Published as a conference paper at ICLR 2024

DENOISING TASK ROUTING FOR DIFFUSION MODELS

Byeongjun Park®’ Sangmin Woo®' Hyojun Go®" Jin-Young Kim“’ Changick Kim**
AKAIST “Twelve Labs (: Equal contribution, #: Corresponding author)

{pbj3810, smwoo95, changick}@kaist.ac.kr

{gohyojunl5, seago0828}Q@gmail.com

ABSTRACT

Diffusion models generate highly realistic images by learning a multi-step denois-
ing process, naturally embodying the principles of multi-task learning (MTL).
Despite the inherent connection between diffusion models and MTL, there re-
mains an unexplored area in designing neural architectures that explicitly incor-
porate MTL into the framework of diffusion models. In this paper, we present
Denoising Task Routing (DTR), a simple add-on strategy for existing diffusion
model architectures to establish distinct information pathways for individual tasks
within a single architecture by selectively activating subsets of channels in the
model. What makes DTR particularly compelling is its seamless integration of
prior knowledge of denoising tasks into the framework: (1) Task Affinity: DTR
activates similar channels for tasks at adjacent timesteps and shifts activated chan-
nels as sliding windows through timesteps, capitalizing on the inherent strong
affinity between tasks at adjacent timesteps. (2) Task Weights: During the early
stages (higher timesteps) of the denoising process, DTR assigns a greater number
of task-specific channels, leveraging the insight that diffusion models prioritize
reconstructing global structure and perceptually rich contents in earlier stages,
and focus on simple noise removal in later stages. Our experiments reveal that
DTR not only consistently boosts diffusion models’ performance across different
evaluation protocols without adding extra parameters but also accelerates train-
ing convergence. Finally, we show the complementarity between our architectural
approach and existing MTL optimization techniques, providing a more complete
view of MTL in the context of diffusion training. Significantly, by leveraging this
complementarity, we attain matched performance of DiT-XL using the smaller
DiT-L with a reduction in training iterations from 7M to 2M. Our project page is
available at https://byeongjun-park.github.io/DTR/.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021) have made signif-
icant strides in generative modeling across various domains, including image (Dhariwal & Nichol,
2021; Rombach et al., 2022), video (Harvey et al., 2022), 3D (Woo et al., 2023), audio (Kong et al.,
2020) and natural language (Li et al., 2022). In particular, they have demonstrated their versatility
across a broad spectrum of image generation scenarios such as unconditional (Ho et al., 2020; Song
et al., 2020), class-conditional (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021), and text-to-
image generation (Nichol et al., 2021; Ramesh et al., 2022; Saharia et al., 2022).

Diffusion models are designed to learn denoising tasks across various noise levels by reversing the
forward process that distorts data towards a predefined noise distribution. Recent studies (Hang et al.,
2023; Go et al., 2023a) have shed light on the multi-task learning (MTL) (Caruana, 1997) aspect
inherent in diffusion models, where a single neural network handles multiple denoising tasks. They
particularly focus on enhancing the optimization of MTL in diffusion models, employing techniques
such as loss weighting (Hang et al., 2023) and task clustering (Go et al., 2023a), aiming to address
the issue of negative transfer — a phenomenon that arises when shared parameters are between
conflicting tasks. While these efforts demonstrate the promise of viewing diffusion models as MTL,
there remains an unexplored avenue for designing neural architectures from an MTL perspective
within the context of diffusion models.

https://byeongjun-park.github.io/DTR/

Published as a conference paper at ICLR 2024

One common practice in diffusion models is to condition the models with timesteps (or noise lev-
els) through differentiable operation (Ho et al., 2020; Karras et al., 2022; Rombach et al., 2022),
prompting the model’s behavior by adjusting representation of model according to timesteps (or
noise levels). This can be seen as an implicit way of incorporating MTL aspects into the architec-
tural design. However, we argue that this may not fully address negative transfer, as it places the
entire burden of task adaptability solely on implicit signals.

In this paper, we take a step beyond implicit conditioning and explicitly tackle multiple denois-
ing tasks by making a simple modification to existing diffusion model architectures. Specifically,
we draw inspiration from prior works on task routing (Strezoski et al., 2019; Ding et al., 2023),
which enables the establishment of distinct information pathways for individual tasks within a single
model. The distinct information pathways are implemented through task-specific channel masking,
making task routing effectively handle numerous tasks (Strezoski et al., 2019). However, we observe
that a naive random routing approach (Strezoski et al., 2019), which allocates random pathways for
each task, does not take account into the inter-task relationship between denoising tasks in diffusion
models, resulting in a detrimental impact on performance.

To tackle this challenge, we present the Denoising Task Routing (DTR), a simple add-on strategy for
existing diffusion model architectures. DTR enhances them by establishing task-specific pathways
that integrate prior knowledge of diffusion-denoising tasks, such as: (1) Task Affinity: Considering
strong task affinity between adjacent timesteps (Go et al., 2023a), DTR activates similar channels
for tasks at adjacent timesteps by sliding windows over channels throughout the timesteps and ac-
tivating channels within the window. (2) Task Weights: Inspired by the observation that diffusion
models prioritize reconstructing the global structure and perceptually rich contents in the early stages
(higher timesteps) (Choi et al., 2022), DTR allocates an increased number of task-specific channels
to denoising tasks at higher timesteps.

Building upon this foundation, DTR offers notable advantages: (1) Simple Implementation: DTR
can be integrated with minimal lines of code, streamlining its adoption. (2) Elevated Performance:
DTR significantly elevates the quality of the generated samples. (3) Accelerated Convergence:
DTR enhances the convergence speed of existing diffusion models. (4) Efficiency: DTR achieves
these without extra parameters and incurs only a negligible computational cost for channel masking.

Finally, we conduct experiments across various image generation tasks, such as unconditional, class-
conditional, and text-to-image generation, with FFHQ (Karras et al., 2019), ImageNet (Deng et al.,
2009), and MS-COCO dataset (Lin et al., 2014), respectively. By incorporating our proposed DTR
into two prominent architectures, DiT (Peebles & Xie, 2022) and ADM (Dhariwal & Nichol, 2021),
we observe a significant enhancement in the quality of generated images, thereby validating the
benefits of our DTR. Moreover, we demonstrate the seamless compatibility of MTL optimization
techniques tailored for diffusion models with our MTL architectural design for DTR. Significantly,
we attain similar DiT-XL’s performance using the smaller DiT-L with a reduction in training itera-
tions from 7M to 2M, showcasing the efficiency and effectiveness of our approach.

2 RELATED WORK

Diffusion model architecture. Advancements in diffusion model architecture center on integrating
well-established architectural components into the framework of diffusion models. Earlier works use
a UNet-based architecture (Ronneberger et al., 2015) and propose several improvements. For exam-
ple, DDPM (Ho et al., 2020) uses group normalization (Wu & He, 2018) and self-attention (Vaswani
et al., 2017), IDDPM (Nichol & Dhariwal, 2021) uses multi-head self-attention, Song et al. (2021)
proposes to scale skip connections by 1/4/2, and ADM (Dhariwal & Nichol, 2021) proposes the
adaptive group normalization. Recently, several works propose transformer-based architectures for
diffusion models instead of UNet, including GenViT (Yang et al., 2022), U-ViT (Bao et al., 2023),
RIN (Jabri et al., 2022), DiT (Peebles & Xie, 2022) and MDT (Gao et al., 2023). Unlike these works,
our objective is to incorporate the MTL aspects into architectural design. Specifically, we propose a
simple add-on strategy to improve existing diffusion models with task routing, and we validate our
method upon both representative UNet and Transformer-based architectures, ADM and DiT.

Multi-task learning (MTL). MTL (Caruana, 1997; Sener & Koltun, 2018) aims to improve ef-
ficiency and prediction accuracy across multiple tasks by sharing parameters and learning them
simultaneously. This approach stands in contrast to training separate models for each task, allowing

Published as a conference paper at ICLR 2024

the model to leverage inductive knowledge transfer among related tasks. However, MTL encounters
challenges that conflicting tasks exist, leading to a phenomenon known as negative transfer (Ruder,
2017), where knowledge learned in one task negatively impacts the performance of another.

