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ABSTRACT

Feature learning is thought to be one of the fundamental reasons for the success
of deep neural networks. It is rigorously known that in two-layer fully-connected
neural networks under certain conditions, one step of gradient descent on the first
layer followed by ridge regression on the second layer can lead to feature learning;
characterized by the appearance of a separated rank-one component—spike—in
the spectrum of the feature matrix. However, with a constant gradient descent step
size, this spike only carries information from the linear component of the target
function and therefore learning non-linear components is impossible. We show that
with a learning rate that grows with the sample size, such training in fact introduces
multiple rank-one components, each corresponding to a specific polynomial feature.
We further prove that the limiting large-dimensional and large sample training and
test errors of the updated neural networks are fully characterized by these spikes.
By precisely analyzing the improvement in the loss, we demonstrate that these
non-linear features can enhance learning.

1 INTRODUCTION

Learning non-linear features—or representations—from data is thought to be one of the fundamental
reasons for the success of deep neural networks (e.g., Bengio et al., 2013; Donahue et al., 2016; Yang
& Hu, 2021; Shi et al., 2022; Radhakrishnan et al., 2022, etc.). This has been observed in a wide range
of domains, including computer vision and natural language processing. At the same time, the current
theoretical understanding of feature learning is incomplete. In particular, among many theoretical
approaches to study neural nets, much work has focused on two-layer fully-connected neural networks
with a randomly generated, untrained first layer and a trained second layer—or random features

models (Rahimi & Recht, 2007). Despite their simplicity, random features models can capture
various empirical properties of deep neural networks, and have been used to study generalization,
overparametrization and “double descent”, adversarial robustness, transfer learning, estimation of
out-of-distribution performance, and uncertainty quantification (see e.g., Mei & Montanari (2022);
Hassani & Javanmard (2022); Tripuraneni et al. (2021); Lee et al. (2023); Bombari & Mondelli
(2023); Clarté et al. (2023); Lin & Dobriban (2021); Adlam et al. (2022), etc.).

Nevertheless, feature learning is absent in random features models, because the first layer weights
are assumed to be randomly generated, and then fixed. Although these models can represent non-
linear functions of the data, in the commonly studied setting where the sample size, dimension, and
hidden layer size are proportional, under certain reasonable conditions they can only learn the linear

component of the true model—or, teacher function—and other components of the teacher function
effectively behave as Gaussian noise. Thus, in this setting, learning in a random features model
is equivalent to learning in a noisy linear model with Gaussian features and Gaussian noise. This
property is known as the Gaussian equivalence property (see e.g., Adlam et al. (2022); Adlam &
Pennington (2020a); Hu & Lu (2023); Mei & Montanari (2022); Montanari & Saeed (2022)). While
other models such as the neural tangent kernel (Jacot et al., 2018; Du et al., 2019) can be more
expressive, they also lack feature learning.

To bridge the gap between random features models and feature learning, several recent approaches
have shown provable feature learning for neural nets under certain conditions; see Section 1.1 for
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Figure 1: Spectrum of the updated feature matrix for different regimes of the gradient step size ⌘.
Spikes corresponding to monomial features are added to the spectrum of the initial matrix. The
number of spikes depends on the range ↵. See Theorems 3.3 and 3.4 for more details.

details. In particular, the recent pioneering work of Ba et al. (2022) analyzed two-layer neural
networks, trained with one gradient step on the first layer. They showed that when the step size
is small, after one gradient step, the resulting two-layer neural network can learn linear features.
However, it still behaves as a noisy linear model and does not capture non-linear components of
a teacher function. Moreover, they showed that for a sufficiently large step size, under certain
conditions, the one-step updated random features model can outperform linear and kernel predictors.
However, the effects of a large gradient step size on the features is unknown. What happens in the
intermediate step size regime also remains unexplored. In this paper, we focus on the following key
questions in this area:

What nonlinear features are learned by a two-layer neural network after one

gradient update? How are these features reflected in the singular values and

vectors of the feature matrix, and how does this depend on the scaling of the step

size? What exactly is the improvement in the loss due to the nonlinear features

learned?

