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Abstract

Visible-infrared person re-identification (VI-ReID) aims to match visible and in-
frared images of the same individual. Supervised VI-ReID (SVI-ReID) methods
have achieved promising performance under the guidance of manually annotated
identity labels. However, the substantial annotation cost severely limits their scala-
bility in real-world applications. As a result, unsupervised VI-ReID (UVI-ReID)
methods have attracted increasing attention. These methods typically rely on
pseudo-labels generated by clustering and matching algorithms to replace manual
annotations. Nevertheless, the quality of pseudo-labels is often difficult to guar-
antee, and low-quality pseudo-labels can significantly hinder model performance
improvements. To address these challenges, we explore the use of attribute arrays
extracted by a large vision-language model (LVLM) to enhance VI-ReID, and
propose a novel LVLM-driven attribute-aware modeling (LVLM-AAM) approach.
Specifically, we first design an attribute-aware reliable labeling strategy, which re-
fines intra-modality clustering results based on image-level attributes and improves
inter-modality matching by grouping clusters according to cluster-level attributes.
Next, we develop an explicit-implicit attribute fusion module, which integrates
explicit and implicit attributes to obtain more fine-grained identity-related text fea-
tures. Finally, we introduce an attribute-aware contrastive learning module, which
jointly leverages static and dynamic text features to promote modality-invariant
feature learning. Extensive experiments conducted on VI-ReID datasets validate
the effectiveness of the proposed LVLM-AAM and its individual components.
LVLM-AAM not only significantly outperforms existing unsupervised methods
but also surpasses several supervised methods.

1 Introduction

Person re-identification (ReID) [45, 2, 4, 57, 34, 25, 10, 35] focuses on identifying images of a
specific person from a large-scale gallery. To advance intelligent surveillance systems across various
time periods, visible-infrared ReID (VI-ReID) [31, 46, 42, 22, 9] was introduced, aiming to match
visible and infrared images of the same person. While supervised VI-ReID (SVI-ReID) methods
[43, 51, 7, 50] have shown promising performance on multiple datasets, they heavily rely on manually
annotated identity labels in the training set. However, manually annotating data for VI-ReID tasks is
an extremely labor-intensive process. As a result, increasing attention has been given to unsupervised
VI-ReID (UVI-ReID) [21, 38, 32, 36, 37, 29, 30, 33]. These UVI-ReID methods typically begin by
clustering image features extracted by an image encoder to generate intra-modality pseudo-labels.
They then perform inter-modality matching to generate inter-modality pseudo-labels. These intra-
modality and inter-modality pseudo-labels serve as supervisory signals to replace manual labels, thus
reducing the limitations imposed by the high cost of annotation.
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Figure 1: The differences between existing methods and LVLM-AAM are highlighted with red lines.
Different feature colors indicate different pseudo-labels. (a) The texts are entirely derived from
pseudo-labels without enhancing the quality of the pseudo-labels. Moreover, these texts are only
utilized for optimization within their corresponding modality. (b) LVLM-AAM leverages attribute
arrays provided by an LVLM to simultaneously enhance intra-modality pseudo-labels, inter-modality
matching (pseudo-labels), and texts. Furthermore, the text semantics can be mutually transferred
between modalities during the optimization process. We define a correct match as two clusters from
different modalities that contain images of the same identity, and an incorrect match otherwise.

However, the quality of pseudo-labels generated by clustering algorithms is largely constrained by
the performance of the pretrained image encoder, and the global-level inter-modality matching often
leads to mutual interference, resulting in cascading errors [32]. Although CLIP-based UVI-ReID
methods [3] attempt to leverage the pretrained CLIP model to obtain text semantics as additional
supervision signals, as shown in Figure 1a, two critical limitations still remain: (1) The texts are
constructed based on pseudo-labels generated by clustering algorithms, thus inherently carrying
similar supervision signals without fundamentally improving the pseudo-labels. (2) This method
typically utilizes text semantics only to optimize features within the corresponding modality, focusing
on enhancing intra-modality identity discrimination, but without explicitly assisting the image encoder
in learning modality-invariant features.

