
Exploiting All Laplacian Eigenvectors for Node
Classification with Graph Transformers

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph transformers have emerged as powerful tools for modeling complex graph-1

structured data, offering the ability to capture long-range dependencies. They2

require explicit positional encodings to inject structural information, which are most3

commonly derived from the eigenvectors of the graph Laplacian. However, existing4

approaches utilize only a small set of low-frequency eigenvectors, assuming that5

smooth global structure is sufficiently informative. We show that, for the task of6

node classification, it is possible to exploit a much broader spectrum of eigenvectors7

and achieve significant gains, especially in heterophilic graphs. Additionally, we8

introduce a first-principles approach for ranking and selecting eigenvectors based on9

their importance for node classification. Our method is plug-and-play and delivers10

substantial improvements across diverse benchmarks, elevating even vanilla graph11

transformers to match or surpass state-of-the-art models.12

1 Introduction13

Graph transformers have become an increasingly powerful tool for learning from graph-structured14

data, offering flexible mechanisms to model interactions in a graph where otherwise traditional15

message-passing approaches might fail (e.g. modeling long-range dependencies). A key challenge16

in adapting transformers, where all nodes can interact with all other nodes, is explicitly encoding17

the connectivity structure. To address this, most graph transformers rely on positional encodings18

typically derived from the eigenvectors of the graph Laplacian [14].19

In practice, however, these encodings are truncated: only the lowest-frequency eigenvectors are20

retained [14, 27, 8], with the assumption that they best capture the smooth, global structure needed for21

learning. This truncation introduces a strong inductive bias that prioritizes low-frequency information22

while discarding the rest of the spectrum. As a result, we suspect graph transformers may be limited23

in their ability to capture more localized or smooth patterns, hindering their performance on common24

real-world classification tasks. This could be problematic in graphs with weak homophily, or long-25

range interactions, where informative structure may lie in the very spectral components that are being26

removed.27

Motivated by this hypothesis, we revisit the design of spectral positional encodings in graph trans-28

formers. First, we identify a bottleneck causing under-utilization of Laplacian eigenvectors in existing29

graph transformers. We then show that higher-frequency components often contain critical informa-30

tion for node classification tasks and propose a first-principles approach to selecting eigenvectors31

based on how class-relevant signals are distributed across the spectrum. Our method is plug-and-play,32

and compatible with a wide range of graph transformer architectures.33

We demonstrate the effectiveness of our approach across a range of node classification and long-range34

graph benchmarks. Notably, incorporating higher-frequency eigenvectors leads to large gains on35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

challenging heterophilic datasets: performance on Chameleon and Squirrel improves by over 22% and36

30%, respectively, even for a simple transformer baseline. More advanced models like NAGphormer37

[8] and GraphGPS [27] also see improvements exceeding 20% on these datasets.38

Our contributions are as follows:39

• We bring to light simple yet consistently effective modifications to the input encoders40

of popular graph transformer backbones that enable utilization of broader spectrum of41

Laplacian eigenvectors.42

• We introduce a label-aware strategy for selecting a task-relevant subset of Laplacian eigen-43

vectors to be used as positional encodings in graph transformers. This selection mechanism44

can be applied as a plug-in to any transformer architecture.45

• We conclusively demonstrate, through extensive empirical analysis, that including a46

well-chosen spectrum of Laplacian eigenvectors leads to significant gains in node clas-47

sification performance of existing graph transformers across a wide range of benchmarks.48

2 Motivation: Why should we broaden the spectrum?49

A common assumption in graph transformers that use Laplacian eigenvectors for position embeddings50

is that low-frequency components alone carry sufficient structural information for node classifica-51

tion. This is reflected in most implementations, which use only a small number of the lowest52

eigenvectors—typically around 10 (Table 6)—thereby capturing only coarse, smooth patterns in53

the graph. However, this truncation is arbitrary and lacks both theoretical and empirical justifica-54

tion. If class-discriminative signals exist in higher-frequency bands, restricting to low frequencies55

may fundamentally limit a model’s ability to learn fine-grained structural cues. Our concern is56

further supported by prior work in the spectral GNN literature, where high-frequency signals have57

been shown to be particularly effective for addressing heterophily (refer to Appendix A). In these58

cases, low-frequency components often oversmooth node representations, while high-frequency59

information-often dismissed as noise can capture important local variations.60

2.1 Initial experiments61

We then ask a natural question:62

Can we improve performance by simply increasing the number of low-frequency eigenvectors
used in a standard graph transformer?

63

To explore this, we start with the baseline GT model from [14], which concatenates node features X ∈64

RN×D and position encodings P ∈ RN×K , and passes them through a single linear layer to create65

node-level tokens. These are then processed by a vanilla transformer (detailed in Appendix C.1):66

YGT = Transformer ([X;P]Win)Wout (1)

Here, P = V:,:K , where V ∈ RN×N is the Laplacian eigenvector matrix, and K denotes the number67

of low-frequency eigenvectors included in P .68

As shown in Figure 1 (dotted lines), naively increasing the number of eigenvectors does not improve69

performance, suggesting that simply injecting more spectral information is not sufficient. Interestingly,70

we find that GT starts utilizing a broader spectrum with two small but critical changes: (1) applying71

row-wise ℓ2 normalization to the position encodings, and (2) replacing the single input linear layer72

with separate MLPs for node and position inputs. We use GT∗ to denote this model:73

YGT∗ = Transformer ([MLPnode(X);MLPpos(norm(P))])Wout (2)

As shown in Figure 1 (dashed lines), these small but targeted changes significantly improve the74

model’s ability to utilize higher-frequency information. Normalization is critical here because the75

scale of Laplacian eigenvector elements is ∼1/N , which quickly vanishes for reasonably sized76

graphs. Meanwhile, independent MLPs provide a more expressive mapping from raw inputs to77

transformer-compatible tokens.78

2

Table 2: Classification results for baseline and modified approaches. First row represents the typical utilization
of Laplacian eigenvectors. Second row allows for using more eigenvectors, which does not result in significant
performance improvements. Third row introduces the input encoder modifications and shows a big jump in
performance. Finally, the fourth row corresponds to the situation where we provide the model all eigenvectors.

