Exploiting All Laplacian Eigenvectors for Node
Classification with Graph Transformers

Vinam Arora* Divyansha Lachi* Shivashriganesh P. Mahato
University of Pennsylvania University of Pennsylvania University of Pennsylvania
Philadelphia, PA, USA Philadelphia, PA, USA Philadelphia, PA, USA
vinam@upenn.edu div1i1Q@upenn.edu smahatoQupenn.edu

Mehdi Azabou Zihao Chen Eva L. Dyer
Columbia University University of Pennsylvania University of Pennsylvania
New York, NY, USA Philadelphia, PA, USA Philadelphia, PA, USA

ma4766Q@columbia.edu zchen959Qupenn. edu eva.dyerQupenn.edu
Abstract

Graph transformers have emerged as powerful tools for modeling complex graph-
structured data, offering the ability to capture long-range dependencies. They
require explicit positional encodings to inject structural information, which are most
commonly derived from the eigenvectors of the graph Laplacian. However, existing
approaches utilize only a small set of low-frequency eigenvectors, assuming that
smooth global structure is sufficiently informative. We show that, for the task of
node classification, it is possible to exploit a much broader spectrum of eigenvectors
and achieve significant gains, especially in heterophilic graphs. Additionally, we
introduce a first-principles approach for ranking and selecting eigenvectors based on
their importance for node classification. Our method is plug-and-play and delivers
substantial improvements across diverse benchmarks, elevating even vanilla graph
transformers to match or surpass state-of-the-art models.

1 Introduction

Graph transformers have become an increasingly powerful tool for learning from graph-structured
data, offering flexible mechanisms to model interactions in a graph where otherwise traditional
message-passing approaches might fail (e.g. modeling long-range dependencies). A key challenge
in adapting transformers, where all nodes can interact with all other nodes, is explicitly encoding
the connectivity structure. To address this, most graph transformers rely on positional encodings
typically derived from the eigenvectors of the graph Laplacian [13].

In practice, however, these encodings are truncated: only the lowest-frequency eigenvectors are
retained [[13} 127, 8], with the assumption that they best capture the smooth, global structure needed for
learning. This truncation introduces a strong inductive bias that prioritizes low-frequency information
while discarding the rest of the spectrum. As a result, we suspect graph transformers may be limited
in their ability to capture more localized or smooth patterns, hindering their performance on common
real-world classification tasks. This could be problematic in graphs with weak homophily, or long-
range interactions, where informative structure may lie in the very spectral components that are being
removed.

*Equal contribution.

New Perspectives in Graph Machine Learning Workshop
39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Motivated by this hypothesis, we revisit the design of spectral positional encodings in graph trans-
formers. First, we identify a bottleneck causing under-utilization of Laplacian eigenvectors in existing
graph transformers. We then show that higher-frequency components often contain critical informa-
tion for node classification tasks and propose a first-principles approach to selecting eigenvectors
based on how class-relevant signals are distributed across the spectrum. Our method is plug-and-play,
and compatible with a wide range of graph transformer architectures.

We demonstrate the effectiveness of our approach across a range of node classification and long-range
graph benchmarks. Notably, incorporating higher-frequency eigenvectors leads to large gains on
challenging heterophilic datasets: performance on Chameleon and Squirrel improves by over 22% and
30%, respectively, even for a simple transformer baseline. More advanced models like NAGphormer
[8] and GraphGPS [27]] also see improvements exceeding 20% on these datasets.

Our contributions are as follows:

* We bring to light simple yet consistently effective modifications to the input encoders of popular
graph transformer backbones that enable utilization of broader spectrum of Laplacian eigenvectors.

* We introduce a label-aware strategy for selecting a task-relevant subset of Laplacian eigenvectors
to be used as positional encodings in graph transformers. This selection mechanism can be applied
as a plug-in to any transformer architecture.

* We conclusively demonstrate, through extensive empirical analysis, that including a well-chosen
spectrum of Laplacian eigenvectors leads to significant gains in node classification performance of
existing graph transformers across a wide range of benchmarks.

2 Motivation: Why should we broaden the spectrum?

A common assumption in graph transformers that use Laplacian eigenvectors for position embeddings
is that low-frequency components alone carry sufficient structural information for node classifica-
tion. This is reflected in most implementations, which use only a small number of the lowest
eigenvectors—typically around 10 (Table [§)—thereby capturing only coarse, smooth patterns in
the graph. However, this truncation is arbitrary and lacks both theoretical and empirical justifica-
tion. If class-discriminative signals exist in higher-frequency bands, restricting to low frequencies
may fundamentally limit a model’s ability to learn fine-grained structural cues. Our concern is
further supported by prior work in the spectral GNN literature, where high-frequency signals have
been shown to be particularly effective for addressing heterophily (refer to Section [5). In these
cases, low-frequency components often oversmooth node representations, while high-frequency
information-often dismissed as noise can capture important local variations.

2.1 Initial experiments

We then ask a natural question:

Can we improve performance by simply increasing the number of low-frequency eigenvectors
used in a standard graph transformer?

To explore this, we start with the baseline GT model from [13]], which concatenates node features X €
RN XD and position encodings P € RY*% and passes them through a single linear layer to create
node-level tokens. These are then processed by a vanilla transformer (detailed in Appendix [A.T):

Yor = Transformer ([X; P]Wi,) Wou)

Here, P = V. .k, where V € RN XN is the Laplacian eigenvector matrix, and K denotes the number
of low-frequency eigenvectors included in P.

