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ABSTRACT

A zero-shot RL agent is an agent that can solve any RL task in a given environ-
ment, instantly with no additional planning or learning, after an initial reward-free
learning phase. This marks a shift from the reward-centric RL paradigm towards
“controllable” agents that can follow arbitrary instructions in an environment. Cur-
rent RL agents can solve families of related tasks at best, or require planning
anew for each task. Strategies for approximate zero-shot RL have been suggested
using successor features (SFs) (Borsa et al., 2018) or forward-backward (FB)
representations (Touati & Ollivier, 2021), but testing has been limited.
After clarifying the relationships between these schemes, we introduce improved
losses and new SF models, and test the viability of zero-shot RL schemes sys-
tematically on tasks from the Unsupervised RL benchmark (Laskin et al., 2021).
To disentangle universal representation learning from exploration, we work in an
offline setting and repeat the tests on several existing replay buffers.
SFs appear to suffer from the choice of the elementary state features. SFs with
Laplacian eigenfunctions do well, while SFs based on auto-encoders, inverse
curiosity, transition models, low-rank transition matrix, contrastive learning, or
diversity (APS), perform unconsistently. In contrast, FB representations jointly
learn the elementary and successor features from a single, principled criterion.
They perform best and consistently across the board, reaching 85% of supervised
RL performance with a good replay buffer, in a zero-shot manner.

1 INTRODUCTION

For breadth of applications, reinforcement learning (RL) lags behind other fields of machine learning,
such as vision or natural language processing, which have effectively adapted to a wide range of tasks,
often in almost zero-shot manner, using pretraining on large, unlabelled datasets (Brown et al., 2020).
The RL paradigm itself may be in part to blame: RL agents are usually trained for only one reward
function or a small family of related rewards. Instead, we would like to train “controllable” agents that
can be given a description of any task (reward function) in their environment, and then immediately
know what to do, reacting instantly to such commands as “fetch this object while avoiding that area”.

The promise of zero-shot RL is to train without rewards or tasks, yet immediately perform well on any
reward function given at test time, with no extra training, planning, or finetuning, and only a minimal
amount of extra computation to process a task description (Section 2 gives the precise definition we
use for zero-shot RL). How far away are such zero-shot agents? In the RL paradigm, a new task
(reward function) means re-training the agent from scratch, and providing many reward samples.
Model-based RL trains a reward-free, task-independent world model, but still requires heavy planning
when a new reward function is specified (e.g, Chua et al., 2018; Moerland et al., 2020). Model-free
RL is reward-centric from start, and produces specialized agents. Multi-task agents generalize within
a family of related tasks only. Reward-free, unsupervised skill pre-training (e.g, Eysenbach et al.,
2018) still requires substantial downstream task adaptation, such as training a hierarchical controller.

Is zero-shot RL possible? If one ignores practicality, zero-shot RL is easy: make a list of all possible
rewards up to precision 𝜀, then pre-learn all the associated optimal policies. Scalable zero-shot RL
must somehow exploit the relationships between policies for all tasks. Learning to go from 𝑎 to 𝑐
is not independent from going from 𝑎 to 𝑏 and 𝑏 to 𝑐, and this produces rich, exploitable algebraic
relationships (Blier et al., 2021; Schaul et al., 2015).
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Figure 1: Zero-shot scores of ten SF methods and FB, as a percentage of the supervised score of
offline TD3 trained on the same replay buffer, averaged on some tasks, environments and replay
buffers from the Unsupervised RL and ExORL benchmarks (Laskin et al., 2022; Yarats et al., 2021).
FB and SFs with Laplacian eigenfunctions achieve zero-shot scores approaching supervised RL.

Suggested strategies for generic zero-shot RL so far have used successor representations (Dayan,
1993), under two forms: successor features (SFs) (Barreto et al., 2017) as in (Borsa et al., 2018;
Hansen et al., 2019; Liu & Abbeel, 2021); and forward-backward (FB) representations (Touati &
Ollivier, 2021). Both SFs and FB lie in between model-free and model-based RL, by predicting
features of future states, or summarizing long-term state-state relationships. Like model-based
approaches, they decouple the dynamics of the environment from the reward function. Contrary to
world models, they require neither planning at test time nor a generative model of states or trajectories.

Yet SFs heavily depend on a choice of basic state features. To get a full zero-shot RL algorithm, a
representation learning method must provide those. While SFs have been successively applied to
transfer between tasks, most of the time, the basic features were handcrafted or learned using prior
task class knowledge. Meanwhile, FB is a standalone method with no task prior and good theoretical
backing, but testing has been limited to goal-reaching in a few environments. Here:

• We systematically assess SFs and FB for zero-shot RL, including many new models of SF
basic features, and improved FB loss functions. We use 13 tasks from the Unsupervised RL
benchmark (Laskin et al., 2021), repeated on several ExORL training replay buffers (Yarats
et al., 2021) to assess robustness to the exploration method.

• We systematically study the influence of basic features for SFs, by testing SFs on features
from ten RL representation learning methods. such as latent next state prediction, inverse
curiosity module, contrastive learning, diversity, various spectral decompositions...

• We expose new mathematical links between SFs, FB, and other representations in RL.
• We discuss the implicit assumptions and limitations behind zero-shot RL approaches.

2 PROBLEM AND NOTATION; DEFINING ZERO-SHOT RL

Letℳ = (𝑆,𝐴, 𝑃, 𝛾) be a reward-free Markov decision process (MDP) with state space 𝑆, action
space 𝐴, transition probabilities 𝑃 (𝑠′|𝑠, 𝑎) from state 𝑠 to 𝑠′ given action 𝑎, and discount factor
0 < 𝛾 < 1 (Sutton & Barto, 2018). If 𝑆 and 𝐴 are finite, 𝑃 (𝑠′|𝑠, 𝑎) can be viewed as a stochastic
matrix 𝑃𝑠𝑎𝑠′ ∈ R(|𝑆|×|𝐴|)×|𝑆|; in general, for each (𝑠, 𝑎) ∈ 𝑆 × 𝐴, 𝑃 (d𝑠′|𝑠, 𝑎) is a probability
measure on 𝑠′ ∈ 𝑆. The notation 𝑃 (d𝑠′|𝑠, 𝑎) covers all cases. Given (𝑠0, 𝑎0) ∈ 𝑆 ×𝐴 and a policy
𝜋 : 𝑆 → Prob(𝐴), we denote Pr(·|𝑠0, 𝑎0, 𝜋) and E[·|𝑠0, 𝑎0, 𝜋] the probabilities and expectations
under state-action sequences (𝑠𝑡, 𝑎𝑡)𝑡≥0 starting at (𝑠0, 𝑎0) and following policy 𝜋 in the environment,
defined by sampling 𝑠𝑡 ∼ 𝑃 (d𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) and 𝑎𝑡 ∼ 𝜋(d𝑎𝑡|𝑠𝑡). We define 𝑃𝜋(d𝑠′,d𝑎′|𝑠, 𝑎) :=
𝑃 (d𝑠′|𝑠, 𝑎)𝜋(d𝑎′|𝑠′) and𝑃𝜋(d𝑠′|𝑠) :=