Model Eigenvector Selection Chameleon Squirrel WikiCS Computers

GT K ∈ [4, 16] (tuned) 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

GT K ∈ [4, N] (tuned) 52.28± 2.88 37.71± 1.79 73.75± 0.63 87.21± 0.55

GT∗ K ∈ [4, N] (tuned) 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.66± 0.41

GT∗ full spectrum (fixed) 48.14± 3.05 35.30± 1.61 72.35± 0.72 85.20± 0.30

number of eigenvectors

ac
cu

ra
cy

Computers GT*Computers GT
Chameleon GT Chameleon GT*

Figure 1: Classification accuracy of GT
and GT* as a function of the number of eigen-
vectors used in position embeddings on two
benchmarks.

To validate the effect of input encoder modification, we79

evaluated GT and GT∗ across four node classification80

benchmarks, while allowing K to be chosen by hyperpa-81

rameter search (along with the rest of the hyperparame-82

ters)1. As shown in Table 2, increasing K and switching83

to the GT∗ architecture, boosts performance from 50.48%84

to 67.83% on Chameleon, and from 34.70% to 62.91% on85

Squirrel. Furthermore, applying these modifications to two86

additional graph transformer backbones, NAGphormer [8]87

and GraphGPS [27], shows consistent improvements (see88

Table 12 in Appendix G). These results confirm that using89

more of the graph spectrum can yield substantial gains90

over prior baselines provided it is paired with appropriate91

input encoders. With significant gains on both homophilic92

and heterophilic graphs, we make the following conclu-93

sion:94

Conclusion 1
Standard graph transformers can significantly benefit from higher-frequency eigenvectors
provided they include (1) proper normalization of position embeddings and (2) expressive
input encoders (e.g., MLPs instead of linear layers).

95

Although these modifications may seem trivial in hindsight, we hypothesize that their absence in96

existing models explains why the benefits of broadening the graph spectrum within graph transformers97

have remained undiscovered until now.98

These results invite a natural follow-up question: if higher-frequency eigenvectors are useful, what99

happens if we simply include all of them? In principle, a full-spectrum encoding should maximize100

the information available to the model. In practice, however, we find that this strategy leads to101

severe overfitting and degrades performance (Table 2). On Squirrel, for example, GT∗ drops from102

62.9% (tuned) to 35.3% (full), with similar declines observed for NAGphormer and GraphGPS (Ap-103

pendix G). This finding highlights an important challenge:104

Conclusion 2
While using more of the graph spectrum is beneficial to some extent, indiscriminately
including all eigenvectors harms generalization.

105

3 A label-aware method for spectral selection106

Now that Section 2.1 has confirmed that graph transformers can indeed benefit from more eigenvectors,107

we revisit a limitation of that analysis: it still relies on a somewhat arbitrary truncation of the lowest K108

1See Section 4.1 for a complete description of our experimental setup.

3

Figure 2: Energy spectral density of class labels for different graphs.

eigenvectors of the Laplacian. There might still be useful information in the mid- and high-frequency109

bands. This motivates the need for a more principled method to select an informative, compact, and110

non-contiguous subset of eigenvectors. We frame this as the following problem:111

Eigenvector selection problem: Given the N eigenvectors of the graph Laplacian, can we
efficiently identify the K most informative ones for node classification?

112

A naive approach would be to treat this as a subset selection problem over
(
N
K

)
possible combi-113

nations—a search space far too large for practical hyperparameter tuning. Instead, we propose a114

spectral-energy-based method to rank and select eigenvectors. Intuitively, we treat the class labels of115

training nodes as a graph signal, compute its energy spectral density (ESD), and select the top-K116

eigenvectors corresponding to frequencies with the highest class-label energy. This provides a simple117

and interpretable way to prioritize eigenvectors that align most strongly with class structure.118

Let Y denote the label set, Ntrain be the number of training nodes, and Ctrain ∈ {0, 1}Ntrain×|Y| be119

the one-hot encoding of class labels for the training nodes. Let Vtrain ∈ RNtrain×N be the matrix of120

Laplacian eigenvectors, restricted to the training nodes and ordered by increasing eigenvalue. Using121

the graph Fourier transform (Appendix C.4), we can compute the Fourier representation of the class122

signal:123

Ĉtrain = V ⊤
trainCtrain (3)

Then the energy spectral density (ESD) of class labels for the ith graph frequency can be defined as:124

Ei :=
1

Z
∥Ĉtrain,i∥22 with Z chosen such that

N∑
i=1

Ei = 1, (4)

where Ĉtrain,i is the ith row of Ĉtrain. We visualize the ESD for several datasets in Figure 2.125

To rank the utility of different eigenvectors, we first apply a smoothing operation to the energy density126

spectrum using a boxcar (moving average) filter.2 This mitigates the effect of noise and emphasizes127

consistent frequency bands where class-relevant energy is concentrated. After smoothing, we select128

the K eigenvectors corresponding to the highest values in the resulting spectrum. The complete129

procedure is summarized in Algorithm 1.130

Remark. While K remains a hyperparameter, this approach replaces arbitrary low-frequency131

truncation with a more methodological and data-driven ranking.132

4 Evaluation133

In this section, we evaluate our approach on a diverse set of node classification benchmarks, analyzing134

its effectiveness across three established graph transformer architectures.135

2A smoothing window of 256 points is used for all experiments, which we found to work well across datasets.

