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ABSTRACT

While “attention is all you need” may be proving true, we do not yet know
why: attention-based transformer models such as BERT are superior but how
they contextualize information even for simple grammatical rules such as subject-
verb number agreement (SVA) is uncertain. We introduce multi-partite patterns,
abstractions of sets of paths through a neural network model. Patterns quantify
and localize the effect of an input concept (e.g., a subject’s number) on an output
concept (e.g. corresponding verb’s number) to paths passing through a sequence
of model components, thus surfacing how BERT contextualizes information.
We describe guided pattern refinement, an efficient search procedure for finding
sufficient and sparse patterns representative of concept-critical paths. We discover
that patterns generate succinct and meaningful explanations for BERT, highlighted
by “copy” and “transfer” operations implemented by skip connections and
attention heads, respectively. We also show how pattern visualizations help us
understand how BERT contextualizes various grammatical concepts, such as SVA
across clauses, and why it makes errors in some cases while succeeding in others.

1 INTRODUCTION

Recent advancements in NLP have been spurred by contextualized representations created in deep
neural models such as BERT (Devlin et al., 2019). These contextualized representations, which are
designed to be sensitive to the context in which they appear (Ethayarajh, 2019), are also shown to
capture many grammatical concepts (Lin et al., 2019; Tenney et al., 2019a), including subject-verb
agreements(SVA) and reflexive anaphora(RA) (Goldberg, 2019). However, the exact mechanism
of contextualization in BERT, i.e., the process of developing contextualized representations from
representations of individual input words in the sentence context, remains unclear. For example,
in the sentence the pilots that the architect likes is/are short, choosing
the correct the verb is over are to agree with the subject requires contextualizing the verb
with plurality information of the subject. In this paper, we answer the central question: How
is contextualization realized in BERT for grammatical concepts such as SVA and RA?
Specifically, can we identify sub-components of BERT that are a) sufficient for representing those
concepts but also b) sparse enough to legibly show how BERT contextualizes the concepts across
layers and whether the contextualization follows correct grammatical rules?

Prior works on explaining contextualization in BERT rely on the analysis of layer representations
and attention components. Representation analyses, either by training a probing classifier (Lin
et al., 2019; Tenney et al., 2019a), or finding parse trees embedded in the representations (Hewitt
& Manning, 2019; Reif et al., 2019), demonstrate that relevant linguistic concepts are associated
with the activations of BERT components (i.e. subject’s number associated with the activations of
a certain head at a certain layer, or subject’s representation closer to that of the verb’s under certain
transformations), but do not tell us how representations come about inside the model. Meanwhile,
inspection of attention weights as indicators of the flow of information between BERT layers (Clark
et al., 2019), requires subjective inference of relevant function (i.e. inference that a certain head may
be involved because high attention weights between cells at the subject and cells at the verb), which
are found to be problematic in other contexts (Brunner et al., 2020; Jain & Wallace, 2019). Analysis
of attention further disregards the role of skip connections that do not involve attention at all. Neither
approach allows us to track a concept as a causal chain from input to output or to distinguish

1



Under review as a conference paper at ICLR 2021

helpful from hindering representations or flows (hindering information such as contextualization
of confounding inputs like unrelated nouns in a sentence lead to errors on SVA).

To answer the central question while overcoming these limitations, we introduce multi-partite1

patterns, abstractions of sets of paths through a neural model (a graph). Patterns quantify and
localize the effect of an input concept (e.g. a subject’s number) on an output concept (e.g.
corresponding verb’s number) to a collection of paths passing through a sequence of model nodes
and/or edges. We describe guided pattern refinement, a search procedure for finding patterns
representative of concept-critical paths that let us selectively explore the importance of chosen
aspects of a model (e.g. in BERT, we can refine patterns showing criticality of certain heads to
paths also showing whether this is due to skip connections or due to attention). To demonstrate
the contextualization process, we further extend the experimental framework to integrate impacts
of multiple words towards a given concept (as opposed to impact of a single word, e.g. subject on
SVA).

Contributions: 1) We describe multi-partite patterns for explaining the model-wide
contextualization in neural models like BERT and guided pattern refinement (GPR) to
discover influential patterns focusing on model elements of interest. 2) We visualize BERT’s
contextualization grammatical concepts including subject-verb agreements(SVA) and reflexive
anaphora(RA), and qualitatively show how BERT encode these concepts using grammatically
correct or incorrect cues. 3) We validate the sufficiency and sparsity of derived patterns with model
compression and concentration metrics, respectively.