∫︀
𝑃 (d𝑠′|𝑠, 𝑎)𝜋(d𝑎|𝑠), the state-action transition probabilities

and state transition probabilities induced by 𝜋. Given a reward function 𝑟 : 𝑆 → R, the 𝑄-function
of 𝜋 for 𝑟 is 𝑄𝜋

𝑟 (𝑠0, 𝑎0) :=
∑︀

𝑡≥0 𝛾
𝑡 E[𝑟(𝑠𝑡+1)|𝑠0, 𝑎0, 𝜋]. For simplicity, we assume the reward 𝑟

depends only on the next state 𝑠𝑡+1 instead on the full triplet (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1), but this is not essential.

We focus on offline unsupervised RL, where the agent cannot interact with the environment. The
agent only has access to a static dataset of logged reward-free transitions in the environment, 𝒟 =
{(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖)}𝑖∈ℐ with 𝑠′𝑖 ∼ 𝑃 (d𝑠′𝑖|𝑠𝑖, 𝑎𝑖). These can come from any exploration method or methods.

The offline setting disentangles the effects of the exploration method and representation and policy
learning: we test each zero-shot method on several training datasets from several exploration methods.
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We denote by 𝜌(d𝑠) and 𝜌(d𝑠,d𝑎) the (unknown) marginal distribution of states and state-actions in
the dataset 𝒟. We use both E𝑠∼𝒟[·] and E𝑠∼𝜌[·] for expectations under the training distribution.

Zero-shot RL: problem statement. The goal of zero-shot RL is to compute a compact represen-
tation ℰ of the environment by observing samples of reward-free transitions (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) in this
environment. Once a reward function is specified later, the agent must use ℰ to immediately produce
a good policy, via only elementary computations without any further planning or learning. Ideally,
for any downstream task, the performance of the returned policy should be close to the performance
of a supervised RL baseline trained on the same dataset labeled with the rewards for that task.

Reward functions may be specified at test time either as a relatively small set of reward samples
(𝑠𝑖, 𝑟𝑖), or as an explicit function 𝑠 ↦→ 𝑟(𝑠) (such as 1 at a known goal state and 0 elsewhere). The
method will be few-shot, zero-planning in the first case, and truly zero-shot in the second case.

3 RELATED WORK

Zero-shot RL requires unsupervised learning and the absence of any planning or fine-tuning at
test time. The proposed strategies for zero-shot RL discussed in Section 1 ultimately derive from
successor representations (Dayan, 1993) in finite spaces. In continuous spaces, starting with a finite
number of features 𝜙, successor features can be used to produce policies within a family of tasks
directly related to 𝜙 (Barreto et al., 2017; Borsa et al., 2018; Zhang et al., 2017; Grimm et al., 2019),
often using hand-crafted 𝜙 or learning 𝜙 that best linearize training rewards. VISR (Hansen et al.,
2019) and its successor APS (Liu & Abbeel, 2021) use SFs with 𝜙 automatically built online via
diversity criteria (Eysenbach et al., 2018; Gregor et al., 2016). We include APS among our baselines,
as well as many new criteria to build 𝜙 automatically.

Successor measures (Blier et al., 2021) avoid the need for 𝜙 by directly learning models of the
distribution of future states: doing this for various policies yields a candidate zero-shot RL method,
forward-backward representations (Touati & Ollivier, 2021), which has been tested for goal-reaching
in a few environments with discrete actions. FB uses a low-rank model of long-term state-state
relationships reminiscent of the state-goal factorization from Schaul et al. (2015).

Model-based RL (surveyed in Moerland et al. (2020)) misses the zero-planning requirement of
zero-shot RL. Still, learned models of the transitions between states can be used jointly with SFs to
provide zero-shot methods (Trans, Latent, and LRA-P methods below).

Goal-oriented and multitask RL has a long history (e.g, Foster & Dayan, 2002; Sutton et al., 2011;
da Silva et al., 2012; Schaul et al., 2015; Andrychowicz et al., 2017). A parametric family of tasks
must be defined in advance (e.g., reaching arbitrary goal states). New rewards cannot be set a
posteriori: for example, a goal-state-oriented method cannot handle dense rewards. Zero-shot task
transfer methods learn on tasks and can transfer to related tasks only (e.g, Oh et al., 2017; Sohn
et al., 2018); this can be used, e.g., for sim-to-real transfer (Genc et al., 2020) or slight environment
changes, which is not covered here. Instead, we aim at not having any predefined family of tasks.

Unsupervised skill and option discovery methods, based for instance on diversity (Eysenbach et al.,
2018; Gregor et al., 2016) or eigenoptions (Machado et al., 2017) can learn a variety of behaviors
without rewards. Downstream tasks require learning a hierarchical controller to combine the right
skills or options for each task. Directly using unmodified skills has limited performance without
heavy finetuning (Eysenbach et al., 2018). Still, these methods can speed up downstream learning.

The unsupervised aspect of some of these methods (including DIAYN and APS) has been disputed,
because training still used end-of-trajectory signals, which are directly correlated to the downstream
task in some common environments: without this signal, results drop sharply (Laskin et al., 2022).