4

Table 3: Node classification performance on heterophilic benchmarks. “-” indicates absence of a particular
evaluation in existing literature.

Model Chameleon Squirrel Tolokers Ratings
Accuracy ↑ Accuracy ↑ AU-ROC ↑ Accuracy ↑

GCN 38.44± 1.92 31.52± 0.71 83.64± 0.67 48.70± 0.63

GraphSAGE 58.73± 1.68 41.61± 0.74 82.43± 0.44 53.63± 0.39

GAT 48.36± 1.58 36.77± 1.68 83.70± 0.47 49.09± 0.63

NodeFormer 34.73± 4.14 38.52± 1.57 - -
SGFormer 44.93± 3.91 41.80± 2.27 - -
Exphormer - - 83.53± 0.28 50.48± 0.34

SpExphormer - - 83.34± 0.31 50.48± 0.34

GT 50.48± 2.08 34.70± 1.77 80.30± 0.91 49.02± 0.61

GTBTS 73.09± 1.00 +22.61↑ 65.06± 1.93 +30.36↑ 84.45± 0.66 +4.15↑ 50.37± 0.48 +1.35↑
NAGphormer 52.41± 2.21 40.21± 1.77 83.69± 0.86 50.16± 0.69

NAGphormerBTS 73.90± 1.68 +21.49↑ 65.04± 1.69 +24.83↑ 85.47± 0.72 +1.78↑ 49.65± 0.65 -0.51↓
GraphGPS 60.92± 2.54 43.43± 1.46 86.29± 0.68 50.19± 0.51

GraphGPSBTS 73.16± 1.70 +12.24↑ 65.87± 1.30 +22.44↑ 86.31± 0.63 +0.02↑ 51.33± 0.58 +1.14↑

4.1 Experimental setup136

Datasets. To evaluate the effectiveness of incorporating higher-frequency eigenvectors, we con-137

duct experiments on both homophilic and heterophilic datasets. The homophilic datasets include138

Coauthor-Physics, Coauthor-CS [29], Amazon-Photo, Amazon-Computers [22], and WikiCS [23].139

The heterophilic datasets consist of Chameleon, Squirrel [28], Tolokers and Amazon-Ratings [26].140

Additionally, we evaluate our approach on two recently introduced long-range datasets from the141

CityNetwork benchmark suite [18]. This diverse selection ensures that we assess model performance142

across varying levels of structural homogeneity, heterogeneity, and long-range dependency.143

Baseline and modified models. We evaluate our approach on three existing graph transformer144

architectures: GT [14], NAGphormer [8], and GraphGPS [27]. We use the subscript BTS3 to145

denote models with our ESD-based eigenvector selection approach (Section 2.1) and input encoder146

modifications (Section 3).147

NAGphormer [8] restricts attention to k-hop neighborhoods using a normalized adjacency matrix. In148

NAGphormerBTS , we preserve this localized attention mechanism but replace the original position149

encoder with our spectral selection procedure and MLP-based encoding. GraphGPS [27] combines150

message passing with transformer-based global attention and uses LapPE for positional encoding. In151

GraphGPSBTS , we replace LapPE with our label-aware spectral selection and MLP-based encoder,152

creating a unified position encoding approach consistent with GTBTS and NAGphormerBTS .To ensure153

fair comparisons, we use the same training setup and hyperparameter tuning for both the baseline154

models and their modified versions.155

The baseline models are trained with eigenvectors truncated to K lowest frequencies, and K is tuned156

in the range [4, 16], consistent with prior work (Table 6). In the case of BTS, K is allowed a wider157

range of [4,min(N, 8192)], where N denotes number of nodes. Please refer to Appendix F for more158

details about the hyperparameter tuning setup.159

4.2 Results160

Results on heterophilic benchmarks. The results for node classification on heterophilic bench-161

marks are presented in Table 3. We find substantial improvements when using BTS. For example, on162

Chameleon, performance improves by over 22%, and on Squirrel, by over 30% when BTS-filtered163

eigenvectors are used with a simple transformer architecture. Remarkably, this brings the vanilla164

transformer architecture (GT) into close competition with, and in some cases even surpassing, more165

complex graph transformer models proposed in recent literature.166

3BTS stands for "Broaden the Spectrum."

5

Table 4: Node classification accuracy (%) on homophilic benchmarks. Performance for other models are
reported from existing literature.

Model Physics CS Photo Computers WikiCS ogbn-arXiv
Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

NodeFormer 96.45± 0.28 95.64± 0.22 93.46± 0.35 86.98± 0.62 74.73± 0.94 59.90± 0.42

SGFormer 96.60± 0.18 94.78± 0.34 95.10± 0.47 91.99± 0.70 73.46± 0.56 72.63± 0.13

Exphormer 96.89± 0.09 94.93± 0.01 95.35± 0.22 91.47± 0.17 78.19± 0.29 71.27± 0.27

SpExphormer 96.70± 0.05 95.00± 0.15 95.33± 0.49 91.09± 0.08 78.20± 0.14 70.82± 0.24

GT 96.02± 0.20 94.66± 0.44 91.59± 0.68 85.65± 0.59 72.91± 0.59 55.68 ± 0.39

GTBTS 96.90± 0.18 +0.88↑ 95.44± 0.33 +0.78↑ 95.95± 0.48 +4.36↑ 91.46± 0.51 +5.81↑ 78.94± 0.26 +6.03↑ 70.30 ± 0.12 +14.62↑
NAGphormer 96.98± 0.13 95.71± 0.26 95.51± 0.41 91.39± 0.41 78.73± 0.66 69.43 ± 0.32