We begin with a summary of requisite techniques in Sec. 2. We describe the core elements of our
methodology in Sec. 3 and exemplify them for understanding BERT in Sec. 4. We elaborate on
related works in Sec. 5 and conclude in Sec. 6.

2 BACKGROUND

We introduce the basics of the BERT architecture (Fig. 1) and the learning task subject to our work.
We then discuss existing explanation devices and how they motivate our methods that follow.

BERT In BERT, let L be the number of Transformer encoder layers, H be the hidden dimension
of embeddings at each layer, and A be the number of attention heads. The list of input word
embeddings is x def

= [x1,x1, ...,xN ],xi ∈ Rd. We denote the output of the l-th layer as hl0:N−1. First
layer inputs are h0

1:N
def
= x1:N . We use al,ij to denote the j-th attention head from the i-th embedding

at l-th layer and slj to denote the skip connection that is “copied” from the input embedding from
the previous layer then combined with the attention output. Probability scores for candidates of
[MASK] are denoted by yi

def
= softmax(WhLi ),W ∈ RC×H where C is the vocabulary size. We

denote the index of [MASK] asm. The layered architecture is presented in Fig. 1(left) and a detailed
view of the transformer layer in Fig. 1(right). For further details, refer to Vaswani et al. (2017) and
Devlin et al. (2019).

We focus on Masked Language Modeling (MLM) used in BERT pretraining: predict a masked word
represented by [MASK] in a context sentence. The MLM task has been used to evaluate whether
BERT learns linguistic concepts such as SVA by measuring if it assigns a higher probability for the
correct verb (e.g. are in Fig. 2) than the incorrect verb (e.g. is) at the [MASK] position (Goldberg,
2019).

Distributional Influence. To explain a DNN’s behavior, distributional Influence attributes to each
input a measure of impact on model output. Saliency (Baehrens et al., 2010), as an example, defines
influence as the gradient of output w.r.t. the input. In a generalized framework of Leino et al. (2018),
influence quantifies the impact of each input feature towards a concept (e.g. SVA) by instrumenting
a model’s inputs with a distribution of interest (DoI) and the output with a quantity of interest (QoI).

Definition 1 (Distributional Influence) Given a model f : Rd → Rn, an input x, a DoID(x), and
a QoI q : Rn → R, Distributional Influence gq(x) quantifies the impact of an input concept defined

1Multi-partite because patterns abstract sets of paths in neural models viewed as multi-partite graphs.
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Figure 1: BERT Transformer architecture (left) and details of a transformer layer (right).

by the DoI on the output concept defined by the QoI:

gq(x)
def
= Ez∼D(x)

∂q(f(z))

∂z

Instantiations defining SVA and RA concepts in BERT models are found in Sec. 4. Examples of DoI
include Gaussian distributions with mean x (Smilkov et al., 2017), or uniform distributions over a
path c = {x + α(x − xb), α ∈ [0, 1]} from a user-defined baseline input xb to the target input x
(Sundararajan et al., 2017). We use the latter in the rest of paper; we approximate the expectation
in Def. 1 by sampling discrete points in the uniform distribution (Sundararajan et al., 2017) (see
Appendix B.1 for an analysis of the accuracy of approximation).

Explaining Contextualization with Influence Paths. While it can highlight relevant inputs,
Distributional Influence cannot show if or how they are contextualized internally to form higher-
level concepts. Influence Paths (Lu et al., 2020) localizes an input influence measurement to paths
in a neural model and thus can be used to show how the influence of the input representations flows
internally through one internal representation to another. A computation graph G def

= (V,F , E) is
a set of nodes, activation functions, and edges, respectively. In this paper, we assume the graph is
directed, acyclic, and does not contain more than one edge per adjacent pair of nodes2. A path p in
G is a sequence of graph-adjacent nodes [p1, p2, · · · , p−1]. We denote the Jacobian of the output of
node ni w.r.t the output of connected (not necessarily directly) predecessor node nj evaluated at x
as ∂nj(x)/∂ni(x) We write Oxp as the component of the Jacobian passing through path p evaluated
at input x as per chain rule: Oxp

def
=
∏−1
i=1 ∂pi(x)/∂pi−1(x).