4 SUCCESSOR REPRESENTATIONS AND ZERO-SHOT RL

For a finite MDP, the successor representation (SR) (Dayan, 1993) 𝑀𝜋(𝑠0, 𝑎0) of a state-action pair
(𝑠0, 𝑎0) under a policy 𝜋, is defined as the discounted sum of future occurrences of each state:

𝑀𝜋(𝑠0, 𝑎0, 𝑠) := E
[︁∑︀

𝑡≥0 𝛾
𝑡
1{𝑠𝑡+1=𝑠} | (𝑠0, 𝑎0), 𝜋

]︁
∀𝑠 ∈ 𝑆. (1)
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In matrix form, SRs can be written as 𝑀𝜋 = 𝑃
∑︀

𝑡≥0 𝛾
𝑡𝑃 𝑡

𝜋 = 𝑃 (Id−𝛾𝑃𝜋)−1, where 𝑃𝜋 is the state
transition probability. 𝑀𝜋 satisfies the matrix Bellman equation 𝑀𝜋 = 𝑃 + 𝛾𝑃𝜋𝑀

𝜋 .

Importantly, SRs disentangle the dynamics of the MDP and the reward function: for any reward 𝑟
and policy 𝜋, the 𝑄-function can be expressed linearly as 𝑄𝜋

𝑟 = 𝑀𝜋𝑟.

Successor features and successor measures. Successor features (SFs) (Barreto et al., 2017) extend
SR to continous MDPs by first assuming we are given a basic feature map 𝜙 : 𝑆 → R𝑑 that embeds
states into 𝑑-dimensional space, and defining the expected discounted sum of future state features:

𝜓𝜋(𝑠0, 𝑎0) := E
[︁∑︀

𝑡≥0 𝛾
𝑡𝜙(𝑠𝑡+1) | 𝑠0, 𝑎0, 𝜋

]︁
. (2)

SFs have been introduced to make SRs compatible with function approximation. For a finite MDP,
the original definition (1) is recovered by letting 𝜙 be a one-hot state encoding into R|𝑆|.

Alternatively, successor measures (SMs) (Blier et al., 2021) extend SRs to continuous spaces by
treating the distribution of future visited states as a measure 𝑀𝜋 over the state space 𝑆,

𝑀𝜋(𝑠0, 𝑎0, 𝑋) :=
∑︀

𝑡≥0 𝛾
𝑡 Pr (𝑠𝑡+1 ∈ 𝑋 | 𝑠0, 𝑎0, 𝜋) ∀𝑋 ⊂ 𝑆. (3)

SFs and SMs are related: by construction, 𝜓𝜋(𝑠0, 𝑎0) =
∫︀
𝑠′
𝑀𝜋(𝑠0, 𝑎0,d𝑠

′)𝜙(𝑠′).

Zero-shot RL from successor features and forward-backward representations. Successor
representations provide a generic framework for zero-shot RL, by learning to represent the relationship
between reward functions and 𝑄-functions, as encoded in 𝑀𝜋 .

Given a basic feature map 𝜙 : 𝑆 → R𝑑 to be learned via another criterion, universal SFs (Borsa et al.,
2018) learn the successor features of a particular family of policies 𝜋𝑧 for 𝑧 ∈ R𝑑,

𝜓(𝑠0, 𝑎0, 𝑧) = E
[︁∑︀

𝑡≥0 𝛾
𝑡𝜙(𝑠𝑡+1) | (𝑠0, 𝑎0), 𝜋𝑧

]︁
, 𝜋𝑧(𝑠) := arg max𝑎 𝜓(𝑠, 𝑎, 𝑧)⊤𝑧. (4)

Once a reward function 𝑟 is revealed, we use a few reward samples or explicit knowledge of the
function 𝑟 to perform a linear regression of 𝑟 onto the features 𝜙. Namely, we estimate 𝑧𝑟 :=
arg min𝑧 E𝑠∼𝜌[(𝑟(𝑠)−𝜙(𝑠)⊤𝑧)2] = E𝜌[𝜙𝜙⊤]−1 E𝜌[𝜙𝑟]. Then we return the policy 𝜋𝑧𝑟 . This policy
is guaranteed to be optimal for all rewards in the linear span of the features 𝜙:
Theorem 1 (Borsa et al. (2018)). Assume that (4) holds. Assume there exists a weight 𝑤 ∈ R𝑑 such
that 𝑟(𝑠) = 𝜙(𝑠)⊤𝑤,∀𝑠 ∈ 𝑆. Then 𝑧𝑟 = 𝑤, and 𝜋𝑧𝑟 is the optimal policy for reward 𝑟.

Forward-backward (FB) representations (Touati & Ollivier, 2021) apply a similar idea to a finite-rank
model of successor measures. They look for representations 𝐹 : 𝑆 ×𝐴×R𝑑 → R𝑑 and 𝐵 : 𝑆 → R𝑑

such that the long-term transition probabilities 𝑀𝜋𝑧 in (3) decompose as

𝑀𝜋𝑧 (𝑠0, 𝑎0,d𝑠
′) ≈ 𝐹 (𝑠0, 𝑎0, 𝑧)

⊤𝐵(𝑠′) 𝜌(d𝑠′), 𝜋𝑧(𝑠) := arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 (5)

In a finite space, the first equation rewrites as the matrix decomposition 𝑀𝜋𝑧 = 𝐹⊤
𝑧 𝐵 diag(𝜌).

Once a reward function 𝑟 is revealed, we estimate 𝑧𝑟 := E𝑠∼𝜌[𝑟(𝑠)𝐵(𝑠)] from a few reward samples
or from explicit knowledge of the function 𝑟 (e.g. 𝑧𝑟 = 𝐵(𝑠) to reach 𝑠). Then we return the policy
𝜋𝑧𝑟 . If the approximation (5) holds, this policy is guaranteed to be optimal for any reward function:
Theorem 2 (Touati & Ollivier (2021)). Assume that (5) holds. Then for any reward function 𝑟, the
policy 𝜋𝑧𝑟 is optimal for 𝑟, with optimal 𝑄-function 𝑄⋆

𝑟 = 𝐹 (𝑠, 𝑎, 𝑧𝑟)⊤𝑧𝑟.

For completeness, we sketch the proofs of Theorems 1–2 in Appendix A. Importantly, both theorems
are compatible with approximation: approximate solutions provide approximately optimal policies.

Connections between SFs and FB. A first difference between SFs and FB is that SFs must be
provided with basic features 𝜙. The best 𝜙 is such that the reward functions of the downstream tasks
are linear in 𝜙. But for unsupervised training without prior task knowledge, an external criterion
is needed to learn 𝜙. We test a series of such criteria below. In contrast, FB uses a single criterion,
avoiding the need for state featurization by learning a model of state occupancy.