NAGphormerBTS 97.05± 0.18 +0.07↑ 95.42± 0.39 -0.29↓ 95.90± 0.37 +0.39↑ 91.85± 0.44 +0.46↑ 79.42± 0.55 +0.69↑ 71.29± 0.13 +1.86↑
GraphGPS 97.13± 0.17 95.70± 0.38 95.35± 0.45 91.64± 0.46 77.67± 0.73 65.16 ± 1.45

GraphGPSBTS 97.21± 0.14 +0.08↑ 95.72± 0.37 +0.02↑ 95.87± 0.42 +0.52↑ 91.87± 0.45 +0.23↑ 79.47± 0.48 +1.80↑ 70.92± 0.33 +5.76↑

These improvements are not surprising when viewed through the lens of the ESD of class labels. As167

shown in Figure 2, graphs like Chameleon and Squirrel exhibit significantly high class energy not only168

in the low-frequency region, but also in high-frequency components. To the best of our knowledge,169

the performance reported here for Chameleon, Squirrel, and Tolokers represents the strongest results170

achieved by any graph transformer model to date. These findings highlight that the historical171

reliance on low-frequency truncation was a critical bottleneck, masking the true representational and172

generalization potential of graph transformers.173

Results on homophilic benchmarks. As shown in Table 4, BTS improves performance even on174

homophilic graphs. GTBTS achieves +5.8% on Computers, +6.0% on WikiCS, and +14.4% on ogbn-175

arXiv. Gains for NAGphormer and GraphGPS are smaller but consistent. These results are expectedly176

more modest than in heterophilic settings, as the spectral energy of class signals in homophilic graphs177

is more concentrated in low frequencies, but notable nonetheless.178

Table 5: Node classification accuracy
(%) on Long Range Benchmarks

Model Paris Shanghai

GCN 47.30± 0.20 52.40± 0.30

GraphSAGE 49.10± 0.60 60.40± 0.30

SGFormer 45.00± 0.2 53.5± 0.3

GT 15.46± 3.93 21.05± 0.51

GTBTS 53.79± 0.17 52.66± 0.83

∆ +38.33 ↑ +31.61 ↑
NAGphormer 25.26± 0.34 24.94± 0.28

NAGphormerBTS 53.68± 0.23 57.26± 0.34

∆ +28.42 ↑ +32.32 ↑
GraphGPS 28.99± 0.31 28.46± 0.31

GraphGPSBTS 54.12± 0.23 55.31± 0.33

∆ +25.13 ↑ +26.85 ↑

Results on long-range benchmarks. Graph transformers179

are naturally suited for capturing long-range dependencies180

due to their global attention mechanism. However, recent181

work has shown that graph transformers suffer from overglob-182

alization [38] and perform poorly on long-range tasks. As183

shown in Table 5, our method achieves substantial improve-184

ments on the long-range benchmark [18] over baseline graph185

transformer architectures. These datasets exhibit particularly186

strong gains when using BTS-selected features. For instance,187

performance for GT on Paris improves by over 38%, and on188

Shanghai by 31%, bringing the vanilla transformer model189

on par with strong baseline methods.190

5 Conclusion191

In this work we revisit a widely accepted but rarely questioned assumption in graph transformers:192

that only a handful of low-frequency Laplacian eigenvectors suffice for positional encodings. We193

show that this design choice fundamentally limits node classification performance, particularly on194

heterophilic graphs where high-frequency components capture crucial fine-grained structure. Our195

analysis demonstrates that graph transformers can benefit substantially from a broader spectral196

representation, provided two simple adjustments are made—proper normalization of eigenvectors197

and more expressive input encoders.198

Building on this insight, we introduced a label-aware spectral selection strategy that ranks eigenvectors199

by their alignment with class-label energy. This principled approach avoids arbitrary truncation,200

identifies informative non-contiguous subsets of eigenvectors, and consistently outperforms both201

low-frequency and full-spectrum encodings. Empirically, it achieves state-of-the-art results across202

diverse benchmarks and transformer backbones without altering attention mechanisms or adding203

inference-time cost.204

6

References205

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter206

optimization framework. In The 25th ACM SIGKDD International Conference on Knowledge Discovery &207

Data Mining, pages 2623–2631, 2019.208

[2] M. Azabou, V. Ganesh, S. Thakoor, C.-H. Lin, L. Sathidevi, R. Liu, M. Valko, P. Veličković, and E. L. Dyer.209

Half-hop: A graph upsampling approach for slowing down message passing. In International Conference210

on Machine Learning, pages 1341–1360. PMLR, 2023.211

[3] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In J. Shawe-212

Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information213

Processing Systems, volume 24. Curran Associates, Inc., 2011.214

[4] D. Bo, X. Wang, C. Shi, and H. Shen. Beyond low-frequency information in graph convolutional networks.215

In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 3950–3957, 2021.216

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on217

graphs. arXiv preprint arXiv:1312.6203, 2013.218

[6] H. Chang, Y. Rong, T. Xu, W. Huang, S. Sojoudi, J. Huang, and W. Zhu. Spectral graph attention network219

with fast eigen-approximation. In Proceedings of the 30th ACM international conference on information &220

knowledge management, pages 2905–2909, 2021.221

[7] D. Chen, L. O’Bray, and K. Borgwardt. Structure-aware transformer for graph representation learning. In222

International Conference on Machine Learning, pages 3469–3489. PMLR, 2022.223

[8] J. Chen, K. Gao, G. Li, and K. He. Nagphormer: A tokenized graph transformer for node classification in224

large graphs. 2023.225

[9] E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph neural network.226

arXiv preprint arXiv:2006.07988, 2020.227

[10] A. Deac, M. Lackenby, and P. Veličković. Expander graph propagation. In NeurIPS 2022 Workshop on228