Definition 2 (Individual Path Influence) Given a path p of a computation graph G, the individual
path influence for an input x, or χ(x, p) is:

χ(x, p)
def
= Ez∼D(x) [Ozp]

Lu et al. (2020) uses individual path influence to decompose distributional influence to paths and
explain internal LSTM behaviour under SVA via the most influential path arg maxp∈P χ(x, p)
whereP are all paths from input to a particular output (normally a QoI). The influence path approach
relies on enumerating P .

3 PATH ABSTRACTION

Directly applying individual influence paths of Lu et al. (2020) to transformer-based models like
BERT has computational and conceptual problems. BERT is denser in terms of model connections:
each node at each layer integrates information from all nodes of the prior layer (as opposed to the
pair of short-term and long-term connections in LSTM). This results in an intractable number of
influence paths to enumerate, even for processing the simplest of BERT variants.

2The single edge restriction is for notational conveniences to follow; if a given neural model does have more
than one edge between adjacent nodes, we can replace duplicate edges with 2-length paths through dummy
identity nodes to satisfy this requirement without affecting its semantics.
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Our approach is three-fold: first we employ abstractions of sets of paths as the localization and
influence quantification instrument; second, we discover influential patterns with a greedy search
procedure that refines abstract patterns into more concrete ones, keeping the influence high; and
third, we consider the collection of influence patterns from every word in a sentence to the quantity
of interest. We begin with the pattern abstraction:

Definition 3 (Multi-partite pattern) A multi-partite pattern π is a sequence of nodes
[π1, π2, · · · , π−1] such that for any pair of nodes πi, πi+1 adjacent in the sequence (not
necessarily adjacent in the graph), there exists a path from πi and πi+1.

A pattern π abstracts a set of paths, written γ(π) that follow the given sequence of nodes but are free
to traverse the graph between those nodes in any way. Interpreting paths and patterns as sets, we
define γ(π)

def
= {p ⊆ P : π ⊆ p} where P is the set of all paths from π1 to π−1. If every sequence-

adjacent pair of nodes is directly connected then the pattern abstracts a single path.

Definition 4 (Pattern influence) Given a computation graph and a DoID, the influence of a multi-
partite influence pattern π, written I(x, π) is the total influence of all the paths abstracted by the
pattern:

I(x, π)
def
=

∑
p∈γ(π)

χ(x, p) = Ez∼D(x)

−1∏
i=1

∂πi(x)

∂πi−1(x)

Also note that influence of individual paths may be positive or negative so cancellation in the
influence of a pattern which aggregates paths is possible.

Computation Graphs for BERT A given DNN can be expressed by many computational graphs.
For computational and interpretability reasons, an ideal graph would contain as few nodes and edges
as possible while exposing structures of interest. For BERT in particular, we propose embedding-
level graph Ge corresponding to the nodes and edges shown in Fig. 1 (left) to explain how the
influence of input embeddings flow from one Transformer layer to another and to the eventual
prediction of [MASK]; and attention-level graph Ga ⊃ Ge that additionally includes head nodes as
in Fig. 1 (right), a finer decomposition to demonstrate how influence from the input embedding flows
through the attention block within each layer. BERT’s semantics are modeled using a computational
graph’s activation functions which we omit here.

As the attention level graph contains a superset of the nodes of the embedding level graph, we can
interpret embedding level patterns as abstracting paths in both the embedding level graph and the
attention level graph. Furthermore, a concrete path in Ge is a pattern in Ga as it contains Ga-non-
adjacent nodes and thus abstracting multiple paths in Ga. For a given pattern π of Ge we can thus
write γa(π) as the set of paths it abstracts in Ga with:

γa(π)
def
=

⋃
p∈γe(π)

γa(p)

Guided Pattern Refinement(GPR) Instead of enumerating the path space of P for discovering
influential paths, we approximate a search by greedily refining patterns while maximizing their
influence. Starting with sources and target nodes s and t along with a pattern π0 = {s, t}
representing all paths between s and t, we construct π1 by adding a node from a guiding set E0

that maximizes the influence of the resulting pattern. At the first iteration and subsequently, the
guiding set defines a cut of the (multi-partite) graph between two sequence adjacent nodes (initially
just s and t). The procedure is repeated with additional refinement. At iteration i + 1, a guiding
set Ei defines a cut between nodes si and ti while the cut node that refines the pattern to maximal
influence is selected:

πi+1 def
= πi[si, ti \ si, ei, ti]

ei
def
= arg max

ei∈Ei
I(x, πi

[
si, ti \ si, ei, ti

]
)

Above, π [a, c \ a, b, c] denotes the pattern π in which sequence adjacent nodes a, c are replaced
with a, b, c, in their position in the sequence.
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Repeating the procedure for some number of steps or until some stopping criterion is reached
produces a sequence of patterns with decreasing abstraction: γ(πi+1) ⊆ γ(πi). Once a pattern
is produced that abstracts a single path, no more refinement can be done though it might not be
desirable to continue refinement until that point for interpretability reasons. Also, the choice of
guiding sets Ei at each iteration can have an impact on the resulting patterns both in terms of
their influence significance and computational requirements of iteration. Smaller sets require fewer
options to enumerate but are likely to lead to less influential patterns.

In our experiments we employ a layer-ordered strategy for the embedding-level pattern refinement
and then refine the resulting pattern in the attention-level graph. In the embedding-level analysis, at
iteration i, we focus on layer i. The guiding set Ei is the cut:

(embedding-level guiding set) Ei
def
=
{
hlj
}
j

The refinement thus proceeds for L iterations (the input layer can be skipped). If the input node is
denoted as x and the quantity of interest is denoted as q, the refinement process results in a pattern
πe

def
=
{
x, h1

j1
, h2
j2
, · · · , hLjL , q

}
where ji are indices designating which embeddings at each level i

the abstracted paths traverse.

The attention-level refinement starts with the embedding-level pattern πe and exposes the attention
heads to cut the flow of influence in that starting pattern, also in order of the layers. At iteration i,
the cut Ei is:

(attention-level guiding set) Ei
def
=
{
ai,kji

}
k
∪
{
siji
}

That is, the cut separates embedding nodes hiji and hi+1
ji+1

with the attention heads
{
ai,kji

}
k

and a skip

edge modeled as a node siji . As the attention-level analysis refines the embedding-level analysis, the
produced attention-level pattern πa abstracts a strict subset of the paths of the attention-level graph
that the embedding-level pattern πe abstracts. That is, πe ⊂ πa and therefore γa(πe) ⊃ γa(πa).

In our experiments, we perform GPR independently for each input word, and refine with most
positively influential cut nodes for positively influential words (gq(xi) ≥ 0)) but refine with the
most negatively influential cut nodes for negative (gq(xi) < 0) words. In the following section, we
use πi as the extracted patterns for individual input word i, Π as the set of patterns for all words, and
Π+ as the set of patterns for all positively influential words. Both terms may be further decorated
by a or e to denote attention-level or embedding-level results.

4 EVALUATION

We apply GPR to discover BERT patterns on the level of embedding and attention. We begin with
a summary of the linguistic tasks, datasets, models, and hyper-parameters. We evaluate patterns
for their sparsity and sufficiency in Sec. 4.1 as measured by the metrics of concentration and
compression accuracy (Lu et al., 2020), respectively. Finally, in Sec. 4.2 we visualize example
patterns and discuss how they help explain contextualization of SVA in BERT.

Tasks. We consider two linguistic tasks: subject-word agreement (SVA) and reflexive anaphora
(RA). We explore different forms of sentence stimuli in each task: object relative clause (Obj.),
subject relative clause (Subj.), within sentence complement (WSC), and across prepositional
phrase (APP) in SVA; number agreement (NA) and gender agreement (GA) in RA. SVA and RA
datasets (Marvin & Linzen, 2018; Lin et al., 2019) are evaluated with MLM in a same way as prior
work (Goldberg, 2019). We sample 200 sentences evenly distributed across different sentence types
(e.g. singular/plural subject & singular/plural intervening noun) with a fixed sentence structure
from each task; sentence length and the word types in each position are consistent across samples.
Examples of each task are found in Appendix A.