Inspired by the powerful fine-grained vision-language understanding capability of the large vision-
language model (LVLM) [1], we attempt to leverage attribute arrays extracted by an LVLM to
improve VI-ReID, as illustrated in Figure 1b. We propose a novel LVLM-driven attribute-aware
modeling (LVLM-AAM) method to address the aforementioned two problems. To tackle the first
issue, we first employ an LVLM to extract attribute arrays (Gender, Upper, Lower, Glasses, and
Backpack) for each image in the training set, which are referred to as explicit attributes in the
following descriptions. Then, we design an attribute-aware reliable labeling (ARL) strategy, which
consists of attribute-aware refinement (AR) and attribute-aware matching (AM). Specifically, AR
refines intra-modality clustering results based on image-level attribute arrays, while AM groups
clusters based on cluster-level attribute arrays to enhance inter-modality matching. Subsequently,
we develop an explicit-implicit attribute fusion (EAF) module, which fuses implicit attributes (text
embeddings) and explicit attributes to obtain more fine-grained identity-related text features. To
address the second issue, we further propose attribute-aware contrastive learning (AAC), which not
only computes dynamic text features based on static text features, but also optimizes with both static
and dynamic features to enhance modality-invariant feature learning.

It is worth noting that, since LVLM-AAM leverages supervision information (i.e., attribute arrays)
extracted from an LVLM, it may not be considered a fully UVI-ReID method. In other words, the
primary goal of this work is to explore the effectiveness of utilizing an LVLM to advance the practical
application of UVI-ReID – specifically, to improve recognition performance while maintaining low
manual annotation costs. The contributions of this work are summarized as follows:

• We explore the use of attribute arrays extracted by an LVLM to improve VI-ReID and
propose a novel LVLM-AAM method, which leverages attribute arrays to refine pseudo-
labels and text semantics for enhanced modality-invariant feature learning.

• We design an ARL strategy and an EAF module. The former refines intra-modality and
inter-modality pseudo-labels based on image-level and cluster-level attributes, respectively,
while the latter utilizes attribute arrays to generate fine-grained text features.
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• We develop an AAC module, which computes dynamic text features based on static text
features from both modalities, and optimizes with both static and dynamic features to further
enhance modality-invariant learning.

• Extensive experiments conducted on VI-ReID datasets validate the effectiveness of the
proposed LVLM-AAM and its components. LVLM-AAM not only significantly outperforms
existing unsupervised methods but also surpasses several supervised methods.

2 Related Work

Visible-Infrared Person Re-Identification. Given an infrared image of a person, VI-ReID [31,
46, 42, 22, 9] aims to retrieve the corresponding visible image from a large-scale gallery, and vice
versa. Early studies primarily focused on the supervised VI-ReID (SVI-ReID) [43, 51, 7, 53] setting,
where manual annotations were used to guide the learning process and reduce the impact of modality
gap. Although SVI-ReID methods have demonstrated promising recognition capabilities, they are
constrained by the high cost of manual annotations. As a result, increasing attention has been directed
toward the unsupervised VI-ReID (UVI-ReID) setting. For instance, H2H [21], as one of the early
UVI-ReID approaches, first pretrains the image encoder on a manually labeled visible dataset [54],
and then performs unsupervised learning on a visible-infrared dataset. ADCA [38] further eliminates
the reliance on manual annotations for pretraining by first conducting homogeneous learning within
each modality, followed by heterogeneous learning through inter-modality matching. Building
upon ADCA, PGM [32] introduces a graph matching strategy to globally establish inter-modality
positive clusters. Among recent methods, SDCL [37] enhances model optimization by exploring
the relationships between shallow and deep features within the Transformer architecture [5, 14],
providing abundant supervisory signals. PCLHD [30] introduces hard prototypes to supply diverse
supervisory signals for optimization. Although existing UVI-ReID approaches have made significant
efforts to obtain diverse and reliable supervision, these methods primarily rely on image feature
distances or similarities. In contrast to previous work, we go beyond purely image-based features
by leveraging attribute arrays extracted by the LVLM as additional supervisory signals to improve
VI-ReID performance.

Vision-Language Models. Powered by large-scale pretraining, vision-language models (VLMs)
[27, 56] have demonstrated strong vision-language understanding capabilities and achieved competi-
tive performance across various downstream tasks in computer vision. CLIP [27], as a representative
work in the VLMs domain, typically consists of an image encoder and a text encoder. Given an input
image-text pair, CLIP [27] aims to predict their similarity. Subsequent research, such as CoOp [56],
enhances the flexibility of CLIP [27] by learning a set of task-specific text embeddings for each image
category in downstream tasks. Inspired by the success of VLMs, researchers in the ReID community
have also begun exploring VLMs-based approaches. For instance, CLIP-ReID [18] leverages text
semantics by learning a set of text embeddings for each identity to assist the image encoder in extract-
ing identity-related features. TVI-LFM [15] utilizes text descriptions of visible images to augment
the corresponding infrared images of the same identity, thereby improving visible-infrared retrieval
performance. In contrast to the aforementioned supervision methods, CCLNet [3] in the UVI-ReID
field learns a set of text embeddings for each intra-modality pseudo-label obtained by clustering,
and uses the optimized text embeddings as supervisory signals to enhance intra-cluster compactness.
However, existing UVI-ReID approaches face two key limitations: (1) the optimized text embeddings
provide supervision signals similar to the original pseudo-labels, without substantially improving
the quality of the pseudo-labels; (2) the optimized text embeddings are solely used to promote
intra-modality identity learning, without explicitly assisting the model in learning modality-invariant
features. To address these issues, our proposed LVLM-AAM method leverages attribute arrays to
refine intra-modality and inter-modality pseudo-labels and jointly utilizes both explicit and implicit
attributes to promote modality-invariant feature learning.

