

[51] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. Technical report, arXiv preprint arXiv:2302.13971,
2023.

[52] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. Technical report, arXiv preprint arXiv:2307.09288,
2023.

[53] Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: Efficient fine-tuning of language
models via residual learning. Technical report, arXiv preprint arXiv:2401.04151, 2024.

[54] Xiaoming Yuan and Junfeng Yang. Sparse and low-rank matrix decomposition via alternating
direction method. Pacific Journal of Optimization, 9:167–180, 2013.

[55] Biao Zhang and Rico Sennrich. Root mean square layer normalization. In NeurIPS, 2019.

[56] Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned LoRA for fine-tuning foundation
models. In ICML, 2024.

[57] Xiao Zhang, Lingxiao Wang, and Quanquan Gu. A unified framework for nonconvex low-rank
plus sparse matrix recovery. In AISTATS, 2018.

[58] Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner,
Shiwei Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse
LLMs. In ICLR, 2024.

[59] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In ICML, 2024.

13



Contents

A Proofs 14

B Additional illustration for low-rank and residual factors 14

C Illustration of low-rank and residual factors for Pythia 16

D Singular value distribution of learned weights 17

E Memory and runtime of SLTrain linear layer 18

F Details of memory estimation 19

G Fine-tuning LLMs 21

H Experiment Configurations 22

I Broader Impact 22

A Proofs

Proof of Proposition 1. For each row, the probability that at least one entry is non-zero is 1−(1−p)n
due to the independence of the non-zero entry. Due to the independence of uniform selection, the
probability that all the rows have at least one entry is (1− (1− p)n)n. By choosing p = 2 log n/n,
the probability can be simplified to (1− e−2 logn)n = 1−O(1/n). Similarly, we can apply the same
argument for the columns. Taking the union bound shows that with probability at least 1−O(1/n), S
has at least one entry for each row and each column respectively. Further, because the non-zero entries
of S are sampled from continuous distribution, the set of matrices such that S becomes low-rank has
measure zero. Then taking union bound gives with probability at least 1−O(1/n), S is full rank.

The remaining part is to prove that BA+S is full rank. Because B,A are sampled from a continuous
distribution space, the set of such matrices that augments S to form a degenerate matrix has measure
zero. Thus, the proof is complete.

B Additional illustration for low-rank and residual factors

In the main text, we present singular values and visualizations of the attention output weight matrix
for a single layer, both before and after applying the low-rank approximation. Here, we extend this
analysis by providing visualizations for additional weight matrices across multiple layers for the
LLaMA 60M and 130M models. The figures reveal a consistent pattern, showing a low-rank plus
(uniformly) small magnitude structure in the weight matrices of other layers as well.

14



0 200 400
Singular values index

0

2

4

6 Attn Q
Attn K
Attn V
Attn O
MLP down
MLP up

Figure 5: Illustration of the last attention layer of pretrained full-rank LLaMA 60M model on 1.1B
tokens.

0 200 400
Singular values index

0

1

2

3

4

5 Attn Q
Attn K
Attn V
Attn O
MLP down
MLP up

Figure 6: Illustration of the first attention layer of pretrained full-rank LLaMA 60M model on 1.1B
tokens.

15



0 200 400
Singular values index

0

2

4

6
Attn Q
Attn K
Attn V
Attn O
MLP down
MLP up

Figure 7: Illustration of the fourth attention layer of pretrained full-rank LLaMA 60M model on
1.1B tokens.

0 200 400 600 800
Singular values index

0

5

10

15 Attn Q
Attn K
Attn V
Attn O
MLP down
MLP up

Figure 8: Illustration of the eighth attention layer of pretrained full-rank LLaMA 130M model on
2.2B tokens.

C Illustration of low-rank and residual factors for Pythia

Here we repeat the analysis of singular spectrum for pretrained Pythia 70M, downloaded from
Hugging Face. Specifically, we set the rank r = 128 and extract the best rank r approximation of the
learned weight matrices. The results are shown in Figure 9, where we observe that the residual after
removing the best low-rank approximation vary smoothly and has small magnitude.