To address the negative transfer, previous research explores optimization strategies and architectural
designs. Optimization strategies focus on mitigating two main problems: (1) conflicting gradients
and (2) unbalanced losses or gradients. Conflicting gradients between tasks can cancel each other
thus resulting in suboptimal updates. To mitigate this, Yu et al. (2020) project a gradient onto the
normal plane of conflicting gradient and Chen et al. (2020) stochastically drop elements in gradi-
ents. Imbalanced learning, where tasks with larger losses or gradients dominate the training, is also
addressed through loss balancing (Kendall et al., 2018) and gradient balancing (Navon et al., 2022).

In terms of MTL architectures, researchers develop both implicit and explicit methods. Implicit
methods guide the model to learn multiple tasks with task embeddings, avoiding the extensive task-
specific modifications (Sun et al., 2021; Zhang et al., 2018; Popovic et al., 2021; Pilault et al., 2021).
Explicit methods, on the other hand, embed task-specific behaviors directly into the architecture
through task-specific branches (Long et al., 2017; Vandenhende et al., 2019), task-specific mod-
ules (Liu et al., 2019; Maninis et al., 2019), feature fusion across multiple network branches (Gao
et al., 2019; Misra et al., 2016), and task routing mechanisms (Strezoski et al., 2019; Pfeiffer et al.,
2023). Task routing, in particular, demonstrates its scalability while requiring minimal additional pa-
rameters, making it suitable for handling a large number of tasks. Therefore, in our work, we adopt
task routing to enhance explicit MTL design within existing diffusion model architectures. Further-
more, in contrast to prior research on task routing (Strezoski et al., 2019; Pfeiffer et al., 2023; Pascal
etal., 2021), it is noteworthy that our proposed method introduces a novel approach that incorporates
priors for inter-task relationships without the need for extra parameters.

MTL contexts in diffusion models. Recent studies (Hang et al., 2023; Go et al., 2023a) revisit
diffusion models as a form of MTL, where a single neural network simultaneously learns multi-
ple denoising tasks with various noise levels. They observe negative transfer between denoising
tasks and seek to enhance diffusion models by addressing the issue from an MTL optimization per-
spective. However, there remains limited exploration of architectural improvements from an MTL
architectural perspective. To bridge this gap, our work proposes architectural enhancements within
the framework of MTL for diffusion models.

Conditioning the model with timestep (Ho et al., 2020) or noise level (Song et al., 2021) can be
perceived as an implicit method of incorporating MTL aspects into architectural design. For in-
stance, DDPM (Ho et al., 2020) adds the Transformer sinusoidal position embedding (Vaswani
etal., 2017) into each residual block, which is widely adopted for various diffusion models including
LDM (Rombach et al., 2022), ADM (Dhariwal & Nichol, 2021), DiT (Peebles & Xie, 2022) and
EDM (Karras et al., 2022). However, we argue that relying solely on implicit signals is insufficient
for effectively mitigating negative transfer. Our goal in this paper is to explicitly incorporate prior
knowledge of denoising tasks into the existing diffusion model architectures with task routing.

3 PRELIMINARY

Diffusion models. Diffusion models (Dhariwal & Nichol, 2021; Song et al., 2020) stochastically
transform an original data x(into latent, often following a Gaussian distribution, by iteratively
adding noise — the forward process. To make diffusion models generative, they need to learn to
reverse the perturbed data back to its original distribution p(x¢) — the reverse process. The for-
ward process can be conceptualized as a fixed-length Markov chain comprising 7" discrete steps.
At each timestep ¢ along this chain, represented as x;, the data undergoes a transformation based
on a conditional distribution g(x1.7|®o). Specifically, ¢(x:|xo) is modeled as a Gaussian distribu-
tion N'(x¢; v/, (1 — &;)I), where o represents a noise schedule parameter, and x; denotes the
noisy version of the input = at time ¢. The reverse process recovers the original data by modeling
p(x—1|x:), which approximates the distribution g(x;—1|x;). This equips the model to effectively
“undo” the diffusion steps and reconstruct the original data from the noisy observations. To achieve
this, many diffusion models commonly use the training strategy of DDPM (Ho et al., 2020), which
aims to optimize a noise prediction network €g (¢, t) by minimizing a simple objective 23:1 Ly
with respect to 6, where L; is defined as:

Ly :=Eqgy euno)ll€ — €a(xs,)3 (1)

Published as a conference paper at ICLR 2024

Task routing. Task routing (Strezoski et al., 2019; Ding et al., 2023) is proposed to explicitly
establish task-specific pathways within a single neural network. In practice, task routing employs a
C-dimensional task-specific binary mask mp € {0, 1} associated with the task D. Formally, the
task routing is implemented by task-specific channel masking at the [-th layer, given the input z!
and a transformation function F', can be expressed as:

zl+1 — mD @ Fl(zl), (2)

where © denotes channel-wise multiplication. We note that this operation performs a conditional
feature-wise transformation, allowing the neural network to create task-specific subnetworks within
a single model. By explicitly separating in-model data flows, the neural network builds its own ben-
eficial sharing practices, effectively addressing negative transfer issues that may arise from sharing
channels between conflicting tasks. One significant advantage of task routing lies in its scalability. It
does not significantly increase the number of parameters or computational complexity with the addi-
tion of tasks. As demonstrated in (Strezoski et al., 2019), task routing exhibits excellent scalability,
proving its effectiveness even for scenarios with hundreds of tasks.

4 METHODOLOGY

In this section, we introduce Denoising Task Routing (DTR), a straightforward add-on strategy
on existing diffusion model architectures to enhance the learning of multiple denoising tasks. We
first describe our DTR, focusing on the integration of the task routing framework (Strezoski et al.,
2019; Ding et al., 2023) into the diffusion model framework in Sec. 4.1. Next, we consider a naive
random routing method and discuss its limitations on handling prior knowledge of denoising tasks
in Sec. 4.2. Finally, we present a detailed description of DTR in Sec. 4.3, which explicitly considers
the prior knowledge of denoising tasks in the routing mask creation.

4.1 TASK ROUTING FOR DIFFUSION MODELS

We conceptualize diffusion training as a form of MTL, where each task corresponds to the denoising
task D; at a specific timestep ¢t € {1,...,T} learned by £; in Eq. (1). Typically, T often surpasses
1000, resulting in thousands of denoising tasks being jointly optimized in a single model.

Many diffusion models employ a multi-layered residual

block structure in their architecture (Rombach et al., 2022; z DTR 7'+
Dhariwal & Nichol, 2021; Peebles & Xie, 2022; Song et al., @_» i_> % N = @
2021). These models commonly adopt the practice of ini- 2

tializing each residual block as the identity function. For
example, ADM (Dhariwal & Nichol, 2021) initializes the T

final convolutional layer of every residual block as zero. On Rodting Mask

the other hand, DiT-based models (Peebles & Xie, 2022; ; o Be——
Gao et al., 2023) utilize adalLN-Zero in their transformer P oI

blocks for initializing them as identity functions. To eas- 2 o__:m
ily integrate these practices into task routing, we apply < o

task routing at the level of residual blocks, emphasizing Figure 1: The overview of DTR. DTR
block-wise task routing as the foundational element of our |1 a¢ explicit task-specific pathways
method. By denoting the [-th block as Block! and its in- by channel masking.

put as zt € REXWXC our denoising task routing is repre-

sented as:

2! = 2! 4 Block! (mp, ® 21), 3)
where mp, € {0,1}¢ denotes task-specific binary mask for D;.

Figure 1 provides a concise overview of our DTR scheme, which is adaptable to general residual
block structures including ADM (Dhariwal & Nichol, 2021) and DiT (Peebles & Xie, 2022). In both
the inference and training stages, the activated mask is set according to the input timestep ¢ of the
noise prediction network ey. Through this approach, we explicitly establish task-specific pathways
within a single noise prediction network ey. Detailed implementations for incorporating DTR in
ADM and DiT architectures can be found in Appendix A.

Published as a conference paper at ICLR 2024

4.2 A NAIVE RANDOM TASK ROUTING APPROACH (R-TR)

The remaining part of designing task routing is to establish task-specific routes by defining task-
specific routing mask m p,. To establish task-specific routes, we first consider setting mp, as ran-
dom masks (Strezoski et al., 2019), which activates a predefined portion of random channels for
each task. For each denoising task D;, we randomly sample Cg = |3C| channel indices from the
set {1,...,C}, where 0 < 8 < 1. Then, the routing mask mp, is configured to assign a value of
one to the randomly sampled channel indices and a value of zero to others.

