© © N O o A W N =

Exploiting All Laplacian Eigenvectors for Node
Classification with Graph Transformers

Anonymous Author(s)
Affiliation
Address

email

Abstract

Graph transformers have emerged as powerful tools for modeling complex graph-
structured data, offering the ability to capture long-range dependencies. They
require explicit positional encodings to inject structural information, which are most
commonly derived from the eigenvectors of the graph Laplacian. However, existing
approaches utilize only a small set of low-frequency eigenvectors, assuming that
smooth global structure is sufficiently informative. We show that, for the task of
node classification, it is possible to exploit a much broader spectrum of eigenvectors
and achieve significant gains, especially in heterophilic graphs. Additionally, we
introduce a first-principles approach for ranking and selecting eigenvectors based on
their importance for node classification. Our method is plug-and-play and delivers
substantial improvements across diverse benchmarks, elevating even vanilla graph
transformers to match or surpass state-of-the-art models.

1 Introduction

Graph transformers have become an increasingly powerful tool for learning from graph-structured
data, offering flexible mechanisms to model interactions in a graph where otherwise traditional
message-passing approaches might fail (e.g. modeling long-range dependencies). A key challenge
in adapting transformers, where all nodes can interact with all other nodes, is explicitly encoding
the connectivity structure. To address this, most graph transformers rely on positional encodings
typically derived from the eigenvectors of the graph Laplacian [14]].

In practice, however, these encodings are truncated: only the lowest-frequency eigenvectors are
retained [14} 127, 8]], with the assumption that they best capture the smooth, global structure needed for
learning. This truncation introduces a strong inductive bias that prioritizes low-frequency information
while discarding the rest of the spectrum. As a result, we suspect graph transformers may be limited
in their ability to capture more localized or smooth patterns, hindering their performance on common
real-world classification tasks. This could be problematic in graphs with weak homophily, or long-
range interactions, where informative structure may lie in the very spectral components that are being
removed.

Motivated by this hypothesis, we revisit the design of spectral positional encodings in graph trans-
formers. First, we identify a bottleneck causing under-utilization of Laplacian eigenvectors in existing
graph transformers. We then show that higher-frequency components often contain critical informa-
tion for node classification tasks and propose a first-principles approach to selecting eigenvectors
based on how class-relevant signals are distributed across the spectrum. Our method is plug-and-play,
and compatible with a wide range of graph transformer architectures.

We demonstrate the effectiveness of our approach across a range of node classification and long-range
graph benchmarks. Notably, incorporating higher-frequency eigenvectors leads to large gains on

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37
38

39

40
41
42

43
44
45

46
47
48

49

50
51
52
53
54
55
56
57
58
59
60

61

62

63

64
65
66

67
68

69
70
71
72
73

74
75
76
77
78

challenging heterophilic datasets: performance on Chameleon and Squirrel improves by over 22% and
30%, respectively, even for a simple transformer baseline. More advanced models like NAGphormer
[8] and GraphGPS [27] also see improvements exceeding 20% on these datasets.

Our contributions are as follows:

* We bring to light simple yet consistently effective modifications to the input encoders
of popular graph transformer backbones that enable utilization of broader spectrum of
Laplacian eigenvectors.

* We introduce a label-aware strategy for selecting a task-relevant subset of Laplacian eigen-
vectors to be used as positional encodings in graph transformers. This selection mechanism
can be applied as a plug-in to any transformer architecture.

* We conclusively demonstrate, through extensive empirical analysis, that including a
well-chosen spectrum of Laplacian eigenvectors leads to significant gains in node clas-
sification performance of existing graph transformers across a wide range of benchmarks.

2 Motivation: Why should we broaden the spectrum?

A common assumption in graph transformers that use Laplacian eigenvectors for position embeddings
is that low-frequency components alone carry sufficient structural information for node classifica-
tion. This is reflected in most implementations, which use only a small number of the lowest
eigenvectors—typically around 10 (Table [6)—thereby capturing only coarse, smooth patterns in
the graph. However, this truncation is arbitrary and lacks both theoretical and empirical justifica-
tion. If class-discriminative signals exist in higher-frequency bands, restricting to low frequencies
may fundamentally limit a model’s ability to learn fine-grained structural cues. Our concern is
further supported by prior work in the spectral GNN literature, where high-frequency signals have
been shown to be particularly effective for addressing heterophily (refer to Appendix [A). In these
cases, low-frequency components often oversmooth node representations, while high-frequency
information-often dismissed as noise can capture important local variations.

2.1 Initial experiments

We then ask a natural question:

Can we improve performance by simply increasing the number of low-frequency eigenvectors
used in a standard graph transformer?

To explore this, we start with the baseline GT model from [14], which concatenates node features X €
RN XD and position encodings P € RY*X and passes them through a single linear layer to create
node-level tokens. These are then processed by a vanilla transformer (detailed in Appendix [C.1)):

Yor = Transformer ([X; P]Win) Wou Q)

Here, P = V. .k, where V € RNVN*N i the Laplacian eigenvector matrix, and K denotes the number
of low-frequency eigenvectors included in P.

As shown in Figure[T] (dotted lines), naively increasing the number of eigenvectors does not improve
performance, suggesting that simply injecting more spectral information is not sufficient. Interestingly,
we find that GT starts utilizing a broader spectrum with two small but critical changes: (1) applying
row-wise /5 normalization to the position encodings, and (2) replacing the single input linear layer
with separate MLPs for node and position inputs. We use GT* to denote this model:

Ysr+ = Transformer ([MLPyoge (X); MLPos (norm(P))]) Wiy 2)

As shown in Figure |1| (dashed lines), these small but targeted changes significantly improve the
model’s ability to utilize higher-frequency information. Normalization is critical here because the
scale of Laplacian eigenvector elements is ~1/N, which quickly vanishes for reasonably sized
graphs. Meanwhile, independent MLPs provide a more expressive mapping from raw inputs to
transformer-compatible tokens.