QoI and Distributional Influence. We use the same QoI from Lu et al. (2020) where q(ym)
def
=

ym,correct− ym,wrong, e.g. ym,IS− ym,ARE for she [MASK] happy. We select D as an uniform
distribution over a linear path from xb to x in the input space for each word with the baseline xb
defined as the the input embedding of [MASK]; we view it as a neutral word with no information.

Model. We evaluate our methods with a BERT model with L = 6, A = 8, referred hereby as
BERTSMALL, of Turc et al. (2019) instead larger models such as BERTBASE used in the original BERT
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Task lg|P∗| CΠ∗
+ CΠ∗

−
|γ∗(π∗

+)|
|P∗| acc.(π∗+) acc.(rand. ∗) acc.(ori.)

e a e a e a e a e a e a
SVA
Obj. 14.4 27.6 0.34 0.22 0.29 0.16 0.06 2.0e-7 0.99 0.74 0.50 0.51 0.96
Subj. 14.4 27.6 0.30 0.18 0.31 0.17 0.09 2.0e-7 0.74 0.56 0.50 0.49 1.00
WSC 13.8 27.0 0.27 0.16 0.38 0.24 0.03 1.8e-7 1.00 0.69 0.52 0.49 1.00
APP 14.4 27.6 0.33 0.18 0.31 0.15 0.06 1.6e-7 0.92 0.62 0.55 0.60 1.00
RA
NA 14.4 27.6 0.31 0.18 0.32 0.18 0.04 1.4e-7 0.68 0.49 0.54 0.52 0.83
GA 15.4 28.6 0.22 0.14 0.23 0.15 0.02 1.4e-7 0.76 0.72 0.65 0.55 0.73

Table 1: Pattern sufficiency, sparsity, and related metrics on various linguistic tasks. Metrics are
shown in the 1st row while the 2nd row indicate graph levels: ∗ denotes e or a, corresponding
to abstracted embedding-level patterns πe or attention-level patterns πa, respectively. lg|P∗|:
natural log of the number of possible paths; CΠ∗

+ , CΠ∗

− : positive/negative concentrations; |γ∗(π∗
+)|

|P∗| :
percentage of paths in the abstracted patterns over the total number of paths; acc.(π∗+): the
compressed accuracy of abstracted patterns; acc.(rand. ∗): the compressed accuracy of randomly
compressed models; acc.(ori.): the accuracy of the original model BERTSMALL.

paper (Devlin et al., 2019) because 1) we find BERTBASE is not significantly better than BERTSMALL
in the tasks of interests as shown in Appendix A, 2) when approximating the expectation in Def. 2
with finite points, we find more than 2000 samples are required in BERTBASE for an acceptable
margin, while 50 samples suffices for BERTSMALL (see Appendix. B.1), and 3) visualizations of
abstracted patterns from BERTSMALL are easier on human interpreters.

4.1 QUANTITATIVE ANALYSIS

Recall that πe and πa denote the abstracted pattern returned by GPR with an embedding-level graph
and an attention-level graph, respectively. The quantitative evaluation in this section aims to verify
that influential patterns in BERT are 1) sparse: inputs influence the QoI largely through πe or πa
and 2) sufficient: BERT retains high task accuracy if only πe or πa are evaluated at inference time.
Firstly, we introduce concentration to evaluate sparsity:

Definition 5 (Concentration) Given an input x with N words/embeddings, their distributional
influences gq(x) and pattern influences I(x, πi) for a set of patterns Π = {πi}i, the concentration
of the positive (and negative) pattern influence CΠ+ (and CΠ− ) are the patterns’ share of positive
(or negative) influences as compared to the total positive (or negative) distributional influence:

CΠ+
def
=

∑N
i {I(x, πi)i ∗ I[I(x, πi)i ≥ 0]}∑N
i {gq(x)i ∗ I[gq(x)i ≥ 0]}

, CΠ− def
=

∑N
i {I(x, πi)i ∗ I[I(x, πi)i < 0]}∑N
i {gq(x)i ∗ I[gq(x)i < 0]}

To evaluate sufficiency, we employ a compression study previously used to verify other explanation
devices (Dabkowski & Gal, 2017; Ancona et al., 2018; Leino et al., 2018; Lu et al., 2020). For each
example, we compress BERT down to a specific pattern: we only retain the nodes from Πe

+ (or Πa
+)

while replacing all other nodes, layer by layer. Starting from the first layer, the embedding nodes not
in Πe

+ (or the attention/skip connection nodes not in Πa
+) are replaced by the embedding of [MASK]

(or zero vectors for attention/skip nodes), while the nodes in Πe
+ (or Πa

+) remain untouched. The
retained and replaced node together are forward passed to the next layer using the original model
parameters until a new set of nodes needs to be retained or replaced. We then compare the accuracies
of predicting labels of [MASK] between the original model and the compressed model, the former
of which we refer to as compressed accuracy.