Second, SFs only cover rewards in the linear span of 𝜙, while FB apparently covers any reward. But
this difference is not as stark as it looks: exactly solving the FB equation (5) in continuous spaces
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requires 𝑑 =∞, and for finite 𝑑, the policies will only be optimal for rewards in the linear span of 𝐵
(Touati & Ollivier, 2021). Thus, in both cases, policies are exactly optimal only for a 𝑑-dimensional
family of rewards. Still, FB can use an arbitrary large 𝑑 without any additional input or criterion.

FB representations are related to successor features: the FB definition (5) implies that 𝜓(𝑠, 𝑎, 𝑧) :=
𝐹 (𝑠, 𝑎, 𝑧) are the successor features of 𝜙(𝑠) := (E𝜌𝐵𝐵

⊤)−1𝐵(𝑠). This follows from multiplying
(3) and (5) by 𝐵⊤(E𝜌𝐵𝐵

⊤)−1 on the right, and integrating over 𝑠′ ∼ 𝜌. Thus, a posteriori, FB can
be used to produce both 𝜙 and 𝜓 in SF, although training is different.

This connection between FB and SF is one-directional: (5) is a stronger condition. In particular
𝐹 = 𝐵 = 0 is not a solution: contrary to 𝜓 = 𝜙 = 0 in (4), there is no collapse. No additional
criterion to train 𝜙 is required: 𝐹 and 𝐵 are trained jointly to provide the best rank-𝑑 approximation
of the successor measures 𝑀𝜋. This summarizes an environment by selecting the features that best
describe the relationship 𝑄𝜋

𝑟 = 𝑀𝜋𝑟 between rewards and 𝑄-functions.

5 ALGORITHMS FOR SUCCESSOR FEATURES AND FB REPRESENTATIONS

We now describe more precisely the algorithms used in our experiments. The losses used to train 𝜓
in SFs, and 𝐹,𝐵 in FB, are described in Sections 5.1 and 5.2 respectively.

To obtain a full zero-shot RL algorithm, SFs must specify the basic features 𝜙. Any representation
learning method can be used for 𝜙. We use ten possible choices (Section 5.3) based on existing or
new representations for RL: random features as a baseline, autoencoders, next state and latent next
state transition models, inverse curiosity module, the diversity criterion of APS, contrastive learning,
and finally, several spectral decompositions of the transition matrix or its associated Laplacian.

Both SFs and FB define policies as an argmax of 𝜓(𝑠, 𝑎, 𝑧)⊤𝑧 or 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 over actions 𝑎. With
continuous actions, the argmax cannot be computed exactly. We train an auxiliary policy network
𝜋(𝑠, 𝑧) to approximate this argmax, using the same standard method for SFs and FB (Appendix G.4).

5.1 LEARNING THE SUCCESSOR FEATURES 𝜓

The successor features 𝜓 satisfy the R𝑑-valued Bellman equation 𝜓𝜋 = 𝑃𝜙+ 𝛾𝑃𝜋𝜓
𝜋 , the collection

of ordinary Bellman equations for each component of 𝜙. The 𝑃 in front of 𝜙 comes from using
𝜙(𝑠𝑡+1) not 𝜙(𝑠𝑡) in (2). Therefore, we can train 𝜓(𝑠, 𝑎, 𝑧) for each 𝑧 by minimizing the Bellman
residuals

⃦⃦
𝜓(𝑠𝑡, 𝑎𝑡, 𝑧)− 𝜙(𝑠𝑡+1)− 𝛾𝜓(𝑠𝑡+1, 𝜋𝑧(𝑠𝑡+1), 𝑧)

⃦⃦2
where 𝜓 is a non-trainable target ver-

sion of 𝜓 as in parametric 𝑄-learning. This requires sampling a transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) from the
dataset and choosing 𝑧. We sample random values of 𝑧 as described in Appendix G.3.

This is the loss used in Borsa et al. (2018). But this can be improved, since we do not use the full
vector 𝜓(𝑠, 𝑎, 𝑧): only 𝜓(𝑠, 𝑎, 𝑧)⊤𝑧 is needed for the policies. Therefore, as in Liu & Abbeel (2021),
instead of the vector-valued Bellman residual above, we just use

ℒ(𝜓) := E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌

(︀
𝜓(𝑠𝑡, 𝑎𝑡, 𝑧)

⊤𝑧 − 𝜙(𝑠𝑡+1)⊤𝑧 − 𝛾𝜓(𝑠𝑡+1, 𝜋𝑧(𝑠𝑡+1), 𝑧)⊤𝑧
)︀2

(6)

for each 𝑧. This trains 𝜓(·, 𝑧)⊤𝑧 as the 𝑄-function of reward 𝜙⊤𝑧, the only case needed, while
training the full vector 𝜓(·, 𝑧) amounts to training the 𝑄-functions of each policy 𝜋𝑧 for all rewards
𝜙⊤𝑧′ for all 𝑧′ ∈ R𝑑 including 𝑧′ ̸= 𝑧. We have found this improves performance.

5.2 LEARNING FB REPRESENTATIONS: THE FB TRAINING LOSS

The successor measure 𝑀𝜋 satisfies a Bellman-like equation 𝑀𝜋 = 𝑃 + 𝛾𝑃𝜋𝑀
𝜋 , as matrices in the

finite case and as measures in the general case (Blier et al., 2021). We can learn FB by iteratively
minimizing the Bellman residual on the parametric model 𝑀 = 𝐹⊤𝐵𝜌. Using a suitable norm ‖·‖𝜌
for the Bellman residual (Appendix B) leads to a loss expressed as expectations from the dataset:

ℒ(𝐹,𝐵) :=
⃦⃦
𝐹⊤
𝑧 𝐵𝜌−

(︀
𝑃 + 𝛾𝑃𝜋𝑧

𝐹⊤
𝑧 �̄�𝜌

)︀⃦⃦2
𝜌

(7)

= E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌
𝑠′∼𝜌

[︂(︁
𝐹 (𝑠𝑡, 𝑎𝑡, 𝑧)

⊤𝐵(𝑠′)− 𝛾𝐹 (𝑠𝑡+1, 𝜋𝑧(𝑠𝑡+1), 𝑧)⊤�̄�(𝑠′)
)︁2]︂

− 2E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌

[︀
𝐹 (𝑠𝑡, 𝑎𝑡, 𝑧)

⊤𝐵(𝑠𝑡+1)
]︀

+ Const (8)
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where the constant term does not depend on 𝐹 and 𝐵, and where as usual 𝐹𝑧 and �̄� are non-trainable
target versions of 𝐹 and 𝐵 whose parameters are updated with a slow-moving average of those of 𝐹
and 𝐵. Appendix B quickly derives this loss, with pseudocode in Appendix L. Contrary to Touati &
Ollivier (2021), the last term involves 𝐵(𝑠𝑡+1) instead of 𝐵(𝑠𝑡), because we use 𝑠𝑡+1 instead of 𝑠𝑡
for the successor measures (3). We sample random values of 𝑧 as described in Appendix G.3.