As shown in Figure[T] (dotted lines), naively increasing the number of eigenvectors does not improve
performance, suggesting that simply injecting more spectral information is not sufficient. Interestingly,
we find that GT starts utilizing a broader spectrum with two small but critical changes: (1) applying
row-wise ¢ normalization to the position encodings, and (2) replacing the single input linear layer

with separate MLPs for node and position inputs. We use GT* to denote this model:

Ysr+ = Transformer ([MLPyoge (X); MLPpos (norm(P))]) Wiy 2)

As shown in Figure |I| (dashed lines), these small but tar-
geted changes significantly improve the model’s ability [S|
to utilize higher-frequency information. Normalization is NG S ER ST SN
critical here because the scale of Laplacian eigenvector 80 |
elements is ~1/N, which quickly vanishes for reasonably
sized graphs. Meanwhile, independent MLPs provide a
more expressive mapping from raw inputs to transformer-
compatible tokens.

accuracy

To validate the effect of input encoder modification, we

A Computers GT e Computers GT*

evaluated GT and GT* across four node classification 40 7 Chameleon G| @ Chameleon GT*

1 1 T T T T T T T T T
benchmarks, while allowmg K to be chosen by hyperpa- A
rameter search (along with the rest of the hyperparame- number of eigenvectors

tersﬂ As shown in Table increasing K and switching Figure 1: Classification accuracy of GT and
to the GT* architecture, boosts performance from 50.48% GT* as a function of the number of eigen-

to 67.83% on Chameleon, and from 34.70% to 62.91% on vectors used in position embeddings on two
Squirrel. Furthermore, applying these modifications to two benchmarks.

additional graph transformer backbones, NAGphormer [§]]

and GraphGPS [27]], shows consistent improvements (see

Table [T2]in Appendix [F]). These results confirm that using more of the graph spectrum can yield
substantial gains over prior baselines provided it is paired with appropriate input encoders. With
significant gains on both homophilic and heterophilic graphs, we make the following conclusion:

Conclusion 1

Standard graph transformers can significantly benefit from higher-frequency eigenvectors
provided they include (1) proper normalization of position embeddings and (2) expressive
input encoders (e.g., MLPs instead of linear layers).

Although these modifications may seem trivial in hindsight, we hypothesize that their absence in
existing models explains why the benefits of broadening the graph spectrum within graph transformers
have remained undiscovered until now.

These results invite a natural follow-up question: if higher-frequency eigenvectors are useful, what
happens if we simply include all of them? In principle, a full-spectrum encoding should maximize
the information available to the model. In practice, however, we find that this strategy leads to
severe overfitting and degrades performance (Table[2). On Squirrel, for example, GT* drops from
62.9% (tuned) to 35.3% (full), with similar declines observed for NAGphormer and GraphGPS (Ap-
pendix [F). This finding highlights an important challenge:

Conclusion 2

While using more of the graph spectrum is beneficial to some extent, indiscriminately
including all eigenvectors harms generalization.

3 A label-aware method for spectral selection

Now that Section[2.T]has confirmed that graph transformers can indeed benefit from more eigenvectors,
we revisit a limitation of that analysis: it still relies on a somewhat arbitrary truncation of the lowest K
eigenvectors of the Laplacian. There might still be useful information in the mid- and high-frequency
bands. This motivates the need for a more principled method to select an informative, compact, and
non-contiguous subset of eigenvectors. We frame this as the following problem:

'See Section for a complete description of our experimental setup.

Table 2: Classification results for baseline and modified approaches. First row represents the typical
utilization of Laplacian eigenvectors. Second row allows for using more eigenvectors, which does not result
in significant performance improvements. Third row introduces the input encoder modifications and shows a
big jump in performance. Finally, the fourth row corresponds to the situation where we provide the model all
eigenvectors.

Model Eigenvector Selection‘Chameleon Squirrel WikiCS Computers

GT K € [4,16] (tuned) |50.48+208 34.70+177 72.91+059 85.65+059
GT K €[4, N] (tuned) |52.28+28 37.71+179 73754063 87.21+055
GT* K € [4,N] (tuned) |67.83+18 62.91+104 78.46+056 91.66+041
GT* full spectrum (fixed) |48.14+3.05 35.30+161 72.35+072 85.20+0.30

Eigenvector selection problem: Given the IV eigenvectors of the graph Laplacian, can we
efficiently identify the K most informative ones for node classification?

A naive approach would be to treat this as a subset selection problem over (%) possible combi-
nations—a search space far too large for practical hyperparameter tuning. Instead, we propose a
spectral-energy-based method to rank and select eigenvectors. Intuitively, we treat the class labels of
training nodes as a graph signal, compute its energy spectral density (ESD), and select the top-K
eigenvectors corresponding to frequencies with the highest class-label energy. This provides a simple
and interpretable way to prioritize eigenvectors that align most strongly with class structure.

Let) denote the label set, Ny, be the number of training nodes, and Cirgin € {0, 1} Ve X1Vl be
the one-hot encoding of class labels for the training nodes. Let Vi, € RNwin XN pe the matrix of
Laplacian eigenvectors, restricted to the training nodes and ordered by increasing eigenvalue. Using
the graph Fourier transform (Appendix [A.4), we can compute the Fourier representation of the class
signal as Cl,in = Vtr;n Crain- Then the energy spectral density (ESD) of class labels for the i graph
frequency can be defined as:

N
1, - .
E; = ZHCtrain,z‘”% with Z chosen such that; E, =1, 3)

where C’tram’i is the i™ row of C’tmin. We visualize the ESD for several datasets in Figure

To rank the utility of different eigenvectors, we first apply a smoothing operation to the energy density
spectrum using a boxcar (moving average) ﬁlter This mitigates the effect of noise and emphasizes
consistent frequency bands where class-relevant energy is concentrated. After smoothing, we select
the K eigenvectors corresponding to the highest values in the resulting spectrum. The complete
procedure is summarized in Algorithm [I]

Note. While K remains a hyperparameter, this approach replaces arbitrary low-frequency truncation
with a more methodological and data-driven ranking.