3 The Proposed Method

3.1 Task Formulation and Method Overview

In the UVI-ReID task, we are provided with an unlabeled training set consisting of a visible image
set {xvi }N

v

i=1 and an infrared image set {xri }N
r

i=1. Our goal is to train an image encoder capable of
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Figure 2: Illustration of our LVLM-AAM. The different colors of the features represent different
pseudo-labels, while different shapes denote different modality labels.

extracting modality-invariant and identity-discriminative features. Before optimizing the image
encoder, we utilize an LVLM [1] to extract a five-value attribute array for each image in {xvi }N

v

i=1 and
{xri }N

r

i=1. Specifically, we first prompt the LVLM [1] to respond in the following format: “Gender:
[male/female],” “Glasses: [wearing/without],” “Backpack: [carrying/without],” “Upper: [clothing
type],” and “Lower: [clothing type].” The detailed prompt can be found in Supplementary Material
Section S.I. Subsequently, we arrange the extracted attribute values in the order of Gender, Glasses,
Backpack, Upper, and Lower, obtaining a five-value attribute array for each image (e.g., [“male”,
“without”, “carrying”, “shirt”, “shorts”]). In the following descriptions, we refer to these arrays as
explicit attributes to distinguish them from implicit attributes (i.e., text embeddings).

As shown in Figure 2, the proposed LVLM-driven attribute-aware modeling (LVLM-AAM) method
first employs an attribute-aware reliable labeling (ARL) strategy, which consists of an attribute-aware
refinement (AR) module and an attribute-aware matching (AM) module, to obtain reliable intra-
modality and inter-modality pseudo-labels, respectively. Meanwhile, an explicit-implicit attribute
fusion (EAF) module is introduced, which leverages both explicit and implicit attributes along with a
pretrained CLIP [27] model consisting of a text encoder and an image encoder to generate fine-grained
text features. Finally, LVLM-AAM adopts an attribute-aware contrastive learning (AAC) module to
generate dynamic text features, thereby guiding the image encoder to learn identity-discriminative
and modality-invariant features.

3.2 Attribute-Aware Reliable Labeling

Attribute-Aware Refinement. We first input the visible image set {xvi }N
v

i=1 and the infrared image
set {xri }N

r

i=1 into the image encoder to obtain the visible feature set {fvi }N
v

i=1 and the infrared feature
set {fri }N

r

i=1. Then, we apply the DBSCAN algorithm [6] to perform clustering within both the
visible and infrared modalities to obtain intra-modality pseudo-labels. Next, for any given cluster
(pseudo-label), we determine the mode of attribute array values at each position across all attribute
arrays within the cluster. In each cluster, these five mode values are then aggregated to formulate
a cluster-level attribute array. From the perspective of ensemble learning [17, 41], the mode-based
cluster-level attribute array better reflects the overall characteristics of the cluster than a single
image-level attribute array. Therefore, we use the cluster-level attribute array to refine the images
within the cluster by excluding those that deviate significantly from the cluster-level attribute array.
Specifically, we identify image-level attribute arrays that differ from the cluster-level attribute array
by more than η values as outliers and exclude the corresponding images. Ultimately, we obtain the
refined clustering results (pseudo-labels), which are used for intra-modality contrastive learning.

Attribute-Aware Matching. Existing inter-modality matching methods [32, 3, 30] typically per-
form matching at a global level. However, global cluster matching often leads to cascading errors
due to mutual interference among clusters. Fortunately, the introduction of cluster-level attributes
provides a foundation for more fine-grained inter-modality matching. Specifically, we group clusters
based on the first three attribute values in their cluster-level attribute arrays. For example, clusters

4



with the first three attributes as “male,” “without,” and “carrying” are grouped together, while those
with “male,” “wearing,” and “carrying” are placed in a different group. In this work, we obtain
a total of eight groups, with each group containing both visible and infrared clusters. During the
inter-modality matching process, we perform progressive graph matching [32] within each group to
generate inter-modality pseudo-labels. The detailed matching process is provided in Supplementary
Material Section S.II.

