
Simplified and Generalized
Masked Diffusion for Discrete Data

Jiaxin Shi∗, Kehang Han∗, Zhe Wang, Arnaud Doucet, Michalis K. Titsias
Google DeepMind

Abstract

Masked (or absorbing) diffusion is actively explored as an alternative to autore-
gressive models for generative modeling of discrete data. However, existing work
in this area has been hindered by unnecessarily complex model formulations and
unclear relationships between different perspectives, leading to suboptimal parame-
terization, training objectives, and ad hoc adjustments to counteract these issues. In
this work, we aim to provide a simple and general framework that unlocks the full
potential of masked diffusion models. We show that the continuous-time variational
objective of masked diffusion models is a simple weighted integral of cross-entropy
losses. Our framework also enables training generalized masked diffusion models
with state-dependent masking schedules. When evaluated by perplexity, our models
trained on OpenWebText surpass prior diffusion language models at GPT-2 scale
and demonstrate superior performance on 4 out of 5 zero-shot language modeling
tasks. Furthermore, our models vastly outperform previous discrete diffusion mod-
els on pixel-level image modeling, achieving 2.75 (CIFAR-10) and 3.40 (ImageNet
64×64) bits per dimension that are better than autoregressive models of similar
sizes. Our code is available at https://github.com/google-deepmind/md4.

1 Introduction

Since their inception [1, 2, 3], diffusion models have emerged as the workhorse for generative
media, achieving state-of-the-art in tasks such as image synthesis [4, 5, 6], audio [7, 8] and video
generation [9, 10, 11, 12, 13]. The majority of existing successes are for continuous state space
diffusions. While diffusion models have been extended to discrete state spaces [1, 14, 15] and
have been successfully applied to applications ranging from graph generation [16], text-to-sound
generation [17] or protein design [18], they remain not as widely used as their continuous counterparts
as they are not competitive with autoregressive models in important domains such as text modeling.
This has motivated the development of continuous space diffusion models where the discrete data are
embedded in the Euclidean space [19, 20, 21, 22, 23] or the simplex [24, 25, 26, 27, 28]. We believe
that one of the reasons for the limited success of discrete diffusions is that they have been hindered
by fairly complex formulations and training objectives. This paper is a step towards closing this gap.

In this work, we focus on “masked” (or “absorbing”) diffusions, a discrete diffusion formulation
first presented by Austin et al. [14], and later explored by the literature from various perspectives
[29, 30, 31, 32]. We follow here a continuous-time framework which has proven very useful to
improve the training and understanding of continuous state space diffusions [see e.g., 3, 33, 34].
We make several technical contributions which simplify the training of these models and improve
significantly their performance. Our contributions are as follows:

• Using elementary arguments, we establish several properties for the forward process induced by
this model and its corresponding time reversal, improving our understanding of this model class.

∗Equal contribution. Correspondence to: jiaxins@google.com.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/google-deepmind/md4

• We provide a remarkably simple expression of the Evidence Lower Bound (ELBO) for masked
diffusion models, showing that it corresponds to a weighted integral over time of cross-entropy
losses. Similarly to continuous space diffusions [33], this objective can be rewritten in terms of
signal-to-noise ratio and exhibits invariance properties.

• We develop a unifying understanding of previously proposed continuous-time discrete diffusion
models [29, 32, 35], revealing the changes they made to our ELBO objective and/or model parame-
terization. We show that these changes either lead to expensive model evaluations, or large variance
in training, or breaking the consistency between forward and reverse processes.

• On GPT-2 scale text modeling and pixel-level image modeling tasks, masked diffusions trained
using our simple ELBO objective outperform previous proposals, leading to the best likelihood and
zero-shot transfer performance among discrete diffusion models.

• Finally, based on our simplified masked diffusion formulation, we propose a generalized masked
diffusion model that allows state-dependent masking schedules. This generalized masked diffusion
model further improves predictive performance measured by test likelihoods.

Concurrent work by Ou et al. [36] and Sahoo et al. [37] derives a similar simplified expression of the
ELBO. Ou et al. [36]’s derivation relies on an observation similar to the one we made in Proposition 1.

2 Masked Diffusion

Consider a sentence where we progressively replace each word with a special mask token, transform-
ing the sentence into a sequence of masks. Our goal is to train a generative model that reverses this
process, effectively turning a sentence of masks back into meaningful text. More formally, assume
our data consists of tokens from a finite discrete state space with m possible states, represented by
integers 0, 1, . . . ,m− 1 and their corresponding one-hot vectors e0, e1, . . . , em−1. To accommodate
the masking process, we augment this space with an additional mask state, denoted by the index
m. The masking process transitions each token to the mask state at a random time. This process,
known as the forward process, is applied independently to each token (e.g., each word), progressively
converting the data into a sequence of mask tokens. By learning to reverse this masking process, we
create a generative model capable of producing coherent discrete data.

Discrete-time forward process. We start with the case of a single token and later expand to
multiple dimensions. We define the forward process as a Markovian sequence of discrete random
variables xt indexed by time t, where t runs from 0 to 1. Throughout the work, we abuse the notation
such that xt can be either an integer or its corresponding one-hot vector, whenever it is clear from
the context. We divide [0, 1] into T intervals, and let s(i) = (i − 1)/T , t(i) = i/T . Following
Austin et al. [14], the state transition between [s(i), t(i)] is determined by a transition matrix of size
(m + 1) × (m + 1): Qi = (1 − βi)I + βi1e

⊤
m, where 1 is an all-one vector of size m + 1, em

represents a one-hot vector where element at index m is 1. Each entry [Qi]jk denotes the probability
of transition from the state j to the state k:

[Qi]jk = q(xt(i) = k|xs(i) = j) = (1− βi)δjk + βiδkm.

This means that, with probability 1− βi, xt(i) = xs(i), otherwise it jumps to the mask state. Given
the above transition matrix, the marginal distribution at time t(i) given x0 is

q(xt(i)|x0) = Cat(xt(i); Q̄
⊤
i x0) = x⊤0 Q̄ixt(i).

Here, we use Cat(x; p) to denote a Categorical distribution where p is the vector of probabilities
of being in each category, and Q̄i ≜

∏i
j=1Qj = αiI +

(
1− αi

)
1e⊤m for αi =

∏i
j=1(1− βj). We

expect αT to become very small or zero for a sufficiently large T such that q(x1|x0) for any x0 will
become a delta mass at the mask state.

Continuous-time limit. We can define a continuous-time forward process by taking a limit of the
above discrete-time process. We first specify a continuous function β(t) such that βi = β(t(i))/T .
We then let T →∞ in the discrete-time process and compute the limit of Q̄i (proved in Austin et al.
14, Appendix A.6, see also App. A) as

Q̄(t) ≜ lim
T→∞

Q̄i = αtI + (1− αt)1e
⊤
m, where αt ≜ exp

(
−

∫ t

0

β(s)ds
)
, (1)

2

0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0
t

0.00 0.25 0.50 0.75 1.00
t

20

15

10

5

0 t t/(1 t)
linear
geometric
cosine
poly2
poly0.5

Figure 1: Masking schedules in the literature: (Left) αt; (Right) weight of the cross-entropy loss w.r.t.
t; Equations for these schedules are given in Tab. 4 in Appendix.

so that q(xt|x0) = Cat(xt; Q̄(t)⊤x0). For two arbitrary times, 0 ≤ s < t ≤ 1, the transition
distribution that is compatible with the above marginal (i.e., q(xt|x0) =

∑
xs
q(xt|xs)q(xs|x0)) is

q(xt|xs) = Cat(xt; Q̄(s, t)⊤xs), where Q̄(s, t) ≜ Q̄(s)−1Q̄(t) =
αt

αs
I +

(
1− αt

αs

)
1e⊤m.

Note that Austin et al. [14] did not derive this explicit form of transition matrix between two arbitrary
time s and t, which appeared later in Zhao et al. [38] concurrently with our work.

Masking schedules. From the definition of αt, we have that α0 = 1. And similar to the discrete-
time formulation, we would like α1 be zero or very close to zero. We provide a summary of masking
schedules from literature that satisfy these properties in Fig. 1. The linear schedule was proposed in
Sohl-Dickstein et al. [1] for binary variables and then re-derived by Austin et al. [14] from mutual
information for discrete-time models. The geometric schedule αt is plotted for β̄min = 10−5 and
β̄max = 20. It was first used for continuous diffusions [3] and then for discrete by Lou et al. [32]. The
cosine schedule was originally proposed in MaskGIT [39], an iterative unmasking generative model
inspired by diffusion. This schedule has the property of slowing down the unmasking process at the
beginning of the reverse generation. Aligning with their observation, we find that this results in a
lower chance of conflicting tokens being unmasked simultaneously at the start of generation, thereby
enhancing the overall generation quality.

Time reversal of the forward process given x0. The analytic property of our forward process
allows to compute many quantities of interest in closed form. One such quantity frequently used in
diffusion models is the time reversal of the forward process given x0: q(xs|xt, x0) for s ≤ t. We
derive it in App. C as

q(xs|xt, x0) = Cat(xs; R̄
x0(t, s)⊤xt), where R̄x0(t, s) = I +

αs − αt

1− αt
em(x0 − em)⊤.

From the transition matrix R̄x0(t, s) ∈ R(m+1)×(m+1) we can see the reverse process conditioned
on x0 has a very simple logic—if xt is a mask, with probability αs−αt

1−αt
, it will jump to the state x0 at

time s, otherwise it will stay masked. Once xt is unmasked, it remains in the same state until the end.

3 Model and Objective

For a discrete-time masked diffusion process, we define our generative model by approximately
reversing the forward transitions using a reverse model pθ(xs|xt). One way to define this model is

pθ(xs|xt) ≜ q(xs|xt, µθ(xt, t)), (2)

where µθ(xt, t) ∈ ∆m+1 is a probability vector parametrized by a neural network fθ with a softmax
applied to the output logits (note the m-th output is forced to 0 since the clean data cannot be masks):

µθ(xt, t) =

{
softmax(fθ(xt, t)) xt = m,

xt xt ̸= m.
(3)

This is known as mean-parameterization since it leverages a prediction model for the mean of x0. A
matrix-form depiction of pθ(xs|xt) is shown in Fig. 7 (right). In fact, we can select a time-invariant
parametrization µθ(xt, t) = µθ(xt) as [36] showed that p(x0|xt) given xt = x is identical for any t.

3

Besides pθ(xs|xt), we also need to specify p(x0|xt(1)) and the prior distribution p(xt(T)) = p(x1).
Following the practice in continuous diffusion models [33], we choose p(x0|xt(1)) ∝ q(xt(1)|x0).
And since q(x1|x0) ≈ δx1,m for any x0 as α1 ≈ 0, we set p(x1) ≈ δx1,m, see App. E.

We then write out the discrete-time diffusion model objective [1, 2], which is a lower bound of the log
marginal likelihood of data x0 under the model p (known as the Evidence Lower Bound, or ELBO):

log p(x0) ≥ Eq(xt(1)|x0)[log p(x0|xt(1))]−KL(q(x1|x0)∥p(x1))− LT ,

where LT =
∑T

i=2 Eq(xt(i)|x0)[KL(q(xs(i)|xt(i), x0)∥pθ(xs(i)|xt(i)))]. For the above choices of the
prior distribution, the term KL(q(x1|x0)∥p(x1)) becomes zero. Under the reverse model (2), the KL
divergence terms in LT becomes (proof in App. D)

KL(q(xs|xt, x0)∥pθ(xs|xt)) = −
αs − αt

1− αt
δxt,m · x⊤0 logµθ(xt, t),

which is a simple cross-entropy loss between the predicted logits and the clean data. In App. D, we
show that LT is a Riemann sum and is lower bounded by the corresponding continuous integral:

L∞ ≜ lim
T→∞

LT =

∫ 1

t(1)

α′
t

1− αt
Eq(xt|x0)

[
δxt,m · x⊤0 logµθ(xt, t)

]
dt, (4)

where α′
t denotes the derivative of αt with respect to t. Therefore, we can obtain an ELBO that is

tighter than that of any finite T by pushing T →∞. This ELBO can be further simplified by letting
t(1)→ 0. As a result, Eq(xt(1)|x0)[log p(x0|xt(1))] goes to 0 and the ELBO becomes −L∞.