4 Evaluation

In this section, we evaluate our approach on a diverse set of node classification benchmarks, analyzing
its effectiveness across three established graph transformer architectures.

4.1 Experimental setup

Datasets. To evaluate the effectiveness of incorporating higher-frequency eigenvectors, we con-
duct experiments on both homophilic and heterophilic datasets. The homophilic datasets include
Coauthor-Physics, Coauthor-CS [29], Amazon-Photo, Amazon-Computers [22]], and WikiCS [23]].
The heterophilic datasets consist of Chameleon, Squirrel [28]], Tolokers and Amazon-Ratings [26].

2A smoothing window of 256 points is used for all experiments, which we found to work well across datasets.

Chameleon Squirrel Ratings

—— Raw
—— Smoothed

10 logqo(N x ESD(i))
rI\: »L = N
o o o o o
1 1 1 L 1

- T T T T T T T T T T
0 500 1000 1500 2000 0 1000 2000 3000 4000 5000 0 5000 10000 15000 20000 25000

Computers CS WikiCS

| 10 ||Og10(N x ESD(i))
S 5 o = S
1 1 1 1 1

T T T T T T T T T T T T
0 2500 5000 7500 10000 12500 0 5000 10000 15000 0 2000 4000 6000 8000 10000 12000

freqeuncy index (i) freqeuncy index (i) freqeuncy index (i)

Figure 2: Energy spectral density of class labels for different graphs.

Additionally, we evaluate our approach on two recently introduced long-range datasets from the
CityNetwork benchmark suite [18]]. This diverse selection ensures that we assess model performance
across varying levels of structural homogeneity, heterogeneity, and long-range dependency.

Baseline and modified models. We evaluate our approach on three existing graph transformer
architectures: GT [13]], NAGphormer [8], and GraphGPS [27]. We use the subscript BTﬂ to
denote models with our ESD-based eigenvector selection approach (Section[2.T)) and input encoder
modifications (Section[3).

NAGphormer [8]] restricts attention to k-hop neighborhoods using a normalized adjacency matrix. In
NAGphormergts , we preserve this localized attention mechanism but replace the original position
encoder with our spectral selection procedure and MLP-based encoding. GraphGPS combines
message passing with transformer-based global attention and uses LapPE for positional encoding. In
GraphGPSgr1s , we replace LapPE with our label-aware spectral selection and MLP-based encoder,
creating a unified position encoding approach consistent with GTgts and NAGphormergrs .To ensure
fair comparisons, we use the same training setup and hyperparameter tuning for both the baseline
models and their modified versions.

The baseline models are trained with eigenvectors truncated to K lowest frequencies, and K is tuned
in the range [4, 16], consistent with prior work (Table . In the case of BTS, K is allowed a wider
range of [4, min(NN, 8192)], where N denotes number of nodes. Please refer to Appendix [E] for more
details about the hyperparameter tuning setup.

4.2 Results

Results on heterophilic benchmarks. The results for node classification on heterophilic bench-
marks are presented in Table[3] We find substantial improvements when using BTS. For example, on
Chameleon, performance improves by over 22%, and on Squirrel, by over 30% when BTS-filtered
eigenvectors are used with a simple transformer architecture. Remarkably, this brings the vanilla
transformer architecture (GT) into close competition with, and in some cases even surpassing, more
complex graph transformer models proposed in recent literature.

These improvements are not surprising when viewed through the lens of the ESD of class labels. As
shown in Figure[2} graphs like Chameleon and Squirrel exhibit significantly high class energy not only
in the low-frequency region, but also in high-frequency components. To the best of our knowledge,

3BTS stands for "Broaden the Spectrum."

Table 3: Node classification performance on heterophilic benchmarks. Performance numbers for GT/GTgrs,
NAGphormer/NAGphormergrs, and GraphGPS/GraphGPSgrs were (re-)produced with our consistent experi-
mental setup. Performance for other models are reported from existing literature. “-” indicates absence of a
particular evaluation in existing literature. The top-1*, top-2"?, and top-3"“ results are highlighted.

Model Chameleon Squirrel Tolokers Ratings
Accuracy 1 Accuracy 1 AU-ROC 1 Accuracy T
GCN 38.44+1.92 31.52+071 83.64 £0.67 48.70 +0.63
GraphSAGE 58.73 £ 1.68 41.61 £0.74 82.43+044 53.63 £0.39
GAT 48.36+1.58 36.77 + 1.68 83.70+047 49.09 +0.63
NodeFormer 36.38£385 38.89 £2.67 78.10 £ 1.03 43.79 +057
SGFormer 45.21+372 42.65 +421 - 54.14 +0.62
Exphormer - - 83.53+028 50.48 +£0.34
SpExphormer - - 83.34+031 50.48 £0.34
GT 50.48 +£2.08 3470+ 177 80.30+091 49.02 +0.61
GTgrs 73.09 +1.00 +22.617 65.06 +1.93 +30.367 84.45+0.66 +4.157 50.37 +£0.48 +1.357
NAGphormer 52.41+221 40.21+1.77 83.69+0386 50.16 +0.69
NAGphormergrs 73.90 + 1.68 +21.497 65.04 + 1.69 +24.831 85.47 +0.72 +1.787 49.65 +0.65 -0.51,
GraphGPS 60.92 +2.54 4343+ 146 86.29 +0.68 50.19 +051

GraphGPSgrs 73.16 170 +12.241 65.87 +1.30 +22.441 86.31 +0.63 +0.027 51.33 +0.58 +1.147

Table 5: Node classification accuracy (%) on homophilic benchmarks. Results for GraphGPS/GraphGPSgrs,
NAGphormer/NAGphormergrs, and GT/GTgrs were (re-)produced with our consistent experimental setup.
Performance for other models are reported from existing literature. The top-1%, top-2", and top-3"* results are
highlighted.