Explanations of Results. Concentration and compressed accuracy of πe and πa are shown in Table
1 using the setup in Sec. 4. Replacing ∗ in the second row with e or a corresponds to the results for
the abstracted embedding-level patterns πe and the attention-level patterns πa, respectively.

Sparsity with concentration. Per the gradient chain rule, the total influence of all individual paths
from the input to QoI equals to the distributional influence, therefore, 0 < CΠ+ , CΠ− < 1. As
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Figure 2: Significant patterns πa extracted by GPR from the attention-level graph for task SVA across
Object Relative Clauses (Goldberg, 2019; Marvin & Linzen, 2018), in two exmaples with attractors.
Left: bar plots of the distributional influence g(xi)(yellow), I(xi, π

e
i ) (purple) and I(xi, π

a
i ) (blue)

for each word at position i. Right: significant patterns πai from each input word at position i to
quantity of interest (verb number correctness). The square nodes denote the input embeddings and
circles denote internal contexualized embeddings. Dashed lines correspond to skip connection in the
attention block while solid lines correspond to connection through (any) attention heads. Attention
connections with high influence flow are marked with the corresponding attention head number
(ranging from 1 to 8). Line colors represent the sign of influence (red as negative and green as
positive).

shown in the first two columns of Table 1, there are about exp 14 and exp 27 individual patterns in
the embedding and attention-level graphs, respectively. However, the abstracted patterns (shown by
the 3rd to 6th columns) account for a large portion of both positive and negative influence across all
tasks. The embedding level (∗ = e) abstracted pattern contributes around 30% of the total influence
indicating that the concept is concentrated to individual contextualized embeddings in each layer,
instead of dispersed to many words. Zooming in on the attention-level (∗ = a), concentration
suggests that between the contextualized embeddings of adjacent layers, influence is also more
concentrated to either one attention head or the skip connection.

Sufficiency with model compressed accuracy. We show the original accuracies of the model on
different tasks in the last column. The compressed model retains a high accuracy (as shown in 9th

and 10th columns) with a tiny portion of the models (shown in 7th and 8th columns) retained. As a
comparison, we denote the compressed accuracy with random patterns in the 11th and 12th columns,
which compresses the model by retaining the same number of nodes as πe+ but has a performance
close to 50%, effectively a random guess; randomly chosen patterns of the same size do not abstract
the concept at all.

4.2 EXPLAINING CONTEXTUALIZATION OF SVA ACROSS OBJECT RELATIVE CLAUSE

In this section, we explain contextualization between internal representations of BERT by
visualizing the significant patterns πe and πa found by GPR for two examples of SVA across object
relative clauses as seen in Figure 2. Results on other tasks are included in the Appendix. B.2.

First we observe that in both sentences of Figure 2, both words in the subject phrase (“the” and
the nouns) exert a positive input influence on the correct prediction of the verb, and the intervening
noun(attractor) exerts negative influence, which is also true for both I(x, πei )i and I(x, πai )i.

“Copy and Transfer” We observe many horizontal dashed lines in Figure 2, indicating significant
influence flows through layers at the same word position using skip connections. Zooming in on πei
and πai , we observe that the subject phrase travels through skip connections across the lower layers,
and only through attention head 5 in the last layer. This “copy and transfer” procedure indicates that
BERT mostly picks up the signal from the subject input embedding without much contextualization,
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however, exactly how it overcomes(or not) the comparable signals from the attractors is explained
the next section. In addition, we speculate that the reason that attentions can be effectively pruned
without compromising the performance in prior works (Michel et al., 2019), is that some concepts
does not travel through attention block at all: they are simply “copied” to the next layer through
the skip connections. In Appendix B.2 we observe that all the above conclusions are also prevalent
in other tasks (such as the contextualization of propositions in WPP task), though different heads
might be used for the “transfer” operations in different tasks.