Here, activation ratio 3 determines the trade-off between task-specific units versus task-general units
within the model architecture. When 5 = 1, the model is the same as the original model without
task routing, where all units are shared among tasks. As 3 decreases from 1, the model allocates
fewer units for sharing, thereby enhancing task-specificity.

However, employing random masking for diffusion models might overlook the inter-task relation-
ships between denoising tasks. A recent work (Go et al., 2023a) shows that affinity between denois-
ing tasks increases as the proximity of their timestep increases, suggesting that sharing units between
tasks with closer timesteps is beneficial. Despite this, the expected number of shared channels re-
mains constant for pairs of distinct tasks (as we observed in Appendix B), implying that random
masking inherently cannot consider timestep proximity. Additionally, we empirically validate this
in Sec. 5 and results can be found in Table 1. To leverage the prior knowledge of the diffusion task,
we design a more tailored mask in the next section.

4.3 MASK CREATION OF DENOISING TASK ROUTING (DTR)

To adequately reflect the specific characteristics of diffusion de-
noising tasks, we propose a novel masking strategy grounded in
recent findings in the field: (1) Task Affinity: Denoising tasks at
adjacent timesteps have a higher task affinity than those at distant
timesteps (Go et al., 2023a). (2) Task Weights: Previous stud-
ies have shown improvements in diffusion training by assign-
ing higher weights to denoising tasks at higher timesteps com-

0, C 0 C
pared to lower timesteps (Hang et al., 2023; Choi et al., 2022; \ ‘
T T

DTR(0< a < 1)

Go et al., 2023a). This aligns with the observation that diffu-
sion models primarily learn perceptually rich content at higher
timesteps, whereas they focus on straightforward noise removal
at lower timesteps (Choi et al., 2022). DTR (a = 1) DTR (a > 1)

To integrate the concept of (1) Task Affinity, we employ a slid- Figure 2: Routing masks in ran-
ing window of size Cz within the mask, activating channels dom routing and DTR with vary-
within its boundaries. As we increase timesteps from 1 to 7', Mg« (B is fixed to 0.8). The ac-
the sliding window gradually shifts. This ensures that denoising tivated and deactivated channels
tasks at neighboring timesteps engage similar sets of channels, are colored in yellow and purple,
while those at distant timesteps reduce channel sharing. The un- respectively.

derlying principle here is that sharing channels between tasks having higher task affinity proves
beneficial for training, as demonstrated in (Fifty et al., 2021). To incorporate (2) Task Weights,
we use an additional parameter, .. This modulates the shifting ratio of the sliding window across
timesteps, manipulating the amount of allocation of task-dedicated channels to each timestep.

To incorporate the above two concepts, the available start index of activated channels in {0, ... C' —

Cp}, and we quantized this start index according to timestep as (%)a, enabling modulation of

shifting ratio of the sliding window. Formally, the masks are initialized as:

mp, . | b ATLEC=Ca)- (F)] <e< UC=Cp)- (7)1 + O
e 0, otherwise.

“4)

A conceptual visualization of our masking strategy is shown in Fig. 2. When 0 < o < 1, it allocates
more task-dedicated channels to smaller timesteps. At o = 1, task-dedicated channels are evenly
distributed across all timesteps. Lastly, for o« > 1, more task-dedicated channels are assigned to
higher timesteps, aligning with our intent to give more weight to the higher timesteps. However,
setting « to too large values causes the initial sliding window shift to occur at very large timesteps,
in turn, leads to a situation where many tasks no longer have task-dedicated channels.

Published as a conference paper at ICLR 2024

Latent-Level Diffusion Model. Image Resolution 256 x 256 Pixel-Level Diffusion Model. Image Resolution 64 x 64
Model FFHQ ImageNet MS-COCO Model FFHQ ImageNet

FID] FID| ISt Prect Rect FID| FID| FID| ISt Prect Rect
DiT 10.99 12,59 134.60 0.73 0.49 7.70 ADM 3.12 6.34 7205 085 0.46
DiT+R-TR 1199 16.18 105.88 0.70 0.51 10.49 ADM + R-TR 3.33 734 62.62 0.84 0.44
DiT + DTR 7.32 890 156.48 0.77 0.51 7.04 ADM + DTR 2.65 491 8244 0.88 0.46

Table 1: Comparative results. We evaluate unconditional image generation on FFHQ, class-
conditional image generation on ImageNet, and text-conditional image generation on MS-COCO.
We set the activation ratio /3 to 0.8 for both R-TR and DTR. Note that our DTR achieves substantial
performance improvements without additional parameters or significant computational costs.

5 EXPERIMENTAL RESULTS

In this section, we present experimental results to validate the effectiveness of our method. To be-
gin, we outline our experimental setups in Sec. 5.1. Then, we provide the results of a comparative
evaluation in Sec. 5.2, showing that our method significantly improves FID, IS, Precision, and Re-
call metrics compared to the baseline. Finally, we delve into a comprehensive analysis of DTR in
Sec. 5.3, dissecting its performance across multiple dimensions.

5.1 EXPERIMENTAL SETUP

Due to space constraints, we provide a concise overview of our experimental setups here. More
extensive information regarding all our experimental settings can be found in Appendix C.

Evaluation protocols. To assess the effectiveness of our method, we conducted a compre-
hensive evaluation across three image-generation tasks: 1) Unconditional generation: we utilized
FFHQ (Karras et al., 2019), which contains 70K training images of human faces. 2) Class-
conditional generation: we used ImageNet (Deng et al., 2009), which contains 1,281,167 training
images from 1K different classes. 3) Text-to-Image generation: we used MS-COCO (Lin et al.,
2014), which contains 82,783 training images and 40,504 validation images, each annotated with 5
descriptive captions.

Evaluation metrics. To evaluate the quality of the generated samples, we used FID (Heusel et al.,
2017), IS (Salimans et al., 2016), and Precision/Recall (Kynkiddnniemi et al., 2019). Specifically,
FID is used for sample quality in unconditional and text-to-image generation. Then, FID, IS, and
Precision are used for sample quality measure and Recall is used for diversity measure in class-
conditional generation.

Models. To verify the broad applicability of our method, we utilized two representative architec-
tures: UNet-based ADM (Dhariwal & Nichol, 2021) and Transformer-based DiT (Peebles & Xie,
2022). For text-to-image generation, we used a CLIP text encoder (Radford et al., 2021) to transform
textual descriptions into a sequence of embeddings for the condition of diffusion models.

5.2 COMPARATIVE EVALUATION

Quantitative results. We quantitatively validate our approach on well-established architectures,
e.g., DIiT and ADM. The results are presented in Table 1. Firstly, we observe that naive random
routing (R-TR) leads to performance degradation. This occurs because the R-TR approach lacks
the capability to incorporate prior knowledge of the diffusion model (Task Affinity) specific to de-
noising tasks, as it relies on random instantiation of routing masks. In contrast, DTR incorporates
the prior knowledge of denoising tasks in diffusion models, mentioned as Task Affinity and Task
Weights in Sec. 4.3. Therefore, through its straightforward design, our DTR consistently demon-
strates significant performance enhancements across all metrics for three datasets when compared
to the model without DTR. Note that DTR achieves substantial performance improvements with no
extra parameters and with negligible computational overhead for multiplications of channel masks.

Compatibility of DTR with MTL loss weighting techniques. In Table 2, we show that our
DTR, an MTL architectural approach for diffusion models, is compatible with MTL loss weighting
techniques specifically designed for diffusion models (Go et al., 2023a; Hang et al., 2023) as well
as improved loss weighting method (Choi et al., 2022), both in class-conditional and unconditional

Published as a conference paper at ICLR 2024

Class-Conditional ImageNet 256 x 256.

Loss Weight Type DiT-L/2 DiT-L/2 + DTR
FID| NG Prect Rect FIDJ NG Prect Rect
Vanilla 1259 13460 073 049 890 15648 0.77 0.51

Min-SNR (Hang et al., 2023) ~ 9.58 17998 0.78 047 824 186.02 0.79 050
ANT-UW (Go et al., 2023a) 585 20668 084 046 4.61 20876 084 048

Unconditional FFHQ 256 < 256.