79
80
81
82
83
84
85
86
87
88
89
9
91
92
93
94

95

96
97
98

99
100
101
102
103
104

105

106

107
108

Table 2: Classification results for baseline and modified approaches. First row represents the typical utilization
of Laplacian eigenvectors. Second row allows for using more eigenvectors, which does not result in significant
performance improvements. Third row introduces the input encoder modifications and shows a big jump in
performance. Finally, the fourth row corresponds to the situation where we provide the model all eigenvectors.

Model Eigenvector Selection‘Chameleon Squirrel WikiCS Computers

GT K € [4,16] (tuned) |50.48+208 34.70+177 72.91+059 85.65+059
GT K € [4,N] (tuned) |52.28+28 37714179 73.75+063 87.21+055
GT* K €[4, N] (tuned) |67.83+182 62.91+104 78.46+056 91.66+041
GT* full spectrum (fixed) |48.14+3.05 35.30+161 72.35+072 85.20+0.30

_e--—--e——e-—_o

To validate the effect of input encoder modification, we

evaluated GT and GT* across four node classification D o
benchmarks, while allowing K to be chosen by hyperpa- s
rameter search (along with the rest of the hyperparame-
tersﬂ As shown in Table increasing K and switching
to the GT* architecture, boosts performance from 50.48%
to 67.83% on Chameleon, and from 34.70% to 62.91% on
Squirrel. Furthermore, applying these modifications to two

accuracy

additional graph transformer backbones, NAGphormer [8] ,, piaerl bt
and GraphGPS [27]], shows consistent improvements (see — T T T T T T 7T

. . . 4 8 16 32 64 128 256 512 1024
Table[12]in Appendix [G). These results confirm that using pumber of sigenvectors

more of the graph spectrum can yield substantial gains
over prior baselines provided it is paired with appropriate Figure 1: Classification accuracy of GT
input encoders. With significant gains on both homophilic and GT* as a function of the number of eigen-

and heterophilic graphs, we make the following conclu- vectors used in position embeddings on two
sion: benchmarks.

Conclusion 1

Standard graph transformers can significantly benefit from higher-frequency eigenvectors
provided they include (1) proper normalization of position embeddings and (2) expressive
input encoders (e.g., MLPs instead of linear layers).

Although these modifications may seem trivial in hindsight, we hypothesize that their absence in
existing models explains why the benefits of broadening the graph spectrum within graph transformers
have remained undiscovered until now.

These results invite a natural follow-up question: if higher-frequency eigenvectors are useful, what
happens if we simply include all of them? In principle, a full-spectrum encoding should maximize
the information available to the model. In practice, however, we find that this strategy leads to
severe overfitting and degrades performance (Table[2). On Squirrel, for example, GT* drops from
62.9% (tuned) to 35.3% (full), with similar declines observed for NAGphormer and GraphGPS (Ap-
pendix [G). This finding highlights an important challenge:

Conclusion 2

While using more of the graph spectrum is beneficial to some extent, indiscriminately
including all eigenvectors harms generalization.

3 A label-aware method for spectral selection

Now that Section[2-T]has confirmed that graph transformers can indeed benefit from more eigenvectors,
we revisit a limitation of that analysis: it still relies on a somewhat arbitrary truncation of the lowest /'

'See Section for a complete description of our experimental setup.

109
110
111

112

113
114
115
116
117
118

119
120
121
122
123

124

125

126
127
128
129
130

131
132

133

134
135

Chameleon Squirrel WikiCS

— Raw
—— Smoothed

= N
o) o
1 1 1
1
1

10 logso(N x ESD(i))
L
o
1

—20

T T T T T T T T
0 500 1000 1500 2000 0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000 12000

freqeuncy index (i) freqeuncy index (i) freqeuncy index (i)

Figure 2: Energy spectral density of class labels for different graphs.

eigenvectors of the Laplacian. There might still be useful information in the mid- and high-frequency
bands. This motivates the need for a more principled method to select an informative, compact, and
non-contiguous subset of eigenvectors. We frame this as the following problem:

Eigenvector selection problem: Given the IV eigenvectors of the graph Laplacian, can we
efficiently identify the K most informative ones for node classification?

A naive approach would be to treat this as a subset selection problem over (IZX) possible combi-
nations—a search space far too large for practical hyperparameter tuning. Instead, we propose a
spectral-energy-based method to rank and select eigenvectors. Intuitively, we treat the class labels of
training nodes as a graph signal, compute its energy spectral density (ESD), and select the top-K
eigenvectors corresponding to frequencies with the highest class-label energy. This provides a simple
and interpretable way to prioritize eigenvectors that align most strongly with class structure.

Let Y denote the label set, Ny, be the number of training nodes, and Ciy, € {0, 1}Ntmin><|y | be
the one-hot encoding of class labels for the training nodes. Let Viain € RNwin XN pe the matrix of
Laplacian eigenvectors, restricted to the training nodes and ordered by increasing eigenvalue. Using
the graph Fourier transform (Appendix [C.4), we can compute the Fourier representation of the class
signal:

CA'train = ‘/Ir—l;in C'lrain (3)

Then the energy spectral density (ESD) of class labels for the i graph frequency can be defined as:

N
1. .
E; = E”Ctrain,i”% with Z chosen such that§ E, =1,)

where CA'lraiM is the i row of C’train. We visualize the ESD for several datasets in Figure

To rank the utility of different eigenvectors, we first apply a smoothing operation to the energy density
spectrum using a boxcar (moving average) ﬁlterEl This mitigates the effect of noise and emphasizes
consistent frequency bands where class-relevant energy is concentrated. After smoothing, we select
the K eigenvectors corresponding to the highest values in the resulting spectrum. The complete
procedure is summarized in Algorithm |I]

Remark. While K remains a hyperparameter, this approach replaces arbitrary low-frequency
truncation with a more methodological and data-driven ranking.