The Role of that Comparing two sentences of Figure 2 , we do observe that the influence from
the singular subject is weaker than that of the plural subject, especially compared to the negative
influence from attractors. The key difference is that that behaves differently for singular and plural
subject. that in Figure 4a behaves as a singular noun (since that also means a singular pronoun
in English), flowing through the same straightforward pattern as the subject (skip connections +
attention head 5); that in Figure 2a, however, behaves more like a grammatical marker(relativizer):
the pattern from that travel from itself to the subject in the second to last layer through a different
attention head. We speculate that that in plural subject sentences encodes the syntactic boundary of
the clauses and help identify the main subject and ignore the intervening noun. As a result, attractors
in PS have smaller negative influence, compared to the high negative influence from attractors in SP
(a similar comparison is also observed in PP and SS cases). This discrepancy in the behavior of
that also corroborates lower SVA accuracy in SP case than in PS case (See Appendix A). We
observe this difference consistently across all instances as shown in an aggregated visualization in
Appendix B.2, in other tasks as well.

5 RELATED WORK

Previous work has shown the encoding of syntactic dependencies such as subject verb
agreements(SVA) in RNN Language models (Linzen et al., 2016), as well as the explanations for
such encoding(Hupkes et al., 2018; Lakretz et al., 2019; Jumelet et al., 2019). More extensive
work has since been done on transformer-based architectures such as BERT(Devlin et al., 2019).
Diagnostic classifiers trained on output and internal representations discover that BERT encodes
many types of linguistic knowledge(Elazar et al., 2020; Hewitt & Liang, 2019; Tenney et al.,
2019a;b; Jawahar et al., 2019; Klafka & Ettinger, 2020; Liu et al., 2019; Lin et al., 2019), ranging
from syntactic concepts to more complicated semantic ones. Goldberg (2019) discovers that
SVA and RA in complex clausal structures is better represented in BERT compared to an RNN
model. This is partially explained by (Reif et al., 2019; Hewitt & Manning, 2019) which show
that contextual embeddings in BERT can encode syntactic structures hierarchically comparable to
those represented in a dependency tree. However all these analyses are done on frozen contextual
embedding layers; the exact causal mechanism a concept is encoded from input to output is not
explored.

Another line of work in interpreting BERT concerns analyzing the self-attention weights of
BERT(Clark et al., 2019; Vig & Belinkov, 2019; Lin et al., 2019), where attention heads are
found to have direct correspondences with specific dependency relations. However, attention
weights as interpretation devices has been controversial(Serrano & Smith, 2019), and empirical
analysis has shown that attention can be perturbed or pruned while having the same or even better
performance(Kovaleva et al., 2019; Michel et al., 2019; Voita et al., 2019). More importantly, our
work demonstrate that attention mechanisms are only part of BERT computation graph, with each
attention block complemented by additional architecture such as dense layer and skip connections.
The strong influence passing through skip connections also corroborates the findings of Brunner
et al. (2020) which find input tokens mostly retain their identity. Besides pruning attentions,
other works(Prasanna et al., 2020; Sanh et al., 2019; Jiao et al., 2019) also show that BERT is
overparametrized and can be greatly compressed. Our work to some extent corroborates that point
by pointing to the sparse gradient flow, while employing model compression only to verify the
sufficiency of the extracted patterns.

Recent work introducing influence paths (Lu et al., 2020) offers another form of explanation. Lu
et al. (2020) decomposed the attribution to path-specific quantities localizing the implementation of
the given concept to paths through a model. The authors demonstrated that for LSTM models, a
single path is responsible for most of the input-output effect defining SVA, and explored the effects
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of unhelpful nouns which showed negative influence on SVA. We describe the limitations of this
methodology when applied to BERT in Sec. 3.