We use all attributes in the attribute-aware refinement module for outlier detection to align with a
realistic perceptual principle: evaluating an object from more dimensions (attributes) is generally
more accurate and comprehensive than doing so from fewer dimensions. We restrict attribute-aware
matching to the first three attributes because they have countable value spaces, which ensures that
each group contains both visible and infrared clusters.

3.3 Intra-Inter Modality Contrastive Learning

Intra-Modality Contrastive Learning. Within each modality, we compute the cluster centers
based on the refined clustering results. For example, the center of the p-th cluster in the visible
modality is defined as:

cvp =

Nv
p∑

i=1

fvi , (1)

where fvi denotes an image feature within the cluster, and Nv
p represents the number of images in the

cluster. The center of the p-th cluster in the infrared modality, denoted as crp, is computed in a similar
manner. Finally, we introduce the intra-modality contrastive loss to encourage the image encoder to
learn identity-discriminative features. For example, for any image feature fvi in the visible modality,
the intra-modality contrastive loss is defined as:

Lv
intra = − log

exp(fvi · cvpT/τ)∑Cv

q=1 exp(f
v
i · cvqT/τ)

, (2)

where cvp denotes the center of the cluster to which fvi belongs, Cv is the total number of clusters in
the visible modality at the current epoch, and τ is the temperature hyperparameter. The intra-modality
contrastive loss for the infrared modality, denoted as Lr

intra, is computed in a similar manner. Thus,
the total intra-modality contrastive loss is defined as:

Lintra = Lv
intra + Lr

intra. (3)

Attribute-aware refinement and intra-modality contrastive learning are iteratively performed, and the
final intra-modality pseudo-labels are preserved.

Inter-Modality Contrastive Learning. We optimize the image encoder based on the inter-modality
pseudo-labels (matches) obtained from attribute-aware matching. For example, for any visible feature
fvi , the inter-modality contrastive loss is defined as:

Lv
inter = − log

exp(fvi · crpT/τ)∑Cr

q=1 exp(f
v
i · crqT/τ)

, (4)

where crp denotes the center of the infrared cluster matched to the cluster to which fvi belongs,
Cr is the number of clusters in the infrared modality at the current epoch, and τ is a temperature
hyperparameter. Similarly, the inter-modality contrastive loss Lr

inter for infrared features can be
defined in the same way. Following the alternate cross contrastive learning scheme [32], the overall
inter-modality contrastive loss is defined as:

Linter =

{
Lv
inter, epoch%2 = 0

Lr
inter, epoch%2 = 1

, (5)

where epoch represents the index of the current epoch.
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3.4 Explicit-Implicit Attribute Fusion

After the iterative execution of attribute-aware refinement and intra-modality contrastive learning,
we assign to each cluster a text containing learnable text embeddings “[X1] [X2] . . . . . . [XM ]” in
the format “An image of a [X1] [X2] . . . . . . [XM ] [male/female] [wearing/without] glasses and
[carrying/without] a backpack.” Here, M represents the number of learnable text embeddings,
and [male/female], [wearing/without], and [carrying/without] correspond to the first three
attribute values from the cluster-level attribute array of the respective cluster. By incorporating both
explicit and implicit attributes, we enrich the semantic content of the text.

Subsequently, we input the image and its corresponding text into the pretrained CLIP [27] image and
text encoders, respectively, to obtain the image features fsp and text features tsp. Following existing
optimization strategies, we freeze the pretrained CLIP [27] image and text encoders and introduce
the CLIP contrastive loss [3] to optimize the learnable text embeddings:

Lclip = Li2t + Lt2i, (6)

Li2t = − log
exp(fsp · tspT)∑B
q=1 exp(f

s
p · tsqT)

, (7)

Lt2i = −
1

|P s
p |

∑
fs
p∈P s

p

log
exp(tsp · fspT)∑B
q=1 exp(t

s
p · fsqT)

, (8)

where s ∈ {v, r} denotes the index for the visible or infrared modality, and fsp and tsp represent the
image and text features with the same pseudo-label. B refers to the batch size, and P t

p is the set of
image features in the batch that share the same pseudo-label as tsp. Finally, we refer to the converged
text features as the static text features.