4 Evaluation

In this section, we evaluate our approach on a diverse set of node classification benchmarks, analyzing
its effectiveness across three established graph transformer architectures.

2A smoothing window of 256 points is used for all experiments, which we found to work well across datasets.

136

137
138
139
140
141
142
143

144
145
146
147

148
149

151
152
153
154
155

156
157
158
159

160

161
162
163
164
165
166

T3R5

Table 3: Node classification performance on heterophilic benchmarks.
evaluation in existing literature.

indicates absence of a particular

Model Chameleon Squirrel Tolokers Ratings
Accuracy T Accuracy 1 AU-ROC 1 Accuracy 1

GCN 38.44+1.92 31.52+071 83.64 £0.67 48.70 +0.63

GraphSAGE 58.73+1.68 41.61+074 82.43 £044 53.63+£039

GAT 48.36+1.58 36.77 £ 1.68 83.70 £ 047 49.09 +0.63

NodeFormer 3473 +4.14 38.52+1.57 - -

SGFormer 44.93 £391 41.80+227 - -

Exphormer - - 83.53+£0.28 50.48 £0.34

SpExphormer - - 83.34+031 50.48 £0.34

GT 50.48 £2.08 34.70+1.77 80.30+0.91 49.02 £ 0.61

GTgrs 73.09 +1.00 +22.611 65.06 +1.93 +30.36T 84.45+0.66 +4.157 50.37 £048 +1.357

NAGphormer 52.41+221 40.21 £1.77 83.69 +0.86 50.16 +0.69

NAGphormergys 73.90+1.68 +21.491 65.04 +1.69 +24.831 85.47 £0.72 +1.781 49.65 +0.65 -0.51],

GraphGPS 60.92 +2.54 43.43+1.46 86.29 +0.68 50.19 + 0.1

GraphGPSgrs 73.16 %170 +12.247 65.87+130 422,447 86.31+0.63 +0.02] 51.33+058 +1.141

4.1 Experimental setup

Datasets. To evaluate the effectiveness of incorporating higher-frequency eigenvectors, we con-
duct experiments on both homophilic and heterophilic datasets. The homophilic datasets include
Coauthor-Physics, Coauthor-CS [29], Amazon-Photo, Amazon-Computers [22]], and WikiCS [23]].
The heterophilic datasets consist of Chameleon, Squirrel [28]], Tolokers and Amazon-Ratings [260].
Additionally, we evaluate our approach on two recently introduced long-range datasets from the
CityNetwork benchmark suite [[18]. This diverse selection ensures that we assess model performance
across varying levels of structural homogeneity, heterogeneity, and long-range dependency.

Baseline and modified models. We evaluate our approach on three existing graph transformer
architectures: GT [14], NAGphormer [8]], and GraphGPS [27]. We use the subscript BTSE] to
denote models with our ESD-based eigenvector selection approach (Section[2.T)) and input encoder
modifications (Section [3).

NAGphormer [8]] restricts attention to k-hop neighborhoods using a normalized adjacency matrix. In
NAGphormergrs , we preserve this localized attention mechanism but replace the original position
encoder with our spectral selection procedure and MLP-based encoding. GraphGPS [27] combines
message passing with transformer-based global attention and uses LapPE for positional encoding. In
GraphGPSgrs , we replace LapPE with our label-aware spectral selection and MLP-based encoder,
creating a unified position encoding approach consistent with GTgrs and NAGphormergts .To ensure
fair comparisons, we use the same training setup and hyperparameter tuning for both the baseline
models and their modified versions.

The baseline models are trained with eigenvectors truncated to K lowest frequencies, and K is tuned
in the range [4, 16], consistent with prior work (Table E]) In the case of BTS, K is allowed a wider
range of [4, min(N,8192)], where N denotes number of nodes. Please refer to Appendix [F for more
details about the hyperparameter tuning setup.

4.2 Results

Results on heterophilic benchmarks. The results for node classification on heterophilic bench-
marks are presented in Table 3] We find substantial improvements when using BTS. For example, on
Chameleon, performance improves by over 22%, and on Squirrel, by over 30% when BTS-filtered
eigenvectors are used with a simple transformer architecture. Remarkably, this brings the vanilla
transformer architecture (GT) into close competition with, and in some cases even surpassing, more
complex graph transformer models proposed in recent literature.

3BTS stands for "Broaden the Spectrum."

167
168
169
170
171
172
173

174
175
176
177
178

179
180
181
182
183
184
185
186
187
188
189
190

191

192
193
194
195
196
197
198

199
200
201
202
203
204

Table 4: Node classification accuracy (%) on homophilic benchmarks. Performance for other models are
reported from existing literature.