Main Contributions. Toward answering the above questions, we make the following contributions:

• We study feature learning in two-layer fully-connected neural networks. Specifically, we
follow the training procedure introduced in Ba et al. (2022) where one step of gradient
descent with step size ⌘ is applied to the first layer weights, and the second layer weights
are found by solving ridge regression on the updated features. We consider a step size
⌘ ⇣ n↵,↵ 2 (0, 1

2 ) that grows with the sample size n and examine how the learned features
change with ↵ (Section 2.1).

• In Section 3, we present a spectral analysis of the updated feature matrix. We first show that
the spectrum of the feature matrix undergoes phase transitions depending on the range of
↵. In particular, we find that if ↵ 2 ( `�1

2` , `

2`+2 ) for some ` 2 {1, 2, . . .}, then ` separated
singular values—spikes—will be added to the spectrum of the initial feature matrix (Theorem
3.3). Figure 1 illustrates this finding.

• Building on perturbation theory for singular vectors, we argue that the left singular vectors
(principal components) associated with the ` spikes are asymptotically aligned with polyno-
mial features of different degrees (Theorem 3.4). In other words, the updated feature matrix
will contain information about the degree-` polynomial component of the target function.

• In Section 4.1, we establish equivalence theorems (Theorem 4.1 and 4.2) which state that
the training and test errors of the updated neural networks are fully characterized by the
initial feature matrix and the ` spikes.

• We use the equivalence theorems from Section 4.1 to fully characterize asymptotics of the
training loss for different ` (Theorem 4.4). Notably, we show that in the simple case where
` = 1, the neural network does not learn non-linear functions. However, in the ` = 2 regime,
the neural network in fact learns quadratic components of the target function (Corollary 4.5).
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1.1 RELATED WORKS

Theory of shallow neural networks. Random features models (Rahimi & Recht, 2007) have
been used to study various aspects of deep learning, such as generalization (Mei & Montanari,
2022; Adlam et al., 2022; Lin & Dobriban, 2021; Mel & Pennington, 2021), adversarial robustness
(Hassani & Javanmard, 2022; Bombari et al., 2023), transfer learning (Tripuraneni et al., 2021),
out-of-distribution performance estimation (Lee et al., 2023), uncertainty quantification (Clarté et al.,
2023), stability, and privacy (Bombari & Mondelli, 2023). This line of work builds upon nonlinear
random matrix theory (see e.g., Pennington & Worah (2017); Louart et al. (2018); Fan & Wang
(2020); Benigni & Péché (2021), etc.) studying the spectrum of the feature matrix of two-layer neural
networks at initialization. See Section A for more discussion on related work in deep learning theory.

Feature learning. The problem of feature learning has been gaining a lot of attention recently (see
e.g., Damian et al. (2022); Nichani et al. (2023); Zhenmei et al. (2022), etc.). Please refer to Section
A for a more detailed discussion of the prior work.

Wang et al. (2022) empirically show that if learning rate is sufficiently large, an outlier in the
spectrum of the weight and feature matrix emerges with the corresponding singular vector aligned to
the structure of the training data. Recently, Ba et al. (2022) show that in two-layer neural networks,
when the dimension, sample size and hidden layer size are proportional, one gradient step with
a constant step size on the first layer weights can lead to feature learning. However, non-linear
components of a single-index target function are still not learned. They further show that with a
sufficiently large step size, for teacher functions with information exponent (leap index)  = 1, and
under certain conditions, the updated neural networks can outperform linear and kernel methods.
However, the precise effects of large gradient step sizes on learning nonlinear features, and their
precise effects on the loss remain unexplored. Dandi et al. (2023) show that for single index models
with information exponent , there are hard directions whose learning requires a sample size of order
⇥(d). They also show that with one gradient step, and a sample size ⇥(d), only a single direction
of a multi-index target function can be learned. In the present work, we study the problem of learning
nonlinear components of a single-index target function with  = 1.