For continuous state-space diffusions, the ELBO depends on the signal-to-noise ratio (SNR) at its
endpoints but is otherwise invariant to the noise schedule [33]. We establish here a similar result
for discrete diffusions. Consider choosing αt = σ(λt), where σ represents the sigmoid function
σ(x) = 1

1+e−x . In this context, the log-SNR is defined by λt = log αt

1−αt
= log-SNR(t). By making

a change of variables in (4) to make everything a function of the log-SNR, we obtain

L∞ =

∫ λ1

λt(1)

σ(λ)Eq̃(xλ|x0)

[
δxλ,m · x⊤0 log µ̃θ(xλ, λ)

]
dλ.

where µ̃θ(x, λ) := µθ(x, t) and q̃(xλ|x0) := q(xt|x0) for t = log-SNR−1(λ). This shows that the
only effect αt has on the loss is through the values of the SNR at the endpoints. Still, because we draw
uniform samples of t to estimate the integral, the choice of masking schedule affects the variance.

Multidimensional data. In the previous sections, xt was assumed to be a single discrete token.
To extend the method to multidimensional data, let xt be now a sequence (x

(1)
t , x

(2)
t , . . . , x

(N)
t),

where each element x(n)t represents a discrete token. We select a forward process which factorizes
across all N tokens: q(xt|xs) =

∏N
n=1 q(x

(n)
t |x

(n)
s). As a result, the forward marginals q(xt|x0)

and reversal q(xs|xt, x0) also factorize. In this case, we define the reverse model as pθ(xs|xt) ≜∏N
n=1 q(x

(n)
s |x(n)t , µ

(n)
θ (xt, t)), where µθ(xt, t) is a neural network that takes the full N tokens as

input and outputs N probability vectors.2 The n-th output µ(n)
θ (xt, t) is a prediction model for

E[x(n)0 |xt], the mean value of the n-th token. Repeating above derivations gives

L(N)
∞ ≜

∫ 1

0

α′
t

1− αt
Eq(xt|x0)

[∑
n:x

(n)
t =m

(x
(n)
0)⊤ logµ

(n)
θ (xt, t)

]
dt. (5)

We term our simple masked diffusion model trained with loss (5) MD4 (Masked Discrete Diffusion
for Discrete Data). A single step of MD4 training algorithm is described in Alg. 1 in Appendix.

4 Sampling

We use ancestral sampling from our discrete-time reverse process for generation. We have found this
yields slightly higher sample quality compared to other methods such as Euler discretization [29, 32].
For conditional generation tasks such as infilling, we find that the simple approach works best — we
keep the conditioning tokens unmasked throughout the generation process. A complete description of
the sampling algorithm can be found in Alg. 2 in Appendix.

2We intentionally choose the reverse model to factorize across dimensions because the true reverse transition
q(xs|xt) factorizes in the continuous-time limit (as s approaches t).

4

128 256 512
Total Steps T

0

20

40

60

80

100

120

FI
D

Linear t

Linear t, cosine grid
Cosine t

Cosine t (class cond)

0 50 100 150 200 250
Steps

0

20

40

60

80

To
ke

ns
 R

ev
ea

le
d

pe
r S

te
p

Linear t

Cosine t

Figure 2: Left: FID evaluation for 50k samples randomly generated from MD4 on pixel-level
modeling of ImageNet 64×64 (numbers in Tab. 6). Right: Number of tokens revealed per generation
step (T = 256). Each image consists of 64× 64× 3 = 12288 tokens.

Impact of schedules and discretization. For comparing different sampling configurations, we
primarily use the FID score [40] on image datasets as our evaluation metric. We favor it over text
generative perplexity3 used in prior work [32], as the latter can be misleadingly reduced by lowering
sample diversity [41]. We initially trained our model using the linear schedule, which achieves the
best final ELBO overall; however, we found that sampling did not perform well with a standard
uniform discretization grid t(i) = i

T . We hypothesize that time discretization can lead to conflicts by
generating multiple tokens in a single step. We then switched to the cosine schedule (Tab. 4) that
slows down unmasking at the beginning of reverse process. This drastically improves the FID on
ImageNet 64×64 from 70 to 17 for T = 256 steps (Fig. 2, left). Building on this observation, we
suggest using a “cosine” discretization grid for sampling in models trained with a linear schedule:

t(i) = cos
(π
2

(
1− i

T

))
. (6)

This induces the same discretization in αt as the cosine schedule with a uniform grid, leading to
comparable sample quality, as shown in Fig. 2 (left). In Fig. 2 (right), we plot the number of
tokens unmasked per step for linear and cosine schedules with a uniform grid. We believe the cosine
schedule performs better because it leverages information redundancy: with more tokens revealed,
the remaining tokens become more predictable, reducing conflicts when unmasking them in a single
step.

Although these findings were originally developed on images, we find them translate well to text (see
Fig. 10). we expect other techniques such as top-p sampling [41], classifier-free guidance [42, 43],
and predictor-correctors [29, 44] to further improve sample quality of our models. While we reserve
these for future work, we note that the JAX [45] implementation of categorical sampling implicitly
truncates small probabilities, creating a similar effect to top-p sampling. See App. G for details.

5 Relation to Existing Work

We discuss how to unify several existing masked diffusion models using our framework.

Continuous-Time Markov Chains (CTMC). To show the connection with the CTMC view
presented in Austin et al. [14], Campbell et al. [29], we can write out the forward and reverse masked
diffusion using CTMC machinery. To see this, for a short time ∆t, given x0, the Taylor expansions
of our forward and reverse transition matrices at t are

Q̄(t, t+∆t) = I +Q(t)∆t+ o(∆t) for Q(t) ≜ β(t)(1e⊤m − I), (7)

R̄x0(t, t−∆t) = I +Rx0(t)∆t+ o(∆t) for Rx0(t) ≜ − α′
t

1− αt
em(x0 − em)⊤, (8)

where Q(t) and Rx0(t) are known as the transition rate matrices. Austin et al. [14] derived the
same Q(t) in App. A.6 of their paper. However, they did not explore the reverse process or a

3Perplexity of generated samples scored by a large language model such as GPT-2.

5

continuous-time objective. Campbell et al. [29] derived an alternative ELBO expression using rate
matrices, which Kitouni et al. [46] further simplified for absorbing diffusion. In App. H.1, we show
how to recover their expression by separating out a constant from our ELBO expression (4) and
applying a discrete “integration-by-part”. A key limitation of their expression is that it needs N
evaluations of the prediction model µθ(·, t) to compute an inner summation. To circumvent this
computational burden, they used a doubly stochastic estimate. However, this leads to significantly
higher variance compared to the analytic cross-entropy (4) which only requires one pass of µθ(·, t).
Please refer to App. H.2 for more details.

Score parameterization. While so far we used a prediction model µθ(xt, t) for the mean of
clean data given xt (i.e., mean parameterization), one can choose other ways of parameterizing
the reverse model. Lou et al. [32], Benton et al. [35] proposed to parameterize the discrete “score”
s(xt, t)j ≜

qt(j)
qt(xt)

and introduced a score-based loss for discrete diffusions. In App. H.3, we provide
an alternative derivation of their loss which is simpler. We show the link between score and mean
parameterizations through the following proposition.

Proposition 1 (Score Parameterization vs. Mean Parameterization). Let qt be the marginal distribu-
tion of the masked diffusion defined in Sec. 2 at time t. The discrete score s(xt, t)j = qt(j)

qt(xt)
for a

mask state xt = m and j ̸= m can be expressed as

s(m, t)j =
αt

1− αt
E[x0|xt = m]⊤ej , which satisfies

∑
j ̸=m

s(m, t)j =
αt

1− αt
. (9)

Proposition 1 (proved in App. H.3) implies that a reasonable score model for a mask state is

sθ(m, t)j =
αt

1− αt
µθ(m, t)j . (10)

Indeed, substituting (10) into the score-based loss of Lou et al. [32], Benton et al. [35] recovers our
objective (4). In Lou et al. [32], the score is parameterized as a neural network without enforcing the
constraint in (9). This means the learned reverse model can be incompatible with the forward process.
We find that our parameterization, which enforces the constraint, leads to more stable training and
better results.

Any-order autoregressive models. The continuous-time reverse process of our masked diffusion
model can be viewed as an any-order autoregressive model (AO-ARM) [47]. To see this, we reorder
the tokens according to the timing of their unmasking events in the reverse process. For all tokens,
the cumulative distribution functions (CDFs) of unmasking times {τn}Nn=1 are identical and satisfy
P (τn ≤ t) = P (x

(n)
t = m) = 1 − αt. As a result, the ordering is uniformly random across all

possible arrangements, and the token prediction during each unmasking event represents a prediction
step in AO-ARMs. This connection was initially pointed out in Hoogeboom et al. [48, App. C]. The
relation between our simplified ELBO (5) and the AO-ARM objective is independently clarified
by Ou et al. [36]. Despite this equivalence, our work demonstrates that the masking schedule αt

introduces a new degree of freedom in the design of such models. Variations in αt can lead to
different distributions of unmasking times, significantly impacting performance in diffusion-style
parallel sampling under time discretization, as shown in Fig. 2.

Other related work. Due to space constraint, we defer the discussion on other related work,
including MaskGIT [39], discrete flow matching [49], SDDM [30], Blackout diffusion [50] and
SUNDAE [51], to App. H.4.

6 Generalization to State-dependent Masking Schedules

Consider a scenario where some tokens hold more significance than others and we would like to
unmask them earlier in the process. To achieve this, we introduce state-dependent masking schedules,
where the probability of unmasking a token depends not only on time, but also on the token’s value.

We first define the forward process for a single token xt. Let αt be a m + 1 dimensional vector
function, i.e., there is a different function αt,i for each possible value i of the token xt. Also, by

6

Proprietary + Confidential

Mayor Muriel Bowser said after meetings with Commissioner Busby on
Thursday that the new plan will be on board in December.

Mayor � Bowser said � meetings � Commissioner � on
Thursday that � new plan will be � board in � �

Mayor Muriel Bowser said after meetings � Commissioner � on
Thursday that � new plan will be � board in December �

Mayor � � said � � � � � �
� that � new plan � � � � � � �500 steps

700 steps

850 steps

1000 steps

Figure 3: Iterative unmasking process for an unconditionally generated sample by MD4. This
visualization only includes a subsequence from a generated sequence of 1024 tokens. "?" represents
masks. Masked tokens are revealed sequentially: green (steps 500-700), yellow (700-850), and red
(850-1000). Additional unconditional generation from MD4 can be found in App. K.5.

vector αt

αs
we denote the element-wise division of the two vectors. We define the forward transition

as q(xt|xs) = Cat(xt; Q̄(s, t)⊤xs) where

Q̄(s, t) = diag
(αt

αs

)
+

(
I − diag

(αt

αs

))
1e⊤m

and diag
(
αt

αs

)
is a diagonal matrix with the vector αt

αs
in its diagonal. The probability of moving from

current state xs to a future state xt (either the same as xs or mask) is determined by a state-dependent
rate

(
αt

αs

)⊤
xs, while the marginal at time s given x0 is

q(xs|x0) = Cat(xs; Q̄(s)⊤x0) for Q̄(s) = diag(αs) + (I − diag(αs))1e
⊤
m.

Further, for any time 0 ≤ s < t ≤ 1 it holds that q(xt|x0) =
∑

xs
q(xt|xs)q(xs|x0) so the above is

a valid continuous-time Markov chain.