FID-10K Loss Weight Type

Vanilla Min-SNR (Hang et al., 2023) ANT-UW (Go et al., 2023a) ~ P2 (Choi et al., 2022
DiT-B/2 12.93 9.73 9.30 10.08
DiT-B/2 + DTR 8.82 8.93 8.81 8.83

Table 2: Compatibility of DTR with MTL loss weighting methods. In a class-conditional gener-
ation, utilizing both DTR and loss weighting techniques significantly boosts performance, showing
their complementarity. In unconditional generation, employing only DTR nearly matches the best
performance, which underscores the effectiveness of DTR as a standalone solution.

-===- Vanilla —=— Vanilla+DTR -==- Min-SNR —— Min-SNR+DTR === ANT-UW —— ANT-UW+DTR

350 095
0.90
085
c
===: 5080
J < Bors
- 2070
100 = o «
[065 %
50 - 060 -7
0.00 0 0.55
1.0 1 20 25 1.0 1 20 25

5 5
Scale Scale Scale

Figure 3: Compatibility of DTR and MTL loss weighting methods w.r.t. guidance scale. DTR
robustly boosts the performance across various guidance scales for all metrics.

generation scenarios. Here, we use the DiT architecture as our baseline model. Initially, we observe
that applying loss weighting techniques yields superior performance compared to using no such
techniques. In a class-conditional generation, the simultaneous use of both DTR and loss weighting
techniques consistently boosts performance, implying that these two approaches complement each
other effectively. Furthermore, in Fig. 3, we provide insights into performance variations across
different guidance scales. The results demonstrate the robustness of our DTR across guidance scales,
as DTR generally enhances FID, IS, and Precision. In unconditional generation, DTR essentially
takes on the role of loss weighting techniques, reducing the necessity of additional loss weighting
techniques. As a result, employing only DTR leads to performance levels that are nearly equivalent
to those achieved with the combination of DTR and loss weighting techniques. This underscores the
effectiveness of our DTR approach as a standalone solution for unconditional generation tasks.

Qualitative results. Due to space limitations, we present a comprehensive set of generated exam-
ples in Appendix H for qualitative comparison. To summarize our findings, our method for training
diffusion models produces images that exhibit improved realism and fidelity when compared to dif-
fusion models without DTR.

F.urther Results on More Tralnlng Itera- Method FID| Train Iters # Params Flops (G)
tlops. We have explored the impact of 1onger DIT-XL/2 227 M 675M 118.64
training on model performance. Our extensive DiT-XL/2 255 235M 675M 118.64

training of DiT-L/2 + DTR with ANT-UW (Go DiTL2+Ours 2.33 M 458M 80.73

et al,, 2023a) for 2 million iterations signifi-] L. .
cantly enhanced FID scores to 2.33 on Ima- Table 3: More Training Iterations. Although

geNet 256x256. Table 3 shows our method, de- DTR used smaller parameters, DTR shows a
spite fewer parameters and iterations, outper- similar pf:rformance compar(?d to the larger
forms vanilla DiT-XL/2 and rivals DiT-XL after model trained over more iterations.

7 million iterations. This underscores our approach’s efficiency, demonstrating dramatic improve-
ments by integrating MTL into diffusion model architecture and optimization.

5.3 ANALYSIS

Mask instantiation strategy. Given that the routing mask of DTR is instantiated by two hyper-
parameters, « and /3, we conduct ablation studies to assess the impact of varying them in Fig. 4.

Published as a conference paper at ICLR 2024

- Baseline (=1.0) —A— DTR (=0.6) Unconditional FFHQ 256 <256 Class-Conditional ImageNet 256 x 256
—A— R-TR (=0.6) ~m— DTR (B=0.8)
—m— RTR (8=0.8) Model @ FID| Model @ FID| ISt Prect Rect
DIT-B2 (B =1) - 10.99 DIiT-L2 (8 =1) - 1259 134.60 0.73 0.49
14 0.5 7.78 0.5 11.55 146.06 0.75 0.49
13 1.0 7.78 1.0 1031 14923 0.76 0.49
. 2.0 7.64 . 20 939 154.06 0.77 0.49
12 DiT-B/2 + DTR 30 777 DITL2+DTR 30 889 15497 077 049
g 4.0 732 40 890 15648 0.77 0.51
A 11 A oennees ounsnene onreanes . 50 740 50 966 15647 077 050
[a] 10 \A Text-Conditional MS-COCO 256 x256 Class-Conditional ImageNet 64 x 64
- 9 \A Model @ FID| Model «@ FID| ISt Prect Rect
T—— DIT-B12 (3 = 1) B 7.70 ADM (3 = 1) - 634 7205 085 046
8 .\l——.\. - 1.0 8.25 1.0 530 74.74 0.86 0.45
7 . 3.0 7.25 30 544 74.75 0.85 0.46
10 20 30 40 50 DiT-B/2 + DTR 40 708 ADM#DTR 45 Jo1 8244 088 046
a 5.0 6.93 50 522 78.12 0.86 0.45

Figure 4: o, 3 ablation. Table 4: Mask instantiation ablation. We set 3 = 0.8 for DTR
We use DiT-B/2 on FFHQ due to its stable performance, as shown in Fig. 4. In general, o = 4

256 x256. yields the best results.
Class-Conditional ImageNet 256 256. W0 e meomsz ce-omszeomso ~e-- DITLZ+ANT-UW
, —e-- DiT-B/2 —m— DiT-B/2+DTR \\ —m— DiT-L/2+ANT-UW+DTR
Model FID, ING Prect Rect 80 (> —m— DIT-L24DTR 0 \ —e-- DIT-L/2+Min-SNR
=, n \ —m— DiT-L/2+Min-SNR+DTR
DiT-S/2 4428 3231 041 053 X ¥
DIT-S2+DTR 3743 3897 047 054 2 23
DiT-B/2 2796 6472 057 052 * a0 " * 2
DIT-B2+DTR 1658 87.94 0.66 0.53
20
DIT-L/2 1259 13460 073 049 10 -
DIiT-L/2+DTR 890 156.48 0.77 0.51 100 150 200 250 300 350 400 100 150 200 250 300 350 400
Training Steps (K) Training Steps (K)
Table 5: Impact of DTR w.r.t. model (a) Model Size (b) Loss Weight Type
size. Note that DTR achieves consistent Figure 5: Convergence comparison on ImageNet.
improvements across model sizes. DTR accelerates faster FID-10K improvement.

To provide a clear context, we set a baseline (DiT-B/2 without any task routing) and include R-TR
(DiT-B/2 with random routing) for comparison. We initially observe that setting 3 to 0.8 rather than
0.6 leads to superior performance for both DTR and R-TR and notably, 5 = 0.8 exhibits robust
behavior w.r.t. variations in «. Consequently, we fix /3 at 0.8.

To delve deeper into the impact of o on performance, we report the results by changing a on each
dataset in Table 4. Increasing « corresponds to allocating more channels to tasks at higher timesteps.
Our results indicate that « = 4 yields the best performance across almost all datasets and evalua-
tion metrics. Note that increasing « leads to significant performance improvements up to a certain
threshold (o« = 4), beyond which performance begins to degrade. This suggests that allocating a
moderately larger capacity to tasks at higher timesteps is beneficial for overall performance. This
suggests that our design principle for DTR, Task Weights — allocating a moderately larger capacity
to tasks at higher timesteps, is beneficial for overall performance. From the results, we opt to fix 3
at 0.8 and « at 4 for further evaluations.

Impact of DTR with respect to model size. In Table 5, we present the results of a controlled scal-
ing study of DiT on the ImageNet dataset, focusing on how DTR affects the performance according
to the DiT model sizes (S, B, L). Initially, we observe considerable performance improvements as
we scale up the model. Importantly, applying DTR further enhanced performance across all model
sizes, with larger models benefiting more. It is hypothesized because as the model size increases, the
total number of channels increases, thus more task-dedicated channels can be allocated.