High-dimensional asymptotics. We use tools developed in work on high-dimensional asymptotics,
which dates back at least to the 1960s (Raudys, 1967; Deev, 1970; Raudys, 1972). Recently, these
tools have been used in a wide range of areas such as wireless communications (e.g., Tulino & Verdú
(2004); Couillet & Debbah (2011), etc.), high-dimensional statistics (e.g., Raudys & Young (2004);
Serdobolskii (2007); Paul & Aue (2014); Yao et al. (2015); Dobriban & Wager (2018), etc.), and
machine learning (e.g., Györgyi & Tishby (1990); Opper (1995); Opper & Kinzel (1996); Couillet
& Liao (2022); Engel & Van den Broeck (2001), etc.). In particular, the spectrum of so-called
information plus noise random matrices that arise in Gaussian equivalence results has been studied in
Dozier & Silverstein (2007); Péché (2019) and its spikes in Capitaine (2014).

2 PRELIMINARIES

Notation. We let N = {1, 2, . . .} be the set of positive integers. For a positive integer d � 1, we
denote [d] = {1, . . . , d}. We use O(·) and o(·) for the standard big-O and little-o notation. For a
matrix A and a non-negative integer k, A�k = A �A � . . . �A is the matrix of the k-th powers of
the elements of A. For positive sequences (An)n�1, (Bn)n�1, we write An = ⇥(Bn) or An ⇣ Bn

or An ⌘ Bn if there is C,C 0 > 0 such that CBn � An � C 0Bn for all n. We use OP(·), oP(·),
and ⇥P(·) for the same notions holding in probability. The symbol !P denotes convergence in
probability.

2.1 PROBLEM SETTING

In this paper, we study a supervised learning problem with training data (xi, yi) 2 Rd ⇥ R, for
i 2 [2n], where d is the feature dimension and n � 2 is the sample size. We assume that the data is
generated according to

xi

i.i.d.⇠ N(0, Id), and yi = f?(xi) + "i, (1)
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in which f? is the ground truth or teacher function, and "i
i.i.d.⇠ N(0,�2

"
) is additive noise.

We fit a model to the data in order to predict outcomes for unlabeled examples at test time; using
a two-layer neural network. We let the width of the internal layer be N 2 N. For a weight matrix
W 2 RN⇥d, an activation function � : R ! R applied element-wise, and the weights a 2 RN of a
linear layer, we define the two-layer neural network as fW,a(x) = a>� (Wx).

Following Ba et al. (2022), for the convenience of the theoretical analysis, we split the train-
ing data into two parts: X = [x1, . . . ,xn]> 2 Rn⇥d,y = (y1, . . . , yn)> 2 Rn and X̃ =
[xn+1, . . . ,x2n]> 2 Rn⇥d, ỹ = (yn+1, . . . , y2n)> 2 Rn. We train the two layer neural network as
follows. First, we initialize a = (a1, . . . , aN )> with ai

i.i.d.⇠ N (0, 1/N) and initialize W with

W0 = [w0,1, . . . ,w0,N ]
> 2 RN⇥d, w0,i

i.i.d.⇠ Unif(Sd�1),

where Sd�1 is the unit sphere in Rd and Unif(Sd�1) is the uniform measure over it. Although we
choose this initialization for a simpler analysis, many arguments can be shown to hold if we switch
from the uniform distribution over the sphere to a Gaussian. For example, see Section N.5. Fixing
a at initialization, we perform one step of gradient descent on W with respect to the squared loss
computed on (X,y). Recalling that � denotes element-wise multiplication, the negative gradient can
be written as

G := � @

@W


1

2n

��y � �(XW
>)a

��2
2

�

W=W0

=
1

n

⇥
(ay> � aa>�(W0X

>)) � �0(W0X
>)

⇤
X,

and the one-step update is W= [w1, . . . ,wN ]
>
= W0 + ⌘G for a learning rate or step size ⌘.

After the update on W, we perform ridge regression on a using (X̃, ỹ). Let F = �(X̃W
>) 2 Rn⇥N

be the feature matrix after the one-step update. For a regularization parameter � > 0, we set

â = â(F) = argmin
a2RN

1

n
kỹ � Fak22 + �kak22 =

�
F

>
F+ �nIN

��1
F

>ỹ. (2)

Then, for a test datapoint with features x, we predict the outcome ŷ = fW,â(x) = â>� (Wx).

2.2 CONDITIONS

Our theoretical analysis applies under the following conditions:
Condition 2.1 (Asymptotic setting). We assume that the sample size n, dimension d, and width of

hidden layer N all tend to infinity with

d/n ! � > 0, and d/N !  > 0.