Given the forward conditionals and marginals, we can now compute the time reversal conditioned on
x0. The full form of q(xs|xt, x0) is derived in App. I.1. For xt = m, we have

q(xs|xt = m,x0) = q(xs|xt = m,x0, x0x
⊤
0) =

(
1−αs

1−αt

)⊤
x0e

⊤
mxs +

(
αs−αt

1−αt

)⊤
x0x

⊤
0 xs. (11)

This suggests that the reverse model given xt = m can be chosen as pθ(xs|xt = m) ≜ q(xs|xt =
m,µθ(xt, t),diag(µθ(xt, t))) where µθ(xt, t) is a neural network that approximates E[x0|xt] while
diag(µθ(xt, t)) approximates E[x0x⊤0 |xt] = diag(E[x0|xt]). We show in App. I.1 that the negative
continuous-time ELBO for the state-dependent rate case is

L∞ =

∫ 1

0

(α′
t

1− αt

)⊤
Eq(xt|x0)

[
δxt,m · (x0 − µθ(xt, t) + x0x

⊤
0 logµθ(xt, t))

]
dt. (12)

Here, α′
t is the elementwise derivative of αt. This generalizes the MD4 loss (4), which is recovered

when αt is a scalar schedule times a vector of ones. For N tokens, the model further generalize
similarly to Sec. 3 and the loss is given in (32). We call this generalized model GenMD4.

To learn the token dependent masking schedule using ELBO optimization, we parametrize the m+ 1
dimensional function αt using the polynomial schedule (see Fig. 1) as αt,i = 1− twi and optimize
each parameter wi > 0.4 The value of wi, through the masking probability 1 − αt,i, determines
how fast the token with value i jumps to the mask state. Since in the loss (12) the distribution
q(xt|x0) depends on αt and thus the vector w, optimizing w poses a discrete gradient estimation
problem [see, e.g., 52]. Naive autodiff leads to biased gradients and pushes w towards zero because
the gradients cannot propagate through the (discrete) samples drawn from q(xt|x0). To fix this, we
used the REINFORCE leave-one-out estimator [53, 54] to compute low-variance unbiased gradients
for optimizing w. Details are given in App. I.2.

4We only need m learnable parameters wi, for i = 0, . . . ,m− 1, since x0 can never be the mask token. For
the final mask dimension we can choose an arbitrary fixed value such as wm = 0.

7

Table 1: Zero-shot unconditional perplexity on five benchmark datasets from Radford et al. [57]. The
numbers for other methods are from Lou et al. [32] except our reimplementation of SEDD Absorb.
Our MD4 model achieves the best result on all benchmarks except LAMBADA where it is the second
best. ∗The GPT-2 numbers are reported for the GPT-2 checkpoint pretrained on WebText instead of
OWT thus is not a direct comparison.

Size Method LAMBADA WikiText2 PTB WikiText103 IBW

Small GPT-2 (WebText)∗ 45.04 42.43 138.43 41.60 75.20
D3PM ≤ 93.47 ≤ 77.28 ≤ 200.82 ≤ 75.16 ≤ 138.92
Plaid ≤ 57.28 ≤ 51.80 ≤ 142.60 ≤ 50.86 ≤ 91.12
SEDD Absorb ≤ 50.92 ≤ 41.84 ≤ 114.24 ≤ 40.62 ≤ 79.29
SEDD Absorb (reimpl.) ≤ 49.73 ≤ 38.94 ≤ 107.54 ≤ 39.15 ≤ 72.96
MD4 (Ours) ≤ 48.43 ≤ 34.94 ≤ 102.26 ≤ 35.90 ≤ 68.10

Medium GPT-2 (WebText)∗ 35.66 31.80 123.14 31.39 55.72
SEDD Absorb ≤ 42.77 ≤ 31.04 ≤ 87.12 ≤ 29.98 ≤ 61.19
MD4 (Ours) ≤ 44.12 ≤ 25.84 ≤ 66.07 ≤ 25.84 ≤ 51.45

7 Experiments

7.1 Text

Text is natural discrete data with rich structures. For comparison with prior work, we evaluate
likelihood on two datasets: text8 [55], a character-level text modeling benchmark, and OpenWebText
[56], an open clone of the unreleased WebText dataset used to train GPT-2 [57]. We also assess our
model’s performance on downstream tasks by training on FineWeb-Edu [58], a high-quality dataset
of fine educational text commonly used by the open-source community for comparing LLMs. Unless
otherwise specified, a linear schedule and a cosine sampling grid are employed.

0 200 400 600 800 1000
Training steps (1 unit = 1000 steps)

102

2 × 101

3 × 101

4 × 101

6 × 101

O
pe

nW
eb

Te
xt

 E
va

l P
er

pl
ex

ity

Gaussian Diffusion-S
SEDD-S
MD4-S
GenMD4-S
MD4-M

Figure 4: Perplexity on OpenWebText (OWT) val-
idation set during training. The final numbers are
reported in Tab. 5 in Appendix.

OpenWebText. We train MD4 of GPT-2 small
(S) and GPT-2 medium (M) sizes on OpenWeb-
Text and evaluate zero-shot perplexity on five
benchmark datasets used in Radford et al. [57].
We keep our evaluation setup the same as SEDD
[32]. To ensure fair comparison, we reimple-
mented SEDD in our codebase. Our implemen-
tation led to slightly better results than those
reported in their paper.

As seen in Tab. 1, our small model outperforms
previous best discrete diffusion models on all
five tasks. We are also better than GPT-2 on all
tasks except LAMBADA where we are the sec-
ond best method. When scaling up to medium
size, MD4 similarly beats SEDD and GPT-2 on
4 out of 5 tasks.

To confirm that the strong zero-shot performance stems from improved training, we plot perplexity
on 2% OpenWebText validation set in Fig. 4. Our models converge faster and have better final
likelihoods than prior methods. We also observed that SEDD [32] has training instabilities, likely
due to score parameterization breaking consistency between forward and reverse processes (Sec. 5).
Although GenMD4 achieves lower perplexity than MD4, we observed that the learned ws can overfit
to dataset statistics, making it less effective on zero-shot transfer tasks.

We also assess our models’ generation quality. Fig. 3 shows a randomly selected, notably coherent
sample from MD4-medium and its denoising process. Fig. 10 demonstrates MD4’s text infilling ability
and highlights a substantial quality gain when transitioning from uniform to cosine discretization
(see Sec. 4). Despite MD4’s strong performance on quantitative metrics like generative perplexity,
we have placed these results in Appendix Fig. 8 due to the metric’s inherent unreliability, as noted in
Sec. 4. We emphasize the more reliable FID-based assessments found in our image experiments.

8

Table 2: Bits Per Character (BPC) on Text8
test set. All models use standard 12-layer
transformers similar to GPT-2 small [57]
except Discrete Flow which uses 8 × 3
layers.

Method BPC (↓)

Continuous Diffusion
Plaid [22] (Our impl.) ≤ 1.48
BFN [26] ≤ 1.41

Any-order Autoregressive
ARDM [48] ≤ 1.43
MAC [61] ≤ 1.40

Autoregressive
IAF/SCF [62] 1.88
AR Argmax Flow [15] 1.39
Discrete Flow [59] 1.23
Transformer AR [14] 1.23

Discrete Diffusion
Mult. Diffusion [15] ≤ 1.72
D3PM Uniform [14] ≤ 1.61
D3PM Absorb [14] ≤ 1.45
SEDD Absorb [32] ≤ 1.39
MD4 (Ours) ≤ 1.37
GenMD4 (Ours) ≤ 1.34

Table 3: Bits Per Dimension (BPD) on CIFAR-10
test set and Downsampled ImageNet 64×64 [63]
validation set. All models in the table are trained
without data augmentation.

Method #Params BPD (↓)

C
IF

A
R

-1
0

Autoregressive
PixelRNN [63] 3.00
Gated PixelCNN [64] 3.03
PixelCNN++ [65] 53M 2.92
PixelSNAIL [66] 46M 2.85
Image Transformer [67] 2.90
Sparse Transformer [68] 59M 2.80

Discrete Diffusion
D3PM Absorb [14] 37M ≤ 4.40
D3PM Gauss [14] 36M ≤ 3.44
Campbell et al. [29] 36M ≤ 3.59
Campbell et al. [29] Absorb 28M ≤ 3.52
MD4 (Ours) 28M ≤ 2.75

Im
ag

eN
et

64
×

64

Autoregressive
PixelRNN [63] 3.63
Gated PixelCNN [64] 3.57
Sparse Transformer [68] 152M 3.44
Routing Transformer [69] 3.43
Perceiver AR [68] 770M 3.40

Discrete Diffusion
MD4 (Ours) 198M ≤ 3.40

Text8. Following prior work [14, 32], we trained masked diffusion models on text8 and evaluate
the bits-per-character on the test set (details in App. J.1). As seen in Tab. 2, our models outperform
previous discrete and continuous diffusion models, as well as state-of-the-art AO-ARMs which
are closely related to discrete diffusion [48]. Our model is only beaten by an autoregressive (AR)
transformer and the AR-backbone Discrete Flow [59]. We believe this is because AR models
only require learning a fixed generation order thus better utilize model capacity. Text8’s small
vocabulary (26 letters and a space) led us to expect limited flexibility from our state-dependent
formulation. However, using the generalized objective in (12), GenMD4 achieved significantly better
BPC than MD4, demonstrating the potential of state-dependent diffusion for discrete data.

101 102 103

steps / 1000

25

30

35

40

45

he
lla

sw
ag

 a
cc

ur
ac

y
(%

) MD4-S
MD4-M
MD4-L
AR-S
AR-M
AR-L

Figure 5: Hellaswag accuracy vs. training steps
for MD4 and AR models at GPT-2 small, medium,
and large scales.

FineWeb-Edu. We train MD4 on FineWeb-
Edu and evaluate its zero-shot accuracy on
the Hellaswag dataset [60], a popular common
sense inference benchmark for LLMs. We di-
rectly compared MD4 to its AR counterparts –
transformers with identical configurations (ex-
cept for causal masking) trained on the same
data. Results are summarized in Fig. 5.

MD4 demonstrates steady performance growth
with increasing scale. While outperformed by
AR models of the same size, the performance
gap does not widen as model size increases. For
example, AR-small reaches 30% accuracy in
50k steps, while MD4-small takes 200k steps
(4x data efficiency difference). At the medium
scale, AR achieves 37% in 270k steps, compared
to MD4’s 1 million steps.

7.2 Pixel-level image modeling

Unlike continuous diffusion which struggles with discrete data, we show that MD4, a discrete
diffusion model, performs well on inherently continuous data, suggesting its potential for unifying

9

Figure 6: Non cherry-picked unconditional samples from MD4 trained on ImageNet 64x64, treating
pixels as discrete tokens. More samples can be found in Fig. 9 in Appendix. The model is optimized
for likelihood instead of visual quality—see e.g., Kingma et al. [33] for samples from a continuous
diffusion model optimized similarly for likelihood.

modalities. We follow Austin et al. [14] and train MD4 on order-agnostic image data from CIFAR-10
and downsampled ImageNet 64×64 [63]. Each image is treated as a set of 256-valued discrete tokens,
making the model agnostic to pixel proximity. We compare to other discrete diffusion and AR models
with reported likelihood results on these datasets, although to our knowledge there are no published
result on discrete diffusion for ImageNet 64× 64 that directly model raw pixel space.

Tab. 3 summarizes our results. We establish a new state-of-the-art for discrete diffusion models,
outperforming previous work [14, 29] by a significant margin. Our CIFAR-10 result surpasses the
best reported AR result. On ImageNet 64 × 64, our results are competitive with Transformer AR
models that are 4× larger, as well as a strong continuous diffusion model VDM [33]. Notably, despite
lacking knowledge of the ordinal structure of pixel values, MD4 outperforms models trained with
this inductive bias, including D3PM Gauss and Campbell et al. [29] where the noising distribution is
a discrete Gaussian that assigns larger probabilities to near pixel values. To isolate the differences
caused by training objectives, we also implemented the Campbell et al. [29] objective with the
absorbing process, showing its high variance hinders learning even with our architecture.

We provide a random sample from our ImageNet 64×64 model in Fig. 6. More results can be found
in App. K. In Fig. 2, we plot the FID values of samples generated under different choices of schedules
and discretization grids. We can see that the model with the linear schedule plus a cosine grid achieves
an FID close to the model with cosine schedule, both significantly outperform the linear schedule
with a uniform grid. We further trained a class-conditional model on ImageNet 64×64 that boosts the
FID to around 7. Although these are not state-of-the-art FIDs on ImageNet 64×64, we emphasize
our models are optimized for likelihood instead of sample quality.