Symmetry and Geometry in Neural Representations, 2022.229

[11] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast230

localized spectral filtering. Advances in neural information processing systems, 29, 2016.231

[12] X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard. Graph signal processing for machine learning:232

A review and new perspectives. IEEE Signal processing magazine, 37(6):117–127, 2020.233

[13] Y. Dong, K. Ding, B. Jalaian, S. Ji, and J. Li. Adagnn: Graph neural networks with adaptive frequency234

response filter. In Proceedings of the 30th ACM international conference on information & knowledge235

management, pages 392–401, 2021.236

[14] V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. arXiv preprint237

arXiv:2012.09699, 2020.238

[15] V. T. Hoang and O.-J. Lee. Transitivity-preserving graph representation learning for bridging local239

connectivity and role-based similarity, 2023.240

[16] D. Kreuzer, D. Beaini, W. L. Hamilton, V. Létourneau, and P. Tossou. Rethinking graph transformers with241

spectral attention. 2021.242

[17] S. Li, D. Kim, and Q. Wang. Beyond low-pass filters: Adaptive feature propagation on graphs. In Machine243

Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD244

2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part II 21, pages 450–465. Springer, 2021.245

[18] H. Liang, H. S. d. O. Borde, B. Sripathmanathan, M. Bronstein, and X. Dong. Towards quantifying246

long-range interactions in graph machine learning: a large graph dataset and a measurement. arXiv preprint247

arXiv:2503.09008, 2025.248

[19] C. Liu, Y. Zhan, X. Ma, L. Ding, D. Tao, J. Wu, and W. Hu. Gapformer: Graph transformer with graph249

pooling for node classification. In Proceedings of the 32nd International Joint Conference on Artificial250

Intelligence (IJCAI-23), pages 2196–2205, 2023.251

[20] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.252

7

[21] S. Luan, M. Zhao, C. Hua, X.-W. Chang, and D. Precup. Complete the missing half: Augmenting aggre-253

gation filtering with diversification for graph convolutional networks. arXiv preprint arXiv:2008.08844,254

2020.255

[22] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel. Image-based recommendations on styles and256

substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and development257

in information retrieval, pages 43–52, 2015.258

[23] P. Mernyei and C. Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural networks, 2022.259

[24] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst. Graph signal processing:260

Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828, 2018.261

[25] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional networks.262

arXiv preprint arXiv:2002.05287, 2020.263

[26] O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look at the evaluation264

of gnns under heterophily: Are we really making progress? arXiv preprint arXiv:2302.11640, 2023.265

[27] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a general, powerful,266

scalable graph transformer. Advances in Neural Information Processing Systems, 35:14501–14515, 2022.267

[28] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding. Journal of Complex268

Networks, 9(2):cnab014, 2021.269

[29] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph neural network evaluation.270

arXiv preprint arXiv:1811.05868, 2018.271

[30] H. Shirzad, H. Lin, B. Venkatachalam, A. Velingker, D. Woodruff, and D. Sutherland. Even sparser graph272

transformers. arXiv preprint arXiv:2411.16278, 2024.273

[31] H. Shirzad, A. Velingker, B. Venkatachalam, D. J. Sutherland, and A. K. Sinop. Exphormer: Sparse274

transformers for graphs. In International Conference on Machine Learning, pages 31613–31632. PMLR,275

2023.276

[32] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal277

processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.278

IEEE Signal Processing Magazine, 30(3):83–98, 2013.279

[33] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang. An overview of microsoft academic280

service (mas) and applications. In Proceedings of the 24th international conference on world wide web,281

pages 243–246, 2015.282

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.283

Attention is all you need. 2017.284

[35] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional networks.285

In International conference on machine learning, pages 6861–6871. PMLR, 2019.286

[36] Q. Wu, W. Zhao, Z. Li, D. Wipf, and J. Yan. Nodeformer: A scalable graph structure learning transformer287

for node classification. In Advances in Neural Information Processing Systems (NeurIPS), 2022.288

[37] Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Stoica. Representing long-range context289

for graph neural networks with global attention. Advances in Neural Information Processing Systems,290

34:13266–13279, 2021.291

[38] Y. Xing, X. Wang, Y. Li, H. Huang, and C. Shi. Less is more: on the over-globalizing problem in graph292

transformers. arXiv preprint arXiv:2405.01102, 2024.293

[39] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really perform294

badly for graph representation? Advances in neural information processing systems, 34:28877–28888,295

2021.296

[40] Z. Zhang, Q. Liu, Q. Hu, and C.-K. Lee. Hierarchical graph transformer with adaptive node sampling.297

Advances in Neural Information Processing Systems, 35:21171–21183, 2022.298

8

Appendix299

A Related Work300

Graph Transformers and Positional Encodings: Graph Transformers (GTs) have emerged as a301

powerful alternative to message-passing Graph Neural Networks (GNNs), allowing all nodes in a302

graph to interact via self-attention [14]. However, most early GT models were developed primarily303

for graph-level tasks, such as molecular property prediction, where global structural patterns are304

more relevant than fine-grained local interactions. Therefore these methods, naturally, rely on low-305

frequency Laplacian eigenvectors for positional encodings [14, 27, 8]. This paradigm is reflected in306

models such as GraphTrans [37], GraphGPS [27], and Structure-Aware Transformer (SAT) [7], which307

combine transformer-based architectures with graph-specific inductive biases to improve performance308

on various tasks.309

More recently, methods like ANS-GT [40] and Gapformer [19] have focused on adapting transformers310

for large graphs by applying attention mechanisms to coarsened graph structures. Exphormer [31]311

uses expander graphs [10] to sparsify attention. Despite these advancements, positional encodings in312

graph transformers remain largely constrained to low-frequency eigenvectors.313

The Role of High-Frequency Signals in Node Classification: In contrast, GNN literature has314

highlighted the importance of high-frequency signals for improving node classification, particularly315

in heterophilic graphs. Traditional message-passing GNNs aggregate information from neighboring316

nodes, which is effective for homophilic graphs—where connected nodes often share the same317

labels—but leads to oversmoothing in heterophilic settings. Spectral GNNs, which operate in the318

frequency domain, address this issue by leveraging the graph Laplacian’s eigenvalues to manipulate319

both low- and high-frequency components [35, 12]. Early works like Spectral CNN [5] and ChebNet320