Model Physics CS Photo Computers WikiCS ogbn-arXiv
Accuracy T Accuracy T Accuracy 1 Accuracy T Accuracy 1 Accuracy T
NodeFormer 96.45 +0.28 95.64 +0.22 93.46 +0.35 86.98 +0.62 74.73 £0.94 59.90+042
SGFormer 96.60 +0.18 94.78 £0.34 95.10+047 91.99+0.70 73.46 £ 056 72.63 +0.13
Exphormer 96.89 +0.09 94.93 +0.01 95.35+022 91.47+0.17 78.19+029 71.27+027
SpExphormer 96.70 +0.05 95.00+0.15 95.33+049 91.09 +0.08 78.20+0.14 70.82+024
GT 96.02 020 94.66 + 0.4 91.59 +0.68 85.65+059 72.91+059 55.68 +0.39
GTgrs 96.90+0.18 +0.887 95.44+0.33 +0.787 95.95+048 +4.367 91.46+051 45817 78.94+026 +6.037 70.30 +0.12 +14.621
NAGphormer 96.98 +0.13 95.71+0.26 95.51 +041 91.39+041 78.73 £ 0.66 69.43 +0.32
NAGphormergys 97.05+0.18 +0.071 95.42+039-0.29] 95.90+037 +0.397 91.85+044 +0.467 79.42+055 +0.6917 71.29£0.13 +1.867
GraphGPS 97.13+0.17 95.70+0.38 95.35+045 91.64 £046 77.67+0.73 65.16 +145

GraphGPSgrs 97.21 £0.14 +0.087 95.72+£037 +0.021 95.87 £042 +0.521 91.87+045 +0.231 79.47 £0.48 +1.807 70.92 +0.33 +5.767

These improvements are not surprising when viewed through the lens of the ESD of class labels. As
shown in Figure 2] graphs like Chameleon and Squirrel exhibit significantly high class energy not only
in the low-frequency region, but also in high-frequency components. To the best of our knowledge,
the performance reported here for Chameleon, Squirrel, and Tolokers represents the strongest results
achieved by any graph transformer model to date. These findings highlight that the historical
reliance on low-frequency truncation was a critical bottleneck, masking the true representational and
generalization potential of graph transformers.

Results on homophilic benchmarks. As shown in Table[d] BTS improves performance even on
homophilic graphs. GTgrs achieves +5.8% on Computers, +6.0% on WikiCS, and +14.4% on ogbn-
arXiv. Gains for NAGphormer and GraphGPS are smaller but consistent. These results are expectedly
more modest than in heterophilic settings, as the spectral energy of class signals in homophilic graphs
is more concentrated in low frequencies, but notable nonetheless.

Results on long-range benchmarks. Graph transformers Table 5: Node classification accuracy
are naturally suited for capturing long-range dependencies (%) on Long Range Benchmarks
due to their global attention mechanism. However, recent

work has shown that graph transformers suffer from overglob- _11°d¢l Paris Shanghai
alization [38] and perform poorly on long-range tasks. As GCN 47.30+020 52404030
shown in Table[5} our method achieves substantial improve- ~ SraPhSAGE 49.1006060.40:£030
. SGFormer 45.00+£02 53.5+03
ments on the long-range benchmark [[18] over baseline graph
transformer architectures. These datasets exhibit particular] at 4o 2105501
! ures. par| Y GTps 53794017 52.66+083
strong gains when using BTS-selected features. For instance, A +38337 431611
performance for GT on Paris improves by over 38%, and on "NaGphormer 25264034 24.94 %028
Shanghai by 31%, bringing the vanilla transformer model =~ NAGphormerpys 53.68+023 57.26+034
on par with strong baseline methods. A +28.421 432327
GraphGPS 28.99 4031 28.46+031
GraphGPSprs 54.12+023 5531033
A +25.131 +26.857

5 Conclusion

In this work we revisit a widely accepted but rarely questioned assumption in graph transformers:
that only a handful of low-frequency Laplacian eigenvectors suffice for positional encodings. We
show that this design choice fundamentally limits node classification performance, particularly on
heterophilic graphs where high-frequency components capture crucial fine-grained structure. Our
analysis demonstrates that graph transformers can benefit substantially from a broader spectral
representation, provided two simple adjustments are made—proper normalization of eigenvectors
and more expressive input encoders.

Building on this insight, we introduced a label-aware spectral selection strategy that ranks eigenvectors
by their alignment with class-label energy. This principled approach avoids arbitrary truncation,
identifies informative non-contiguous subsets of eigenvectors, and consistently outperforms both
low-frequency and full-spectrum encodings. Empirically, it achieves state-of-the-art results across
diverse benchmarks and transformer backbones without altering attention mechanisms or adding
inference-time cost.

205

206
207
208

209
210
211

212
213
214

215
216

217
218

219
220
221

222
223

224
225

226
227

228
229

230
231

232
233

234
235
236

237
238

239
240

241
242

243
244
245

246
247
248

249
250
251

252

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In The 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2623-2631, 2019.

M. Azabou, V. Ganesh, S. Thakoor, C.-H. Lin, L. Sathidevi, R. Liu, M. Valko, P. Velickovi¢, and E. L. Dyer.
Half-hop: A graph upsampling approach for slowing down message passing. In International Conference
on Machine Learning, pages 1341-1360. PMLR, 2023.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc., 2011.

D. Bo, X. Wang, C. Shi, and H. Shen. Beyond low-frequency information in graph convolutional networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 3950-3957, 2021.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203, 2013.

H. Chang, Y. Rong, T. Xu, W. Huang, S. Sojoudi, J. Huang, and W. Zhu. Spectral graph attention network
with fast eigen-approximation. In Proceedings of the 30th ACM international conference on information &
knowledge management, pages 2905-2909, 2021.

D. Chen, L. O’Bray, and K. Borgwardt. Structure-aware transformer for graph representation learning. In
International Conference on Machine Learning, pages 3469-3489. PMLR, 2022.

J. Chen, K. Gao, G. Li, and K. He. Nagphormer: A tokenized graph transformer for node classification in
large graphs. 2023.