3.5 Attribute-Aware Contrastive Learning

Although the static text features contain identity-related semantic information, they are modality-
dependent. Therefore, to leverage the text features for promoting modality-invariant learning, we first
obtain dynamic text features based on the static text features following attribute-aware matching. For
example, for the p-th cluster in the visible modality, its dynamic text feature is defined as:

t̂vp = (1− α)tvp + αtrp, (9)

where tvp and trp represent the static text features of the cluster and its matching cluster in the infrared
modality, respectively. α is the weight hyperparameter. The dynamic text features in the infrared
modality are computed using a similar approach. The dynamic text feature incorporates information
from both the visible and infrared modalities, and thus tends to be more modality-invariant compared
to the static text features. Moreover, since the dynamic text feature is derived from two static text
features that share the same inter-modality pseudo-label, it also retains identity-related information.

Subsequently, we introduce a text semantic contrastive loss to promote modality-invariant learning.
For any image feature fsp , the text semantic contrastive loss is defined as:

Ltsc = − log
exp(fsp · t̂spT)∑

tsq∈Qs∪t̂sp
exp(fsp · tsqT)

, (10)

where t̂sp represents the dynamic text feature corresponding to fsp , and Qs denotes the set of all static
text features in the modality to which fsp belongs.

In summary, the total loss used to optimize the image encoder is defined as:

Ltotal = Lintra + λinterLinter + λtscLtsc, (11)

where λinter and λtsc are the weight hyperparameters for Linter and Ltsc, respectively. The overall
algorithmic procedure is provided in Supplementary Material Section S.III.
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4 Experiment

4.1 Datasets and Evaluation Metrics

We evaluate our method on the SYSU-MM01 [31], RegDB [23] and LLCM [52] datasets. SYSU-
MM01 consists of images from 491 identities captured by four visible cameras and two near-infrared
cameras. Following existing methods [3, 37], a total of 22,258 visible images and 11,909 infrared
images from 395 identities are used for training. The query set and gallery consist of infrared
and visible images, respectively, from the remaining 96 identities. RegDB contains 412 identities,
with each identity having 10 visible images and 10 thermal infrared images. Following existing
protocols [3, 37], we use images from 206 identities for training and the remaining 206 identities for
testing. LLCM is collected under complex low-light conditions, making it a more challenging dataset
compared to the previous two. It contains 46,767 bounding boxes of 1,064 identities captured by 9
cameras.

Following existing methods [32, 37], we use cumulative matching characteristics (CMC), mean
average precision (mAP), and mean inverse negative penalty (mINP) to evaluate performance.

4.2 Implementation Details

The image encoder of LVLM-AAM is based on a pretrained ResNet-50 [13] and consists of two
branches to separately handle inputs from the visible and infrared modalities. For the learnable
text embeddings, we set M = 4. All images are resized to 288×144, and random flipping, random
grayscale conversion [19], channel augmentation [47], and random erasing [55] are applied as data
augmentation. We set the batch size B to 128. In each iteration, we randomly select 8 clusters
from each modality, and sample 16 images from each cluster. We use DBSCAN [6] to perform
intra-modality clustering, where the distance threshold and the minimum number of samples are set to
0.6 and 4, respectively, on SYSU-MM01 [31], and to 0.3 and 4 on RegDB [23]. We adopt the Adam
optimizer [16] for model training. Homogeneous learning (i.e., Eq. 3) is performed for 50 epochs,
followed by an update of the learnable text embeddings (i.e., Eq. 6) over another 50 epochs. Finally,
heterogeneous learning (i.e., Eq. 11) is conducted for an additional 50 epochs. The initial learning
rate is set to 0.00035, and it decays 10 times every 20 epochs. The temperature hyperparameter τ
is set to 0.05. For attribute-aware refinement (AR), we set η = 2. For attribute-aware contrastive
learning (AAC), we set α = 0.5. Regarding the weight hyperparameters for Linter and Ltsc, we set
λinter = 0.5 and λtsc = 0.5. An analysis of the sensitivity of LVLM-AAM to the hyperparameters η
and λtsc can be found in the Supplementary Material Section S.IV. The experiments are conducted
on four NVIDIA GeForce RTX 4090 GPUs. The LVLM inference is only required once during the
training phase to extract identity attributes and is not needed during the testing phase. Therefore, the
computational cost associated with LVLM inference does not affect the inference speed of the trained
ReID model during testing.