We require the following conditions on the teacher function f?.
Condition 2.2. We let f? : Rd ! R be a single-neuron model f?(x) = �?(x>�?), where �? 2 Rd

is an unknown parameter with �? ⇠ N(0, 1
d
Id) and �? : R ! R is a teacher activation function. We

further assume that �? : R ! R is ⇥(1)-Lipschitz.

We let Hk, k � 1 be the (probabilist’s) Hermite polynomials on R defined by

Hk(x) = (�1)k exp(x2/2)
dk

dxk
exp(�x2/2),

for any x 2 R. These polynomials form an orthogonal basis in the Hilbert space L2 of measur-
able functions f : R ! R such that

R
f2(x) exp(�x2/2)dx < 1 with inner product hf, gi =R

f(x)g(x) exp(�x2/2)dx. The first few Hermite polynomials are H0(x) = 1, H1(x) = x, and
H2(x) = x2 � 1.
Condition 2.3. The activation function � : R ! R has the following Hermite expansion in L2

:

�(z) =
1X

k=1

ckHk(z), ck =
1

k!
EZ⇠N(0,1)[�(Z)Hk(Z)].

The coefficients satisfy c1 6= 0 and c2
k
k!  Ck�

3
2�! for some C,! > 0 and for all k � 1. Moreover,

the first three derivatives of � almost surely exist and are bounded.
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Figure 2: Histogram of the scaled singular values (divided by
p
n) of the feature matrix after the

update with step size ⌘ = n0.29 (` = 2). In this regime, two isolated spikes appear in the spectrum as
stated in Theorem 3.3. The top two left singular vectors u1 and u2 are aligned with X̃� and (X̃�)�2,
respectively. See Section 5 for the simulation details.

We remark that the above condition requires c0 = 0, i.e., that E�(Z) = 0 for Z ⇠ N(0, 1). This
condition is in line with prior work in the area (e.g., Adlam & Pennington (2020a); Ba et al. (2022),
etc.), and could be removed at the expense of more complicated formulas and theoretical analysis.
The smoothness assumption on � is also in line with prior work in the area (see e.g., Hu & Lu (2023);
Ba et al. (2022), etc.). Note that the above condition is satisfied by many popular activation functions
(after shifting) such as the ReLU �(x) = max{x, 0} � 1p

2⇡
, hyperbolic tangent �(x) = e

x�e
�x

ex+e�x ,
and sigmoid �(x) = 1

1+e�x � 1
2 . We also make similar assumptions on the teacher activation:

Condition 2.4. The teacher activation �? : R ! R has the following Hermite expansion in L2
:

�?(z) =
1X

k=1

c?,kHk(z), c?,k =
1

k!
EZ⇠N(0,1)[�?(Z)Hk(Z)].

Also, we define c? = (
P1

k=1 k!c
2
?,k

)
1
2 .

3 ANALYSIS OF THE FEATURE MATRIX

The first step in analyzing the spectrum of the feature matrix F is to study the negative gradient
G. It is shown in (Ba et al., 2022, Proposition 2) that in operator norm, the matrix G can be
approximated by the rank-one matrix c1a�> with high probability, where the Hermite coefficient c1
of the activation � is defined in Condition 2.3, and � = 1

n
X

>y 2 Rd. As the following proposition
suggests, � can be understood as a noisy estimate of �? (see also Lemma K.1).
Proposition 3.1. If Conditions 2.1-2.4 hold, then

|�>
?
�|

k�?k2k�k2
!P

|c?,1|q
c2
?,1 + �(c2

?
+ �2

"
)
.

In particular, if the number of samples used for the gradient update is very large; i.e., �! 0, � will
converge to being completely aligned to �?.

Building on this result, we can prove the following rank-one approximation lemma. Note that the
updated feature matrix can be written as F = �(X̃(W0 + ⌘G)>) and terms of the form (X̃G

>)�k,
k 2 N, will appear in polynomial and Taylor expansions of F around F0. In the following lemma,
we show that for any fixed power k, these terms can be approximated by rank one terms.
Lemma 3.2 (Rank-one approximation). If Conditions 2.1-2.4 hold, then there exists C > 0 such that

for c1 from Condition 2.3, for any fixed k 2 N,

k(X̃G
>)�k � ck1(X̃�)�k(a�k)>kop  Ckn� k

2 log2k n

with probability 1� o(1).