16



0.00 0.02 0.04 0.06 0.08 0.10 0.12

 Residual (Atten QKV) Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0.97
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

 Residual (Attn O) Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0.97
0.00 0.02 0.04 0.06 0.08 0.10

 Residual (MLP Down) Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

0.97

Figure 9: Illustration of the last layer of pretrained full-rank Pythia 70M (deduped) downloaded
from Hugging Face.

D Singular value distribution of learned weights

0 150 300 450
Singular Value Index (Attn O)

0

1

2

3

4

5 Full-Rank
Low-Rank
SLTrain

0 150 300 450
Singular Value Index (Attn K)

0

10

20

30

40

50 Full-Rank
Low-Rank
SLTrain

0 150 300 450
Singular Value Index (Attn Q)

0

10

20

30

40

50
Full-Rank
Low-Rank
SLTrain

0 150 300 450
Singular Value Index (Attn V)

0

1

2

3

4 Full-Rank
Low-Rank
SLTrain

0 150 300 450
Singular Value Index (MLP down)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Full-Rank
Low-Rank
SLTrain

0 150 300 450
Singular Value Index (MLP up)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Full-Rank
Low-Rank
SLTrain

Figure 10: Visualization of singular value distribution for different weight matrices, pretrained on
1.1B tokens. SLTrain was trained with r = 128. For SLTrain, we see that the tail singular values
(i.e., 129 till 512) is due to the sparse factor and the head singular values are because of the low-rank
component. It is interesting to see that the tail distribution of SLTrain tries to follow that of Full-Rank.
In the head distribution, SLTrain tries to approximate Low-Rank.

In Figure 10, we plot the distribution of singular values of pretrained weights of the LLaMA 60M
model on 1.1B tokens. It is interesting to observe the distinct role of both the low-rank (L) and sparse
(S) components. In particular, we see a cliff at index 128. This is because the singular values from
1 to 128 is due the learning of low-rank factor and from 129 to 512 is primarily due to the sparse
component.

To further evaluate the contributions of spectrum from low-rank and sparse components, we de-
compose the singular values of SLTrain weight matrices into contributions from the low-rank and
sparse parts. Specifically, let UΣV ⊤ = BA+S be the SVD, then we plot diag(Σ), diag(U⊤BAV ),
diag(U⊤SV ), which we respectively call singular values, low-rank singular values, and sparse
singular values. In Figure 11, we see that the low-rank and sparse components contribute to different
ends of the spectrum of the weight matrices. This justifies our modeling approach, i.e., by adding a

17



0 150 300 450
Singular Value Index (Attn O)

0

1

2

3

4

5 Singular Values
Low rank singular values
Sparse singular values

0 150 300 450
Singular Value Index (Attn K)

0

10

20

30

40

50 Singular Values
Low rank singular values
Sparse singular values

0 150 300 450
Singular Value Index (Attn Q)

0

10

20

30

40

50
Singular Values
Low rank singular values
Sparse singular values

0 150 300 450
Singular Value Index (Attn V)

0

1

2

3

4 Singular Values
Low rank singular values
Sparse singular values

0 150 300 450
Singular Value Index (MLP down)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Singular Values
Low rank singular values
Sparse singular values

0 150 300 450
Singular Value Index (MLP up)

0

5

10

15

Singular Values
Low rank singular values
Sparse singular values

0 150 300 450
Singular Value Index (Attn K) - Zoomed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Singular Values
Low rank singular values
Sparse singular values

Figure 11: Visualization of singular value composition of SLTrain. In particular, we show the
decomposition of singular values of learned BA+ S into contributions arising from from BA and
those from S. We clearly see that the top singular values are primarily due to the low-rank component
and the tail singular values are due to the sparse component.

sparse component to the low-rank component, we mainly augment the tail end of the singular value
spectrum.