8 Conclusion

In this work, we revisit masked diffusion models, focusing on a flexible continuous-time formulation.
Existing works in this area are not easily accessible to non-specialists and present ELBOs that are
difficult to optimize, often resulting in performance that is not competitive with continuous diffusions
and AR models. The framework we propose provides a very simple expression of the ELBO as a
weighted integral of cross-entropy losses. Additionally, we propose a generalized masked diffusion
formulation (GenMD4), where the masking schedule depends on the current state of the process,
and derive its corresponding ELBO. On text data, our MD4 models outperform existing discrete
and continuous diffusion models. For pixel-level image modeling, we significantly improve discrete
diffusion results, outperforming similar-sized AR models and achieving comparable likelihoods to
continuous diffusion models such as VDM. GenMD4 provides further improvements in terms of
likelihoods over the state-independent case.

Although we have improved masked diffusion models, they still suffer from limitations. First, in
some tasks such as text8, masked diffusions are not yet competitive with AR models. We conjecture
that this is because AR models can better leverage model capacity since they only require learning
one order. It would be interesting to develop better architectures for discrete diffusions. Moreover,
GenMD4 is promising, but it can easily overfit to the dataset, making it less effective for zero-shot
transfer compared to simpler versions. Additionally, inference with a state-dependent schedule is
more challenging.

10

References
[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning

using nonequilibrium thermodynamics. In International Conference on Machine Learning, 2015.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

[3] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2020.

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10684–10695, 2022.

[5] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

[6] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
image diffusion models with deep language understanding. In Advances in Neural Information Processing
Systems, 2022.

[7] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad:
Estimating gradients for waveform generation. In International Conference on Learning Representations,
2021.

[8] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. In International Conference on Learning Representations, 2021.

[9] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. In Advances in Neural Information Processing Systems, 2022.

[10] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Moham-
mad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable length video
generation from open domain textual descriptions. In International Conference on Learning Representa-
tions, 2023.

[11] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Junhwa
Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for video generation.
arXiv preprint arXiv:2401.12945, 2024.

[12] OpenAI. Sora. https://openai.com/index/sora/, 2024.

[13] Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao, Shilong
Liu, Yaole Wang, and Jun Zhu. Vidu: a highly consistent, dynamic and skilled text-to-video generator with
diffusion models. arXiv preprint arXiv:2405.04233, 2024.

[14] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing Systems,
2021.

[15] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows and
multinomial diffusion: Learning categorical distributions. In Advances in Neural Information Processing
Systems, 2021.

[16] Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
DiGress: Discrete denoising diffusion for graph generation. In International Conference on Learning
Representations, 2023.

[17] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu. Diffsound:
Discrete diffusion model for text-to-sound generation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2023.

[18] Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanasse, Arvind
Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete diffusion. In Advances
in Neural Information Processing Systems, 2023.

11

https://openai.com/index/sora/

[19] Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
for categorical data. arXiv preprint arXiv:2211.15089, 2022.

[20] Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion
models with self-conditioning. In International Conference on Learning Representations, 2022.

[21] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-LM
improves controllable text generation. In Advances in Neural Information Processing Systems, 2022.

[22] Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. In Advances in
Neural Information Processing Systems, 2023.

[23] Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent diffusion
for language generation. In Advances in Neural Information Processing Systems, 2024.

[24] Pierre H Richemond, Sander Dieleman, and Arnaud Doucet. Categorical SDEs with simplex diffusion.
arXiv preprint arXiv:2210.14784, 2022.

[25] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score model
for biological sequence generation. In International Conference on Machine Learning, 2023.

[26] Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian flow networks.
arXiv preprint arXiv:2308.07037, 2023.

[27] Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, Jun Zhou, and Chongxuan Li. Unifying
Bayesian flow networks and diffusion models through stochastic differential equations. arXiv preprint
arXiv:2404.15766, 2024.

[28] Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou, and Molei Tao. Mirror diffusion models for
constrained and watermarked generation. In Advances in Neural Information Processing Systems, 2024.

[29] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and Arnaud
Doucet. A continuous time framework for discrete denoising models. In Advances in Neural Information
Processing Systems, 2022.

[30] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time discrete
diffusion models. In International Conference on Learning Representations, 2022.

[31] Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for text
generation. arXiv preprint arXiv:2302.05737, 2023.

[32] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating the
ratios of the data distribution. In International Conference on Machine Learning, 2024.

[33] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In Advances
in Neural Information Processing Systems, 2021.

[34] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. In Advances in Neural Information Processing Systems, 2022.

[35] Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From denoising
diffusions to denoising Markov models. arXiv preprint arXiv:2211.03595, 2022.

[36] Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li. Your
absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv preprint
arXiv:2406.03736, 2024.

[37] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. arXiv
preprint arXiv:2406.07524, 2024.

[38] Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. Improving and unifying discrete and
continuous-time discrete denoising diffusion. arXiv preprint arXiv:2402.03701, 2024.

[39] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

12

[40] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. Advances in Neural
Information Processing Systems, 30, 2017.

[41] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2019.

[42] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[43] Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance for
discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

[44] Yixiu Zhao, Jiaxin Shi, Lester Mackey, and Scott Linderman. Informed correctors for discrete diffusion
models. arXiv preprint arXiv:2407.21243, 2024.

[45] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

[46] Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for structured
knowledge. arXiv preprint arXiv:2312.05253, 2023.

[47] Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In International
Conference on Machine Learning, pages 467–475. PMLR, 2014.

[48] Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and Tim
Salimans. Autoregressive diffusion models. In International Conference on Learning Representations,
2021.

[49] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative flows on
discrete state-spaces: Enabling multimodal flows with applications to protein co-design. In International
Conference on Machine Learning, 2024.

[50] Javier E Santos, Zachary R Fox, Nicholas Lubbers, and Yen Ting Lin. Blackout diffusion: generative
diffusion models in discrete-state spaces. In International Conference on Machine Learning, pages
9034–9059. PMLR, 2023.

[51] Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord. Step-
unrolled denoising autoencoders for text generation. In International Conference on Learning Representa-
tions, 2022.

[52] Jiaxin Shi, Yuhao Zhou, Jessica Hwang, Michalis Titsias, and Lester Mackey. Gradient estimation with
discrete Stein operators. In Advances in Neural Information Processing Systems, 2022.

[53] Tim Salimans and David A Knowles. On using control variates with stochastic approximation for variational
bayes and its connection to stochastic linear regression. arXiv preprint arXiv:1401.1022, 2014.

[54] W. Kool, H. V. Hoof, and M. Welling. Buy 4 REINFORCE samples, get a baseline for free! In
DeepRLStructPred@ICLR, 2019.

[55] Matt Mahoney. Text8. https://mattmahoney.net/dc/textdata.html. Accessed: 2024-05-14.

[56] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[58] Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra,
Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at scale. arXiv preprint
arXiv:2406.17557, 2024.

[59] Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, and Ben Poole. Discrete flows: Invertible
generative models of discrete data. In Advances in Neural Information Processing Systems, 2019.

[60] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

http://github.com/jax-ml/jax
https://mattmahoney.net/dc/textdata.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[61] Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive models
the right way. In Advances in Neural Information Processing Systems, 2022.

[62] Zachary Ziegler and Alexander Rush. Latent normalizing flows for discrete sequences. In International
Conference on Machine Learning, 2019.

[63] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
International Conference on Machine Learning, 2016.

[64] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, and Alex Graves. Conditional
image generation with pixelcnn decoders. In Advances in Neural Information Processing systems, 2016.

[65] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the pixelcnn
with discretized logistic mixture likelihood and other modifications. In International Conference on
Learning Representations, 2016.

[66] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autoregressive
generative model. In International Conference on Machine Learning, 2018.

[67] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. Image transformer. In International Conference on Machine Learning, 2018.

[68] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

[69] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics, 9:
53–68, 2021.

[70] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in Neural
Information Processing Systems, 30, 2017.

[71] Kehang Han, Kathleen Kenealy, Aditya Barua, Noah Fiedel, and Noah Constant. Transfer learning for text
diffusion models. arXiv preprint arXiv:2401.17181, 2024.

[72] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems, 2015.

[73] Peter W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM,
33(10):75–84, 1990.

[74] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

[75] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

14

Table 4: Masking schedule formulas.
Masking schedules αt Cross-entropy loss weight α′

t
1−αt

Linear 1− t − 1
t

Polynomial 1− tw −w
t

Geometric exp
(
−β̄1−t

min β̄t
max

)
− exp(−β̄1−t

min β̄t
max)

1−exp(−β̄1−t
min β̄t

max)
β̄1−t

min β̄t
max log

σmin
σmax

Cosine 1− cos(π
2
(1− t)) −π

2
tan(π

2
(1− t))

A Discrete-time derivation

We divide time from 0 to 1 into T intervals, and let s(i) = (i − 1)/T , t(i) = i/T . The forward
transition matrix Qi ∈ R(m+1)×(m+1) (m is vocabulary size) at time t(i) is

[Qi]jk =


1 j = k = m

1− βi j = k ̸= m

βi k = m, j ̸= m

0 otherwise

or more compactly written as

Qi = (1− βi)I + βi1e
⊤
m,

where 1 denotes an all-one vector of size m+ 1, and em is an one-hot vector of size m+ 1 with the
m-th element (recall that counting starts from 0) being one. We use an one-hot vector xt of length
m+ 1 to denote the discrete state. The forward conditionals are defined as

q(xt(i)|xs(i)) = Cat(xt(i);Q
⊤
i xs(i)) = x⊤s(i)Qixt(i), (13)

where Q⊤
i xs(i) is the probabilities for each of the m+ 1 categories that xt(i) can take. The marginal

forward distribution at time t(i) given x0 is

q(xt(i)|x0) = Cat(xt(i); Q̄
⊤
i x0) = x⊤0 Q̄ixt(i),

where Q̄i =
∏i

j=1Qj =
∏i

j=1(1− βj)I +
(
1−

∏i
j=1(1− βj)

)
1e⊤m. To see what this leads to in

continuous time, we let βi =
β(t(i))

T and T →∞:

i∏
j=1

(1− βj) = exp
(i∑

j=1

log(1− βj)
)

= exp
(i∑

j=1

−β(t(j))
T

+ o(1/T)
)

T→∞→ exp
(
−

∫ t(i)

0

β(s)ds
)
.

We let Q̄(t) denote the limit of Q̄i in this case:

Q̄(t) = exp
(
−
∫ t

0

β(s)ds
)
I +

(
1− exp

(
−

∫ t

0

β(s)ds
))

1e⊤m

≜ αtI + (1− αt)1e
⊤
m.

Here we define αt ≜ exp(−
∫ t

0
β(s)ds). And the marginal forward transition is

q(xt|x0) = Cat(xt; Q̄(t)⊤x0) = x⊤0 Q̄(t)xt = αtx
⊤
0 xt + (1− αt)e

⊤
mxt. (14)

15

B Continuous-time derivation

We consider a continuous-time Markov chain with transition rates

Q(t) = (Qi − I)/(1/T) = β(t)(1e⊤m − I). (15)

For simplicity, we let Q = 1e⊤m − I . The marginal forward distribution at time t given x0 is
q(xt|x0) = Cat(xt; Q̄(t)⊤x0), where

Q̄(t) = exp
(∫ t

0

Q(s)ds
)
= exp

(
Q

∫ t

0

β(s)ds
)
= exp(β̄(t)Q).

Here we define β̄(t) ≜
∫ t

0
β(s)ds. The matrix exponential can be computed via eigendecomposition:

β̄(t)Q = UΛU−1,

where

U = I − eme⊤m +
1√
n+ 1

1e⊤m,

U−1 = I +
√
n+ 1eme

⊤
m − 1e⊤m,

Λ = β̄(t)(eme
⊤
m − I),

and thus exp(Λ) = αtI + (1− αt)eme
⊤
m,

Q̄(t) = U exp(Λ)U−1 = αtI + (1− αt)1e
⊤
m.

A simpler derivation uses the following property:

Q2 = −Q.
Therefore,

Q̄(t) = exp(β̄(t)Q)

= I + β̄(t)Q+
1

2
β̄(t)2Q2 +

1

3
β̄(t)3Q3 + . . .