We include an auxiliary loss (Appendix B) to normalize the covariance of 𝐵, E𝜌𝐵𝐵
⊤ ≈ Id, as in

Touati & Ollivier (2021) (otherwise one can, e.g., scale 𝐹 up and 𝐵 down since only 𝐹⊤𝐵 is fixed).

As with SFs above, only 𝐹 (·, 𝑧)⊤𝑧 is needed for the policies, while the loss above on the vector 𝐹
amounts to training 𝐹 (·, 𝑧)⊤𝑧′ for all pairs (𝑧, 𝑧′). The full loss is needed for joint training of 𝐹 and
𝐵. But we include an auxiliary loss ℒ′(𝐹 ) to focus training on the diagonal 𝑧′ = 𝑧. This is obtained
by multiplying the Bellman gap in ℒ by 𝐵⊤(𝐵𝜌𝐵⊤)−1𝑧 on the right, to make 𝐹 (·, 𝑧)⊤𝑧 appear:

ℒ′(𝐹 ) := E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌

[︁(︀
𝐹 (𝑠𝑡, 𝑎𝑡, 𝑧)

⊤𝑧 −𝐵(𝑠𝑡+1)⊤(E𝜌𝐵𝐵
⊤)−1𝑧 − 𝛾𝐹 (𝑠𝑡+1, 𝜋𝑧(𝑠𝑡+1), 𝑧)⊤𝑧

)︀2]︁
.

(9)
This trains 𝐹 (·, 𝑧)⊤𝑧 as the 𝑄-function for reward 𝐵⊤(E𝜌𝐵𝐵

⊤)−1𝑧. Though ℒ = 0 implies ℒ′ = 0,
adding ℒ′ reduces the error on the part used for policies. This departs from Touati & Ollivier (2021).

5.3 LEARNING BASIC FEATURES 𝜙 FOR SUCCESSOR FEATURES

SFs must be provided with basic state features 𝜙. Any representation learning method can be used to
supply 𝜙. We focus on prominent RL representation learning baselines, and on those used in previous
zero-shot RL candidates such as APS. We now describe the precise learning objective for each.

Random Features (Rand). We use a non-trainable randomly initialized network as features.

Autoencoder (AEnc). We learn a decoder 𝑓 : R𝑑 → 𝑆 to recover the state from its representation 𝜙:

min
𝑓,𝜙

E𝑠∼𝒟[(𝑓(𝜙(𝑠))− 𝑠)2]. (10)

Inverse Curiosity Module (ICM) aims at extracting the controllable aspects of the environ-
ment (Pathak et al., 2017). The idea is to train an inverse dynamics model 𝑔 : R𝑑 × R𝑑 → 𝐴
to predict the action used for a transition between two consecutive states. We use the loss

min
𝑔,𝜙

E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝒟[‖𝑔(𝜙(𝑠𝑡), 𝜙(𝑠𝑡+1))− 𝑎𝑡‖2]. (11)

Transition model (Trans). This is a one-step forward dynamic model 𝑓 : R𝑑×𝐴→ 𝑆 that predicts
the next state from the current state representation:

min
𝑓,𝜙

E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝒟[(𝑓(𝜙(𝑠𝑡), 𝑎𝑡)− 𝑠𝑡+1)2]. (12)

Latent transition model (Latent). This is similar to the transition model but instead of predicting
the next state, it predicts its representation:

min
𝑓,𝜙

E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝒟[(𝑓(𝜙(𝑠𝑡), 𝑎𝑡)− 𝜙(𝑠𝑡+1))2]. (13)

A clear failure case of this loss is when all states are mapped to the same representation. To avoid this
collapse, we compute 𝜙(𝑠𝑡+1) using a non-trainable version of 𝜙, with parameters corresponding to
a slowly moving average of the parameters of 𝜙, similarly to BYOL (Grill et al., 2020).

Diversity methods (APS). VISR (Hansen et al., 2019) and its successor APS (Liu & Abbeel, 2021)
tackle zero-shot RL using SFs with features 𝜙 built online from a diversity criterion. This criterion
maximizes the mutual information between a policy parameter and the features of the states visited
by a policy using that parameter (Eysenbach et al., 2018; Gregor et al., 2016). VISR and APS use,
respectively, a variational or nearest-neighbor estimator for the mutual information. We directly use
the code provided for APS, and refer to (Liu & Abbeel, 2021) for the details. Contrary to other
methods, APS is not offline: it needs to be trained on its own replay buffer.

Laplacian Eigenfunctions (Lap). Wu et al. (2018) consider the symmetrized MDP graph Laplacian
induced by an exploratory policy 𝜋, defined as ℒ = Id− 1

2 (𝑃𝜋 diag(𝜌)−1 + diag(𝜌)−1(𝑃𝜋)⊤). They
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propose to learn the eigenfunctions of ℒ via the spectral graph drawing objective (Koren, 2003):

min
𝜙

E(𝑠𝑡,𝑠𝑡+1)∼𝒟

[︁
‖𝜙(𝑠𝑡)− 𝜙(𝑠𝑡+1)‖2

]︁
+ 𝜆E 𝑠∼𝒟

𝑠′∼𝒟

[︀
(𝜙(𝑠)⊤𝜙(𝑠′))2 − ‖𝜙(𝑠)‖22 − ‖𝜙(𝑠′)‖22

]︀
(14)

where the second term is an orthonormality regularization to ensure that E𝑠∼𝜌[𝜙(𝑠)𝜙(𝑠)⊤] ≈ Id, and
𝜆 > 0 is the regularization weight. This is implicitly contrastive, pushing features of 𝑠𝑡 and 𝑠𝑡+1

closer while keeping features apart overall. Such eigenfunctions have long been argued to play a key
role in RL (Mahadevan & Maggioni, 2007; Machado et al., 2017).