Convergence speed. In Fig. 5, we present a comparative analysis of convergence speed, focusing
on the impact of training with and without DTR. First, we investigate training convergence by in-
tegrating DTR into DiT models of varying sizes (S, B, L). As shown in the results, the addition of
DTR leads to a significant speed boost regardless of the model size. In particular, training DiT-B/2
without DTR takes roughly 400K training iterations to reach an FID score of 31, whereas, with
DTR, it achieves the same result in only 200K iterations, effectively doubling the speed. Addition-
ally, we explore the synergy between DTR and MTL loss weighting methods (ANT-UW (Go et al.,
2023a) and Min-SNR (Hang et al., 2023)), which can boost the convergence of DiT, in the context of
DiT-L/2. While using MTL loss weighting methods alone provides a certain degree of convergence
acceleration, integrating DTR can further enhance convergence speed. Moreover, DTR mitigates the

Published as a conference paper at ICLR 2024

Shallow Depth Deep

vl
™
V4444744444144

Figure 6: Comparison of CKA representation similarity on FFHQ dataset. We show how inter-
task representation similarity changes when applying task routing in 12 DiT blocks. The horizontal
and vertical axes in each plot represent timesteps (from ¢ = 1 to ¢t = T'). We assess three configu-
rations: (a) DiT alone vs. (b) DiT with R-TR vs. (c) DiT with DTR. R-TR generally increases CKA
similarity, whereas DTR decreases it. Brighter/darker color represents higher/lower similarity.

(b) R-TR (a) vanilla

(c) DTR

saturation issue that emerges at 300K in DiT-L/2 + ANT-UW, leading to a more stable convergence
and accelerated learning. Through this, we confirm that explicitly handling negative transfer with
DTR can significantly improve training dynamics.

Representation analysis via CKA. In Fig. 6, we employ Centered Kernel Alignment (CKA) (Ko-
rnblith et al., 2019) to visualize the similarity between intra-model representations. Specifically, we
examine how similar or different the model representations are at different timesteps within each
DiT block to gain insights into the model’s behavior. CKA quantifies this similarity, where a higher
score indicates that the model behaves similarly across different timesteps, while a lower score im-
plies that the model’s behavior varies significantly across different timesteps.

‘We make noteworthy observations by comparing three scenarios: DiT model without task routing vs.
DiT with random routing vs. DiT with DTR: (1) Upon introducing random routing to the DiT model,
we notice an overall increase in CKA compared to the baseline. This implies that with random
routing, the model’s representations remain more similar across various timesteps. (2) With DTR,
we observe a distinct pattern in the CKA scores, where there are high scores at lower timesteps
and low scores at higher timesteps. We can interpret that at higher timesteps, the model primarily
focuses on learning discriminative features that are relevant to specific timesteps, whereas at lower
timesteps, the model tends to exhibit similar behavior across different timesteps. This aligns with
our design principle, Task Weights. (3) In the later blocks with DTR, there is a notable highlight
on diagonal elements. This suggests that the model takes into account Task Affinity, reflecting the
model’s ability to make its behavior more similar for adjacent timesteps.

Comparison to multi-experts strategy. We compare DiT-L/2 equipped with DTR against
a multi-experts model (DiT-B/2 x 4), with each expert specializing in certain timesteps,
eg., [0,T/4],...,[3T/4,T]. Here, we show that DTR outperforms the multi-experts denoiser
method (Balaji et al., 2022; Lee et al., 2023). For detailed results, please refer to Appendix D.

6 DISCUSSION

In this work, we have proposed DTR, a simple add-on strategy for diffusion models that estab-
lishes task-specific pathways within a single model while embedding prior knowledge of denoising
tasks into the model through explicit architectural modifications. Our experimental findings clearly
indicate that DTR represents a significant leap forward compared to current diffusion model archi-
tectures, which rely solely on implicit signals. Importantly, this improvement is achieved only with a
negligible computational cost and without introducing additional parameters. Our work conveys two
important messages: (1) We found that relying solely on implicit signals for enhancing task adapt-
ability of diffusion models, e.g., conditioning on timesteps or noise levels, proves insufficient to
mitigate negative transfer between denoising tasks. (2) By explicitly addressing the issue of negative
transfer and incorporating prior knowledge of denoising tasks into diffusion model architectures,
our work shows promise in enhancing their performance across various generative tasks. To the
best of our knowledge, our study is the first to advance diffusion model architecture from an MTL
perspective. We hope our work will inspire further investigations in this direction.

Published as a conference paper at ICLR 2024

7 ETHICS STATEMENT

Generative models, such as diffusion models, have the potential to exert profound societal influence,
with particular implications for deep fake applications and the handling of biased data. A critical
focus is on the potential amplification of misinformation and the erosion of trust in visual media.
In addition, when generative models are trained on datasets with biased or deliberately manipulated
content, there is the unintended consequence of inadvertently reinforcing and exacerbating social
biases, thereby facilitating the spread of deceptive information and the manipulation of public per-
ception. We will encourage the research community to discuss ideas to prevent these unintended
consequences.

8 REPRODUCIBILITY STATEMENT

We present details on implementation and experimental setups in our main manuscripts and Ap-
pendix. To further future works from our work, we release our experimental codes and checkpoints
at https://github.com/byeongjun-park/DTR.

REFERENCES

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Ait-
tala, Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324,2022. 9, 18

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22669-22679, 2023. 2

Rich Caruana. Multitask learning. Machine learning, 28:41-75, 1997. 1, 2

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039-2050, 2020. 3

Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11472-11481, 2022. 2,5, 6,7, 17

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009. 2, 6, 17

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021. 1,2, 3,4, 6, 15

Chuntao Ding, Zhichao Lu, Shangguang Wang, Ran Cheng, and Vishnu Naresh Boddeti. Mitigating
task interference in multi-task learning via explicit task routing with non-learnable primitives.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7756-7765, 2023. 2, 4

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identify-
ing task groupings for multi-task learning. Advances in Neural Information Processing Systems,
34:27503-27516, 2021. 5

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer is
a strong image synthesizer. arXiv preprint arXiv:2303.14389, 2023. 2, 4

Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 3205-3214, 2019. 3

10

https://github.com/byeongjun-park/DTR

Published as a conference paper at ICLR 2024

Hyojun Go, Jinyoung Kim, Yunsung Lee, Seunghyun Lee, Shinhyeok Oh, Hyeongdon Moon, and
Seungtaek Choi. Addressing negative transfer in diffusion models. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023a. 1,2,3,5,6,7,8,17, 19

Hyojun Go, Yunsung Lee, Jin-Young Kim, Seunghyun Lee, Myeongho Jeong, Hyun Seung Lee,
and Seungtaek Choi. Towards practical plug-and-play diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1962-1971, 2023b. 18

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and
Baining Guo. Efficient diffusion training via min-snr weighting strategy. arXiv preprint
arXiv:2303.09556, 2023. 1,3,5,6,7,8, 17

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
diffusion modeling of long videos. Advances in Neural Information Processing Systems, 35:
27953-27965, 2022. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016. 15

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances
in neural information processing systems, 30, 2017. 6, 17

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022. 17

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020. 1, 2, 3, 17

Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972,2022. 2

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410, 2019. 2,6, 17

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565-26577,
2022.2,3

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482-7491, 2018. 3

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020. 1

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519-

3529. PMLR, 2019. 9

Tuomas Kynkidnniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019. 6, 17

Yunsung Lee, Jin-Young Kim, Hyojun Go, Myeongho Jeong, Shinhyeok Oh, and Seungtaek Choi.
Multi-architecture multi-expert diffusion models. arXiv preprint arXiv:2306.04990, 2023. 9, 18

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-

Im improves controllable text generation. Advances in Neural Information Processing Systems,
35:4328-4343,2022. 1

11

Published as a conference paper at ICLR 2024

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pp. 740-755. Springer, 2014. 2, 6, 17

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871-1880, 2019. 3

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S Yu. Learning multiple tasks with
multilinear relationship networks. Advances in neural information processing systems, 30, 2017.
3

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. 17

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multi-
ple tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 1851-1860, 2019. 3

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 3994—4003, 2016. 3

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. In International Conference on Machine
Learning, pp. 16428—-16446. PMLR, 2022. 3

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021. 1

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162-8171. PMLR, 2021. 1, 2, 17

Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet, and Maria A Zuluaga. Maximum roaming
multi-task learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp- 9331-9341, 2021. 3, 19

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022. 2, 3,4, 6, 15

Jonas Pfeiffer, Sebastian Ruder, Ivan Vuli¢, and Edoardo Maria Ponti. Modular deep learning. arXiv
preprint arXiv:2302.11529, 2023. 3

Jonathan Pilault, Amine El hattami, and Christopher Pal. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in NLP using fewer parameters & less data. In International
Conference on Learning Representations, 2021. 3