[11] introduced spectral filtering techniques, allowing for more flexible control over frequency ranges.321

Building on these foundations, recent studies have demonstrated that high-frequency information is322

crucial for improving model expressiveness in node-level tasks. Methods such as adaptive message323

passing [9], spectral graph filtering [21], and frequency-based feature selection [4] emphasize high-324

frequency components to enhance node discrimination.325

In parallel, other methods integrate high-frequency filtering with attention mechanisms. AdaGNN [13]326

applies multiple filters in each aggregation step to capture both local and global features dynamically.327

[17] refine attention to balance frequency components, while [6] employ high-pass attention filters to328

retain fine-grained structural details essential for heterophilic graphs.329

B Highest Maximum Frequencies Used in the Literature330

To better understand the typical frequency truncation choices in existing graph transformer models,331

we compile representative values of the maximum number of Laplacian eigenvectors (K) used across332

a range of published works. As shown in Table 6, most methods restrict K to a small number—often333

below 16—reinforcing the low-pass inductive bias observed in current practice.334

Table 6: Maximum number of eigenvectors (Kmax) used by recent graph transformer models, based
on publicly available code.

Model Kmax

NAGphormer [8] 15
GraphGPS [27] 10
SAN [16] 10
GT [14] 10
UGT [15] 10
Exphormer [31] 10

9

C Background335

C.1 Transformers336

Transformers, introduced in [34], are the foundation of many modern deep learning architectures.337

Each layer of a transformer consists of a Multi-Head Self-Attention (MHSA) mechanism followed by338

a Feedforward Network (FFN). Given a sequence of tokens X ∈ RN×D, where N is the sequence339

length and D is the token dimension, the attention layer computes:340

MHSA(X) =

H∑
h=1

softmax

(
(XWh

Q)(XWh
K)T

√
d

)
(XWh

V)W
h
O (5)

The FFN applies a non-linear transformation FFN(X) = σ(XW1)W2, where σ is an activation341

function such as ReLU. Each transformer block combines MHSA and FFN with residual connections:342

X̃ = X + MHSA(X), Y = X̃ + FFN(X̃) (6)

Stacking such blocks enables the model to capture complex dependencies across the input sequence.343

C.2 Graph transformers344

In simple graph transformers [14, 39], each node in the graph is represented by a token. Unlike345

Message Passing Neural Networks (MPNNs), which restrict pairwise interactions in each layer to a346

node’s immediate neighbors, transformers inherently lack such biases and model all node-to-node347

interactions by design. Connectivity information about the graph is typically incorporated in one of348

two ways: either through positional encodings, with the input to the transformer being a combination349

of the feature vector of each node and its positional encoding [14, 27], or by adding structural bias350

directly into the attention matrix [36, 31]. In this work, we focus on the former approach.351

C.3 Laplacian positional encodings352

Eigenvectors of the normalized graph-Laplacian are the most common positional encodings and353

have been identified as effective in prior work [14]. To formalize this concept, assume that we are354

given a graph G = (V, E) with |V| = N nodes, its adjacency matrix A, and its degree matrix D, its355

normalized graph-Laplacian matrix is defined as:356

L = I −D−1/2AD−1/2 (7)

Let L = V ΛV T denote the eigen decomposition of the normalized graph-Laplacian, with eigenvalues357

arranged in increasing order, i.e. λ1 ≤ λ2 ≤ . . . ≤ λN . In existing graph transformers [14], a node358

n is assigned a K-dimensional positional encoding pn constructed from the Laplacian eigenvectors359

with the K smallest eigenvalues. pn is defined as:360

pn = [v1n,v2n, . . . ,vKn]
T , (8)

leading to an N ×K positional encoding matrix P = V:,:K . Here vk ∈ RN corresponds to the kth361

eigenvector, i.e. the kth column of V .362

Remark. Each eigenvector vk ∈ RN defines a signal vk : V → R that varies over the graph nodes.363

Eigenvectors associated with small eigenvalues are thought to vary slowly across the graph, capturing364

low-frequency global variations, while eigenvectors corresponding to large eigenvalues vary rapidly,365

encoding high-frequency signals that change significantly across neighboring nodes [32, 24].366

C.4 Graph Fourier Transform367

The Graph Fourier Transform (GFT) is a generalization of the classical Fourier transform to graph-368

structured data. Let L denote the normalized graph Laplacian of G, and let V ∈ RN×N be the369

matrix of its eigenvectors, ordered by increasing eigenvalue. The GFT of a graph signal x : V → R,370

represented by a vector x ∈ RN , is defined as:371

x̂ = V ⊤x (9)

10

Here, x̂i = v⊤
i x denotes the ith graph-frequency component of x, and (x̂i)

2 denotes the spectral372

energy of x in this frequency. Intuitively, signals that vary smoothly over the graph have most of their373

energy concentrated in the lower frequencies, while signals that vary rapidly have energy concentrated374

in the higher frequencies. Note that signals can have significant energies in both low and high parts375

of the spectrum.376

D Baseline Sources377

D.1 Heterophilic Datasets378

We use five real-world datasets with graphs that have a homophily level ≤ 0.30: Actor [25],379