4.3 Comparison with the State-of-the-art Methods

As shown in Table 1, we compare the proposed LVLM-AAM with existing methods on SYSU-
MM01 (both All Search and Indoor Search) and RegDB (Visible to Thermal). Among existing
UVI-ReID methods, SDCL [37] and DLM [48] have achieved strong performance on SYSU-MM01
and RegDB, respectively. Our proposed LVLM-AAM surpasses both SDCL [37] and DLM [48] in
overall performance across both datasets. Specifically, on SYSU-MM01 (All Search), LVLM-AAM
outperforms SDCL [37] by 2.09%, 0.26%, and 1.23% in terms of Rank-1 accuracy, mAP, and mINP,
respectively. On RegDB (Visible to Thermal), LVLM-AAM achieves improvements of 2.70%, 1.13%,
and 2.05% over DLM [48] on the same three metrics. This is mainly because LVLM-AAM not only
effectively leverages attribute arrays provided by the LVLM to obtain reliable pseudo-labels, but also
jointly utilizes explicit and implicit attributes to further promote modality-invariant feature learning.
SVI-ReID methods rely on manually annotated identity labels, which are inaccessible to LVLM-AAM
and require significantly higher human effort compared to the attribute arrays used by LVLM-AAM.
Encouragingly, LVLM-AAM achieves superior overall performance on both datasets compared
to early SVI-ReID methods (e.g., DDAG [44], AGW [45], and MCLNet [12]), and demonstrates
competitive results against more recent methods (e.g., FMCNet [51] and DART [39]). Moreover,
on the RegDB dataset, the Rank-1 accuracy of LVLM-AAM is already comparable to that of the
latest SVI-ReID methods (e.g., SAAI [7] and STAR-ReID [26]). These results further validate the
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Table 1: Comparison with state-of-the-art methods on the SYSU-MM01 and RegDB datasets. The
best performances among UVI-ReID methods are highlighted in bold, while performances of SVI-
ReID methods that are lower than those of LVLM-AAM are indicated in italics.

Methods
SYSU-MM01 RegDB

All Search Indoor Search Visible to Thermal
Rank-1 mAP mINP Rank-1 mAP mINP Rank-1 mAP mINP

U
V

I-
R

eI
D

H2H [21] 30.15 29.40 - - - - 23.81 18.87 -
ADCA [38] 45.51 42.73 28.29 50.60 59.11 55.17 67.20 64.05 52.67
CHCR [24] 47.72 45.34 - - - - 69.31 64.74 -
CCLNet [3] 54.03 50.19 - 56.68 65.12 - 69.94 65.53 -
PGM [32] 57.27 51.78 34.96 56.23 62.74 58.13 69.48 65.41 -
GUR [36] 63.51 61.63 47.93 71.11 76.23 72.57 73.91 70.23 58.88
SDCL [37] 64.49 63.24 51.06 71.37 76.90 73.50 86.91 78.92 62.83

PCLHD [30] 64.4 58.7 - 69.5 74.4 - 84.3 80.7 -
PCAL [40] 57.94 52.85 36.90 60.07 66.73 62.09 86.43 82.51 72.33
DLM [48] 62.15 58.42 43.70 67.31 72.86 68.89 87.55 82.83 71.93

SV
I-

R
eI

D

DDAG [44] 54.75 53.02 39.62 61.02 67.98 62.61 69.34 63.46 49.24
AGW [45] 47.50 47.65 35.30 54.17 62.97 59.23 70.05 66.37 50.19

MCLNet [12] 65.40 61.98 47.39 72.56 76.58 72.10 80.31 73.07 57.39
FMCNet [51] 66.34 62.51 - 68.15 74.09 - 89.12 84.43 -
DART [39] 68.72 66.29 53.26 72.52 78.17 74.94 83.60 75.67 60.60
SGIEL [8] 77.12 72.33 - 82.07 82.95 - 92.18 86.59 -
MUN [49] 76.24 73.81 - 79.42 82.06 - 95.19 87.15 -
SAAI [7] 75.90 77.03 - 83.20 88.01 - 91.07 91.45 -

IDKL [28] 81.42 79.85 - 87.14 89.37 - 94.72 90.19 -
STAR-ReID [26] 82.93 80.47 - 88.04 89.58 - 91.89 93.31 -

LVLM-AAM 66.58 63.50 52.29 72.97 78.65 75.21 90.25 83.96 73.98

Table 2: Comparison with state-of-the-art methods on the LLCM dataset.

Methods Reference Visible to Infrared Infrared to Visible
Rank-1 mAP Rank-1 mAP

CCLNet [3] MM’23 45.3 49.9 39.3 45.3
PGM [32] CVPR’23 44.4 48.6 38.4 44.2
SDCL [37] CVPR’24 46.9 52.4 43.4 48.2

SCA-RCP [20] TKDE’24 29.1 33.3 22.3 28.0
LVLM-AAM Ours 52.2 57.3 46.0 51.7

effectiveness of LVLM-AAM and highlight the potential of replacing costly manual annotations with
automatically extracted attribute arrays.