Next, we will show that after the gradient step, the spectrum of the feature matrix F will consist
of a bulk of singular values that stick close together—given by the spectrum of the initial feature
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matrix F0 = �(X̃W
>
0 )—and ` separated spikes1, where ` is an integer that depends on the step size

used in the gradient update. Specifically, when the step size is ⌘ ⇣ n↵ with `�1
2` < ↵ < `

2`+2 for
some ` 2 N, the feature matrix F can be approximated in operator norm by the untrained features
F0 = �(X̃W

>
0 ) plus ` rank-one terms, where the left singular vectors of the rank-one terms are

aligned with the non-linear features X̃ 7! (X̃�)�k, for k 2 [`]. See Figure 2.
Theorem 3.3 (Spectrum of feature matrix). Let ⌘ ⇣ n↵ with

`�1
2` < ↵ < `

2`+2 for some ` 2 N. If

Conditions 2.1-2.4 hold, then for ck from Condition 2.3 and F0 = �(X̃W
>
0 ),

F = F` +�, with F` := F0 +
`X

k=1

ck1ck⌘
k(X̃�)�k(a�k)>, (3)

where k�kop = o(
p
n) with probability 1� o(1).

To understand (X̃�)�k(a�k)>, notice that for a datapoint with features x̃i, the activation of each
neuron is proportional to the polynomial feature (x̃>

i
�)k, with coefficients given by a�k for the

neurons. The spectrum of the initial feature matrix F0 is fully characterized in Pennington & Worah
(2017); Benigni & Péché (2021; 2022); Louart et al. (2018); Fan & Wang (2020), and its operator
norm is known to be ⇥P(

p
n). Moreover, it follows from the proof that the operator norm of each

of the terms ck1ck⌘k(X̃�)�k(a�k)>, k 2 [l] is with high probability of order larger than
p
n. Thus,

Theorem 3.3 identifies the spikes in the spectrum of the feature matrix.

Proof Idea. We approximate the feature matrix F = �(X̃(W0 + ⌘G)>) by a polynomial using
its Hermite expansion. Next, we use the binomial expansion and apply Lemma 3.2 to approximate
(X̃G

>)�k by ck1(X̃�)�k(a�k)>, for all k. Then, spike terms with k � `+ 1 are negligible since we
can show that their norm is OP(nk↵+ 1

2�
k�1
2 ) = oP(

p
n).

The special case where ↵ = 0 is discussed in (Ba et al., 2022, Section 3), which focuses on the
spectrum of the updated weight matrix W = W0 + ⌘G. However, here we study the updated feature
matrix F = �(X̃(W0 + ⌘G)>) because that is more directly related to the learning problem—as we
will discuss in the consequences for the training and test risk below.

In the following theorem, we argue that the subspace spanned by the non-linear features
{�(X̃wi)}i2[N ] can be approximated by the subspace spanned by the monomials {(X̃�)�k}k2[`].
For two `-dimensional subspaces U1,U2 ✓ Rn, with orthonormal bases U1,U2 2 Rn⇥`, recall the
principal angle distance between U1,U2 defined by d(U1,U2) = minQ kU1 �U2Qkop, where the
minimum is over `⇥ ` orthogonal matrices (Stewart & Sun, 1990). This definition is invariant to the
choice of the orthonormal bases U1,U2.
Theorem 3.4. Let F` be the `-dimensional subspace of Rn

spanned by top-` left singular vectors

(principal components) of F. Under the conditions of Theorem 3.3, we have

d(F`, span{(X̃�)�k}k2[`]) !P 0.

This result shows that after one step of gradient descent with step size ⌘ ⇣ n↵ with `�1
2` < ↵ <

`

2`+2 , the subspace of the top-` left singular vectors carries information from the polynomials
{(X̃�)�k}k2[`]. Also, recall that by Proposition 3.1, the vector � is aligned with �?. Hence, it is
shown that F` carries information from the first ` polynomial components of the teacher function.