E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph neural network.
arXiv preprint arXiv:2006.07988, 2020.

A. Deac, M. Lackenby, and P. Velickovi¢. Expander graph propagation. In NeurIPS 2022 Workshop on
Symmetry and Geometry in Neural Representations, 2022.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast
localized spectral filtering. Advances in neural information processing systems, 29, 2016.

X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard. Graph signal processing for machine learning:
A review and new perspectives. IEEE Signal processing magazine, 37(6):117-127, 2020.

Y. Dong, K. Ding, B. Jalaian, S. Ji, and J. Li. Adagnn: Graph neural networks with adaptive frequency
response filter. In Proceedings of the 30th ACM international conference on information & knowledge
management, pages 392-401, 2021.

V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

V. T. Hoang and O.-J. Lee. Transitivity-preserving graph representation learning for bridging local
connectivity and role-based similarity, 2023.

D. Kreuzer, D. Beaini, W. L. Hamilton, V. Létourneau, and P. Tossou. Rethinking graph transformers with
spectral attention. 2021.

S. Li, D. Kim, and Q. Wang. Beyond low-pass filters: Adaptive feature propagation on graphs. In Machine
Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD
2021, Bilbao, Spain, September 13—17, 2021, Proceedings, Part Il 21, pages 450-465. Springer, 2021.

H. Liang, H. S. d. O. Borde, B. Sripathmanathan, M. Bronstein, and X. Dong. Towards quantifying
long-range interactions in graph machine learning: a large graph dataset and a measurement. arXiv preprint
arXiv:2503.09008, 2025.

C. Liu, Y. Zhan, X. Ma, L. Ding, D. Tao, J. Wu, and W. Hu. Gapformer: Graph transformer with graph
pooling for node classification. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI-23), pages 2196-2205, 2023.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

253
254
255

256
257
258

259

260
261

262
263

264
265

266
267

268

270
271

272
273

274
275
276

277
278
279

280
281
282

283
284

285
286

287
288

289
290
291

292
293

294
295
296

297
298

[21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

(38]

(391

(40]

S. Luan, M. Zhao, C. Hua, X.-W. Chang, and D. Precup. Complete the missing half: Augmenting aggre-
gation filtering with diversification for graph convolutional networks. arXiv preprint arXiv:2008.08844,
2020.

J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel. Image-based recommendations on styles and
substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and development
in information retrieval, pages 43-52, 2015.

P. Mernyei and C. Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural networks, 2022.

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. F. Moura, and P. Vandergheynst. Graph signal processing:
Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808-828, 2018.

H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look at the evaluation
of gnns under heterophily: Are we really making progress? arXiv preprint arXiv:2302.11640, 2023.

L. Rampdsek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a general, powerful,
scalable graph transformer. Advances in Neural Information Processing Systems, 35:14501-14515, 2022.

B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding. Journal of Complex
Networks, 9(2):cnab014, 2021.

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann. Pitfalls of graph neural network evaluation.
arXiv preprint arXiv:1811.05868, 2018.

H. Shirzad, H. Lin, B. Venkatachalam, A. Velingker, D. Woodruff, and D. Sutherland. Even sparser graph
transformers. arXiv preprint arXiv:2411.16278, 2024.

H. Shirzad, A. Velingker, B. Venkatachalam, D. J. Sutherland, and A. K. Sinop. Exphormer: Sparse
transformers for graphs. In International Conference on Machine Learning, pages 31613-31632. PMLR,
2023.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine, 30(3):83-98, 2013.

A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang. An overview of microsoft academic
service (mas) and applications. In Proceedings of the 24th international conference on world wide web,
pages 243-246, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. 2017.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional networks.
In International conference on machine learning, pages 6861-6871. PMLR, 2019.

Q. Wu, W. Zhao, Z. Li, D. Wipf, and J. Yan. Nodeformer: A scalable graph structure learning transformer
for node classification. In Advances in Neural Information Processing Systems (NeurlPS), 2022.

Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Stoica. Representing long-range context
for graph neural networks with global attention. Advances in Neural Information Processing Systems,
34:13266-13279, 2021.

Y. Xing, X. Wang, Y. Li, H. Huang, and C. Shi. Less is more: on the over-globalizing problem in graph
transformers. arXiv preprint arXiv:2405.01102, 2024.

C.Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really perform
badly for graph representation? Advances in neural information processing systems, 34:28877-28888,
2021.

Z. Zhang, Q. Liu, Q. Hu, and C.-K. Lee. Hierarchical graph transformer with adaptive node sampling.
Advances in Neural Information Processing Systems, 35:21171-21183, 2022.

299

300

301

303
304
305
306
307
308
309

310
311
312
313

314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329

330

331
332
333
334

Appendix

A Related Work

Graph Transformers and Positional Encodings: Graph Transformers (GTs) have emerged as a
powerful alternative to message-passing Graph Neural Networks (GNNs), allowing all nodes in a
graph to interact via self-attention [14]. However, most early GT models were developed primarily
for graph-level tasks, such as molecular property prediction, where global structural patterns are
more relevant than fine-grained local interactions. Therefore these methods, naturally, rely on low-
frequency Laplacian eigenvectors for positional encodings [14, 27, 8]]. This paradigm is reflected in
models such as GraphTrans [37]], GraphGPS [27], and Structure-Aware Transformer (SAT) [[7], which
combine transformer-based architectures with graph-specific inductive biases to improve performance
on various tasks.

More recently, methods like ANS-GT [40] and Gapformer [19] have focused on adapting transformers
for large graphs by applying attention mechanisms to coarsened graph structures. Exphormer [31]]
uses expander graphs [[10] to sparsify attention. Despite these advancements, positional encodings in
graph transformers remain largely constrained to low-frequency eigenvectors.