Low-Rank Approximation of 𝑃 (LRA-P): we learn features by estimating a low-rank model of the
transition probability densities: 𝑃 (d𝑠′|𝑠, 𝑎) ≈ 𝜒(𝑠, 𝑎)⊤𝜇(𝑠′) 𝜌(d𝑠′). Knowing 𝜌 is not needed: the
corresponding loss on 𝜒⊤𝜇− 𝑃/𝜌 is readily expressed as expectations over the dataset,

min
𝜒,𝜇

E(𝑠𝑡,𝑎𝑡)∼𝜌
𝑠′∼𝜌

[︃(︂
𝜒(𝑠𝑡, 𝑎𝑡)

⊤𝜇(𝑠′)− 𝑃 (d𝑠′|𝑠𝑡, 𝑎𝑡)
𝜌(d𝑠′)

)︂2
]︃

(15)

= E(𝑠𝑡,𝑎𝑡)∼𝜌
𝑠′∼𝜌

[(𝜒(𝑠𝑡, 𝑎𝑡)
⊤𝜇(𝑠′))2]− 2E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌[𝜒(𝑠𝑡, 𝑎𝑡)

⊤𝜇(𝑠𝑡+1)] + Const (16)

We normalize E𝜌[𝜇𝜇⊤] ≈ Id with the same loss used for 𝐵. Then we use SFs with 𝜙 := 𝜇. If the
model 𝑃 = 𝜒⊤𝜇𝜌 is exact, this provides exact optimal policies for any reward (Appendix E, Thm. 3).

This loss is implicitly contrastive: it compares samples 𝑠𝑡+1 to independent samples 𝑠′ from 𝜌. It is
an asymmetric extension of the Laplacian loss (14) (Appendix F). The loss (16) is also a special case
of the FB loss (8) by setting 𝛾 = 0, omitting 𝑧, and substituting (𝜒, 𝜇) for (𝐹,𝐵). Indeed, FB learns
a finite-rank model of 𝑃 (Id−𝛾𝑃𝜋)−1, which equals 𝑃 when 𝛾 = 0.

A related loss is introduced in Ren et al. (2022), but involves a second unspecified, arbitrary probability
distribution 𝑝, which must cover the whole state space and whose analytic expression must be known.
It is unclear how to set a suitable 𝑝 in general.

Contrastive Learning (CL) methods learn representations by pushing positive pairs (similar states)
closer together while keeping negative pairs apart. Here, two states are considered similar if they lie
close on the same trajectory. We use a SimCLR-like objective (Chen et al., 2020):

min
𝜒,𝜙
−E𝑘∼Geom(1−𝛾CL)

(𝑠𝑡,𝑠𝑡+𝑘)∼𝒟

[︂
log

exp(cosine(𝜒(𝑠𝑡), 𝜙(𝑠𝑡+𝑘)))

E𝑠′∼𝒟 exp(cosine(𝜒(𝑠𝑡), 𝜙(𝑠′)))

]︂
(17)

where 𝑠𝑡+𝑘 is the state encountered at step 𝑡+𝑘 along the subtrajectory that starts at 𝑠𝑡, where 𝑘 is sam-
pled from a geometric distribution of parameter (1− 𝛾CL), and cosine(𝑢, 𝑣) = 𝑢⊤𝑣

‖𝑢‖2‖𝑣‖2
,∀𝑢, 𝑣 ∈

R𝑑 is the cosine similarity function. Here 𝛾CL ∈ [0; 1) is a parameter not necessarily set to the MDP’s
discount factor 𝛾. CL requires a dataset made of full trajectories instead of isolated transitions.

CL is tightly related to the spectral decomposition of the successor measure
∑︀

𝑡 𝛾
𝑡
CL𝑃

𝑡+1
𝜋 , where 𝜋 is

the behavior policy generating the dataset trajectories. Precisely, assuming that 𝜒 and 𝜙 are centered
with unit norm, and expanding the log and exp at second order, the loss (17) becomes

(17) ≈ 1
2 E 𝑠∼𝒟

𝑠′∼𝒟
[(𝜒(𝑠)⊤𝜙(𝑠′))2]− E𝑘∼Geom(1−𝛾CL)

(𝑠𝑡,𝑠𝑡+𝑘)∼𝒟

[︀
𝜒(𝑠𝑡)

⊤𝜙(𝑠𝑡+𝑘)
]︀

(18)

(compare (16)). Now, the law of 𝑠𝑡+𝑘 given 𝑠𝑡 is given by the stochastic matrix (1−𝛾CL)
∑︀

𝑡 𝛾
𝑡
CL𝑃

𝑡+1
𝜋 ,

the rescaled successor measure of 𝜋. Then one finds that (18) is minimized when 𝜒 and 𝜙 provide
the singular value decomposition of this matrix in 𝐿2(𝜌) norm (Appendix C). Formal links between
contrastive learning and spectral methods can be found in Tian (2022); Balestriero & LeCun (2022).

Low-Rank Approximation of SR (LRA-SR). The CL method implicitly factorizes the successor
measure of the exploration policy in Monte Carlo fashion by sampling pairs (𝑠𝑡, 𝑠𝑡+𝑘) on the same
trajectory. This may suffer from high variance. To mitigate this, we propose to factorize this successor
measure by temporal difference learning instead of Monte Carlo. This is achieved with an FB-like
loss (8) except we drop the policies 𝜋𝑧 and learn successor measures for the exploration policy only:

min
𝜒,𝜙

E(𝑠𝑡,𝑠𝑡+1)∼𝒟
𝑠′∼𝒟

[︁(︀
𝜒(𝑠𝑡)

⊤𝜙(𝑠′)− 𝛾�̄�(𝑠𝑡+1)⊤𝜙(𝑠′)
)︀2]︁− 2E(𝑠𝑡,𝑠𝑡+1)∼𝒟

[︀
𝜒(𝑠𝑡)

⊤𝜙(𝑠𝑡+1)))
]︀

(19)

with �̄� and 𝜙 target versions of 𝜒 and 𝜙. We normalize 𝜙 to E𝜌[𝜙𝜙⊤] ≈ Id with the same loss as for
𝐵. Of all SF variants tested, this is the closest to FB.
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Figure 2: Zero-shot scores for each task, with supervised online and offline TD3 as toplines. Average
over 3 replay buffers and 10 random seeds.