Proof Idea. We use Wedin’s theorem (Wedin, 1972) to characterize the distance between the left
singular vector space of

P
`

k=1 c
k

1ck⌘
k(X̃�)�k(a�k)> and that of F. Here, we consider the matrix

F0 +� as the perturbation term.

4 LEARNING HIGHER-DEGREE POLYNOMIALS

In the previous section, we studied the feature matrix F and showed that when ⌘ ⇣ n↵ with
`�1
2` < ↵ < `

2`+2 , it can be approximated by F0 = �(X̃W
>
0 ) plus ` rank-one or spike terms. We

1Using terminology from random matrix theory (Bai & Silverstein, 2010; Yao et al., 2015).
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also saw that the left singular vectors of the spike terms are aligned with the non-linear functions
X̃ 7! (X̃�)�k. Intuitively, this result suggests that after the gradient update, the trained weights
are becoming aligned with the teacher model and we should expect the ridge regression estimator
on the learned features to achieve better performance. In particular, when ↵ > 0, we expect the
ridge regression estimator to—partially—capture the non-linear part of the teacher function. This is
impossible for ⌘ = O(1) (Ba et al., 2022) or ⌘ = 0 (Hu & Lu, 2023; Mei & Montanari, 2022).

In this section, we aim to make this intuition rigorous and show that the spikes in the feature matrix
lead to a decrease in the loss achieved by the estimator. Moreover, for large enough step sizes,
the model can fit non-linear components of the teacher function. For this, we first need to prove
equivalence theorems showing that instead of the true feature matrix F, the approximations from
Theorem 3.3 can be used to compute error terms (i.e., the effect of � on the error is negligible).

4.1 EQUIVALENCE THEOREMS

Given a regularization parameter � > 0, recalling the ridge estimator â(F) from equation 2,

we define the training loss

Ltr(F) =
1

n
kỹ � Fâ(F)k22 + �kâ(F)k22.

In the next theorem, we show that when ⌘ ⇣ n↵ with `�1
2` < ↵ < `

2`+2 , the training loss Ltr(F) can
be approximated with negligible error by Ltr(F`).

In other words, the approximation of the feature matrix in Theorem 3.3 can be used to derive the
asymptotics of the training loss.
Theorem 4.1 (Training loss equivalence). Let ⌘ ⇣ n↵ with

`�1
2` < ↵ < `

2`+2 for some ` 2 N
and recall F` from equation 3. If Conditions 2.1-2.4 hold, then for any fixed � > 0, we have

Ltr(F)� Ltr(F`) = o(1), with probability 1� o(1).

Similar equivalence results can also be proved for the test risk, i.e., the average test loss. For any
a 2 RN , we define the test risk of a as Lte(a) = Ef ,y(y � f>a)2, in which the expectation is taken
over (x, y) where f = �(Wx) with x ⇠ N(0, Id) and y = f?(x) + " with " ⇠ N(0,�2

"
). The next

theorem shows that one can also use the approximation of the feature matrix from Theorem 3.3 to
derive the asymptotics of the test risk.
Theorem 4.2 (Test risk equivalence). Let ⌘ ⇣ n↵ with

`�1
2` < ↵ < `

2`+2 for some ` 2 N and F` be

defined as in equation 3. If Conditions 2.1-2.4 hold, then for any � > 0, if Lte(â(F)) !P LF and

Lte(â(F`)) !P LF` , we have LF = LF` .

Proof Idea. For theorem 4.1 we argue that the error introduced by swapping the feature matrix F

with F` is small, using a free-energy trick (Abbasi et al., 2019; Hu & Lu, 2023; Hassani & Javanmard,
2022). We first extend Theorem 4.1 and show that for any �, ⇣ > 0, the minima over a of

R⇣(a, F̄) =
1

n
kỹ � F̄ak22 + �kak22 + ⇣Lte(a),

for F̄ = F and F̄ = F` are close. Then, we use this to argue that the limiting test loss are also close.

With Theorem 4.1 and 4.2 in hand, for ⌘ ⇣ n↵, we can use the approximation F`—with the
appropriate `—of the feature matrix F to analyze the train loss and the test risk.

4.2 ANALYSIS OF TRAINING LOSS

In this section, we quantify the discrepancy between the training loss of the ridge estimator trained
on the new—learned—feature map F and the same ridge estimator trained on the unlearned feature
map F0. We will do this for the step size ⌘ ⇣ n↵ with `�1

2` < ↵ < `

2`+2 for various ` 2 N.