Nikola Popovic, Danda Pani Paudel, Thomas Probst, Guolei Sun, and Luc Van Gool. Composite-
tasking: Understanding images by spatial composition of tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6870-6880, 2021. 3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021. 6, 18

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-

conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.
1

12

Published as a conference paper at ICLR 2024

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684-10695, 2022. 1, 2, 3, 4

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention—-MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part Il
18, pp. 234-241. Springer, 2015. 2

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017. 3

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-
tion Processing Systems, 35:36479-36494, 2022. 1

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016. 6, 17

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018. 2

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-

ing, pp. 2256-2265. PMLR, 2015. |

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020. 1, 3

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. 1,2, 3,4

Gjorgji Strezoski, Nanne van Noord, and Marcel Worring. Many task learning with task routing.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1375-1384,
2019. 2,3,4,5

Guolei Sun, Thomas Probst, Danda Pani Paudel, Nikola Popovié¢, Menelaos Kanakis, Jagruti Patel,
Dengxin Dai, and Luc Van Gool. Task switching network for multi-task learning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 8291-8300, 2021. 3

Simon Vandenhende, Stamatios Georgoulis, Bert De Brabandere, and Luc Van Gool. Branched
multi-task networks: deciding what layers to share. arXiv preprint arXiv:1904.02920, 2019. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 2,3, 15, 18

Sangmin Woo, Byeongjun Park, Hyojun Go, Jin-Young Kim, and Changick Kim. Harmonyview:
Harmonizing consistency and diversity in one-image-to-3d. arXiv preprint arXiv:2312.15980,
2023. 1

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3—19, 2018. 2, 15

Xiulong Yang, Sheng-Min Shih, Yinlin Fu, Xiaoting Zhao, and Shihao Ji. Your vit is secretly a
hybrid discriminative-generative diffusion model. arXiv preprint arXiv:2208.07791, 2022. 2

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824-5836, 2020. 3

Yu Zhang, Ying Wei, and Qiang Yang. Learning to multitask. Advances in Neural Information
Processing Systems, 31, 2018. 3

13

Published as a conference paper at ICLR 2024

APPENDIX

CONTENTS

A

Implementation Details on Denoising Task Routing
A.l Implementation Detailson ADM and DiT
A2 Pseudocode

The Average Portion of Shared Channels in Random Masking Strategy
Detailed Experimental Setup in Section 5

Comparison to Multi-Experts Strategy

Comparison of computational complexity.

Potential Alternatives of Sliding Window

Limitations and Future Works

Qualitative Results
H.1 Qualitative Results for Comparative Evaluation

H.2 Qualitative Results from DiT-L/2 with DTR and ANT-UW

14

15
15
16

17

17

18

19

19

19

Published as a conference paper at ICLR 2024

e N(e N\ A\
. @f) . — -
5 Scale
Scale ey 1
1
o Scale Scale Pointwise
Pointwise . * Feedtoryacd
Feedforward e Pointwise ’
Feedforward
- V2. B2 Feedforward s Scale, Shift
Scale, Shift grm— . Scale, Shift 1
5 |N Scale, Shift cale, Shi Layer Norm
ayer Norm
J Layer Norm LayiEr Wi
e
e
Scale
a, o~ Scale '
Scale PR | cale . .
1 ' Multi-Head Multi-Hlead
Multi-Head Mulii-Head Self-Attention Self-Attention
: Self-Attention (]
Self-Attention . Scale, Shift
! Scale, Shift s
1 . > '
. Y1, B1 Scale, Shift .
Scale, Shift — Cm— 1 Layer Norm Layer Norm 1-mp,
1 Layer Norm | 00000 A
Layer Norm MLP <—{
<——[—— mp,
1 | My,
Input Tokens Conditionin Input Tokens Input Tokens Input Tokens
" VAN i J\L i J_2 J
DiT Block Reformulated DiT Block DTR on Reformulated DiT Block DTR on DiT Block

Figure 7: DiT block with DTR. ©® represents an element-wise multiplication. We only show the
conditioning block in the DiT block (leftmost), as all blocks use the same conditioning block.

A IMPLEMENTATION DETAILS ON DENOISING TASK ROUTING

In this section, we present the implementation details on Denoisng Task Routing (DTR). Firstly, in
Sec. A.1, we describe the details of implementation for incorporating DTR in ADM (Dhariwal &
Nichol, 2021) and DiT (Peebles & Xie, 2022) architectures. To provide further details, we illustrate
pseudocode for the task routing mechanism and the routing mask instantiation in Sec. A.2.

A.1 IMPLEMENTATION DETAILS ON ADM AND DIT

ADM (Dhariwal & Nichol, 2021) We apply DTR on two types of residual blocks, an Atten-
tion (Vaswani et al., 2017) block, and a ResNet (He et al., 2016) block. Due to the potential effect
of the channel masking on local running mean and variance, DTR is positioned right after the group
normalization layer (Wu & He, 2018) in both types of residual blocks. Then, we can easily apply
DTR since ADM uses the same configured residual block in Eq. (3).

DiT (Peebles & Xie, 2022) DiT introduces a zero-initialized adaptive layer normalization (adaLN-
Zero) in transformer blocks, where the normalization parameters are regressed from the timestep em-
beddings and conditions. While DiT also utilizes residual connections within the transformer block,
it does not directly adhere to the formulation outlined in Eq. (3). Consequently, we reformulate the
DiT block, introducing the necessary modifications to integrate DTR.
The original I-th DiT block DiTBlock’ outputs z!*! given the input 2’ as:

2!*1 = DiTBlock! (2!) = (2! + Attn'(2!)) + MLP! (2! + Attn'(2!)), (5)
where Attn' and MLP! represent a multi-head self-attention and a pointwise feedforward layer in

l-th DiT block, both including adalLN-Zero layers. We note that this can be regarded as a residual
block by defining the block as:

Block! (') = Attn'(2!) + MLP'(2! + Attn'(2!)). (6)

The left two blocks in Fig. 7 show an overview of how we reformulate the DiT block. We then apply
DTR on the reformulated DiT block by using Eq. (3) and Eq. (6), which is expanded as:

2t =2ty Attnl(th oz + MLPZ((th ©z)+ Attnl(th o 2h)). @)

Here, using the existing DiT block in Eq. (5), it can be expressed as:
21 = (1 —=mp,) ® 2! + DiTBlock! (mp, © 2'). (8)

Interestingly, this can be implemented simply by applying DTR to the original DiT block and then
incorporating a skip connection from the output with a complementary routing mask at the end.

15

Published as a conference paper at ICLR 2024

Pseudo Code 1 [NumPy-like] Random Masking (Left) vs. DTR Masking (Right)

T: number of tasks # T: number of tasks

1 1
2 4 C: number of channels 2 # C: number of channels
3 # beta: activation ratio 3 # alpha: channel shifting parameter
4 4 # beta: activation ratio
5 def random_masking(T, C, beta): 5
6 # initialize mask with zeros 6 def dtr_masking(T, C, alpha, beta):
7 mask = np.zeros (T, C) 7 # initialize mask with zeros
8 # number of activated channels 8 mask = np.zeros(T, C)
9 num_activ = int (beta * C) 9 # number of activated channels
10 # £ill the mask with ones 10 num_activ = int (beta * C)
11 mask[:, : num_activ] =1 11 # number of deactivated channels
12 # randomly shuffle the columns of the mask 12 num_deact = C - num_activ
13 return mask[:, np.random.permutation(C)] 13 # create linearly spaced points
14 x = np.linspace(0, 1, T)
15 # apply a scaling factor to linear points
16 X = x *x alpha
17 # calculate the channel offset for every timesteps
18 offset = (num_deact * x).round()
19 # £ill the mask with ones
20 for t in T:
21 start = offset[t]
22 end = offset[t] + num_activ
23 mask[t, start:end] =1
24 return mask

Pseudo Code 2 [Simplified] ADM block (Left) vs. ADM block + DTR (Right)

z: input representation # z: input representation

1 1

2 2 # mask: routing mask

3 def forward(z): 3

4 # apply normalization, SilU 4 def forward(z, mask):

5 h = SiLU(norm(z)) 5 # apply normalization, SilU

6 # up-interpolation + conv 6 h = SiLU(norm(z))