Model Physics CS Photo Computers WikiCS ogbn-arXiv
Accuracy 1 Accuracy T Accuracy T Accuracy 1 Accuracy 1 Accuracy T
NodeFormer 96.45+0.28 95.64 £022 93.46+035 86.98 £ 0.62 74.73 £094 59.90 £0.42
SGFormer 96.60+0.18 94.78 £0.34 95.10+047 91.99 +0.70 73.46+056 72.63 +0.13
Exphormer 96.89 £0.09 94.93 001 95.35+022 91.47+017 78.19+029 71.27 027
SpExphormer 96.70 £0.05 95.00+0.15 95.33£049 91.09 £0.08 78.20+0.14 70.82+024
GT 96.02 +0.20 94.66 + 044 91.59 068 85.65 +0.59 72.91+059 55.68 +£039
GTgrs 96.90 £0.18 +0.88T 95.44£0.33 +0.787 95.95+0.48 +4.367 91.46+051 +5.811 78.94 =026 +6.037 70.30 +0.12 +14.627
NAGphormer 96.98 £0.13 95.71+0.26 95.51 +041 91.39£041 78.73 £0.66 69.43 +£032
NAGphormergrs 97.05 +0.18 40,071 95.42+039-0.29] 95.90 + 037 +0.3917 91.85 + 044 +0.46T 79.42+0.55 +0.691 71.29 +0.13 +1.867
GraphGPS 97.13 017 95.70+0.38 95.35+045 91.64 £046 77.67+073 65.16 £ 145

GraphGPSgps 97.21+0.14 40.081 95.720.37 +0.021 95.87 0.2 +0.521 91.87+0.45 40237 79.47 + 048 +1.807 70.924033 +5.761

the performance reported here for Chameleon, Squirrel, and Tolokers represents the strongest results
achieved by any graph transformer model to date. These findings highlight that the historical
reliance on low-frequency truncation was a critical bottleneck, masking the true representational and
generalization potential of graph transformers.

Results on homophilic benchmarks. As shown in Table[5} BTS improves performance even on
homophilic graphs. GTgrs achieves +5.8% on Computers, o

+6.0% on WikiCS, and +14.4% on ogbn-arXiv. Gains for NAG- Table 4: Node classification accuracy
phormer and GraphGPS are smaller but consistent. These results (o}/f) on Il‘s?ng Rgf,'dge Bemh“;ﬂlr ks.
are expectedly more modest than in heterophilic settings, as the The top-1°, top-2"', and top-3" re-

. . o . sults are highlighted.
spectral energy of class signals in homophilic graphs is more gig
concentrated in low frequencies. Still, BTS captures the broader ppogel Paris Shanghai
spectrum whenever useful, yielding robust improvements. GCN 47302020 5240030
GraphSAGE 49.10+£0.60 60.40 -+ 0.30
Results on long-range benchmarks. Graph transformers are sGFormer 45004020 53.5+030
naturally suited for capturing long-range dependencies due to GT 1546393 21.05+051
their global attention mechanism. However, recent work has (A}Tms 53.79£017 52.66+0.83
shown that graph transformers suffer from overglobalization [38] +38331 +31.617
nd perform poorly on long-range tasks. As shown in Table[l] ~ Naqrrormer 2220800 25450
and p p ! y g. ‘g : NAGphormergys 53.68 =023 57.26+0.34
our method achieves substantial improvements on the long-range A 428421 432321
benchmark [[18] over baseline graph transformer architectures. GraphGPS 28.99+031 28.46+031

These datasets exhibit particularly strong gains when using BTS- ~ GraphGPSprs 54.12=023 55.31 =033
selected features. For instance, performance for GT on Paris = ¥25.131 +26857

improves by over 38%, and on Shanghai by 31%, bringing the vanilla transformer model on par
with strong baseline methods.

5 Related Work

Graph Transformers and Positional Encodings. Graph Transformers (GTs) allow graph nodes to
interact globally via self-attention [[13[]. Because self-attention is permutation-equivariant, GTs require
positional encodings (PEs) to inject structural information. Laplacian eigenvectors have become
a common choice [14], providing a spectral basis that reflects graph topology. However, nearly
all existing GTs adopt a heuristic truncation: retaining only the first k£ low-frequency eigenvectors.
The low-frequency bias is evident in models such as GT [13]], NAGphormer [8]], GraphTrans [37],
GraphGPS [27], UGT [17], SAN [16], and SAT [7]]. Scalability-oriented variants such as ANS-
GT [40], Gapformer [19]], and Exphormer [31], which focus on efficient attention also retain the same
positional encoding heuristic. TokenGT [16] extends beyond low frequencies by including both low-
and high-frequency eigenvectors, but relies on fixed splits rather than task-driven selection.