= I +Q− (1− β̄(t) + 1

2
β̄(t)2 − 1

3
β̄(t)3 + . . .)Q

= I +Q− exp(−β̄(t))Q
= αtI + (1− αt)1e

⊤
m.

This marginal forward transition matrix at time t coincides with the result (1) we get by taking the
limit of discrete-time derivation.

Arbitrary discretization of the continuous-time forward process. For the discrete-time process
we have defined the per-step transition in (13). For the continuous-time process, we can derive the
transition matrix Q̄(s, t)ij ≜ q(xt = j|xs = i) between two arbitrary time s and t as the solution to
the following differential equation (known as Kolmogorov forward equation)

d

dt
Q̄(s, t) = Q̄(s, t)Q(t) where Q(t) = β(t)Q

with initial condition Q̄(s, s) = I . The solution is given by

Q̄(s, t) = exp
(
(β̄(t)− β̄(s))Q

)
= Q̄(s)−1Q̄(t).

Routine work (using the Woodbury matrix inversion lemma) shows that

Q̄(t)−1 = α−1
t I + (1− α−1

t)1e⊤m.

Plugging the result back, we get the forward transition distribution from s to t:

q(xt|xs) = Cat(xt; Q̄(s, t)⊤xs) = x⊤s Q̄(s, t)xt, (16)

where Q̄(s, t) ≜ Q̄(s)−1Q̄(t) =
αt

αs
I +

(
1− αt

αs

)
1e⊤m.

16

Figure 7: The reverse transition probability and our generative model. Left: q(xs = ·|xt = ·, x0)
in matrix form where first index is xt and second index is xs. Right: pθ(xs = ·|xt = ·) ≜ q(xs =
·|xt = ·, µθ(xt, t)) also in matrix form.

C Time reversal of the forward process given x0

The analytic property of our forward process allows to compute many quantities of interest in closed
form. One such quantity frequently used in diffusion models is the time reversal of the forward
process given x0: q(xs|xt, x0). We can compute it using (14) and (16) as

q(xs|xt, x0) =
q(xt|xs)q(xs|x0)

q(xt|x0)

=


αs−αt

1−αt
x⊤s x0 xs ̸= m,xt = m

1−αs

1−αt
xs = m,xt = m

x⊤s xt xt ̸= m.

(17)

Visually, eqn (17) is a R(m+1)×(m+1) matrix (Fig. 7, left) whose first index is xt and the second is
xs. The matrix is almost an identity matrix except the last row corresponding to xt is the mask token.
The last row means with probability of αs−αt

1−αt
the mask token gets unmasked to become x0, and with

probability of 1−αs

1−αt
it remains masked.

Alternatively, we can rewrite the above using reverse transition matrix R̄x0(t, s) ∈ R(m+1)×(m+1) as

q(xs|xt, x0) = Cat(xs; R̄
x0(t, s)⊤xt), where R̄x0(t, s) = I +

αs − αt

1− αt
em(x0 − em)⊤.

We are also interested in what would happen in the infinitesimal time limit, i.e., when s = t−∆t
and ∆t→ 0. Note that

αt−∆t − αt = −α′
t∆t+ o(∆t).

Plugging it into the original formula, we get

R̄x0(t, t−∆t) = I − α′
t

1− αt
em(x0 − em)⊤∆t+ o(∆t).

Comparing the above with the transition rate matrix Rx0(t) definition
R̄x0(t, t−∆t) = I +Rx0(t)∆t+ o(∆t),

we have determined the transition rate matrix for the reverse process conditioned on x0:

Rx0(t) = − α′
t

1− αt
em(x0 − em)⊤. (18)

17

D Details of the ELBO

Using (17) and (3), we compute the KL divergences between forward and reverse transitions

KL(q(xs|xt, x0)∥pθ(xs|xt)) = KL(q(xs|xt, x0)∥q(xs|xt, µθ(xt, t))) (19)

=

{∑m
xs=0 q(xs|xt, x0) log

q(xs|xt,x0)
q(xs|xt,µθ(xt,t))

xt = m

0 xt ̸= m

= δxt=m

∑
k ̸=m

αs − αt

1− αt
x⊤0 ek log

x⊤0 ek
µθ(xt, t)⊤ek

= −δxt=m
αs − αt

1− αt
x⊤0 logµθ(xt, t).

Note that 0 log 0 = 0. Alternatively, this result can be easily obtained from the visual depictions of
q(xs|xt, x0) and pθ(xs|xt) shown in Fig. 7. In this case, the reconstruction term becomes

Eq(xt(1)|x0)[log p(x0|xt(1))] =
m∑

k=0

qt(1)|0(k|x0) log
qt(1)|0(k|x0)∑
j ̸=m qt(1)|0(k|j)

= αt(1) · log
αt(1)

αt(1)
+ (1− αt(1)) log

1

m

= −(1− αt(1)) logm.

The prior KL term can be computed as

KL(q(x1|x0)∥p(x1)) = KL(δx1,m∥δx1,m) = 0.

As usual, we take the continuous-time limit by letting T →∞:

L∞ ≜ lim
T→∞

LT

= lim
T→∞

T∑
i=2

−
αs(i) − αt(i)

s(i)− t(i)
s(i)− t(i)
1− αt(i)

x⊤0 Eq(xt(i)|x0)

[
δxt(i),m logµθ(xt(i), t(i))

]
=

∫ 1

t(1)

α′
t

1− αt
x⊤0 Eq(xt|x0) [δxt,m logµθ(xt, t)] dt.

E Avoiding undefined KL divergence

When defining the forward process, we often do not want α1 to be exactly 0, or equivalently, λ1 to
be∞ for numerical stability reasons. Instead, we set λ1 to be a finite value, and thereby α1 has a
small positive value. This has a problem that the support of q(x1|x0) is no longer {m} and instead
becomes {m,x0}. As a result, the KL divergence between q(x1|x0) and p(x1) is undefined because
q(x1|x0) is not absolutely continuous with respect to p(x1) = δx1,m. To resolve the issue, we modify
the prior distribution p(x1) such that it has support over all m+ 1 values. One such choice is letting

p(x1) =
α1

m

∑
j ̸=m

δx1,j + (1− α1)δx1,m.

Then, the prior KL divergence term becomes

KL(q(x1|x0)∥p(x1)) =
m∑

x1=0

q(x1|x0) log
q(x1|x0)
p(x1)

=

m∑
x1=0

(α1δx1,x0
+ (1− α1)δx1,m) log

α1δx1,x0
+ (1− α1)δx1=m

p(x1)

= α1 log
α1

α1/m
+ (1− α1) log

1− α1

1− α1

= α1 logm.

18

F Details of Training and Sampling with MD4

F.1 Training

Algorithm 1 A single step of training with MD4.

Input: data minibatch {xit}Bi=1, network µθ(·, t), masking schedule αt

for i = 1, . . . , B do (in parallel):
ti ← mod(u+ i/B, 1), u ∼ U [0, 1]

for n ∈ [N], mask out each token xi,(n)0 independently with probability 1− αti to obtain xiti
for n ∈ [N], if x(n)ti =m, compute weighted cross entropy loss

α′
ti

1−αti
(x

i,(n)
0)⊤ logµ

(n)
θ (xiti , ti)

Sum over all weighted cross entropy losses for mask positions and optimize via autodiff

F.2 Sampling

Algorithm 2 Unconditional and conditional generation (e.g., infilling) with MD4.

Input: Context sequence xc of length N , with masks indicating the target areas for generation
Init: {t(i)}Ti=0 ← discretize([0, 1]), xt(T) ← xc

for i = T, T − 1, . . . , 1 do
t← t(i), s← t(i− 1)

for n ∈ [N], if x(n)t = m, draw x
(n)
s ∼ Cat(αs−αt

1−αt
µ
(n)
θ (xt, t) +

1−αs

1−αt
em) else x(n)s ← x

(n)
t

return x0.

G JAX Categorical Sampling and Implicit Top-p

We noticed that the following equivalent implementation of Alg. 2 leads to significantly worse sample
quality in JAX:

Algorithm 3 Variant of Alg. 2 that yields lower sample quality when implemented in JAX.

Input: Token sequence xc of length N , with masks indicating the target areas for generation
Init: {t(i)}Ti=0 ← discretize([0, 1]), xt(T) ← xc

for i = T, T − 1, . . . , 1 do
t← t(i), s← t(i− 1)
for n ∈ [N] do (in parallel)

draw u ∼ U [0, 1]

if x(n)t = m and u < αs−αt

1−αt
then

draw x
(n)
s ∼ Cat(µ

(n)
θ (xt, t))

else
x
(n)
s ← x

(n)
t

return x0.

However, mathetically it is equivalent to Alg. 2 and should produce identical results. Our investigation
revealed that the issue arises because Alg. 2 scales the output probabilities of µθ by a small factor
αs−αt

1−αt
as s is close to t, causing some categories to have very low probabilities. JAX, however,

implements categorical sampling using Gumbel argmax, which is less numerically stable than methods
like binary search. As a result, categories with low probabilities are rarely sampled, even when their
cumulative probability is significant. In our experiment, we found that categories with probabilities
below 1e-8 are rarely sampled out of a total of 50K categories. Thus, Alg. 2 implicitly performs top-p
sampling (with a dynamic p) under JAX’s categorical sampling, yielding better sample quality than
Alg. 3 where µθ is not scaled by a small factor and has fewer categories truncated.

19

H Unifying Existing Masked Diffusion Models

H.1 The CTMC point of view

We first prove a lemma that connects the forward and reverse transition rate matrices. This follows
from the results in [29] but we give a proof for completeness.

Lemma 2. The forward transition rate matrix Q(t) and the reverse transition rate matrix (given x0)
Rx0(t) satisfy:

Rx0(t)kj = Q(t)jk
qt|0(j|x0)
qt|0(k|x0)

for j ̸= k. (20)

Proof Consider the reverse transition from time t+ τ to t. For j ̸= k, Bayes’ rule yields

q(xt = j|xt+τ = k, x0) =
q(xt = j|x0)q(xt+τ = k|xt = j)

q(xt+τ = k|x0)

=
q(xt = j|x0)(δjk +Q(t)jkτ + o(τ))

q(xt+τ = k|x0)
τ→0
= δkj +

q(xt = j|x0)
q(xt = k|x0)

Q(t)jkτ + o(τ).

Then, it follows from the definition of the transition rate matrix thatRx0(t)kj = Q(t)jk
qt|0(j|x0)

qt|0(k|x0)
.

Proposition 3. We use the shorthand Rθ(t)kj to denote the approximate reverse transition rate from
the state k to j obtained by substituting our prediction model µθ(k) for x0 in Rx0(t)kj . Then, the
continuous-time objective (4) can be equivalently expressed as

L∞ = −
∫ 1

t(1)

Eqt|0(k|x0)

[
Rθ(t)kk +

∑
j ̸=k

Q(t)kj logRθ(t)jk

]
dt+ C, (21)

where C is a constant independent of θ.

Proof To rewrite our objective L∞ with the transition rate matrices, we first go back to (19).
There, instead of plugging in the explicit form of R̄x0(t, s), we substitute it with (8) which leverages
the transition rate Rx0(t). To simplify the notation, we assume xt = k and use the shorthand
Rθ(t)kj ≜ Rµθ(k)(t)kj . We then have

KL(q(xt−∆t|xt, x0)∥pθ(xt−∆t|xt))
= KL(Cat(xs; R̄

x0(t, t−∆t)⊤ek)∥Cat(xs; R̄µθ(k)(t, t−∆t)⊤ek))

=

m∑
j=0

e⊤k (I +Rx0(t)∆t+ o(∆t))ej log
e⊤k (I +Rx0(t)∆t+ o(∆t))ej
e⊤k (I +Rθ(t)∆t+ o(∆t))ej

= (1 +Rx0(t)kk∆t) log
1 +Rx0(t)kk∆t+ o(∆t)

1 +Rθ(t)kk∆t+ o(∆t)

+
∑
j ̸=k

(Rx0(t)kj∆t) log
Rx0(t)kj∆t+ o(∆t)

Rθ(t)kj∆t+ o(∆t)
+ o(∆t)

= (Rx0(t)kk −Rθ(t)kk)∆t+
∑
j ̸=k

(Rx0(t)kj∆t) log
Rx0(t)kj∆t+ o(∆t)

Rθ(t)kj∆t+ o(∆t)
+ o(∆t).