7 h = conv(upsample (h)) 7 # apply the routing mask

8 # apply conv 8 m z = mask * h

9 h = conv(h) 9 # up-interpolation + conv

10 # apply normalization, SilLU, conv 10 m_z = conv(upsample (m_z))

11 h = conv(SiLU(norm(h))) 11 # apply conv

12 # add original representation 12 m_z = conv(m_z)

13 return conv(upsample(z)) + h 13 # apply normalization, SilU, conv
14 m_z = conv(SiLU(norm(m_z)))
15 # add original representation
16 return conv(upsample(z)) + m_z

=]

seudo Code 3 [Simplified] DiT block (Left) vs. DiT block + DTR (Right)

z: input representation # z: input representation

1 1
2 2 # mask: routing mask
3 def forward(z): 3
4 # apply norm, attention, skip connection 4 def forward(z, mask):
5 z = z + attention(norml(z)) 5 # apply the routing mask
6 # apply norm, mlp, skip connection 6 m_z = mask * z
7 z = z + mlp(norm2(z)) 7 # apply norm, attention, skip connection
8 return z 8 m_z = m_z + attention(norml (m_z))
9 # apply norm, mlp, skip connection

10 m z = m_z + mlp(norm2(m_z))
11 # add original representation with complement mask
12 return (l-mask) * z + m_z

A.2 PSEUDOCODE

Our DTR is easy to implement yet highly effective. Adding just a few lines of code can lead to
a significant performance boost. This can be observed in the pseudocode examples. These code
snippets illustrate the concept of random masking and the implementation of masking using the DTR
(see Pseudo Code 1). To provide further clarity, we also offer pseudocode for a simplified version of

16

Published as a conference paper at ICLR 2024

the ADM ResBlock and the DiT block, both extended with DTR functionality (see Pseudo Code 2
and Pseudo Code 3, respectively).

B THE AVERAGE PORTION OF SHARED CHANNELS IN RANDOM MASKING
STRATEGY

To verify that the random masking does not take into account the relationships between tasks, we
derive the expected value [E(X) of the shared channel, where X is a random variable representing
the number of shared channels for two tasks D;, and Dtj. For ease of understanding, we abbreviate
two tasks Dy, and Dt]. as ¢ and j. Intuitively, when ¢ = j, the all channels are shared, yielding
E(X) = Cp. In the case of i # j, without loss of generality, we first sample the channel indices set
R() = {41, ...,ic5 } C {1,...,C} for task i. When selecting R(j), the probability P(k) of selecting

k shared channels from R(i) and selecting the rest from others is (?) (g;f]f)/ (gﬁ) Finally, the

expectation value of X is derived as follows:

Cp, ifi = 7,

E(X) = c Cg\ (C—C, c : ©)
3,2, kP(k), where P(k) = () (Cﬁflfj)/(cﬂ) otherwise.

Note that the expectation value of two distinct tasks remains consistent, which indicates that the

randomly initialized routing mask falls short of representing the inter-task relationship as it assumes

that all denoising tasks are equally related. As extensively studied in previous studies (Go et al.,

2023a), Task Affinity is one of the prior knowledge in the field of diffusion models. This underlines

why the use of random routing methods leads to a noticeable degradation in performance.

C DETAILED EXPERIMENTAL SETUP IN SECTION 5

Training details. We employed the AdamW optimizer (Loshchilov & Hutter, 2019) with a fixed
learning rate of le-4. No weight decay was applied during training. A batch size of 256 was used
and a horizontal flip was applied to the training data. We utilized classifier-free guidance (Ho &
Salimans, 2022) with a guidance scale set to 1.5 in conditional generation settings such as text-to-
image generation and class-conditional image generation. For the FFHQ dataset (Karras et al., 2019),
we trained for 100k iterations and evaluated model performance on 50K samples. On the ImageNet
dataset (Deng et al., 2009), we trained for 400K iterations and evaluated models using SOK samples.
In experiments on MS-COCO dataset (Lin et al., 2014), we trained for 400K iterations and evaluated
model performance on 50K samples.

The diffusion timestep 1" was set to 1,000 for training and DDPM 250-step (Ho et al., 2020) for
sample generation. We used a cosine scheduling strategy (Nichol & Dhariwal, 2021) and applied an
exponential moving average (EMA) to the model’s parameters with a decay of 0.9999 to enhance
stability. All the models were trained on 8 NVIDIA A100 GPUs. We implemented the task routing
on the official code of DiT' and ADM”.

For implementing loss weighting methods such as Min-SNR (Hang et al., 2023), ANT-UW (Go
et al., 2023a), and P2 (Choi et al., 2022), we used the officially released code of Min-SNR? and
P2* for implementing their weighting method. However, since ANT does not release their code, we
re-implemented ANT-UW with timestep-based clustering when the number of clusters is 8.

Evaluation metrics. We evaluated diffusion models using FID (Heusel et al., 2017), IS (Salimans
et al., 2016), and Precision/Recall (Kynkiidnniemi et al., 2019). Lower FID indicates a closer distri-
bution match between generated and real data, suggesting higher quality and diversity of generated
samples. Higher IS implies that the generated data are of higher quality and diversity. Precision
measures whether generated images fall within the estimated manifold of real images, while Recall
measures the reverse. Higher Precision and Recall reflect better alignment between the generated

1https ://github.com/facebookresearch/DiT
2https://github.com/openai/guided—diffusion
*https://github.com/TiankaiHang/Min—-SNR-Diffusion-Training
*nttps://github.com/jychoill8/P2-weighting

17

https://github.com/facebookresearch/DiT
https://github.com/openai/guided-diffusion
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training
https://github.com/jychoi118/P2-weighting

Published as a conference paper at ICLR 2024

Class-Conditional ImageNet 256 x256.

Method # of Parameters FIDJ ISt Prect Rec?
Vanilla (DiT-L/2) 458M 12.59 13460 0.73 0.49
Multi-experts (DiT-B/2 x 4) 521M 948 149.79 0.75 0.51
DTR (DiT-L/2) 458M 890 15648 0.77 0.51

Table 6: Comparison between DTR and multi-expert strategy. Although DTR used smaller pa-
rameters, DTR outperforms the multi-expert strategy in terms of FID, IS, and Precision.

and real data distribution. We followed the evaluation protocol of ADM and used codebase’. Unless
otherwise stated, FID is calculated with S0K generated samples.

Additional architectural details for DiT. Since the official DiT /~
code only offers the implementation for class-conditional genera- | 61:_)

tion, we have extended it to include implementations for uncondi- ,
Pointwisc asz,p3, V3

tional and text-conditional generation. e

(adalN-Zero)

~

For the unconditional generation, we set the number of classes to
one following the recommendation of the authors of DiT °. For the
text-conditional generation, we utilize text tokens from CLIP (Rad-
ford et al., 2021) text encoder to condition the diffusion model.
Figure 8 briefly shows the implemented DiT block for the text-
conditional generation. Given that we utilize conditions as a se-
quence of text tokens, as opposed to a single token in the class- MaliHend “huns
conditional generation, the parameters of adaLLN-Zero are solely re- S

gressed from the timestep embeddings. To condition text tokens, we \ _ [muroien et)
iéllclzprporate a multi-head cross-attention lgyer within the.DlT block. Figure 8: DIT block for text-

is layer follows the same structural design as the multi-head self- A .

. . . . to-image generation.
attention, with text tokens serving as keys and values in the cross-
attention layer (Vaswani et al., 2017). Note that optimizing unconditional and text-conditional DiT
blocks is beyond the scope of our current focus, leaving opportunities for further improvement.

az,B2.v2

MLP
(]

For all DiT experiments, we employ a VAE encoder/decoder from Stable Diffusion’ to obtain the
latent feature of input images. This VAE maps 256 x 256 x 3 images into a compact latent repre-
sentation with 32 x 32 x 4 dimension.

D COMPARISON TO MULTI-EXPERTS STRATEGY

Although our works focus on effectively building a single neural network for diffusion models,
comparing our DTR to works using multiple neural networks (Balaji et al., 2022; Go et al., 2023bj;
Lee et al., 2023) for diffusion models can further support the effectiveness of our method.