The Role of High-Frequency Signals in Node Classification. In contrast, the MPNN literature
has increasingly emphasized the importance of high-frequency information for node classification,
especially in heterophilic graphs. Spectral methods explicitly operate in the frequency domain and
modulate both low- and high-frequency signals [35} [11]. Early spectral models such as Spectral
CNN [5] and ChebNet [[10] introduced learnable filters over eigenvalues, and subsequent works
demonstrated that high-frequency information is critical for node-level expressiveness, such as
adaptive propagation [9], complete spectral filtering [21], and frequency-based feature selection
[4]. These techniques explicitly exploit high-frequency modes, while adaptive approaches such as
AdaGNN [12]], and spectral attention [6] dynamically balance contributions from different parts of
the spectrum.

6 Conclusion

In this work we revisit a widely accepted but rarely questioned assumption in graph transformers:
that only a handful of low-frequency Laplacian eigenvectors suffice for positional encodings. We
show that this design choice fundamentally limits node classification performance, particularly on
heterophilic graphs where high-frequency components capture crucial fine-grained structure. Our
analysis demonstrates that graph transformers can benefit substantially from a broader spectral
representation, provided two simple adjustments are made—proper normalization of eigenvectors
and more expressive input encoders. Building on this insight, we introduced a label-aware spectral
selection strategy that ranks eigenvectors by their alignment with class-label energy. This principled
approach avoids arbitrary truncation, identifies informative non-contiguous subsets of eigenvectors,
and consistently outperforms both low-frequency and full-spectrum encodings. Empirically, it
achieves state-of-the-art results across diverse benchmarks and transformer backbones without
altering attention mechanisms or adding inference-time cost.

7 Funding Disclosure

This project was supported by NSF CAREER Award R1:2146072, NSF award CIF:RI:2212182 as
well as generous gifts from the CIFAR Azrieli Global Scholars Program.

References

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In The 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2623-2631, 2019.

[2] M. Azabou, V. Ganesh, S. Thakoor, C.-H. Lin, L. Sathidevi, R. Liu, M. Valko, P. Velickovié, and E. L. Dyer.
Half-hop: A graph upsampling approach for slowing down message passing. In International Conference
on Machine Learning, pages 1341-1360. PMLR, 2023.

[3] J.Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc., 2011.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]
(21]

(22]

(23]
[24]

[25]

D. Bo, X. Wang, C. Shi, and H. Shen. Beyond low-frequency information in graph convolutional networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 3950-3957, 2021.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203, 2013.

H. Chang, Y. Rong, T. Xu, W. Huang, S. Sojoudi, J. Huang, and W. Zhu. Spectral graph attention network
with fast eigen-approximation. In Proceedings of the 30th ACM international conference on information &
knowledge management, pages 2905-2909, 2021.

D. Chen, L. O’Bray, and K. Borgwardt. Structure-aware transformer for graph representation learning. In
International Conference on Machine Learning, pages 3469-3489. PMLR, 2022.

J. Chen, K. Gao, G. Li, and K. He. Nagphormer: A tokenized graph transformer for node classification in
large graphs. 2023.

E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph neural network.
arXiv preprint arXiv:2006.07988, 2020.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast
localized spectral filtering. Advances in neural information processing systems, 29, 2016.

X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard. Graph signal processing for machine learning:
A review and new perspectives. IEEE Signal processing magazine, 37(6):117-127, 2020.

Y. Dong, K. Ding, B. Jalaian, S. Ji, and J. Li. Adagnn: Graph neural networks with adaptive frequency
response filter. In Proceedings of the 30th ACM international conference on information & knowledge
management, pages 392401, 2021.

V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

V. T. Hoang, O. Lee, et al. A survey on structure-preserving graph transformers. arXiv preprint
arXiv:2401.16176, 2024.

V. T. Hoang and O.-J. Lee. Transitivity-preserving graph representation learning for bridging local
connectivity and role-based similarity, 2023.

D. Kreuzer, D. Beaini, W. L. Hamilton, V. Létourneau, and P. Tossou. Rethinking graph transformers with
spectral attention. 2021.

0O.-]. Lee et al. Transitivity-preserving graph representation learning for bridging local connectivity and
role-based similarity. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
12456-12465, 2024.

H. Liang, H. S. d. O. Borde, B. Sripathmanathan, M. Bronstein, and X. Dong. Towards quantifying
long-range interactions in graph machine learning: a large graph dataset and a measurement. arXiv preprint
arXiv:2503.09008, 2025.

C. Liu, Y. Zhan, X. Ma, L. Ding, D. Tao, J. Wu, and W. Hu. Gapformer: Graph transformer with graph
pooling for node classification. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI-23), pages 2196-2205, 2023.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

S. Luan, M. Zhao, C. Hua, X.-W. Chang, and D. Precup. Complete the missing half: Augmenting aggre-
gation filtering with diversification for graph convolutional networks. arXiv preprint arXiv:2008.08844,
2020.

J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel. Image-based recommendations on styles and
substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and development
in information retrieval, pages 43-52, 2015.

P. Mernyei and C. Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural networks, 2022.

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. F. Moura, and P. Vandergheynst. Graph signal processing:
Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808-828, 2018.

H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

0. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look at the evaluation
of gnns under heterophily: Are we really making progress? arXiv preprint arXiv:2302.11640, 2023.

L. Rampasek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a general, powerful,
scalable graph transformer. Advances in Neural Information Processing Systems, 35:14501-14515, 2022.

B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding. Journal of Complex
Networks, 9(2):cnab014, 2021.

O. Shchur, M. Mumme, A. Bojchevski, and S. Gilinnemann. Pitfalls of graph neural network evaluation.
arXiv preprint arXiv:1811.05868, 2018.