Chameleon and Squirrel [28], as well as Ratings and Tolokers [26]. Key statistics for these datasets380

are listed in Table 7. We follow the experimental setup in [25] for Actor, Chameleon, and Squirrel,381

and for Ratings and Tolokers, we adopt the setup described in [26], using the 10 train/validation/test382

splits provided.383

The results for GCN-based methods and heterophily-based methods in Table 7 for Actor, Chameleon,384

and Squirrel have been sourced from [2]. Similarly, results for Ratings and Tolokers are sourced from385

[26], while results for transformer-based methods across all datasets are obtained from [30].386

Table 7: Statistics of heterophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

CHAMELEON 2,277 31,421 5 0.23
SQUIRREL 5,201 198,493 5 0.22
TOLOKERS 11,758 519,000 2 0.09
RATINGS 244,92 39,402 5 0.14

Table 8: Statistics of homophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

PHYSICS 34,493 495,924 5 0.92
CS 18,333 81,894 15 0.83
PHOTO 7,650 238,162 8 0.84
COMPUTERS 13,752 491,722 10 0.79
WIKICS 11,701 216,123 10 0.66
OGBN-ARXIV 169,343 1,166,243 40 0.65

D.2 Homophilic Datasets387

We use five real-world datasets: Amazon Computers and Amazon Photos [22], Coauthor CS and388

Coauthor Physics [33], and WikiCS [23]. Key statistics for these datasets are listed in Table 8. The389

experimental setup follows that of [30], where the datasets are split into development and test sets.390

All hyperparameter tuning is performed on the development set, and the best models are subsequently391

evaluated on the test set.392

We use a 60:20:20 train/validation/test split for the Amazon and Coauthor datasets. The results393

reported for all datasets in Table 4 are sourced from [30].394

D.3 Long Range Benchmark Datasets395

To evaluate the ability of models to capture long-range dependencies, we use the City-Networks396

benchmark [18], which consists of large-scale road network graphs derived from OpenStreetMap data.397

We focus on two representative cities—Paris and Shanghai—which feature grid-like topology, low398

clustering coefficients, and large diameters. These characteristics make them particularly well-suited399

for studying long-range signal propagation. Key statistics for these datasets are provided in Table 9.400

11

Following the experimental protocol in [18], we perform transductive node classification using a401

10:10:80 train/validation/test split. The node labels are defined by eccentricity-based quantiles,402

ensuring that the task inherently depends on information from distant nodes.403

Table 9: Statistics of City-Networks datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

PARIS 114,127 182,511 10 0.70
SHANGHAI 183,917 262,092 10 0.75

D.4 Baseline Model Performance Across Datasets from existing literature404

The previously reported performance of baseline models (GT, GraphGPS, and NAGphormer) on405

multiple graph datasets is summarized in Table 10. The reported values, sourced from existing406

literature.407

Table 10: Performance across datasets for GT, GraphGPS, and NAGphormer models previously
reported in existing literature.

Dataset GT GraphGPS NAGphormer

Chameleon - 40.79 ± 4.03 -
Squirrel - 39.67 ± 2.84 -
Tolokers - 83.71 ± 0.48 78.32 ± 0.95
Ratings - 53.10 ± 0.42 51.26 ± 0.72

Physics 97.05 ± 0.05 97.12 ± 0.19 97.34 ± 0.03
CS 94.64 ± 0.13 93.93 ± 0.12 95.75 ± 0.09
Photo 94.74 ± 0.13 95.06 ± 0.13 95.49 ± 0.11
Computers 91.18 ± 0.17 91.19 ± 0.54 91.22 ± 0.14
WikiCS - 78.66 ± 0.49 77.16 ± 0.72
Arxiv - 70.97 ± 0.41 70.13 ± 0.55

E BTS Algorithm Details408

For completeness, we provide pseudocode for the BTS eigenvector selection procedure. The algorithm409

computes the label energy spectrum in the graph Fourier domain, smooths it using a filter, and selects410

the top-K eigenvectors based on the smoothed spectrum (Algorithm 1).411

Algorithm 1 Pseudocode for label-aware eigenvector selection
Input: Laplacian eigenvectors V ∈ RN×N ,

Training node indices Itrain,
Training labels C̃train ∈ {0, 1}Ntrain×C ,
Number of eigenvectors to choose K, Smoothing window size w

Output: Indices IK of selected eigenvectors

1: Vtrain ← V[Itrain] ▷ Restrict to training nodes
2: Ĉtrain ← V⊤

trainC̃train ▷ Graph Fourier transform
3: for i = 1 to N do ▷ Compute energy spectrum
4: Ei ← ∥Ĉtrain,i∥22
5: ESD← E/

∑N
i=1 Ei ▷ Normalize energy

6: ESD← BoxcarSmooth(ESD, w) ▷ Smooth with window-size w
7: IK ← TopK(ESD,K) ▷ Select top-K energies
8: return IK ▷ Return selected indices

12

F Optimizer Configuration and Hyperparameter Spaces412

We use the AdamW optimizer [20] for all runs, and fixed the number of epochs to 200. We additionally413

employ the linear-warmup-cosine-decay learning rate schedule. Linear rate warmup happens over414

10 epochs (fixed), and cosine decay happens over the remaining 190 epochs (also fixed). All other415

hyperparameters are chosen by the tuning algorithm, which is explained in Section 4.1. The complete416

hyperparameter space used in our experiments is detailed in Table 11.417

We optimize hyperparameters using the Tree-structured Parzen Estimator (TPE) algorithm [3], as418

implemented in Optuna [1]. The number of tuning trials is adjusted based on the size of each dataset:419

for graphs with up to 7,500 nodes, we perform 300 tuning trials; for graphs with up to 15,000 nodes,420

we allow 200 trials; and for larger graphs, we limit the number of trials to 100. Hyperparameters421

are selected based on validation-set performance, and all reported results correspond to test-set422

performance using the best configurations found. Performing complete hyperparameter tuning on a423

machine with 4 × NVidia L40S GPUs takes 2-4 hours depending on the size of the dataset.424

Table 11: Complete hyperparameter search space for all model variants presented in this paper.