Our results depend on the limits of traces of the matrices (F0F
>
0 + �nIn)�1 and X̃

>(F0F
>
0 +

�nIn)�1
X̃. These limits have been determined in Adlam et al. (2022); Adlam & Pennington (2020a),
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see also Pennington & Worah (2017); Péché (2019), and depend on the values m1,m2 > 0, which
are the unique solutions of the following system of coupled equations, for � > 0:

8
<

:
� (m1 �m2)

�
c2
>1m1 + c21m2

�
+ c21m1m2

⇣
� 
�
m1 � 1

⌘
= 0,

�

 

�
c21m1m2 + � (m2 �m1)

�
+ c21m1m2

⇣
� 
�
m1 � 1

⌘
= 0,

(4)

where c>1 = (
P1

k=2 k!c
2
k
)1/2. For instance, we leverage that limd,n,N!1 tr(X̃>(F0F

>
0 +

�nIn)�1
X̃)/d =  m2/� > 0 and limd,n,N!1 tr((F0F

>
0 + �nIn)�1) =  m1/� > 0.

See Lemma K.4 and its proof for more details. For instance, as argued in Pennington & Worah (2017);
Adlam et al. (2022) these can be reduced to a quartic equation for m1 and are convenient to solve
numerically. However, the existence of these limits does not imply our results; on the contrary, the
proofs of our results require extensive additional calculations and several novel ideas. Moreover, our
results also rely on the following Gaussian equivalence conjecture for the untrained feature matrix,
which is commonly used in the theory of random features models. See Section J for related work and
further discussion; in particular Gaussian Equivalence has been broadly supported by prior theoretical
and empirical results.
Conjecture 4.3 (Gaussian Equivalence). The limiting behavior of the training error is unchanged

if we replace the untrained feature matrix F0 = �(X̃W
>
0 ) with F0 = c1X̃W

>
0 + c>1Z, where

Z 2 Rn⇥d
is an independent random matrix with i.i.d. N(0, 1) entries. Specifically, the limiting

behavior of the quantities listed in Section J is unchanged.

Theorem 4.4. If Conditions 2.1-2.4 are satisfied, and the Gaussian equivalence conjecture 4.3 hold,

while we also have c1, · · · , c` 6= 0, and ⌘ ⇣ n↵ with
`�1
2` < ↵ < `

2`+2 , then for the learned feature

map F and the untrained feature map F0, we have Ltr(F0)�Ltr(F) !P �` > 0, where the explicit

expression for �` can be found in Section L.

The expression for �` is complex and given in Section L due to space limitations. For a better
understanding of Theorem 4.4, we consider two specific cases of ` = 1 and ` = 2.
Corollary 4.5. Under the assumptions of Theorem 4.4, for ` = 1, we have

Ltr(F0)� Ltr(F) !P �1 :=
 �c4

?,1m2

�[c2
?,1 + �(c2

?
+ �2

"
)]

> 0. (5)

Similarly, for ` = 2, we have

Ltr(F0)� Ltr(F) !P �2 := �1 +
4 �c4

?,1c
2
?,2m1

3�[�(c2
?
+ �2

"
) + c2

?,1]
2
> 0. (6)

The above result confirms our intuition that training the first-layer parameters improves the perfor-
mance of the trained model. For example, when ` = 1, the improvement in the loss is increasing
in the strength of the linear component c?,1 keeping the signal strength c? fixed; and not so for the
strength of the non-linear component c2

?,>1 = c2
?
� c2

?,1. When we further increase the step size to
the ` = 2 regime, the loss of the trained model will drop by an additional positive value, depending
on the strength c?,2 of the quadratic signal, which supports our claim that the quadratic component of
the target function is also being learned.

Given ` 2 N, the loss of the trained model is asymptotically constant for all ⌘ = cn↵ with `�1
2` <

↵ < `

2`+2 and c 2 R. There are sharp jumps at the edges between regimes of ↵, whose size is
precisely characterized above. See Figure 3 (Right).