H. Shirzad, H. Lin, B. Venkatachalam, A. Velingker, D. Woodruff, and D. Sutherland. Even sparser graph
transformers. arXiv preprint arXiv:2411.16278, 2024.

H. Shirzad, A. Velingker, B. Venkatachalam, D. J. Sutherland, and A. K. Sinop. Exphormer: Sparse
transformers for graphs. In International Conference on Machine Learning, pages 31613-31632. PMLR,
2023.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine, 30(3):83-98, 2013.

A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang. An overview of microsoft academic
service (mas) and applications. In Proceedings of the 24th international conference on world wide web,
pages 243-246, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin.
Attention is all you need. 2017.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional networks.
In International conference on machine learning, pages 6861-6871. PMLR, 2019.

Q. Wu, W. Zhao, Z. Li, D. Wipf, and J. Yan. Nodeformer: A scalable graph structure learning transformer
for node classification. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Stoica. Representing long-range context
for graph neural networks with global attention. Advances in Neural Information Processing Systems,
34:13266-13279, 2021.

Y. Xing, X. Wang, Y. Li, H. Huang, and C. Shi. Less is more: on the over-globalizing problem in graph
transformers. arXiv preprint arXiv:2405.01102, 2024.

C.Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really perform
badly for graph representation? Advances in neural information processing systems, 34:28877-28888,
2021.

Z. Zhang, Q. Liu, Q. Hu, and C.-K. Lee. Hierarchical graph transformer with adaptive node sampling.
Advances in Neural Information Processing Systems, 35:21171-21183, 2022.

Appendix

A Background

A.1 Transformers

Transformers, introduced in [34], are the foundation of many modern deep learning architectures.
Each layer of a transformer consists of a Multi-Head Self-Attention (MHSA) mechanism followed by
a Feedforward Network (FFN). Given a sequence of tokens X € RV*P _where N is the sequence
length and D is the token dimension, the attention layer computes:

(XWE)(XWi)T
Vd

H
MHSA(X) = Z softmax (> (XWhwl 4
h=1

The FFN applies a non-linear transformation FEN(X) = o(XW;)W5, where o is an activation
function such as ReLLU. Each transformer block combines MHSA and FFN with residual connections:

X = X + MHSA(X), Y =X +FFN(X) 5)
Stacking such blocks enables the model to capture complex dependencies across the input sequence.

A.2 Graph transformers

In simple graph transformers [[13} 39], each node in the graph is represented by a token. Unlike
Message Passing Neural Networks (MPNNs), which restrict pairwise interactions in each layer to a
node’s immediate neighbors, transformers inherently lack such biases and model all node-to-node
interactions by design. Connectivity information about the graph is typically incorporated in one of
two ways: either through positional encodings, with the input to the transformer being a combination
of the feature vector of each node and its positional encoding [[13| 27]], or by adding structural bias
directly into the attention matrix 36 |31]. In this work, we focus on the former approach.

A.3 Laplacian positional encodings

Eigenvectors of the normalized graph-Laplacian are the most common positional encodings and
have been identified as effective in prior work [13]]. To formalize this concept, assume that we are
given a graph G = (V, £) with |V| = N nodes, its adjacency matrix A, and its degree matrix D, its
normalized graph-Laplacian matrix is defined as:

L=1I1-D12?Ap~1/? (6)

Let L = VAV denote the eigen decomposition of the normalized graph-Laplacian, with eigenvalues
arranged in increasing order,i.e. A1 < Ao < ... < Ay. In existing graph transformers [[13]], a node
n is assigned a K -dimensional positional encoding p,, constructed from the Laplacian eigenvectors
with the K smallest eigenvalues. p,, is defined as:

Pn = [Vlnav2n;~"avKn]T7 (7)

leading to an N x K positional encoding matrix P = V. .x. Here v, € R” corresponds to the k™
eigenvector, i.e. the kt column of V.

Remark. Each eigenvector v, € RY defines a signal v, : 1V — R that varies over the graph nodes.
Eigenvectors associated with small eigenvalues are thought to vary slowly across the graph, capturing
low-frequency global variations, while eigenvectors corresponding to large eigenvalues vary rapidly,
encoding high-frequency signals that change significantly across neighboring nodes [32, 24]].

A4 Graph Fourier Transform

The Graph Fourier Transform (GFT) is a generalization of the classical Fourier transform to graph-
structured data. Let L denote the normalized graph Laplacian of G, and let V€ RY*¥ be the

10

matrix of its eigenvectors, ordered by increasing eigenvalue. The GFT of a graph signal x : V — R,
represented by a vector x € R”, is defined as:

x=VTx ®

Here, %; = v; x denotes the i" graph-frequency component of x, and (%;)? denotes the spectral
energy of x in this frequency. Intuitively, signals that vary smoothly over the graph have most of their
energy concentrated in the lower frequencies, while signals that vary rapidly have energy concentrated
in the higher frequencies. Note that signals can have significant energies in both low and high parts
of the spectrum.

B Highest Maximum Frequencies Used in the Literature

To better understand the typical frequency truncation choices in existing graph transformer models,
we compile representative values of the maximum number of Laplacian eigenvectors (K) used across
a range of published works. As shown in Table[6] most methods restrict K to a small number—often
below 16—reinforcing the low-pass inductive bias observed in current practice.

C Baseline Sources

C.1 Heterophilic Datasets

We use five real-world datasets with graphs that have a homophily level < 0.30: Actor [25],
Chameleon and Squirrel [28]], as well as Ratings and Tolokers [26]. Key statistics for these datasets
are listed in Table[/| We follow the experimental setup in [25] for Actor, Chameleon, and Squirrel,
and for Ratings and Tolokers, we adopt the setup described in [26], using the 10 train/validation/test
splits provided.