We further compare LVLM-AAM with state-of-the-art unsupervised methods on the LLCM dataset.
As shown in Table 2, our method outperforms existing methods in both testing scenarios of LLCM.
For instance, compared to SDCL [37], LVLM-AAM achieves a more significant performance gain on
LLCM than on SYSU-MM01. Moreover, despite SCA-RCP [20] utilizing camera labels, LVLM-
AAM still demonstrates a substantial advantage. This is because LLCM presents greater complexity
compared to SYSU-MM01 and RegDB, making it more challenging for existing methods to obtain
reliable pseudo-labels. In contrast, LVLM-AAM effectively leverages attribute arrays from the LVLM
to enhance the reliability of pseudo-labels and utilizes text semantics to facilitate model optimization,
thereby achieving superior performance over existing methods. These experimental results not only
validate the superiority of the proposed LVLM-AAM but also demonstrate its strong generalization
capability.

4.4 Ablation Study

In this section, we evaluate the effectiveness of attribute-aware refinement (AR), attribute-aware
matching (AM), explicit-implicit attribute fusion (EAF), and attribute-aware contrastive learning
(AAC). As shown in Table 3, the baseline adopts the same image encoder and CLIP-based architecture
as LVLM-AAM. The key difference lies in that the baseline does not incorporate AR, AM, or EAF,
and replaces AAC with the image-to-text contrastive loss (ITC) [3], which utilizes text features
containing only implicit attributes to assist the optimization of the image encoder. Four ablation
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Table 3: Ablation study on the SYSU-MM01 and RegDB datasets.

Methods AR AM EAF ITC AAC SYSU-MM01(All Search) RegDB(Visible to Thermal)
Rank-1 mAP mINP Rank-1 mAP mINP

Baseline X 58.52 52.89 35.27 72.55 68.59 56.90
A1 X X 60.85 56.03 41.26 75.63 71.28 60.05
A2 X X X 61.36 57.40 43.18 78.34 73.57 62.17
A3 X X X X 62.51 59.26 46.11 80.29 75.16 65.23
A4 X X X 64.59 61.89 50.69 86.57 79.85 70.29
A5 X X X X 66.58 63.50 52.29 90.25 83.96 73.98
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Figure 3: Statistical results of F-score and NIPP.

variants (A1, A2, A3, and A4), along with the complete LVLM-AAM (A5), progressively introduce
AR, AM, EAF, and AAC based on the baseline.

Effectiveness of AR and AM. As shown in Table 3, introducing AR in A1 leads to noticeable
performance improvements over the baseline on both SYSU-MM01 and RegDB. For example, on
SYSU-MM01 (All Search), Rank-1, mAP, and mINP are improved by 2.33%, 3.14%, and 5.99%,
respectively, while on RegDB (Visible to Thermal), the three metrics are increased by 3.08%, 2.69%,
and 3.15%, respectively. To further evaluate the effectiveness of AR, we assess the F-score [11] of the
intra-modality pseudo-labels. A higher F-score [11] indicates greater accuracy of the pseudo-labels.
As shown in Figure 3a and Figure 3b, A1 achieves a significantly higher F-score compared to the
baseline, verifying that AR can effectively leverage attribute arrays to enhance the reliability of
pseudo-labels and thereby improve model performance. Building upon A1, A2 introduces AM and
achieves further performance improvements. For example, on SYSU-MM01 (All Search), Rank-1,
mAP, and mINP increase by 0.51%, 1.37%, and 1.92%, respectively. On RegDB (Visible to Thermal),
the three metrics improve by 2.71%, 2.29%, and 2.12%, respectively. In addition, we analyze the
number of inter-modality positive pairs (NIPP) obtained by A1 and A2. Specifically, two images are
considered an inter-modality positive pair if they share the same inter-modality pseudo-label, the
same ground-truth identity label, and different modality labels. Generally, a higher NIPP indicates
more accurate inter-modality matching. As shown in Figure 3c and Figure 3d, A2 increases NIPP
compared to A1. This confirms that AM can enhance model performance by improving the accuracy
of inter-modality matching.