The Role of High-Frequency Signals in Node Classification: In contrast, GNN literature has
highlighted the importance of high-frequency signals for improving node classification, particularly
in heterophilic graphs. Traditional message-passing GNNs aggregate information from neighboring
nodes, which is effective for homophilic graphs—where connected nodes often share the same
labels—but leads to oversmoothing in heterophilic settings. Spectral GNNs, which operate in the
frequency domain, address this issue by leveraging the graph Laplacian’s eigenvalues to manipulate
both low- and high-frequency components [35112]. Early works like Spectral CNN [5] and ChebNet
[L1]] introduced spectral filtering techniques, allowing for more flexible control over frequency ranges.
Building on these foundations, recent studies have demonstrated that high-frequency information is
crucial for improving model expressiveness in node-level tasks. Methods such as adaptive message
passing [9], spectral graph filtering [21]], and frequency-based feature selection [4] emphasize high-
frequency components to enhance node discrimination.

In parallel, other methods integrate high-frequency filtering with attention mechanisms. AdaGNN [13]]
applies multiple filters in each aggregation step to capture both local and global features dynamically.
[17] refine attention to balance frequency components, while [6]] employ high-pass attention filters to
retain fine-grained structural details essential for heterophilic graphs.

B Highest Maximum Frequencies Used in the Literature

To better understand the typical frequency truncation choices in existing graph transformer models,
we compile representative values of the maximum number of Laplacian eigenvectors (K) used across
a range of published works. As shown in Table [f] most methods restrict K to a small number—often
below 16—reinforcing the low-pass inductive bias observed in current practice.

Table 6: Maximum number of eigenvectors (K ,,x) used by recent graph transformer models, based
on publicly available code.

Model Kiax

NAGphormer [8]] 15
GraphGPS [27] 10

SAN [16] 10
GT [14] 10
UGT [15] 10

Exphormer [31] 10

335

336

337
338
339

341
342

343

344

345
346
347
348
349
350

352

353
354
355
356

357
358
359
360

361
362

363
364
365
366

367

368
369
370
371

C Background

C.1 Transformers

Transformers, introduced in [34]], are the foundation of many modern deep learning architectures.
Each layer of a transformer consists of a Multi-Head Self-Attention (MHSA) mechanism followed by
a Feedforward Network (FFN). Given a sequence of tokens X € RY*P where N is the sequence
length and D is the token dimension, the attention layer computes:

<(XW5)(XW}%)T

H
MHSA(X) = Z softmax

7) (XW{HWE 5)

The FFN applies a non-linear transformation FEN(X) = o(XW,)W5, where o is an activation
function such as ReLLU. Each transformer block combines MHSA and FFN with residual connections:

X = X +MHSA(X), Y =X +FFN(X) (6)
Stacking such blocks enables the model to capture complex dependencies across the input sequence.

C.2 Graph transformers

In simple graph transformers [[14, [39]], each node in the graph is represented by a token. Unlike
Message Passing Neural Networks (MPNNs), which restrict pairwise interactions in each layer to a
node’s immediate neighbors, transformers inherently lack such biases and model all node-to-node
interactions by design. Connectivity information about the graph is typically incorporated in one of
two ways: either through positional encodings, with the input to the transformer being a combination
of the feature vector of each node and its positional encoding [[14} 27]], or by adding structural bias
directly into the attention matrix [36}31]. In this work, we focus on the former approach.

C.3 Laplacian positional encodings

Eigenvectors of the normalized graph-Laplacian are the most common positional encodings and
have been identified as effective in prior work [[14]]. To formalize this concept, assume that we are
given a graph G = (V, £) with |V| = N nodes, its adjacency matrix A, and its degree matrix D, its
normalized graph-Laplacian matrix is defined as:

L=1—-DY2AD1/? @)

Let L = VAV denote the eigen decomposition of the normalized graph-Laplacian, with eigenvalues
arranged in increasing order,i.e. Ay < Ao < ... < Ay. In existing graph transformers [[14], a node
n is assigned a K -dimensional positional encoding p,, constructed from the Laplacian eigenvectors
with the K smallest eigenvalues. p,, is defined as:

T
Pn = [Vlny Von, ... aVKn] 5 8)

leading to an N x K positional encoding matrix P = V. .. Here v}, € R¥ corresponds to the k™
eigenvector, i.e. the kt column of V.

Remark. Each eigenvector v;, € RY defines a signal v, : V — R that varies over the graph nodes.
Eigenvectors associated with small eigenvalues are thought to vary slowly across the graph, capturing
low-frequency global variations, while eigenvectors corresponding to large eigenvalues vary rapidly,
encoding high-frequency signals that change significantly across neighboring nodes [32| 24]].

C.4 Graph Fourier Transform

The Graph Fourier Transform (GFT) is a generalization of the classical Fourier transform to graph-
structured data. Let L denote the normalized graph Laplacian of G, and let V€ RY*¥ be the
matrix of its eigenvectors, ordered by increasing eigenvalue. The GFT of a graph signal x : VV — R,
represented by a vector x € R”, is defined as:

x=V'x)

10

372
373
374
375
376

377

378

379
380
381
382
383

384
385
386

387

388
389
390
391
392

393
394

395

396
397
398
399
400

Here, %; = v x denotes the i" graph-frequency component of x, and (%;)? denotes the spectral
energy of x in this frequency. Intuitively, signals that vary smoothly over the graph have most of their
energy concentrated in the lower frequencies, while signals that vary rapidly have energy concentrated
in the higher frequencies. Note that signals can have significant energies in both low and high parts
of the spectrum.