HYPERPARAMETER SEARCH SPACE SAMPLING TYPE

COMMON PARAMETERS

LEARNING RATE [10−4 , 10−1] LOGARITHMIC
WEIGHT DECAY [10−7 , 10−2] LOGARITHMIC
DROPOUT [0, 0.5] LINEAR
ATTENTION DROPOUT [0, 0.5] LINEAR
WINDOW LENGTH {256, 512, 1024, 2048, 4096}
TRANSFORMER DEPTH {1, 2, . . . , 8} LINEAR
NUMBER OF ATTENTION HEADS {0, 1, 2, 4, 8}
COMMON FOR GTBTS /NAGPHORMERBTS /GRAPHGPSBTS

NUMBER OF EIGENVECTORS (K) {4, 8, 16, . . . , 1024}
POS. FEATURE ENCODER - OUTPUT DIMENSION {8, 16, 32, 64, 128}
POS. FEATURE ENCODER - HIDDEN DIMENSION {16, 32, 64, . . . , 2048}
POS. FEATURE ENCODER - # HIDDEN LAYERS {1, 2, 3, 4}
NODE FEATURE ENCODER - OUTPUT DIMENSION {8, 16, 32, 64, 128}
NODE FEATURE ENCODER - HIDDEN DIMENSION {16, 32, 64, 128}
NODE FEATURE ENCODER - # HIDDEN LAYERS {1}
SPECIFIC FOR GT
NUMBER OF EIGENVECTORS (K) {4, 8, 16}
TOKEN DIMENSION {64, 128, 256, 512}
SPECIFIC FOR NAGPHORMER

NUMBER OF EIGENVECTORS (K) {4, 8, 16}
TOKEN DIMENSION {64, 128, 256, 512}
NUMBER OF HOPS (SAME FOR NAGPHORMERBTS) {1, 2, 3, . . . , 20}
SPECIFIC FOR GRAPHGPS
NUMBER OF EIGENVECTORS (K) {4, 8, 16}
LAPPE - NUMBER OF LAYERS {1, 2, 3, . . . , 8}
LAPPE - NUMBER OF POST-LAYERS {0, 1, 2, 3, 4}

G Ablations425

We conducted an ablation study to evaluate the impact of higher-order spectral components, encoder426

design, and label-aware selection on the Graph Transformer (GT). Here, we extend this analysis to427

all baseline transformer architectures. As shown in Table 12, the same trends hold across models,428

showing that access to more eigenvectors and a better encoder design can improve performance.429

13

Table 12: Node classification performance with full eigenvector spectrum vs with left-truncated
spectrum but tuned K.

Heterophilic Homophilic

Model Eigenvectors Chameleon Squirrel WikiCS Computers

GT K ∈ [4, 16] (tuned) 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

GT K ∈ [4, N] (tuned) 52.28± 2.88 37.71± 1.79 73.75± 0.63 87.21± 0.55

GT* K ∈ [4, N] (tuned) 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.66± 0.41

GT* full spectrum (fixed) 48.14± 3.05 35.30± 1.61 72.35± 0.72 85.20± 0.30

GT-BTS BTS, K ∈ [4, N] (tuned) 73.09± 1.68 65.06± 1.93 78.94± 0.26 91.46± 0.51

NAGphormer K ∈ [4, 16] (tuned) 52.41± 2.21 40.21 ± 1.77 78.73± 0.66 91.39± 0.41

NAGphormer K ∈ [4, N] (tuned) 57.06± 1.96 40.89± 2.06 79.70± 0.50 91.61± 0.42

NAGphormer* K ∈ [4, N] (tuned) 70.07± 2.33 63.87± 1.51 79.83± 0.63 91.96± 0.37

NAGphormer* full spectrum (fixed) 59.63± 2.06 52.27± 1.28 79.63± 0.63 91.53± 0.47

NAGphormer-BTS BTS, K ∈ [4, N] (tuned) 73.90± 1.68 65.04± 1.69 79.42± 1.55 91.85± 0.44

GraphGPS K ∈ [4, 16] (tuned) 60.92± 2.54 43.43± 1.46 77.67± 0.73 91.64± 0.46

GraphGPS K ∈ [4, N] (tuned) 64.67± 2.98 47.12± 4.21 77.40± 0.45 91.60± 0.45

GraphGPS* K ∈ [4, N] (tuned) 70.24± 2.08 63.40± 1.16 78.68± 0.46 91.80± 0.40

GraphGPS* full spectrum (fixed) 59.14± 1.95 42.88± 1.77 77.42± 0.98 91.24± 0.40

GPS-BTS BTS, K ∈ [4, N] (tuned) 73.16± 1.70 65.87± 1.30 79.47± 0.48 91.87± 0.45

14

	Introduction
	Motivation: Why should we broaden the spectrum?
	Initial experiments

	A label-aware method for spectral selection
	Evaluation
	Experimental setup
	Results

	Conclusion
	Related Work
	Highest Maximum Frequencies Used in the Literature
	Background
	Transformers
	Graph transformers
	Laplacian positional encodings
	Graph Fourier Transform

	Baseline Sources
	Heterophilic Datasets
	Homophilic Datasets
	Long Range Benchmark Datasets
	Baseline Model Performance Across Datasets from existing literature

	BTS Algorithm Details
	Optimizer Configuration and Hyperparameter Spaces
	Ablations