6 CONCLUSION

We have demonstrated how to use multi-partite influence patterns to localize a DNN model’s
handling of a concept of interest and along with a pattern refinement method we how BERT
handles subject-verb number agreement and reflexive anaphora. We quantitatively validated the
sufficieny and sparsity of influence patterns in BERT by way of compression experiments and the
influence concentration of discovered patterns. We qualitatively and visually demonstrated BERT’s
contextualization in the two tasks using our methodology. Our formalism and methods are general
enough to apply to the analysis of other aspects of BERT and other models.
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A APPENDIX: INTRODUCTION TO LINGUISTIC TASKS

Task Type Example BERT
Small

BERT
Base

SVA

Object
Relative
Clause

SS
the author that the guard likes

[MASK(is/are)] young

1 1
SP 0.92 0.96
PS 0.9 0.98
PP 1 1

Subject
Relative
Clause

SS
the author that likes the guard

[MASK(is/are)] young

1 1
SP 1 0.96
PS 1 0.98
PP 1 1

Within
Sentence
Complement

SS
the mechanic said the author

[MASK(is/are)] young

1 1
SP 1 1
PS 1 1
PP 1 1

Across
Prepositional
Phrase

SS
the author next to the guard

[MASK(is/are)] young

1 0.99
SP 1 0.98
PS 0.98 0.98
PP 1 1

Reflexive
Anaphora

Number
Agreement

SS
the author that the guard likes hurt

[MASK(himself/themselves)]

0.66 0.6
SP 0.66 0.74
PS 0.83 0.83
PP 1 0.96

Gender
Agreement

MM
some wizard who can dress our man can

clean [MASK(himself/herself)]

0.78 1
MF 0.32 0.96
FF 1 0.9
FM 0.8 0.66

Table 2: Example of each agreement task and their performance on two BERT models, first 5 tasks
are sampled from Marvin & Linzen (2018), the last task is sampled from dataset in Lin et al. (2019),
all datasets are constructed as an MLM task according to Goldberg (2019).
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B APPENDIX: EXPERIMENT DETAILS

B.1 CONVERGENCE CHECK

When the DoI of distributional influence gq(x) is a uniform distribution on a linear path from a
baseline input xb to the target input x, the completeness (Sundararajan et al., 2017) axiom shows
q(f(x)) − q(f(xb)) =

∑
i xigq(x)i, where q is the selected Quantity of Interest. However, when

summation is used to approximate the expectation in practice, the RHS of the completeness axiom
does not always converges to the LHS easily. In Fig. 3, we plot the percentage of difference
[q(f(x)) − q(f(xb)) −

∑
i xigq(x)i]/(q(f(x)) − q(f(xb))) against the resolution, the number

of samples drawn from the distribution in the summation. Due to the limit of our GPU memory
( 12GB) and the computational cost, we find the maximum number of batched samples to be 50.
Therefore, BERTSMALL has lower approximation error compared to BERTBASE. The much harder
approximation of the larger BERT model is likely due to the complicated decision boundaries of
larger BERT, masking the output sensitive to small perturbations.
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Figure 3: Convergence Analysis for Calculating the Distributional influence(IG) for SVA Across
Object Relative Clauses for BERTSMALL(used in this paper) BERTBASE from Devlin et al. (2019)
perturbations. X-axis is the number of samples used to approximate the influence, Y-axis is the
percentage of deviation from approximation to true influence value.

B.2 AGGREGATED INFLUENCE GRAPHS FOR ALL TASKS

In this section, we show the an aggregated visualization across all examples by superimposing the
visualization of individual instances as the ones in Figure 2, while adjusting the line width to be
proportional to the frequency of flow across all examples. The words within parenthesis represent
one instance of the word in that position.
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[SEP]
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[SEP]
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[SEP]

1

4

5
5
5

5

8

5

5

6

0 1

(c) plural subject + singular intervening noun(PS)

[CLS]

the

(authors)

that

the

(guards)

(like)

[MASK]

(young)

.

[SEP]
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Figure 4: SVA Across Object Relative Clause.
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[SEP]
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[SEP]
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[SEP]
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[SEP]

5

6

2

4

2
5
5
5
4

1

8

2

0 1

(d) plural subject + plural intervening noun(PP)

Figure 5: SVA Across Subject Relative Clause.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 6: SVA Within Sentence Complements.
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[SEP]
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[SEP]

5

5

4

4

5

2
2

5
5
5
5

4

2

0 1

(b) singular subject + singular intervening noun(SS)

[CLS]

the

(authors)

(next)

(to)

the

(guard)

[MASK]

(young)

.

[SEP]
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Figure 7: SVA Across Prepositional Phrase.
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[SEP]
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[SEP]
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Figure 8: RA: Number Agreement
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Figure 9: RA: Gender Agreement
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