D Baseline Sources

D.1 Heterophilic Datasets

We use five real-world datasets with graphs that have a homophily level < 0.30: Actor [23],
Chameleon and Squirrel [28]], as well as Ratings and Tolokers [26]. Key statistics for these datasets
are listed in Table We follow the experimental setup in [25] for Actor, Chameleon, and Squirrel,
and for Ratings and Tolokers, we adopt the setup described in [26], using the 10 train/validation/test
splits provided.

The results for GCN-based methods and heterophily-based methods in Table [/|for Actor, Chameleon,
and Squirrel have been sourced from [2]. Similarly, results for Ratings and Tolokers are sourced from
[26], while results for transformer-based methods across all datasets are obtained from [30]].

Table 7: Statistics of heterophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO
CHAMELEON 2,277 31,421 5 0.23
SQUIRREL 5,201 198,493 5 0.22
TOLOKERS 11,758 519,000 2 0.09
RATINGS 244,92 39,402 5 0.14

Table 8: Statistics of homophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO
PHYSICS 34,493 495,924 5 0.92
CS 18,333 81,894 15 0.83
PHOTO 7,650 238,162 8 0.84
COMPUTERS 13,752 491,722 10 0.79
WIKICS 11,701 216,123 10 0.66
OGBN-ARXIV 169,343 1,166,243 40 0.65

D.2 Homophilic Datasets

We use five real-world datasets: Amazon Computers and Amazon Photos [22]], Coauthor CS and
Coauthor Physics [33], and WikiCS [23]]. Key statistics for these datasets are listed in Table @ The
experimental setup follows that of [30]], where the datasets are split into development and test sets.
All hyperparameter tuning is performed on the development set, and the best models are subsequently
evaluated on the test set.

We use a 60:20:20 train/validation/test split for the Amazon and Coauthor datasets. The results
reported for all datasets in Table E] are sourced from [30].

D.3 Long Range Benchmark Datasets

To evaluate the ability of models to capture long-range dependencies, we use the City-Networks
benchmark [18]], which consists of large-scale road network graphs derived from OpenStreetMap data.
We focus on two representative cities—Paris and Shanghai—which feature grid-like topology, low
clustering coefficients, and large diameters. These characteristics make them particularly well-suited
for studying long-range signal propagation. Key statistics for these datasets are provided in Table 9]

11

401
402
403

404

405
406
407

408

409
410
411

Following the experimental protocol in [18]], we perform transductive node classification using a
10:10:80 train/validation/test split. The node labels are defined by eccentricity-based quantiles,
ensuring that the task inherently depends on information from distant nodes.

Table 9: Statistics of City-Networks datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO
PARIS 114,127 182,511 10 0.70
SHANGHAI 183,917 262,092 10 0.75

D.4 Baseline Model Performance Across Datasets from existing literature

The previously reported performance of baseline models (GT, GraphGPS, and NAGphormer) on
multiple graph datasets is summarized in Table [T0] The reported values, sourced from existing
literature.

Table 10: Performance across datasets for GT, GraphGPS, and NAGphormer models previously
reported in existing literature.

Dataset GT GraphGPS NAGphormer
Chameleon - 40.79 +4.03 -

Squirrel - 39.67 £2.84 -

Tolokers - 83.71+£048 78.32+0.95
Ratings - 53.10+£042 51.26+0.72
Physics 97.05£0.05 97.12+0.19 9734 +0.03
CS 94.64 £0.13 9393+0.12 95.75 +0.09
Photo 94.74 £0.13 95.06 +0.13 9549 £0.11
Computers 91.18 £0.17 91.19 £0.54 91.22 +0.14
WikiCS - 78.66 +0.49 77.16 £0.72
Arxiv - 70.97 £0.41 70.13 £ 0.55

E BTS Algorithm Details

For completeness, we provide pseudocode for the BTS eigenvector selection procedure. The algorithm
computes the label energy spectrum in the graph Fourier domain, smooths it using a filter, and selects
the top-K eigenvectors based on the smoothed spectrum (Algorithm|T).

Algorithm 1 Pseudocode for label-aware eigenvector selection

Input: Laplacian eigenvectors V. € RV*NV,

Training node indices Zin,

Training labels Cyip € {0, 1} Vi<

Number of eigenvectors to choose K, Smoothing window size w
Qutput: Indices Zx of selected eigenvectors

1: Viain < V[Ziain] > Restrict to training nodes
2: C[ram — V;m(:m > Graph Fourier transform
3: fori =1to N do > Compute energy spectrum
4 E; + ||Ctrain,i||§

5: ESD «+ E/ Zf\il E; > Normalize energy
6: ESD < BoxcarSmooth(ESD, w) > Smooth with window-size w
7: Ik «+ TopK(ESD, K) > Select top-K energies
8: return Zx > Return selected indices

12

412

413
414
415
416
417

418
419
420
421
422
423
424

425

426
427
428
429

F Optimizer Configuration and Hyperparameter Spaces

We use the AdamW optimizer [20]] for all runs, and fixed the number of epochs to 200. We additionally
employ the linear-warmup-cosine-decay learning rate schedule. Linear rate warmup happens over
10 epochs (fixed), and cosine decay happens over the remaining 190 epochs (also fixed). All other
hyperparameters are chosen by the tuning algorithm, which is explained in Section[4.1] The complete
hyperparameter space used in our experiments is detailed in Table[TT]

We optimize hyperparameters using the Tree-structured Parzen Estimator (TPE) algorithm [3]], as
implemented in Optuna [[1]. The number of tuning trials is adjusted based on the size of each dataset:
for graphs with up to 7,500 nodes, we perform 300 tuning trials; for graphs with up to 15,000 nodes,
we allow 200 trials; and for larger graphs, we limit the number of trials to 100. Hyperparameters
are selected based on validation-set performance, and all reported results correspond to test-set
performance using the best configurations found. Performing complete hyperparameter tuning on a
machine with 4 x NVidia L40S GPUs takes 2-4 hours depending on the size of the dataset.