E Memory and runtime of SLTrain linear layer

Here we perform an additional experiment by comparing the actual maximum memory consumption
for the proposed SLTrain linear layer (Algorithm 1, (BA+ S)x) and standard full-rank linear layer
(Wx) and low-rank linear layer (BAx) in a feedforward neural network. We include the results for
both forward and backward pass where we vary the number of layers in Figure 112. Specifically, we
set the input, hidden and output size to be 2048 and r = 128 with δ = 0.03. From the figure, we
observe that as the number of layers increases, the reduction in memory of SLTrain becomes more
evident compared to full-rank model. On the other hand, the memory overhead of SLTrain compared
to low-rank model is only marginal. In terms of computational cost, we see compared to full-rank
model, SLTrain only requires slight computational overhead, which is due to the scatter-adding
operation.

18



1 10 20 30 40
Layers

0.5

1.0

1.5

2.0

2.5

M
em

or
y 

(b
yt

es
)

1e9

FFN (forward)
FFN (backward)
Low-Rank (forward)
Low-Rank (backward)
SLTrain (forward)
SLTrain (backward)

1 10 20 30 40
Layers

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Ru
nt

im
e 

(s
)

FFN (forward)
FFN (backward)
Low-Rank (forward)
Low-Rank (backward)
SLTrain (forward)
SLTrain (backward)

Figure 12: Comparison of memory and runtime with feedforward neural network with full-rank linear
layer (FFN), low-rank linear layer (BA) and SLTrain linear layer (BA+S). We observe the memory
savings of SLTrain becomes more evident when number of layers increases. Compared to Low-Rank,
the memory of SLTrain is only marginally higher.

F Details of memory estimation

Following [59], we compute memory estimate with bfloat16 format, where each floating point
number occupies 2 bytes. For simplicity of estimation, we use the convention that 1G contains
109 bytes. Hence the estimation could be different from the estimation in [59]. We summarize the
parameter and optimizer state breakdown in Table 8.

For a 60M model, we estimate the memory for each model as follows.

• Full-rank: Full rank model has 58.2M parameters, which costs 0.12G and the optimizer state
requires to store double size of the parameters, which is 0.23G.

• Low-rank: A low-rank parameterization (with r = 128) for selected modules lead to 42.78M
parameters (32.78M non-adapted parameters plus 10M low-rank adapted parameters), which
consumes a memory of 0.08G. The optimizer state costs double size of memory, which is 0.16G.

• ReLoRA: Similar to LoRA, ReLoRA requires to store both the original parameters as well as
the adaptors (including both the low-rank adaptors and adaptors for other parameters), which in
total has 102.77M parameters with an estimated memory cost of 0.20G. For the optimizer state,
ReLoRA stores the moments of only trainable parameters, which is 85.54M with a memory of
0.17G.

• GaLore: GaLore requires to store the full set of parameters 58.2M, which is the same as full-rank.
For the optimizer state, GaLore stores the moments of projected gradients, which has a size of
78.20M, plus the projection matrix of size 3.67M. In total optimizer state requires to store 0.16G
of memory.

• SLTrain: For proposed SLTrain (with r = 128 and δ = 0.03), the parameter includes 32.78M
base parameters, together with 10M low-rank factors and 0.76M sparse factors, which occupies
0.09G memory (where the sparse factors include 0.76M values in bfloat16 format and 0.76M
indices in int64 format). For the optimizer state, the memory cost is double of the parameter
size, which occupies 0.17G.

For a 130M model, we estimate the memory for each model as follows.

• Full-rank: Full rank model has 134.11M parameters, which costs 0.27G and the optimizer state
requires to store double size of the parameters, which is 0.54G.

• Low-rank: A low-rank parameterization (with r = 256) for selected modules lead to 94.00M
parameters (49.17M non-adapted parameters plus 44.83M low-rank adapted parameters), which
consumes a memory of 0.19G. The optimizer state costs double size of memory, which is 0.38G.