20

For the last identity, we have used the fact that log(1 + x) = x+ o(x). To obtain L∞, we take the
limit of LT as T →∞, which is equivalent to letting ∆t = 1/T → 0. We obtain

L∞ = lim
T→∞

T∑
i=2

Eq(xt(i)|x0)[KL(q(xs(i)|xt(i), x0)∥pθ(xs(i)|xt(i)))]

= lim
T→∞

T∑
i=2

Eq(xt(i)|x0)

[(
Rx0(t(i))kk −Rθ(t(i))kk

+
∑
j ̸=k

Rx0(t(i))kj log
Rx0(t(i))kj∆t+ o(∆t)

Rθ(t(i))kj∆t+ o(∆t)

)
∆t+ o(∆t)

]
=

∫ 1

t(1)

Eqt|0(k|x0)

[
Rx0(t)kk −Rθ(t)kk +

∑
j ̸=k

Rx0(t)kj log
Rx0(t)kj
Rθ(t)kj

]
dt.

Note that Rx0(t) is a constant matrix independent of θ. Absorbing all constant terms into C, we have

L∞ = −
∫ 1

t(1)

Eqt|0(k|x0)

[
Rθ(t)kk +

∑
j ̸=k

Rx0(t)kj logRθ(t)kj

]
dt+ C.

Next, we subtitute Rx0(t) with the forward transition rate using Lemma 2:

L∞ = −
∫ 1

t(1)

Eqt|0(k|x0)

[
Rθ(t)kk +

∑
j ̸=k

Q(t)jk
qt|0(j|x0)
qt|0(k|x0)

logRθ(t)kj

]
dt+ C

= −
∫ 1

t(1)

[m∑
k=0

qt|0(k|x0)Rθ(t)kk +

m∑
k=0

∑
j ̸=k

Q(t)jkqt|0(j|x0) logRθ(t)kj

]
dt+ C

= −
∫ 1

t(1)

[m∑
k=0

qt|0(k|x0)Rθ(t)kk +

m∑
k=0

∑
j ̸=k

Q(t)kjqt|0(k|x0) logRθ(t)jk

]
dt+ C,

where the last identity used the discrete analog to integration-by-part (or summation-by-part):∑
k=0

∑
j ̸=k f(j, k) =

∑
k=0

∑
j ̸=k f(k, j). Rearranging the terms then gives (21).

H.2 Differences from Campbell et al. [29]

Campbell et al. [29] used the first term of (21) as the training loss. A key limitation of this loss
function is from the inner summation term∑

j ̸=k

Q(t)kj logRθ(t)jk.

For single dimension case, the sum is analytically computable due to the sparse structure of Rθ(t)—if
xt = k is mask, the second term disappears; otherwise the only possible neighbor j is a mask.
However, for multidimensional data, j will represent all N − 1 neighbors in the forward process,
i.e., the states we get from mask out a single unmasked dimension of xt = k. Recall that Rθ(t)jk is
computed as substituting our neural network prediction model µθ(j) for x0 in Rx0(t)jk. Therefore,
the summation together with Rθ(t)kk requires N evaluations of µθ(·). This is prohibitive since the
neural network model is usually expensive. To resolve this issue, Campbell et al. [29] proposed to
rewrite the sum as

Ej∼q̃(·|k) [Zk logRθ(t)jk] where q̃(j|k) = Q(t)kj
Zk

, Zk ≜
∑
j′ ̸=k

Q(t)kj′

and estimate it through Monte Carlo. Taking into account the outer expectation under qt|0(k|x0),
the computation of the loss then becomes a doubly stochastic estimate (using k ∼ qt|0(k|x0) and
j ∼ q̃(j|k)) which suffers from large variance. In contrast, the form of our loss (4) only requires
evaluating µθ once for a single stochastic estimation of the expectation w.r.t. q(xt|x0).

21

H.3 Score parameterization

We provide a simpler derivation of the score-based loss [32, 35] below. We start from the form of the
ELBO in (21) and rewrite it as

L∞ =

∫ 1

t(1)

Eqt|0(k|x0)

[∑
j ̸=k

(
Rµθ (t)kj −Rx0(t)kj +Rx0(t)kj log

Rx0(t)kj
Rµθ (t)kj

)]
dt. (22)

For the last identity we used the zero-row-sum property of transition rate matrix:

Rx0(t)kk = −
∑
j ̸=k

Rx0(t)kj .

If we plug (20) into (22) and reparameterize with a score model

sθ(xt)j ≜
qt|0(j|µθ(xt))

q(xt|µθ(xt))
, (23)

we recover the score entropy loss function from Lou et al. [32], Benton et al. [35]:

L∞ =

∫ 1

t(1)

Eqt|0(k|x0)

[∑
j ̸=k

Q(t)jk

(
sθ(k)j −

qt|0(j|x0)
qt|0(k|x0)

log sθ(k)j + ψ
(qt|0(j|x0)
qt|0(k|x0)

))]
dt, (24)

where ψ(y) ≜ y log y − y. Note that our derivation above is different and simpler than that of
Campbell et al. [29] (which Lou et al. [32] is based on) since we leverage the conditional reverse
transition rate given x0 instead of the transition rate matrix of the reverse process. We can further
simplify the loss with the following relationship between the conditional score and x0:

qt|0(j|x0)
qt|0(k|x0)

=
x⊤0 Q̄(t)ej
x⊤0 Q̄(t)ek

=
αt

1− αt
x⊤0 ej for k = m, j ̸= k. (25)

Note that only the result under the case k = m is needed. This is because when xt is un-
masked, at any time between 0 and t, the state must stay unchanged and remain x0. As a
result, KL(q(xt−∆t|xt, x0)∥pθ(xt−∆t|xt)) = 0 for xt ̸= m. From (15), we know Q(t)jk =
β(t)(δmk − δjk). Combining (25) and (24), we get

L∞ =

∫ 1

t(1)

β(t)
(
Eqt|0(k|x0)

[
δmk

(∑
j ̸=k

sθ(k)j −
αt

1− αt
x⊤0 log sθ(k)

)]
+ ψ

(αt

1− αt

))
dt. (26)

Further, we can show the connection between (26) and (4) by reverting the score parameterization
to a mean parameterization using (23), or equivalently sθ(xt)j = αt

1−αt
µθ(xt)

⊤ej . By doing so, we
obtain

L∞ =

∫ 1

t(1)

β(t)
(
Eqt|0(k|x0)

[
δmk

(∑
j ̸=k

sθ(k)j −
αt

1− αt
x⊤0 logµθ(k)

]
+

αt

1− αt

)
dt.

Observing that ∑
j ̸=m

sθ(m)j =
αt

1− αt
, (27)

we conclude that this recovers the objective in (4). Interestingly, in Lou et al. [32] the score
parameterization is not constrained to satisfy (27). That means the learned reverse model might be
incompatible with the forward process.

Below, we prove Proposition 1 using the result from Eq. (25).

Proof of Proposition 1
qt(j)

qt(m)
=

∑
x0
qt|0(j|x0)q(x0)
qt(m)

=

∑
x0
qt|0(j|x0)q0|t(x0|m)

qt|0(m|x0)
= Ex0|xt=m

[
qt|0(j|x0)
qt|0(m|x0)

]
= Ex0|xt=m

[
αt

1− αt
x⊤0 ej

]
=

αt

1− αt
E[x0|xt = m]⊤ej .

22

H.4 Other related work.

MaskGIT [39]. MaskGIT is a diffusion-inspired iterative denoising model for discrete image
tokens obtained through models such as VQ-VAE [70]. Training of MaskGIT follows the steps:
(a) Sample t ∈ [0, 1]. (b) Given a mask scheduling function γ(t), sample γ(t)N tokens to place
masks. (c) For data x0 of size (m+ 1)×N and the partially masked state xt, minimize the negative
log-likelihood

LMaskGIT = −
∫ 1

0

Ext

[∑
n:x

(n)
t =m

(x
(n)
0)⊤ logµ

(n)
θ (xt, t)

]
dt. (28)

Our forward process satisfies qt|0(m|x0) = 1 − αt. Therefore, when we set the mask scheduling

function as γ(t) = 1− αt we obtain a loss similar to (5) without the α′
t

1−αt
weighting. Note that there

remains a difference in the sampling distribution of xt: in the masked diffusion forward process,
tokens are sampled independently and do not necessarily yield exactly (1− αt)N mask tokens at
time t, though the expected number is (1− αt)N . One might be interested in whether the uniform
weighting can be recovered by selecting an appropriate schedule αt. However, solving αt such that
α′
t = αt − 1 yields αt = cet + 1 and there is no c that satisfies both α0 = 1 and α1 = 0. This shows

that training with the MaskGIT loss (28) may not be faithfully optimizing the model likelihood.

Discrete flow matching [49]. For the linear schedule αt = 1 − t, our reverse transition rate
matrix (8) conditioned on x0 is:

Rx0(t) = − α′
t

1− αt
em(x0 − em)⊤ =

1

t
em(x0 − em)⊤.

This is the same as the conditional reverse transition rate used in Campbell et al. [49, Eq. (22)]—note
that their time t is reversed, and the rate matrix was therefore in the formRx0(t) = 1

1−tem(x0−em)⊤.

SDDM [30]. Sun et al. [30] proposed a pseudo-likelihood-like objective for training discrete
diffusion models that can also be applied to masked diffusion. However, their objective encounters
the same challenge as Campbell et al. [29] — requiring N passes of the mask prediction model. To
mitigate this, they introduced a new transformer architecture, which unfortunately leads to some
performance degradation.

Blackout diffusion [50]. Santos et al. [50] proposed a “blackout” diffusion process that gradually
diffuses images to a black state. While this approach is similar to masked diffusion on binary data,
key differences emerge when dealing with larger state spaces. In their method, image pixel intensities
gradually fade out, whereas ours directly transition to a mask state. Our method offers more flexibility,
being applicable to general discrete state spaces without requiring predefined structural relationships.
It also demonstrates competitive performance in image generation, achieving this without knowing
pixel value proximity.

SUNDAE [51, 71]. Unlike masked diffusion, SUNDAE uniformly corrupts data with random
tokens in the vocab (known as uniform discrete diffusion [14]). Additionally, it uses a second loss
term from cross entropy between clean data and 1-step unrolled model prediction. Similar ideas have
been proposed in [72].

I Details for state-dependent rates

I.1 Derivations and time continuous limit

All derivations in this section assume that xt is a single token, while for N tokens the masked
diffusion with state-dependent rates factorises across the N tokens. Learning from data of N tokens
using variational inference is discussed in App. I.2.

23

Given the forward transition q(xt|xs) and marginal q(xs|x0) derived in main text (Sec. 6) The
reversal given x0 is q(xs|xt, x0) = Cat(xs; R̄

x0(t, s)⊤xt) for

R̄x0(t, s)jk =


(
αs−αt

1−αt

)⊤
x0x

⊤
0 ek j = m, k ̸= m(

1−αs

1−αt

)⊤
x0 j = m, k = m

δjk j ̸= m.

or alternatively can be written as

q(xs|xt, x0) =
q(xt|xs)q(xs|x0)

q(xt|x0)

=

[
α⊤

t xs

α⊤
s xs

x⊤s xt + (1− α⊤
t xs

α⊤
s xs

)e⊤mxt

] [
α⊤
s x0x

⊤
0 xs + (1− α⊤

s x0)e
⊤
mxs

][
α⊤
t x0x

⊤
0 xt + (1− α⊤

t x0)e
⊤
mxt

] . (29)

To simplify this expression we consider the two cases: either xt = m (i.e. xt is mask) or xt ̸= m
where in the second case xt = x0. For the case xt = m, the denominator in (29) simplifies as

q(xt = m|x0) = 1− α⊤
t x0

due to x⊤0 xt = 0 since x0 ̸= m, i.e. the observed token x0 cannot be a mask. Then given that xt = m
the probability that xs = xt = m is

1− α⊤
s x0

1− α⊤
t x0

=
(1− αs)

⊤x0
(1− αt)⊤x0

=

(
1− αs

1− αt

)⊤

x0 (30)

while the remaining probability for xs = x0 ̸= m is

(αs − αt)
⊤x0

1− α⊤
t x0

=
(αs − αt)

⊤x0
(1− αt)⊤x0

=

(
αs − αt

1− αt

)⊤

x0. (31)

Then, combining (30) and (31) to write q(xs|xt = m,x0) in an unified way yields the expression (11)
in the main Sec. 6. In the second case, when xt = x0 ̸= m, q(xs|xt ̸= m,x0) from (29) simplifies
dramatically and it becomes q(xs|xt ̸= m,x0) = x⊤t xs which is a point mass that sets xs = xt.