Effectiveness of EAF and AAC. EAF introduces explicit attributes to enrich the text semantics. As
shown in Table 3, A3 incorporates EAF based on A2 and achieves further performance improvements
on both SYSU-MM01 and RegDB. In the VI-ReID task, due to the modality gap, the feature distance
between inter-modality positive pairs is typically much larger than that between intra-modality
positive pairs. As shown in Figure 4, compared to A2, A3 slightly reduces the feature distance
between inter-modality positive pairs. This improvement can be attributed to EAF introducing
explicit, modality-invariant, and identity-relevant attributes to enrich the text semantics, thereby
effectively enhancing modality-invariant feature learning. A4 builds upon A2 by introducing AAC,
which involves computing dynamic text features and replacing the image-to-text contrastive loss (ITC)
[3] with the text semantic contrastive loss (Eq. 10). As shown in Table 3, A4 achieves significant
performance improvements over A2 after introducing AAC. For example, on SYSU-MM01 (All
Search), Rank-1, mAP, and mINP improve by 3.23%, 4.49%, and 7.51%, respectively. As illustrated
in Figure 4, A4 significantly reduces the feature distance between inter-modality positive pairs
compared to A2. This is because AAC incorporates inter-modality matching information into the

9



0.0 0.2 0.4 0.6 0.8
Distance

0

2

4

6

8

R
el

at
iv

e 
Fr

eq
ue

nc
y

intra
inter

(a) A2

0.0 0.2 0.4 0.6 0.8
Distance

0

2

4

6

8

R
el

at
iv

e 
Fr

eq
ue

nc
y

intra
inter

(b) A3

0.0 0.2 0.4 0.6 0.8
Distance

0

2

4

6

8

R
el

at
iv

e 
Fr

eq
ue

nc
y

intra
inter

(c) A4

0.0 0.2 0.4 0.6 0.8
Distance

0

2

4

6

8

R
el

at
iv

e 
Fr

eq
ue

nc
y

intra
inter

(d) LVLM-AAM

Figure 4: The feature distance distributions of intra-modality and inter-modality positive pairs for A2,
A3, A4, and LVLM-AAM.

dynamic text features and encourages image features to approach the dynamic text features during
optimization, thereby enhancing modality-invariant feature learning.

Furthermore, we observe that LVLM-AAM (A5) outperforms all of the aforementioned ablation
variants and further reduces the feature distance between inter-modality positive pairs compared to
A3 and A4. This validates that AR, AM, EAF, and AAC can be organically integrated to enhance the
model’s performance in cross-modality scenarios.

5 Conclusion and Limitations

In this paper, we propose an LVLM-driven attribute-aware modeling (LVLM-AAM) method to
improve VI-ReID. Ablation studies validate the effectiveness of each module in LVLM-AAM. Specif-
ically, attribute-aware reliable labeling, which comprises attribute-aware refinement and attribute-
aware matching, effectively leverages attribute arrays to enhance the reliability of both intra-modality
and inter-modality pseudo-labels. Explicit-implicit attribute fusion utilizes attribute arrays to ac-
quire fine-grained identity-related text features, while attribute-aware contrastive learning promotes
modality-invariant learning by integrating static and dynamic text features. Comparative experimental
results demonstrate the superiority of LVLM-AAM, which not only significantly outperforms existing
unsupervised methods and earlier supervised approaches but also competes with state-of-the-art
supervised methods in certain scenarios.

Essentially, this paper represents an early exploration of applying the LVLM to UVI-ReID, with the
core contribution being the preliminary validation of the effectiveness of attribute arrays extracted by
the LVLM in UVI-ReID. However, a thorough analysis of a broader range of attribute arrays has not
been conducted, which could serve as a potential direction for future research. Additionally, the eight
groupings manually set in attribute-aware matching are a very preliminary exploration, and exploring
more diverse or flexible strategies in the future could yield even more promising results.
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considering releasing a more polished and comprehensive version of the code in the future.
In the meantime, we have provided key experimental details in the “Implementation Details”
subsection and included an algorithmic procedure in Section S.III of the Supplementary
Material to enable researchers to partially or fully reproduce our method.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all relevant training and testing details in Sections 4.1 and 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: We do not report error bars in our results. However, following established
practice in prior work, we conduct each experiment 10 times with different random selections
or splits on the SYSU-MM01 and RegDB datasets, and report the average performance over
these runs to ensure the stability and reliability of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information in Section 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully conforms in every respect to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: A discussion of broader impacts is provided in Supplementary Material Section
S.V.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The pretrained models and large vision-language models used in this paper are
publicly available and widely adopted in the research community. We do not release any
additional pretrained models, and no new models or datasets with potential misuse risks are
introduced.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: All datasets and models used in this paper have been properly credited,
with appropriate citations provided. Their licenses and terms of use have been explicitly
acknowledged and fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We employ a large vision-language model (LVLM) as a key component to
enhance existing methods. The details of its usage are described in Section 3.1 and further
elaborated in the Supplementary Material Section S.I.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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