The results for GCN-based methods and heterophily-based methods in Table[/|for Actor, Chameleon,
and Squirrel have been sourced from [2]]. Similarly, results for Ratings and Tolokers are sourced from
[26]], while results for transformer-based methods across all datasets are obtained from [30].

C.2 Homophilic Datasets

We use five real-world datasets: Amazon Computers and Amazon Photos [22]], Coauthor CS and
Coauthor Physics [33], and WikiCS [23]]. Key statistics for these datasets are listed in Table@ The
experimental setup follows that of [30]], where the datasets are split into development and test sets.
All hyperparameter tuning is performed on the development set, and the best models are subsequently
evaluated on the test set.

We use a 60:20:20 train/validation/test split for the Amazon and Coauthor datasets. The results
reported for all datasets in Table E] are sourced from [30].

C.3 Long Range Benchmark Datasets

To evaluate the ability of models to capture long-range dependencies, we use the City-Networks
benchmark [18]], which consists of large-scale road network graphs derived from OpenStreetMap data.

Table 6: Maximum number of eigenvectors (K max) used by recent graph transformer models, based on publicly
available code.

Model Kiax

NAGphormer [8]] 15
GraphGPS [27] 10

SAN [16] 10
GT [13] 10
UGT [15] 10

Exphormer [31] 10

11

Table 7: Statistics of heterophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO
CHAMELEON 2,277 31,421 5 0.23
SQUIRREL 5,201 198,493 5 0.22
TOLOKERS 11,758 519,000 2 0.09
RATINGS 244,92 39,402 5 0.14

Table 8: Statistics of homophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO
PHYSICS 34,493 495,924 5 0.92
CS 18,333 81,894 15 0.83
PHOTO 7,650 238,162 8 0.84
COMPUTERS 13,752 491,722 10 0.79
WIKICS 11,701 216,123 10 0.66
OGBN-ARXIV 169,343 1,166,243 40 0.65

We focus on two representative cities—Paris and Shanghai—which feature grid-like topology, low
clustering coefficients, and large diameters. These characteristics make them particularly well-suited
for studying long-range signal propagation. Key statistics for these datasets are provided in Table[9}

Following the experimental protocol in [18], we perform transductive node classification using a
10:10:80 train/validation/test split. The node labels are defined by eccentricity-based quantiles,
ensuring that the task inherently depends on information from distant nodes.

Table 9: Statistics of City-Networks datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO
PARIS 114,127 182,511 10 0.70
SHANGHAI 183,917 262,092 10 0.75

C.4 Baseline Model Performance Across Datasets from existing literature

The previously reported performance of baseline models (GT, GraphGPS, and NAGphormer) on
multiple graph datasets is summarized in Table The reported values, sourced from existing
literature.

D BTS Algorithm Details

For completeness, we provide pseudocode for the BTS eigenvector selection procedure. The algorithm
computes the label energy spectrum in the graph Fourier domain, smooths it using a filter, and selects
the top-K eigenvectors based on the smoothed spectrum (Algorithm|T).

E Optimizer Configuration and Hyperparameter Spaces

We use the AdamW optimizer [20] for all runs, and fixed the number of epochs to 200. We additionally
employ the linear-warmup-cosine-decay learning rate schedule. Linear rate warmup happens over
10 epochs (fixed), and cosine decay happens over the remaining 190 epochs (also fixed). All other
hyperparameters are chosen by the tuning algorithm, which is explained in Section4.1] The complete
hyperparameter space used in our experiments is detailed in Table[TT]

We optimize hyperparameters using the Tree-structured Parzen Estimator (TPE) algorithm [3]], as
implemented in Optuna [[1]. The number of tuning trials is adjusted based on the size of each dataset:
for graphs with up to 7,500 nodes, we perform 300 tuning trials; for graphs with up to 15,000 nodes,

12

Table 10: Performance across datasets for GT, GraphGPS, and NAGphormer models previously reported in

existing literature.

Dataset GT GraphGPS NAGphormer
Chameleon - 40.79 £ 4.03 -

Squirrel - 39.67 £2.84 -

Tolokers - 83.71£048 78.32+0.95
Ratings - 53.10+£042 51.26+0.72
Physics 97.05£0.05 97.12+0.19 97.34 +£0.03
CS 94.64 +0.13 9393+0.12 95.75+£0.09
Photo 94.74 £0.13 95.06 +0.13 9549 £0.11
Computers 91.18 £0.17 91.19 £0.54 91.22 +0.14
WikiCS - 78.66 +0.49 77.16 £0.72
Arxiv - 70.97 £0.41 70.13 £ 0.55

Algorithm 1 Pseudocode for label-aware eigenvector selection

Input: Laplacian eigenvectors V. € RV XV,

Training node indices Zyain,

Training labels Cyin € {0, 1}Vimn <€

Number of eigenvectors to choose K, Smoothing window size w

Qutput: Indices Zx of selected eigenvectors

I Vigain ¢ V[Ziain) > Restrict to training nodes
2: étrain — V[—rrainétrain > Graph Fourier transform
3: fori =1to N do > Compute energy spectrum
4: E;, + ”étrain,i”%

5: ESD «+ E/ Zfil E; > Normalize energy
6: ESD < BoxcarSmooth(ESD, w) > Smooth with window-size w
7: Tx + TopK(ESD, K) > Select top-K energies
8: return Zx > Return selected indices

we allow 200 trials; and for larger graphs, we limit the number of trials to 100. Hyperparameters
are selected based on validation-set performance, and all reported results correspond to test-set
performance using the best configurations found. Performing complete hyperparameter tuning on a
machine with 4 x NVidia L40S GPUs takes 2-4 hours depending on the size of the dataset.