Derivation of the continuous-time limit of the loss in (12). To simplify the notation, we let
ξs,t ≜

αs−αt

1−αt
. We first compute the KL divergence terms in the discrete-time ELBO as

KL(q(xs|xt, x0)∥pθ(xs|xt))

=

{∑m
xs=0 q(xs|xt, x0) log

q(xs|xt,x0)
pθ(xs|xt)

xt = m

0 xt ̸= m

= δxt,m

[∑
k ̸=m

ξ⊤s,tx0x
⊤
0 ek log

ξ⊤s,tx0x
⊤
0 ek

ξ⊤s,tdiag(µθ(xt, t))ek
+ (1− ξs,t)⊤x0 log

(1− ξs,t)⊤x0
(1− ξs,t)⊤µθ(xt, t)

]
= δxt,m

[
− ξ⊤s,tx0x⊤0 logµθ(xt, t) + (1− ξs,t)⊤x0 log

(1− ξs,t)⊤x0
(1− ξs,t)⊤µθ(xt, t)

]
.

Let ∆t ≜ 1
T = t(i)− s(i) for all i. Plugging αt−∆t = αt − α′

t∆t+ o(∆t) into the above formula

and letting γt =
α′

t

1−αt
, we get

KL(q(xs|xt, x0)∥pθ(xs|xt))

= δxt,m

[
γ⊤t x0x

⊤
0 logµθ(xt, t)∆t+

(
1 + γ⊤t x0∆t

)
· log 1 + γ⊤t x0∆t+ o(∆t)

1 + γ⊤t µθ(xt, t)∆t+ o(∆t)
+ o(∆t)

]
= δxt,m

[
γ⊤t x0x

⊤
0 logµθ(xt, t)∆t+

(
1 + γ⊤t x0∆t

) (
γ⊤t x0∆t− γ⊤t µθ(xt, t)∆t+ o(∆t)

)
+ o(∆t)

]
= δxt,m

[
γ⊤t x0x

⊤
0 logµθ(xt, t)∆t+ γ⊤t x0∆t− γ⊤t µθ(xt, t)∆t+ o(∆t)

]
= δxt,m · γ⊤t (x0x

⊤
0 logµθ(xt, t) + x0 − µθ(xt, t))∆t+ o(∆t).

24

Therefore,

lim
T→∞

T∑
i=2

Eq(xt(i)|x0)[KL(q(xs(i)|xt(i), x0)∥pθ(xs(i)|xt(i)))]

= lim
T→∞

T∑
i=2

Eq(xt(i)|x0)[δxt(i),m · γ
⊤
t (x0x

⊤
0 logµθ(xt(i), t(i)) + x0 − µθ(xt(i), t(i)))∆t+ o(∆t)]

=

∫ 1

t(1)

γ⊤t Eq(xt(i)|x0)[δxt,m · (x0x⊤0 logµθ(xt, t) + x0 − µθ(xt, t))]dt.

Letting t(1)→ 0 proves the result.

I.2 Training and gradient estimation

The model is applied to data consisted of N tokens where x0 = (x10, . . . , x
(N)
0) and where each

state in the masked diffusion is xt = (x1t , . . . , x
(N)
t). The reverse generated model has a factorizing

transition conditional of the form
∏N

n=1 pθ(x
(n)
s |xt) where pθ(x

(n)
s |xt) = q(x

(n)
s |x(n)t , µ

(n)
θ (xt, t))

has a form that depends on whether x(n)t = m or x(n)t ̸= m. For the first case:

pθ(x
(n)
s |x

(n)
t = m, {x(k)t }k ̸=n) =

(1− αs

1− αt

)⊤
µ
(n)
θ (xt, t)e

⊤
mx

(n)
s +

(αs − αt

1− αt

)⊤
diag(µ

(n)
θ (xt, t))x

(n)
s ,

where µ(n)
θ (xt, t) = softmax(fθ(xt)) is a m+ 1 dimensional probability vector modelled by a NN

(where the final value is constrained to be zero since µ(n)
θ (xt, t) is a reconstruction of x(n)0 which

cannot be mask, so in practice the NN classifier needs to have a softmax output only over the m
actual token classes). Crucially, note that the NN classifier receives as input the full state xt of all
tokens, while additional time features to encode t are also included. When x(n)t ̸= m the reverse
transition model is set to be pθ(xs|x(n)t ̸= m, {x(k)t }k ̸=n) = (x

(n)
t)⊤x

(n)
s which matches precisely

q(x
(n)
s |x(n)t = m,x

(n)
0) = (x

(n)
t)⊤x

(n)
s from the forward process.

The full negative lower bound for state-dependent rates and assuming N tokens is given by

L(N)
∞ =

∫ 1

0

(α′
t

1− αt

)⊤
Eq(xt|x0)

[∑
n:x

(n)
t =m

(x
(n)
0 − µ(n)

θ (xt, t) + x
(n)
0 (x

(n)
0)⊤ logµ

(n)
θ (xt, t))

]
dt.

(32)

Given that each αt,i = 1− twi , the reverse model becomes

pθ(x
(n)
s |x

(n)
t ̸= m, {x(k)t }k ̸=n) =

(
ew log s

t

)⊤
µ
(n)
θ (xt, t)e

⊤
mx

(n)
s +

(
1− ew log s

t

)⊤
diag(µ(n)

θ (xt, t))x
(n)
s ,

where w is the m + 1 dimensional vector of all wis. Note that the probability of x(n)s staying in
the mask state, i.e., x(n)s = m depends on the full xt and it is given by

(
ew log s

t

)⊤
µ
(n)
θ (xt, t) =∑m−1

i=0 ewi log
s
t µ

(n)
θ (xt, t)i while the probability for x(n)s to take a certain non-mask token value i

is
(
1− ewi log

s
t

)
µ
(n)
θ (xt, t)i. The gradient wrt t is α′

t,i = −wit
wi−1 and

α′
t,i

1−αt,i
= −wi

t the above
loss is written as

L(N)
∞ = −

∫ 1

0

1

t
w⊤Eq(xt|x0)

[∑
n:x

(n)
t =m

(x
(n)
0 − µ(n)

θ (xt, t) + x
(n)
0 (x

(n)
0)⊤ logµ

(n)
θ (xt, t))

]
dt,

where w is the vector of all wi’s. An unbiased gradient over the NN parameters θ is straightforward
to obtain since we just need to sample one time point t and an xt ∼ q(xt|x0) to approximate the
integral and expectation and then use the gradient:

−∇θ

∑
n:x

(n)
t =m

1

t
w⊤

(
x
(n)
0 − µ(n)

θ (xt, t) + x
(n)
0 (x

(n)
0)⊤ logµ

(n)
θ (xt, t)

)
.

The gradient wrt the w parameters is more complex since these parameters appear also in the
discrete distribution q(xt|x0) which is not reparametrizable. To deal with this we need REINFORCE

25

unbiased gradients [73, 74], and in our implementation we consider REINFORCE leave-one-out
(RLOO) [53, 54] with two samples. Firstly, the exact gradient wrt w of the exact loss is written as

−
∫ 1

0

1

t
Eq(xt|x0) [g(xt, x0)] dt−

∫ 1

0

1

t
Eq(xt|x0) [f(xt, x0)∇w log q(xt|x0)] dt. (33)

where

g(xt, x0) =
∑

n:x
(n)
t =m

(x
(n)
0 −µ

(n)
θ (xt, t)+x

(n)
0 (x

(n)
0)⊤ logµ

(n)
θ (xt, t)), f(xt, x0) = w⊤g(xt, x0).

Note that g(xt, x0) is a vector while f(xt, x0) is a scalar. The left term in (33) is easy since it just
requires sampling t and xt ∼ q(xt|x0), while the right term is the REINFORCE term which could
have high variance. For this second term we use RLOO with two samples x1t , x

2
t and construct the

unbiased estimate

− 1

2t

(
∇w log q(x1t |x0)−∇w log q(x2t |x0)

) [
f(x1t , x0)− f(x2t , x0)

]
.

Thus, the overall unbiased gradient for w we use is

− 1

2t

{
g(x1t , x0) + g(x2t , x0) +

(
∇w log q(x1t |x0)−∇w log q(x2t |x0)

) [
f(x1t , x0)− f(x2t , x0)

]}
.

J Experimental Details

In all experiments, the model is trained with a continuous-time loss while samples are drawn from
the discrete-time reverse model of 1000 timesteps unless otherwise noted. We used an exponential
moving average factor 0.9999 for all evaluation including sample generation.

J.1 text8

We followed the standard dataset split as in Austin et al. [14], Lou et al. [32] and trained our models
on text chunks of length 256 for 1 million steps with batch size 512. All models in the table used a
standard 12-layer transformer architecture unless otherwise noted. Our transformer has also the same
number of heads (12) and hidden dimension (784) as in Austin et al. [14], Lou et al. [32].

We used the continuous-time ELBO and drew one sample of t for each data to estimate the integral.
To reduce the variance of training, we used the same antithetic sampling trick described in Kingma
et al. [33] for continuous diffusion models. We used the linear masking schedule αt = 1 − t and
added a small shift ϵ = 10−4 when t is close to 0 and 1 to ensure numerical stability. The shifted
schedule is αt = (1− 2ϵ)(1− t) + ϵ. The shift leads to a support mismatch between q(x1|x0) and
the prior p(x1), leading to an undefined KL divergence term. We explain in app. E how to modify the
prior distribution to allow small uniform probabilities in non-mask states to mitigate this problem.
The shift leads to a non-zero reconstruction term and KL divergence term for the prior distribution
but both are of negligible scale so we can safely ignore them when reporting the ELBO.

We used a cosine learning rate schedule with a linear warm up of 2000 steps. We applied channel-wise
dropout of rate 0.05 and used AdamW optimizer with learning rate 0.0003 and a weight decay factor
of 0.03. Our model is trained on 16 TPU-v5 lite for less than a day.

J.2 OpenWebText

We kept 2% of the original training set for validation. Our small and medium transformer model have
the same number of layers, heads, and hidden dimensions as in Lou et al. [32] and our tokenizer was
also kept the same with a vocabulary size of around 50k. The training objective, masking schedule
and other architectural choices were kept the same with the text8 experiment. We kept the training
hyperparameters the same as text8 experiment except that we reduced the dropout rate to 0.02.

J.3 FineWeb-Edu

We kept the same training setup as the OpenWebText experiments. Our transformer models have the
same number of layers, heads, and hidden dimensions as those of GPT-2 models. We use the same
GPT-2 tokenizer.

26

For Hellaswag evaluation, we concatenate question with each answer option, tokenize the concate-
nated string, pad to the length of 1024. The padded token sequence gets fed to our MD4 model’s
loss function for likelihood evaluation. We average 32 Monte Carlo samples to reduce variance. The
answer with the highest likelihood estimate is the model’s prediction.

J.4 Images

We used the same linear masking schedule as in previous experiments in all likelihood results. We
used the same U-Net plus self-attention architectures from the continuous diffusion model described
in Kingma et al. [33] for CIFAR-10, except that we did not use Fourier feature inputs and added
an additional input embedding layer with embedding size the same as the hidden dimension of the
model. For ImageNet 64× 64, we reduced the number of residual blocks (in one side of the U-Net
structure) from 64 to 48 and added a 12-layer diffusion transformer [75] with 768 hidden dimension
and 12 heads in the middle.