• ReLoRA: Similar to LoRA, ReLoRA requires to store both the original parameters as well as
the adaptors (including both the low-rank adaptors and adaptors for other parameters), which in

19



Table 8: Breakdown of memory consumption of training modules in terms of parameters (Param) and
optimizers (Optim).

60M 130M 350M 1B
Param Optim Param Optim Param Optim Param Optim

Full-rank 0.12G 0.23G 0.27G 0.54G 0.74G 1.47G 2.68G 5.36G
Low-rank 0.08G 0.16G 0.19G 0.38G 0.37G 0.74G 1.22G 2.44G
ReLoRA 0.20G 0.16G 0.46G 0.38G 1.11G 0.74G 3.90G 2.44G
GaLore 0.12G 0.16G 0.27G 0.34G 0.74G 0.85G 2.68G 2.08G
SLTrain 0.09G 0.17G 0.21G 0.39G 0.46G 0.78G 1.58G 2.58G

total has 228.11M parameters with an estimated memory cost of 0.46G. For the optimizer state,
ReLoRA stores the moments of only trainable parameters, which is 188M with a memory of
0.38G.

• GaLore: GaLore requires to store the full set of parameters 134.11M, which is the same as
full-rank. For the optimizer state, GaLore stores the moments of projected gradients, which has a
size of 154.97M, plus the projection matrix of size 16.52M. In total optimizer state requires to
store 0.34G of memory.

• SLTrain: For proposed SLTrain (with r = 256 and δ = 0.03), the parameter includes 49.17M
base parameters, together with 44.83M low-rank factors and 2.55M sparse factors, which occupies
0.21G memory (where the sparse factors include 2.55M values in bfloat16 format and 2.55M
indices in int64 format). For the optimizer state, the memory cost is double of the parameter
size, which is 0.39G.

For a 350M model, we estimate the memory for each model as follows.

• Full-rank: Full rank model has 367.97M parameters, which costs 0.74G and the optimizer state
requires to store double size of the parameters, which is 1.47G.

• Low-rank: A low-rank parameterization (with r = 256) for selected modules lead to 185.22M
parameters (65.59M non-adapted parameters plus 119.63M low-rank adapted parameters), which
consumes a memory of 0.37G. The optimizer state costs double size of memory, which is 0.74G.

• ReLoRA: Similar to LoRA, ReLoRA requires to store both the original parameters as well as
the adaptors (including both the low-rank adaptors and adaptors for other parameters), which in
total has 553.19M parameters with an estimated memory cost of 1.11G. For the optimizer state,
ReLoRA stores the moments of only trainable parameters, which is 370.44M with a memory of
0.74G.

• GaLore: GaLore requires to store the full set of parameters 367.97M, which is the same as
full-rank. For the optimizer state, GaLore stores the moments of projected gradients, which has a
size of 282.36M, plus the projection matrix of size 144.04M. In total optimizer state requires to
store 0.34G of memory.

• SLTrain: For proposed SLTrain (with r = 256 and δ = 0.03), the parameter includes 65.59M
base parameters, together with 119.64M low-rank factors and 9.07M sparse factors, which
occupies 0.46G memory (where the sparse factors include 9.07M values in bfloat16 format
and 9.07M indices in int64 format). For the optimizer state, the memory cost is double of the
parameter size, which is 0.78G.

For a 1B model, we estimate the memory for each model as follows.

• Full-rank: Full rank model has 1339.08M parameters, which costs 2.68G and the optimizer state
requires to store double size of the parameters, which is 5.36G.

• Low-rank: A low-rank parameterization (with r = 512) for selected modules lead to 609.31M
parameters (131.17M non-adapted parameters plus 478.14M low-rank adapted parameters), which
consumes a memory of 1.22G. The optimizer state costs double size of memory, which is 2.44G.