Table 11: Complete hyperparameter search space for all model variants presented in this paper.

HYPERPARAMETER SEARCH SPACE SAMPLING TYPE
COMMON PARAMETERS

LEARNING RATE [107%, 1074 LOGARITHMIC
WEIGHT DECAY [1077, 1072 LOGARITHMIC
DROPOUT [0,0.5] LINEAR
ATTENTION DROPOUT [0,0.5] LINEAR
WINDOW LENGTH {256,512, 1024, 2048, 4096 }

TRANSFORMER DEPTH {1,2,...,8} LINEAR
NUMBER OF ATTENTION HEADS {0,1,2,4,8}

COMMON FOR GTgts /NAGPHORMERpTs /GRAPHGPSgTS

NUMBER OF EIGENVECTORS (K) {4,8,16,...,1024}

POS. FEATURE ENCODER - OUTPUT DIMENSION {8,16, 32,64, 128}

POS. FEATURE ENCODER - HIDDEN DIMENSION {16, 32,64, ...,2048}

POS. FEATURE ENCODER - # HIDDEN LAYERS {1,2,3,4}

NODE FEATURE ENCODER - OUTPUT DIMENSION {8,16, 32,64, 128}

NODE FEATURE ENCODER - HIDDEN DIMENSION {16,32,64,128}

NODE FEATURE ENCODER - # HIDDEN LAYERS 1

SPECIFIC FOR GT

NUMBER OF EIGENVECTORS (K) {4,8,16}
TOKEN DIMENSION {64,128, 256,512}
SPECIFIC FOR NAGPHORMER

NUMBER OF EIGENVECTORS (K) {4,8,16}
TOKEN DIMENSION {64,128, 256,512}
NUMBER OF HOPS (SAME FOR NAGPHORMERSgTS) {1,2,3,...,20}
SPECIFIC FOR GRAPHGPS

NUMBER OF EIGENVECTORS (K) {4,8,16}
LAPPE - NUMBER OF LAYERS {1,2,3,...,8}
LAPPE - NUMBER OF POST-LAYERS {0,1,2,3,4}

G Ablations

We conducted an ablation study to evaluate the impact of higher-order spectral components, encoder
design, and label-aware selection on the Graph Transformer (GT). Here, we extend this analysis to
all baseline transformer architectures. As shown in Table[T2] the same trends hold across models,
showing that access to more eigenvectors and a better encoder design can improve performance.

13

Table 12: Node classification performance with full eigenvector spectrum vs with left-truncated
spectrum but tuned K.

‘ Heterophilic ‘ Homophilic
Model Eigenvectors ‘ Chameleon Squirrel ‘ WikiCS Computers
GT K € [4,16] (tuned) 50.48 £208 |34.70+1.77 |72.91 4059 | 85.65+0.59
GT K € [4, N] (tuned) 52.28+2388 |37.71+1.79 |73.75+0.63|87.21+0.55
GT* K € [4, N] (tuned) 67.83+£1.82 [62.91+£1.04 |78.46+0.56|91.66 £ 041
GT* full spectrum (fixed) 48.14£3.05 |35.30+ 161 |72.35+0.72|85.20+0.30
GT-BTS BTS, K € [4, N] (tuned) | 73.09 £ 1.68 | 65.06+1.93 | 78.94+0.26 | 91.46 +0.51
NAGphormer K € [4,16] (tuned) 52.41+221 |40.21 £1.77|78.73 +£0.66 | 91.39 £ 041
NAGphormer K € [4, N] (tuned) 57.06+1.96 |40.89+206 |79.70+050|91.61 042
NAGphormer* K € [4, N] (tuned) 70.07£233 |63.87£1.51 |79.83+0.63|91.96+037

NAGphormer* full spectrum (fixed) 59.63+206 |52.27+128 |79.63+£0.63|91.53+047
NAGphormer-BTS BTS, K € [4, N| (tuned) | 73.90+ 1.68 | 65.04+1.69 | 79.42+1.55| 91.85+044

GraphGPS K € [4,16] (tuned) 60.92+254 |43.43+£146 |77.67+073|91.64+046
GraphGPS K €[4, N] (tuned) 64.67+£298 |47.12+421 |77.404045]91.60+045
GraphGPS* K € [4, N] (tuned) 70.24£2.08 |63.40+1.16 |78.68 046 | 91.80+0.40
GraphGPS* full spectrum (fixed) 59.14+1.95 |42.88+1.77 |77.42+098|91.24 +040
GPS-BTS BTS, K € [4, N] (tuned) | 73.16 +1.70 | 65.87 £1.30 |79.47 +0.48 | 91.87 +045

14

	Introduction
	Motivation: Why should we broaden the spectrum?
	Initial experiments

	A label-aware method for spectral selection
	Evaluation
	Experimental setup
	Results

	Conclusion
	Related Work
	Highest Maximum Frequencies Used in the Literature
	Background
	Transformers
	Graph transformers
	Laplacian positional encodings
	Graph Fourier Transform

	Baseline Sources
	Heterophilic Datasets
	Homophilic Datasets
	Long Range Benchmark Datasets
	Baseline Model Performance Across Datasets from existing literature

	BTS Algorithm Details
	Optimizer Configuration and Hyperparameter Spaces
	Ablations