For both datasets we used AdamW optimizer and trained for 2M iterations. We used learning rate
0.0004, batch size 256, weight decay factor 0.01 for CIFAR-10 and learning rate 0.0002, batch size
512, weight decay factor 0.03 for ImageNet 64×64. The learning rate follows a cosine annealing
after 100 warm up steps. Our CIFAR-10 model is trained on 32 TPU-v5 lite for 24 hours. Our
ImageNet-64× 64 model is trained on 256 TPU-v5 lite for 3.5 days.

As explained in Sec. 4, we have observed that the cosine schedule leads to better sample quality so
we used it to train a cheaper model for sample visualization. This model differs from the one that
achieves best likelihood in that we used 8 residual blocks (in one side of the UNet structure) and a
20-layer diffusion transformer in the middle. All other configurations are kept the same.

K Additional Results

K.1 Sample quality evaluation by GPT-2

We use the GPT-2 large model to evaluate the perplexity of samples generated by our model, following
Lou et al. [32]. Results are shown in Fig. 8.

Figure 8: Generative perplexity evaluated by GPT-2 Large following Lou et al. [32]. We compare
MD4 against the GPT-2 checkpoint (autoregressive baseline) and SEDD (the previous best discrete
diffusion model on this task) in generating 1024-token text sequences. We investigate the effects of
two orthogonal factors on sample quality: model size and decoding steps. The numbers for GPT-2
and SEDD are from Lou et al. [32].

27

K.2 Perplexity on OpenWebText validation set

Tab. 5 reports the final perplexity number achieved on OpenWebText validation set, corresponding to
Fig. 4.

Table 5: Perplexity on OpenWebText validation set.

Size Method Perplexity (↓)

Small Gaussian Diffusion ≤ 27.28
SEDD Absorb (reimpl.) ≤ 24.10
MD4 (Ours) ≤ 22.13
GenMD4 (Ours) ≤ 21.80

Medium MD4 (Ours) ≤ 16.64

K.3 FID evaluation of MD4 trained on ImageNet 64×64

We provide the FID numbers corresponding to Fig. 2 in Tab. 6.

Table 6: FID of 50k samples generated by MD4 trained on ImageNet 64× 64, corresponding to Fig. 2.
Top three rows show results from an unconditional model, while the bottom row is from a model
conditioned on class labels. Uniform discretization grid is used in Alg. 2 unless otherwise noted.

Method Timesteps T
64 128 256 512

Linear αt 193.81 128.18 72.94 50.21
Linear αt, cosine grid 42.07 25.16 18.31 18.22
Cosine αt 47.46 23.84 17.8 18.74

Cosine αt, class conditional 30.75 11.39 7.13 7.8

K.4 Additional unconditional generation from MD4 trained on ImageNet 64×64

We provide more unconditional generation results from our pixel-level modeling experiments on
ImageNet 64×64 in Fig. 9.

K.5 Additional unconditional generation from MD4 trained on OpenWebText

Below we include two unconditioned text samples generated by our MD4 Medium model trained on
OpenWebText.

K.5.1 MD4-M unconditional sample 1: 1024 tokens

like, I don’t have to be alive? Sometimes there are things that are too real
and you’re really supposed to experience them. So that’s a good feeling.
That is the scary thing. Not actually, being able to experience things, being
able to do these things, when you’re doing them, which, for most people
having to wake in a dream is something that seems the most significant, and then
you think about it the next day. It’s like the hope of the future,
and you wake up right now thinking about it. What happens is,, then you
have to stop and think about it and then all of a sudden, somebody always
says, "You’re dreaming."

And sometimes I wonder if this is a good time to teach your gut instincts to
your actors when you’re doing a show like this. Because even on this particular
show, it feels like everyone’s been through this all the time before, if even
a few years ago. I mean, if you’re doing a show together, at least not on
continuous development, you you’re a vet. I mean, you should really be along.

28

Figure 9: More unconditional samples from MD4 trained on ImageNet 64×64.

If you’re not sure, well --

VS: I’m working on that one.

Did any of you guys feel that an instinct could work? I thought, "Well, because
you didn’t do ’Deadwood’ you should stop doing this." But when I read the story
for the first time, I thought, "I think this is going to work." What I can’t
picture is a way to hold this apart.

29

VS: That’s me. It’s what we have to do. So do we. When we wrote the first episode,
we wrote a script that we felt like me and myself would want to see. I knew that I
wanted to be able to be in something -- and I wanted to be able to take refuge in
something that was real, that you could see and just really step out of yourself.
And then I saw it. Then, you get rehearsing it and doing it. And then I actually
started shooting. I think I knew I didn’t think it was going to be good. But,
I know it was good. And now people are talked about because it’s not good enough.

Growing up, you say that you just completely hated the show, "Lost." Isn’t that
what you wish for at the end of the day?

VS: I don’t like the concept.

And so there’s a lot that you don’t know about that, so I think for me to have had
these ideas, if you didn’t understand even that it was coming out of this world
that doesn’t exist, we might never get together.

It’s so weird. This happened to happen at the same time?

VS: Yes. It happened to happen at basically the same time.

Nobody’s even had a show or had a movie/come out of the movie, but ...

VS: If I’m going to pretend I’m definitely not you and have to live through that
stuff, I don’t think I’m going to swallow that. I didn’t expect it to do quite
that long.

There are always things now that happen with ’Deadwood’ where you don’t know where
it’s going to end up next time, but I think there are occasions now where we have
to keep the fight, even if ’Lost’ was pretty consistent in the mindset and the form.

VS: I’m glad that we did fight the odds, because we should have understood that
there was a direct link. But there was almost a sense of not that we had showed up
on the same day, we know we work in the same pieces, but a lot of stuff we don’t
know about. Some of it, we need to deal with. We also just have to accept the
language, and there are a lot of things where we take from them and we do this
what they did because we want to

K.5.2 MD4-M unconditional sample 2: 1024 tokens

the groups let recreational vehicles use the three roads that will stay open in
the meantime of fighting off the permit. "The purpose of the permit is to make
sure that we work with the NPS and made roadways and rest areas. We’re not just
scaring guys kind of messing around." Community plans to build an urban bike
facility marched forward at the ongoing staff meeting of the King County
Commission.

Trail will be finished just south of the Greenview 5.

Instead of continuing with a pedestrian and bike trail to the MBTA’s campus, these
two trails could bridle the areas from Market to 14 and carry communities closer.

"This project will provide a car-free path to King County," said Andrew Weed. It’s
been put the brakes on in the past several months, but there are those residents
still skeptical.

"I’ve addressed some of the community concerns that’ve been raised. They’ve
expressed some of their concerns. I don’t think it’s terribly reasonable from a

30

transportation standpoint."

The trail had been set up to meet on for more than a year when the council
approved funding for a different proposal.

Mayor Muriel Bowser said after meetings with Commissioner Bushell on Thursday that
the new plan will be on board in December.

"There’s enough of a finish for this project to roll out on time, and we’re going
to get it done," Bowser said.

For the public, the campaign appears over.

“There was one meeting that I feel like I lost at last night’s meeting," said
Shelley Potts, a local resident.

Local resident Joel Grimy, who lives on Uman Road, met residents there as well.

And in other groups that rode through Mayor assistant Stacey Land and even her son
held fliers saying to look for light sign, and also met with Bowser’s son, Deion
Bowser, about a future plan to also have a dog park on the transit corridor.

Advocates at Brickley’s event, many one waited at least 11 minutes in during the
start of the public meeting, said they expect at least another month from the
Board of Commissioners, even after a public hearing on Nov. 13.

"We’ve been trying to be a talkative board where we are meeting in advance, being
respectful of folks," Bowser said.

He considered that the proposal for the section of trail between the Greenview 5
and 3 “has to move on a schedule. We have other historic preservation projects
that would take over that.”

But Chad Routledge, a local advocate of the project, spoke out against the mayor’s
plan.

“The mayor has sent a new meeting to the public using the same route that resulted
from the loud criticism and onslaught of complaints from the community committee
back during the public hearing,” Routledge said.

The BDC doesn’t have a particular plan-turns around for the end of the planned
path, and says “nothing practical can happen right now.” But, she said the agency
still "looking to make investments in facilities along the route."

And still there is another part of the trail that might be just as much a wish for
the dogs, as cars: the district wants to go west foot a couple blocks south, to
make the trail safer for dogs.

“I feel that the accessibility of the trail is pretty important. I think the
education of the trail, and the uses along different routes are very important
pieces of a balanced outcome,” said Bushell.

Trams coming off Route 1

K.6 Conditional generation from MD4 trained on OpenWebText

We share conditionally generated text samples by MD4 Medium in Fig. 10 and observe that slow
unmasking near t = 1, enabled by the cosine schedule, tends to help produce more consist and
meaningful samples than uniform unmasking counterpart.

31

Figure 10: Conditionally generated text samples from MD4-M. Top: MD4-M trained with linear
masking schedule; Middle: MD4-M trained with linear masking schedule with cosine grid; Bottom:
MD4-M trained with cosine masking schedule. Context text shown in blue, model-generated text in
black.

K.7 Effect of discretization on zero-shot perplexity

We carried out ablation study on the effect of discretization on zero-shot perplexity. Results are
included in Tab. 7. Note that this is an inference ablation with the same trained model (MD4-S trained
with the continuou-time objective).

Table 7: Effect of discretization on zero-shot perplexity.

Size Timesteps LAMBADA WikiText2 PTB WikiText103 IBW

Small T = 100 ≤ 49.8 ≤ 36.1 ≤ 105.2 ≤ 36.1 ≤ 70.3
T = 1000 ≤ 48.5 ≤ 35.0 ≤ 102.5 ≤ 35.0 ≤ 68.4
T = 10000 ≤ 48.4 ≤ 34.9 ≤ 102.4 ≤ 34.9 ≤ 68.2
T = ∞ (continuous) ≤ 48.4 ≤ 34.9 ≤ 102.3 ≤ 35.9 ≤ 68.1

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main theoretical and experimental contributions are claimed in the abstract
and demonstrated in the paper. They reflect the paper’s contributions and scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: The limitations of our work are detailed in the very last paragraph of the paper
(see Section 7).

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: All the theoretical results are proven in the supplementary material.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We included all experimental details in App. J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

33

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets we used are all public datasets. Our code is released at https:
//github.com/google-deepmind/md4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Included in App. J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the practice in prior work [33] to not include error bars, partly
because the models are expensive to train.

Guidelines:

34

https://github.com/google-deepmind/md4
https://github.com/google-deepmind/md4
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Included in App. J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: After careful review of the NeurIPS Code of Ethics, it is clear that the research
presented in this paper conforms with the Code of Ethics in every respect.

Guidelines:

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This paper is mostly theoretical and methodological. We do not see immediate
societal impact of this work. However, we acknowledge that large scale implementation of
our algorithm might suffer from the same societal biases as any other generative models.

11. Safeguards

35

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the dataset sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: This paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

36

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

37

	Introduction
	Masked Diffusion
	Model and Objective
	Sampling
	Relation to Existing Work
	Generalization to State-dependent Masking Schedules
	Experiments
	Text
	Pixel-level image modeling

	Conclusion
	Discrete-time derivation
	Continuous-time derivation
	Time reversal of the forward process given x0
	Details of the ELBO
	Avoiding undefined KL divergence
	Details of Training and Sampling with MD4
	Training
	Sampling

	JAX Categorical Sampling and Implicit Top-p
	Unifying Existing Masked Diffusion Models
	The CTMC point of view
	Differences from campbell2022continuous
	Score parameterization
	Other related work.

	Details for state-dependent rates
	Derivations and time continuous limit
	Training and gradient estimation

	Experimental Details
	text8
	OpenWebText
	FineWeb-Edu
	Images

	Additional Results
	Sample quality evaluation by GPT-2
	Perplexity on OpenWebText validation set
	FID evaluation of MD4 trained on ImageNet 6464
	Additional unconditional generation from MD4 trained on ImageNet 6464
	Additional unconditional generation from MD4 trained on OpenWebText
	MD4-M unconditional sample 1: 1024 tokens
	MD4-M unconditional sample 2: 1024 tokens

	Conditional generation from MD4 trained on OpenWebText
	Effect of discretization on zero-shot perplexity