• ReLoRA: Similar to LoRA, ReLoRA requires to store both the original parameters as well as
the adaptors (including both the low-rank adaptors and adaptors for other parameters), which in

20



total has 1948.39M parameters with an estimated memory cost of 3.90G. For the optimizer state,
ReLoRA stores the moments of only trainable parameters, which is 1218.62M with a memory of
2.44G.

• GaLore: GaLore requires to store the full set of parameters 1339.08M, which is the same as
full-rank. For the optimizer state, GaLore stores the moments of projected gradients, which has a
size of 866.30M, plus the projection matrix of size 176.16M. In total optimizer state requires to
store 2.08G of memory.

• SLTrain: For proposed SLTrain (with r = 512 and δ = 0.03), the parameter includes 131.17M
base parameters, together with 478.14M low-rank factors and 36.24M sparse factors, which
occupies 1.58G memory (where the sparse factors include 36.24M values in bfloat16 format
and 36.24M indices in int64 format). For the optimizer state, the memory cost is double of the
parameter size, which is 2.58G.

In addition, we estimate the memory for Table 6 by listing out the parameter information for each
parameter setting.

Table 9: Memory breakdown for SLTrain for LLaMA 60M with varying r, δ.

r = 128, δ = 0.01 r = 128, δ = 0.05 r = 96, δ = 0.03 r = 160, δ = 0.03

Total params 43.02M 44.04M 41.03M 46.03M
Base params 32.78M 32.78M 32.78M 32.78M
Low-rank parameters 9.99M 9.99M 7.50M 12.49M
Sparse parameters 0.25M 1.26M 0.76M 0.76M
Parameter memory 0.09G 0.10G 0.09G 0.10G
Optimizer memory 0.17G 0.18G 0.16G 0.18G
Total memory 0.26G 0.28G 0.25G 0.28G

Table 10: Memory breakdown for SLTrain for LLaMA 130M with varying r, δ.

r = 256, δ = 0.01 r = 256, δ = 0.05 r = 224, δ = 0.03 r = 288, δ = 0.03

Total params 94.85M 98.24M 90.94M 102.15M
Base params 49.17M 49.17M 49.17M 49.17M
Low-rank parameters 44.83M 44.83M 39.22M 50.43M
Sparse parameters 0.85M 4.25M 2.55M 2.55M
Parameter memory 0.20G 0.23G 0.20G 0.22G
Optimizer memory 0.38G 0.39G 0.36G 0.41G
Total memory 0.58G 0.62G 0.58G 0.63G

G Fine-tuning LLMs

In addition to pretraining, the sparse plus low-rank factor may also be used for fine-tuning LLMs
as: W = W0 + BA + S, where W0 is a given pretrained model weight, B and A are low-rank
factors, and S is the sparse factor. As in Section 3.2, we learn the fine-tuned weights B,A, and
S and term this as SLTrain-FT. The fine-tuning experiments are conducted for RoBERTa base
model (with 125M parameters) on GLUE benchmarks. We use r = 8 for all methods and tune the
hyperparameters of SLTrain-FT as follows. We tune three hyperparmaters of SLTrain, i.e., sparsity
level δ, balancing parameter α and stepsize η. Specifically, we tune δ in the range of [0.005, 0.001]
and α in [32, 64, 128], η in [1e-5, 2e-5, 3e-5, 4e-5, 5e-5]. The tuned hyperparameters are in Table 11.

The results on benchmark datasets are shown in Table 12. We observe that SLTrain-FT performs
competitively as the baselines. While there is no specific memory advantage of SLTrain-FT when a
general full-rank W0 is given, memory reductions can be obtained when W0 is learned via SLTrain.

21



Table 11: Hyperparameters of SLTrain for fine-tuning. The batch size, number of epochs and rank r
follows from the choice in [59].