6 EXPERIMENTAL RESULTS ON BENCHMARKS

Each of the 11 methods (FB and 10 SF-based models) has been tested on 13 tasks in 4 environments
from the Unsupervised RL and ExORL benchmarks (Laskin et al., 2021; Yarats et al., 2021): Maze
(reach 20 goals), Walker (stand, walk, run, flip), Cheetah (walk, run, walk backwards, run backwards),
and Quadruped (stand, walk, run, jump); see Appendix G.1. Each task and method was repeated for
3 choices of replay buffer from ExORL: RND, APS, and Proto (except for the APS method, which
can only train on the APS buffer). Each of these 403 settings was repeated with 10 random seeds.

The full setup is described in Appendix G. Representation dimension is 𝑑 = 50, except for Maze
(𝑑 = 100). After model training, tasks are revealed by 10,000 reward samples as in (Liu & Abbeel,
2021), except for Maze, where a known goal is presented and used to set 𝑧𝑟 directly. The code can be
found at https://github.com/facebookresearch/controllable_agent .

As toplines, we use online TD3 (with task rewards, and free environment interactions not restricted to
a replay buffer), and offline TD3 (restricted to each replay buffer labelled with task rewards). Offline
TD3 gives an idea of the best achievable performance given the training data in a buffer.

In Fig. 2 we plot the performance of each method for each task in each environment, averaged over
the three replay buffers and ten random seeds. Appendix H contains the full results and more plots.

Compared to offline TD3 as a reference, on the Maze tasks, Lap, LRA-P, and FB perform well. On
the Walker tasks, ICM, Trans, Lap, LRA-SR, and FB perform well. On the Cheetah tasks, ICM,
Trans, Lap, LRA-SR, and FB perform well. On the Quadruped tasks, many methods perform well,
including, surprisingly, random features. Appendix I plots some of the learned features on Maze.

On Maze, none of the encoder-based losses learn good policies, contrary to FB and spectral SF
methods. We believe this is because (𝑥, 𝑦) is already a good representation of the 2D state 𝑠, so the
encoders do nothing. Yet SFs on (𝑥, 𝑦) cannot solve the task (SFs on rewards of the form 𝑎𝑥+ 𝑏𝑦
don’t recover goal-oriented tasks): planning with SFs requires specific representations.

Fig. 1 reports aggregated scores over all tasks. To average across tasks, we normalize scores: for each
task and replay buffer, performance is expressed as a percentage of the performance of offline TD3
on the same replay buffer, a natural supervised topline given the data. These normalized scores are
averaged over all tasks in each environment, then over environments to yield the scores in Fig. 1. The
variations over environments, replay buffers and random seeds are reported in Appendix H.

These results are broadly consistent over replay buffers. Buffer-specific results are reported in
Appendices H.3–H.4. Sometimes a replay buffer is restrictive, as attested by poor offline TD3
performance, starkly so for the Proto buffer on all Quadruped tasks. APS does not work well as a
zero-shot RL method, but it does work well as an exploration method: on average, the APS and RND
replay buffers have close results.

FB and Lap are the only methods that perform consistently well, both over tasks and over replay
buffers. Averaged on all tasks and buffers, FB reaches 81% of supervised offline TD3 performance,
and 85% on the RND buffer. The second-best method is Lap with 74% (78% on the Proto buffer).

8
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7 DISCUSSION AND LIMITATIONS

Can a few features solve many reward functions? Why are some features better? The choice
of features is critical. Consider goal-reaching tasks: the obvious way to learn to reach arbitrary goal
states via SFs is to define one feature per possible goal state (one-hot encoding). This requires |𝑆|
features, and does not scale to continuous spaces. But much better features exist. For instance, with
an size-𝑛 cycle 𝑆 = {0, . . . , 𝑛− 1} with actions that move left and right modulo 𝑛, then two features
suffice instead of 𝑛: SFs with 𝜙(𝑠) = (cos(2𝜋𝑠/𝑛), sin(2𝜋𝑠/𝑛)) provides exact optimal policies to
reach any arbitrary state. On a 𝑑-dimensional grid 𝑆 = {0, . . . , 𝑛− 1}𝑑, just 2𝑑 features (a sine and
cosine in each direction) are sufficient to reach any of the 𝑛𝑑 goal states via SFs.

Goal-reaching is only a subset of possible RL tasks, but this clearly shows that some features are
better than others. The sine and cosine are the main eigenfunctions of the graph Laplacian on the grid:
such features have long been argued to play a special role in RL (Mahadevan & Maggioni, 2007;
Machado et al., 2017). FB-based methods are theoretically known to learn such eigenfunctions (Blier
et al., 2021). Yet a precise theoretical link to downstream performance is still lacking.

Are these finite-rank models reasonable? FB crucially relies on a finite-rank model of
∑︀
𝛾𝑡𝑃 𝑡

𝜋 ,
while some SF variants above rely on finite-rank models of 𝑃 or the corresponding Laplacian. It
turns out such approximations are very different for 𝑃 or for

∑︀
𝛾𝑡𝑃 𝑡

𝜋 .

Unfortunately, despite the popularity of low-rank 𝑃 assumptions in the theoretical literature, 𝑃𝜋

is always close to Id in situations where 𝑠𝑡+1 is close to 𝑠𝑡, such as any continuous-time physical
system (Appendix D). Any low-rank model of 𝑃𝜋 will be poor; actually 𝑃𝜋 is better modeled as
Id− low-rank, thus approximating the Laplacian. On the other hand, 𝑃 𝑡

𝜋 with large 𝑡 gets close to
rank one under weak assumptions (ergodicity), as 𝑃 𝑡

𝜋 converges to an equilibrium distribution when
𝑡→∞. Thus the spectrum of the successor measures

∑︀
𝛾𝑡𝑃 𝑡

𝜋 is usually more spread out (details
and examples in Appendix D), and a low-rank model makes sense. The eigenvalues of 𝑃𝜋 are close
to 1 and there is little signal to differentiate between eigenvectors, but differences become clearer
over time on 𝑃 𝑡

𝜋 . This may explain the better performance of FB and LRA-SR compared to LRA-P.