Proof Idea. We first show that Ltr(F) = �ỹ>(FF> + �nIn)�1ỹ. Then using Theorem 4.1
and by application of the Woodbury formula, we decompose the matrix R̄ = (FF> + �nIn)�1

as R̄0 = (F0F
>
0 + �nIn)�1 plus rank-one terms involving R̄0 and the non-linear spikes from

Theorem 3.3. Then, we show that the interactions between the first ` components of ỹ and the terms
involving the non-linear spikes in the expansion of R̄ will result in non-vanishing terms corresponding
to learning different components of the target function f?.
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5 NUMERICAL SIMULATIONS

To support and illustrate our theoretical results, we present some numerical simulations. We use
the shifted ReLU activation �(x) = max(x, 0) � 1/

p
2⇡, n = 1000, N = 500, d = 300, and the

regularization parameter � = 0.01.

Singular Value Spectrum of F. We let the the teacher function f?(x) = H1(�>
?
x) +H2(�>

?
x)

be, set the noise variance �2
"
= 0.5, and the step size to ⌘ = n0.29, so ` = 2. We plot the histogram

of singular values of the updated feature matrix F. In Figure 2, we see two spikes corresponding
to X̃�, (X̃�)�2 as suggested by Theorem 3.3 and 3.4. Since f? has a linear component H1 and a
quadratic component H2, these spikes will lead to feature learning.

Quadratic Feature Learning. To support the findings of Corollary 4.5 for ` = 2, we consider the
following two settings:

Setting 1 : y = H1(�
>
?
x) + ", " ⇠ N(0, 1), Setting 2 : y = H1(�

>
?
x) +

1p
2
H2(�

>
?
x).

Note that c?,1 and c? + �2
"

are same in these two settings. This ensures that the improvement due
to learning the linear component is the same. We plot the training and test errors of the two-layer
neural networks trained with the procedure described in Section 2.1 as functions of log(⌘)/ log(n).
In Figure 3 (Left), we see that the errors decrease in the range log(⌘)/ log(n) 2 (0, 1

4 ) as the model
learns the linear component H1(�>

?
x). In the range log(⌘)/ log(n) 2 ( 14 ,

1
3 ), the model starts to

learn the quadratic feature. However since the quadratic feature is not present in Setting 1, the errors
under the two settings diverge. These results are consistent with Corollary 4.5.

Figure 3: (Left, Middle) Training and test errors after one gradient as functions of log(⌘)/ log(n).
(Right) Theoretical training error curve as a function of log(⌘)/ log(n).

6 CONCLUSION

In this work, we study feature learning in two-layer neural networks under one-step gradient descent
with the step size ⌘ ⇣ n↵,↵ 2 (0, 1

2 ). We show that the singular value spectrum of the updated
feature matrix exhibits different behaviors for different ranges of ↵. Specifically, if ↵ 2 ( `�1

2` , `

2`+2 ),
then the gradient update will add ` separated singular values to the initial feature matrix spectrum.
We then derive the improvement in the loss in the proportional limit and show that non-linear features
can be learned in certain examples.

Limitations and Future Work. First, our analysis requires that the teacher activation function �?
has information exponent  = 1. This assumption is necessary to learn �? with one step of gradient
and with the sample size n ⇣ d. We believe that learning �? from a teacher activation with higher
information exponent will require either multiple steps of gradient or a larger sample size. Second,
we only derived the limiting training loss in our result. This is mainly because the test error does
not allow a simple expression such as Lemma K.2, and deriving its asymptotics would require much
more laborious calculation. We hope to address this issue in future work. Third, we only study the
problem when ⌘ ⇣ n↵ with ↵ 2 ( `�1

2` , `

2`+2 ). The case where ⌘ ⇣ n
`�1
2` is an interesting problem

and is left as future work. Finally, our results in Section 4.2 rely on a Gaussian equivalence conjecture
for the untrained features F0. The Gaussian equivalence conjecture we use, despite being related to
the results discussed in Section J, does not directly follow from prior work.
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Lucas Clarté, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. On double-descent in
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Šarūnas Raudys. On determining training sample size of linear classifier. Computing Systems (in

Russian), 28:79–87, 1967.

Šarūnas Raudys. On the amount of a priori information in designing the classification algorithm.
Technical Cybernetics (in Russian), 4:168–174, 1972.
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