CoLA STS-B MRPC RTE SST-2 MNLI QNLI QQP
Batch Size 32 16 16 16 16 16 16 16

Epochs 30 30 30 30 30 30 30 30
Rank r 8 8 8 8 8 8 8 8

Learning Rate 3e-5 3e-5 5e-5 4e-5 1e-5 1e-5 3e-5 3e-5
Sparsity δ 0.005 0.005 0.001 0.001 0.005 0.001 0.005 0.005

α 32 64 32 128 32 128 128 32

Table 12: Results on GLUE benchmarks. Reported numbers for the baselines are directly retrieved
from [59].

CoLA STS-B MRPC RTE SST-2 MNLI QNLI QQP Avg

Full-rank FT 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28
LoRA (rank=8) 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93
GaLore FT (rank=8) 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
SLTrain FT (rank=8) 60.35 90.74 92.38 79.42 94.15 86.53 92.40 91.27 85.91

H Experiment Configurations

We provide the source code for reproducing the experimental results reported in the paper. We also
summarize some specific configurations that enhance reproducibility.

• Datasets. The C4 dataset is publicly available on Huggingface and can be loaded using datasets
package https://github.com/huggingface/datasets.

• Random seed. For all the main experiments for pretraining, we use random seed 42. For
fine-tuning experiments, we use random seed 1234.

• GPU and runtime. All experiments are conducted with multiple runs on NVIDIA A100-
SXM4-40GB/80GB GPUs. The training time vary from 2 hrs (LLaMA 60M) to 5 days
(LLaMA 7B) depending on the model size. For fine-tuning, the runtime is roughly the
same as LoRA, which is reported on https://github.com/microsoft/LoRA/tree/main/
examples/NLU/examples/text-classification.

I Broader Impact

The paper proposes a simple strategy that achieves both parameter and memory efficiency of training
LLMs. We believe this work would produce positive environmental impact by reducing the energy
consumption as well as carbon footprint during pretraining large foundation models.

22

https://github.com/huggingface/datasets
https://github.com/microsoft/LoRA/tree/main/examples/NLU/examples/text-classification
https://github.com/microsoft/LoRA/tree/main/examples/NLU/examples/text-classification


NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper proposes a sparse plus low rank factorization for parameter and
efficient pretraining. The claims in the abstract and introduction reflect the paper’s contri-
bution and scope. The claims on proposed modelling achieve comparable performance to
full-rank training is supported by Table 2 and the claim on memory reduction on the LlaMA
7B model is supproted by Figure 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the potential training instability in Section 3.3. We discuss the
throughput overhead in Section 5.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

23



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiment section, i.e., Section 5 provide details on reproducing the
results in the paper, including the chosen hyperparameters. The code to reproduce the results
are also included as part of supplementary file. The random seed used in the paper is also
disclosed in the supplementary material and Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

24



some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code to reproduce the results is included as part of supplementary material.
The datasets are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The hyperparameters (along with a given range of values that we use to tune),
types of optimizers are included in the experiment section, i.e., Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars (in terms of standard deviation) in Figure 4 for pretraining
LlaMA 60M, 130M. For larger models, it is time-costly to report the error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the type of GPUs used for the experiments, along
with the memory requirement in the experiment section. In Appendix H, we provide
additional details on the configurations, including runtime.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We make sure the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

26

https://neurips.cc/public/EthicsGuidelines


Justification: We include a section on broader impact in Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release pretrained language models, image generators, etc. that have
high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the code and datasets used in the paper in experiment
section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

27



• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Such experiments are not relevant to this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects.

Guidelines:

28

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29


	Introduction
	Background on low-rank pretraining
	SLTrain: proposed sparse plus low-rank pretraining
	Motivation for sparse plus low-rank parameterization
	Our proposed modeling
	Practical considerations

	Related works
	Experiments
	Pretraining LLMs

	Concluding Remarks
	Proofs
	Additional illustration for low-rank and residual factors
	Illustration of low-rank and residual factors for Pythia
	Singular value distribution of learned weights
	Memory and runtime of SLTrain linear layer
	Details of memory estimation
	Fine-tuning LLMs
	Experiment Configurations
	Broader Impact