F Ablations

We conducted an ablation study to evaluate the impact of higher-order spectral components, encoder
design, and label-aware selection on the Graph Transformer (GT). Here, we extend this analysis to
all baseline transformer architectures. As shown in Table[12] the same trends hold across models,
showing that access to more eigenvectors and a better encoder design can improve performance.

13

Table 11: Complete hyperparameter search space for all model variants presented in this paper.

HYPERPARAMETER

SEARCH SPACE

SAMPLING TYPE

COMMON PARAMETERS

LEARNING RATE

WEIGHT DECAY

DRroPOUT

ATTENTION DROPOUT
WINDOW LENGTH
TRANSFORMER DEPTH
NUMBER OF ATTENTION HEADS

[107%, 1071
[1077, 1072
[0,0.5]
[0,0.5]

{256,512, 1024, 2048, 4096 }

{1,2,...,8}
{0,1,2,4,8}

LOGARITHMIC
LOGARITHMIC
LINEAR
LINEAR

LINEAR

COMMON FOR GTgrs /NAGPHORMERpTs /GRAPHGPSgTS
NUMBER OF EIGENVECTORS (K)

POS. FEATURE ENCODER - OUTPUT DIMENSION
POS. FEATURE ENCODER - HIDDEN DIMENSION
POS. FEATURE ENCODER - # HIDDEN LAYERS
NODE FEATURE ENCODER - OUTPUT DIMENSION
NODE FEATURE ENCODER - HIDDEN DIMENSION
NODE FEATURE ENCODER - # HIDDEN LAYERS

{4,8,16,...,1024}
{8,16,32,64, 128}
{16,32,64, ...,2048}
{1,2,3,4}
{8,16,32,64,128}
{16,32, 64,128}
{1}

SPECIFIC FOR GT
NUMBER OF EIGENVECTORS (K)
TOKEN DIMENSION

{4,8,16}
{64,128, 256, 512}

SPECIFIC FOR NAGPHORMER

NUMBER OF EIGENVECTORS (K) {4,8,16}
TOKEN DIMENSION {64, 128,256,512}
NUMBER OF HOPS (SAME FOR NAGPHORMERSBTS) {1,2,3,...,20}
SPECIFIC FOR GRAPHGPS

NUMBER OF EIGENVECTORS (K) {4,8,16}
LAPPE - NUMBER OF LAYERS {1,2,3,...,8}
LAPPE - NUMBER OF POST-LAYERS {0,1,2,3,4}

Table 12: Node classification performance with full eigenvector spectrum vs with left-truncated spectrum but

tuned K.
‘ Heterophilic ‘ Homophilic
Model Eigenvectors ‘ Chameleon Squirrel ‘ WikiCS Computers
GT K € [4,16] (tuned) 50.48 £208 |34.70+1.77 |72.91+059 | 85.65+0.59
GT K €[4, N] (tuned) 52.28+288 |37.71+179 |73.75+063|87.21+0.55
GT* K € [4, N] (tuned) 67.83+£182 |62.91+1.04 |78.46+056|91.66+041
GT* full spectrum (fixed) 48.14£3.05 | 3530161 |72.35+072|85.20+0.30
GT-BTS BTS, K € [4, N] (tuned) | 73.09+ 168 |65.06+1.93 |78.94+0.26|91.46+05!
NAGphormer K € [4,16] (tuned) 52.41 4221 [40.21 £1.77|78.73 £0.66 | 91.39 £0.41
NAGphormer K € [4, N] (tuned) 57.06+19 |40.89+206 [79.70+050|91.61 +0.42
NAGphormer* K € [4, N] (tuned) 70.07 £233 | 63.87+151 |79.83+£0.63[91.96+037
NAGphormer* full spectrum (fixed) 59.63+206 |52.27+128 |79.63+£0.63|91.53+£047
NAGphormer-BTS BTS, K € [4, N] (tuned) | 73.90+ 1.68 | 65.04+1.69 | 79.42+1.55| 91.85+044
GraphGPS K € [4,16] (tuned) 60.92+£254 |43.43+146 |77.67+0.73|91.64 £046
GraphGPS K € [4, N] (tuned) 64.67+298 |47.12+421 |77.40+045]|91.60+£0.45
GraphGPS* K € [4, N] (tuned) 70.24+208 |63.40+1.16 | 78.68 £046|91.80+0.40
GraphGPS* full spectrum (fixed) 59.14+£195 |42.88+1.77 |77.42+098|91.24 +£0.40
GPS-BTS BTS, K € [4, N] (tuned) | 73.16 £ 1.70 | 65.87 £1.30 | 79.47 +0.48 | 91.87 £0.45

14

	Introduction
	Motivation: Why should we broaden the spectrum?
	Initial experiments

	A label-aware method for spectral selection
	Evaluation
	Experimental setup
	Results

	Related Work
	Conclusion
	Funding Disclosure
	Background
	Transformers
	Graph transformers
	Laplacian positional encodings
	Graph Fourier Transform

	Highest Maximum Frequencies Used in the Literature
	Baseline Sources
	Heterophilic Datasets
	Homophilic Datasets
	Long Range Benchmark Datasets
	Baseline Model Performance Across Datasets from existing literature

	BTS Algorithm Details
	Optimizer Configuration and Hyperparameter Spaces
	Ablations