Regarding this, we compare multi-experts and DTR, when using a similar number of parameters.
For constructing multi-experts, we used four DiT-B/2 models, and each model trained on a specific
area of the four parts of timesteps {1,...,7'}. We trained each model with 200K iterations with a
learning rate of le-4 and batch size of 256. Each DiT-B/2 model has ~130.3M parameters, total
used parameters for multi-experts are 521.2M parameters. For comparison above multi-experts with
DTR, we used the DiT-L/2 model which has 458M parameters and was used in experiments in
Sec. 5.

Table 6 shows the results of the comparison between DTR and multi-experts strategy on the Ima-
geNet 256x256 dataset. As shown in the results, both the multi-experts strategy and DTR outperform
vanilla training. Notably, our DTR outperforms the multi-experts strategy in terms of FID, IS, and
Precision. This result implies that explicitly handling negative transfer in a single model with DTR
can outperform parameter-separated models for covering denoising tasks.

Shttps://github.com/openai/guided-diffusion/tree/main/evaluations
f’https ://github.com/facebookresearch/DiT/issues/18#1issuecomment
"nttps://huggingface.co/stabilityai/sd-vae-ft-ema-original

18

https://github.com/openai/guided-diffusion/tree/main/evaluations
https://github.com/facebookresearch/DiT/issues/18#issuecomment
https://huggingface.co/stabilityai/sd-vae-ft-ema-original

Published as a conference paper at ICLR 2024

E COMPARISON OF COMPUTATIONAL COMPLEXITY.

Despite not requiring additional parameters, DTR incurs

minimal computational cost for channel masking. To clar- Method GFLOPs _lters/sec
ify this cost, we report floating point operations (FLOPs) DiT-S/2 6.06 8.19
.. . . DiT-S/2 + DTR 6.06 8.14
and average training iterations executed per second across DITBN2 301 6.90
different model sizes (S, B, L) of DiT in Tab. 7. The results D;T:B D+DTR 23.02 6.87
show a negligible increase in GFLOPs and a correspond- :
DiT-L/2 80.71 3.72

ing decrease in average training speed. This supports the DITL/2+DIR 8073 371
computational efficiency of our DTR, demonstrating that it
requires only marginal computation from its adoption to ex- ~ Table 7: Computation comparison.
isting models.

F POTENTIAL ALTERNATIVES OF SLIDING WINDOW

Masking Strategy Type
Vanilla MaxRoaming (Pascal et al., 2021) ERCDT CDTR DTR
FIDJ 10.99 39.90 10.13 9.61 7.32

DiT-B/2

Table 8: Masking Strategy Alternatives. DTR outperforms several masking strategy alternatives,
which fall short of adequately incorporating task weights or task affinity.

Here, to further support the effectiveness of DTR, we compare more extensive baselines. First, we
choose MaxRoaming (Pascal et al., 2021) which utilizes the optimization strategy on randomly ini-
tialized channel masks. Second, we employ timestep-based clustering Go et al. (2023a) on DTR for
validating the effects of our masking strategy on fine-grained denoising tasks compared to clustering
these tasks. We used k = 8 of cluster size for timestep-based clustering, and initialized masks re-
garding each cluster as one task. We denote this as CDTR. Third, we explicitly route with clustered
denoising tasks (ERCDT), where half of the channels are shared across all denoising tasks, while the
remaining channels are segmented and activated for specific tasks. Comparing ERCDT with DTR
can also validate the effects of whether clustering is applied or not. We trained DiT-B/2 on the FFHQ
dataset using each strategy, and we present the results in Table 8.

The results show that our DTR significantly outperforms all masking strategy alternatives. The al-
ternatives show suboptimal performance due to their failure to incorporate the diffusion prior to task
weight and task affinity. For MaxRoaming, we suggest that this phenomenon is due to the detrimen-
tal effects of introducing randomness into the prior. As illustrated by ANT (Go et al., 2023a), the
randomness causes negative impacts on performance, and Randomness in MaxRoaming also causes
this performance degradation. For the other two alternatives, CDTR and ERCDT, the primary rea-
son for this discrepancy lies in the inability of alternative methods to adequately capture and reflect
nuanced, proximal relationships among denoising tasks inherent in the clustering approach. For ex-
ample, the denoising task at ¢ = 1 is considered nearly equivalent to tasks at ¢ = 5 or ¢ = 100 within
the context of £k = 8 clusters, failing to recognize the higher affinity between tasks at closer time
intervals. Furthermore, while tasks at ¢ = 124 and ¢ = 125 belong to the same cluster, timesteps
t = 125 and ¢ = 126 fall into different clusters, not effectively reflecting the one-timestep difference
between them. This limitation impedes the performance of ERCDT and CDTR compared to DTR,
reinforcing the effectiveness of our proposed method. It is noteworthy that both CDTR and ERCDT
outperform vanilla training, indicating that task routing, even with discrete representations through
task clustering, enhances performance by incorporating relationships among denoising tasks.

G LIMITATIONS AND FUTURE WORKS

In this work, we have proposed fixed task-specific masks that incorporate the prior knowledge of de-
noising tasks in diffusion models. Although we showed that these fixed masks can achieve dramatic
performance improvements, task-specific masks are not changed and optimized through training pro-
cedures. Despite the immutability of masks having advantages in training speed and computation,

19

Published as a conference paper at ICLR 2024

further optimization can be more beneficial. By utilizing well-known methods such as reinforcement
learning and evolutionary algorithms, the masks can be more optimized than our DTR masks and
these can be future work from our work. Additionally, starting from our work, another future study
could be to architecturally consider resource partitioning among multiple denoising tasks.

H QUALITATIVE RESULTS

H.1 QUALITATIVE RESULTS FOR COMPARATIVE EVALUATION

Qualitative Comparison on FFHQ Dataset Figure 9 shows the qualitative comparison of results
on unconditional facial image generation between baseline, R-TR, and DTR. Our proposed method
has better performance in generating realistic images.

Qualitative Comparison on ImageNet Dataset For the comparison of conditional image gener-
ation, we show the generated results from baseline, R-TR, and DTR. As illustrated in Fig. 10, our
method outperforms others.

Qualitative Comparison on MS-COCO Dataset To further verify the effectiveness of the pro-
posed method, we compare the qualitative results of the Text-to-Image generation task between
baselines, R-TR, and DTR in Fig. 11.

H.2 QUALITATIVE RESULTS FROM DIT-L/2 WITH DTR AND ANT-UW

Figures 12, 13, 14, 15 illustrates the generated images by DiT-L with DTR and ANT-UW trained
on 400K iterations. As shown in the results, highly realistic images are generated by our DTR and
ANT-UW despite the model being only trained on 400K iterations with a batch size of 256.

R-TR Baseline

DTR

Figure 9: Qualitative comparison between baseline, random routing (R-TR), and denoising
task routing (DTR) on FFHQ dataset.

20

Published as a conference paper at ICLR 2024

o
.g
o)
20
3
m

Ringlet Basenji Psittacus erithacus Polecat Police van Dining table Organ

Figure 10: Qualitative comparison between baseline, random routing (R-TR), and denoising
task routing (DTR) on ImageNet dataset.

“A bed with a “A black stove “People are “Two horses are “Century old “Century old
bright green top oven sitting trekking down a grazing on the buildings stand buildings stand
cover and in a kitchen.” snow covered rolling hills” near streets in near streets in
matching bedroom mountain” a city.” a city.”

wall.”

———

R-TR Baseline

DTR

Figure 11: Qualitative comparison between baseline, random routing (R-TR), and denoising
task routing (DTR) on MS-COCO dataset.

21

Published as a conference paper at ICLR 2024

#
r vy
F X B, Y '
. ¢ £
' ‘\
i {
¥

i k|
! i

'

Figure 12: Uncurated 256 <256 DiT-L/2 samples.
Classifier-free guidanzce scale = 2.0.
Class label = “golden retriever” (207)

22

Published as a conference paper at ICLR 2024

§

&

Figure 13: Uncurated 256 <256 DiT-L/2 samples.
Classifier-free guidance scale = 2.0.
Class label = “panda” (388)

23

Published as a conference paper at ICLR 2024

Figure 14: Uncurated 256256 DiT-L/2 samples.
Classifier-free guidance scale = 4.0.
Class label = “cliff drop-off” (972)

24

Published as a conference paper at ICLR 2024

Figure 15: Uncurated 256 <256 DiT-L/2 samples.
Classifier-free guidance scale = 2.0.
Class label = “lake shore” (975)

25