Limitations. First, these experiments are still small-scale and performance is not perfect, so there
is space for improvement. Also, all the environments tested here were deterministic: all algorithms
still make sense in stochastic environments, but experimental conclusions may differ.

Second, even though these methods can be coupled with any exploration technique, this will obviously
not cover tasks too different from the actions in the replay buffer, as with any offline RL method.

These zero-shot RL algorithms learn to summarize the long-term future for a wide range of policies
(though without synthesizing trajectories). This is a lot: in contrast, world models only learn policy-
independent one-step transitions. So the question remains of how far this can scale. A priori, there is
no restriction on the inputs (e.g., images, state history...). Still, for large problems, some form of prior
seems unavoidable. For SFs, priors can be integrated in 𝜙, but rewards must be linear in 𝜙. For FB,
priors can be integrated in 𝐵’s input. Touati & Ollivier (2021) use FB with pixel-based inputs for 𝐹 ,
but only the agent’s (𝑥, 𝑦) position for 𝐵’s input: this recovers all rewards that are functions of (𝑥, 𝑦)
(linear or not). Breaking the symmetry of 𝐹 and 𝐵 reduces the strain on the model by restricting
predictions to fewer variables, such as an agent’s future state instead of the full environment.

8 CONCLUSIONS

Zero-shot RL methods avoid test-time planning by summarizing long-term state-state relationships
for particular policies. We systematically tested forward-backward representations and many new
models of successor features on zero-shot tasks. We also uncovered algebraic links between SFs,
FB, contrastive learning, and spectral methods. Overall, SFs suffer from their dependency to basic
feature construction, with only Laplacian eigenfunctions working reliably. Notably, planning with
SFs requires specific features: SFs can fail with generic encoder-type feature learning, even if the
learned representation of states is reasonable (such as (𝑥, 𝑦)). Forward-backward representations
were best across the board, and provide reasonable zero-shot RL performance.
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Appendix A sketches a proof of the basic properties of SFs and the FB representation, Theorems 1
and 2, respectively from Borsa et al. (2018) and Touati & Ollivier (2021).

Appendix B derives the loss (8) we use to learn 𝐹 and 𝐵, and the auxiliary orthonormalization loss.

Appendix C describes the precise mathematical relationship between the contrastive loss (17) and
successor measures of the exploration policy.

Appendix D further discusses why low-rank models make more sense on successor measures than on
the transition matrix 𝑃 .

Appendix E proves that if 𝑃 is low-rank given by 𝜒⊤𝜇, then successor features using 𝜙 = 𝜇 (but not
𝜒) provide optimal policies.

Appendix F proves that the loss (16) used to learn low-rank 𝑃 is an asymmetric version of the
Laplacian eigenfunction loss (14).

Appendix G describes the detailed experimental setup: environments, architectures, policy training,
methods for sampling of 𝑧, and hyperparameters. The full code can be found at
https://github.com/facebookresearch/controllable_agent

Appendix H contains the full table of experimental results, as well as aggregate plots over several
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Appendix I analyzes the learned features. We use feature rank analysis to study the degree of feature
collapse for some methods. We also provide t-SNE visualizations of the learned embeddings for all
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Appendix J provides hyperparameter sensitivity plots (latent dimension 𝑑, learning rate, batch size,
mixing ratio for 𝑧 sampling).

Appendix K describes a further baseline where we take a goal-oriented method inspired from Ma
et al. (2020), and extend it to dense rewards by linearity. Since results were very poor except for
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Appendix L provides PyTorch snippets for the key losses, notably the FB loss, the SF loss as well as
the various feature learning methods for SF.
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A SKETCH OF PROOF OF THEOREMS 1 AND 2

To provide an intuition behind Theorems 1 and 2 on SFs and FB, we include here a sketch of proof in
the finite state case. Full proofs in the general case can be found in the Appendix of Touati & Ollivier
(2021).

For Theorem 1 (SFs), let us assume that the reward is linear in the features 𝜙, namely, 𝑟(𝑠) = 𝜙(𝑠)⊤𝑤
for some 𝑤 ∈ R𝑑. Then by definition, 𝑧𝑟 = 𝑤 since 𝑧𝑟 is the linear regression of the reward on
the features (assuming features are linearly independent). Using the definition (4) of the successor
features 𝜓, and taking the dot product with 𝑧𝑟, we obtain

𝜓(𝑠0, 𝑎0, 𝑧𝑟)⊤𝑧𝑟 = E

[︃∑︁
𝑡

𝛾𝑡𝜙(𝑠𝑡+1)⊤𝑧𝑟 | 𝑠0, 𝑎0, 𝜋𝑧𝑟

]︃
= E

[︃∑︁
𝑡

𝛾𝑡𝑟(𝑠𝑡+1) | 𝑠0, 𝑎0, 𝜋𝑧𝑟

]︃
(20)

since 𝑟 = 𝜙⊤𝑤. This means that 𝜓(𝑠0, 𝑎0, 𝑧𝑟)⊤𝑧𝑟 is the 𝑄-function of reward 𝑟 for policy 𝜋𝑧𝑟 . At
the same time, by the definition (4), 𝜋𝑧𝑟 is defined as the argmax of 𝜓(𝑠0, 𝑎0, 𝑧𝑟)⊤𝑧𝑟. Therefore, the
policy 𝜋𝑧𝑟 is the argmax of its own 𝑄-function, meaning it is the optimal policy for reward 𝑟.

For Theorem 2 (FB), let us assume that FB perfectly satisfies the training criterion (5), namely,
𝑀𝜋𝑧 = 𝐹⊤

𝑧 𝐵 diag(𝜌) in matrix form. Thanks to the definition (1) of successor representations
𝑀𝜋, for any policy 𝜋𝑧 , the 𝑄-function for the reward 𝑟 can be written as 𝑄𝜋𝑧

𝑟 = 𝑀𝜋𝑧𝑟 in matrix
form. This is equal to 𝐹⊤

𝑧 𝐵 diag(𝜌)𝑟. Thus, if we define 𝑧𝑟 := 𝐵 diag(𝜌)𝑟 = E𝑠∼𝜌[𝐵(𝑠)𝑟(𝑠)], we
obtain 𝑄𝜋𝑧

𝑟 = 𝐹⊤
𝑧 𝑧𝑟 for any 𝑧 ∈ R𝑑. In particular, the latter holds for 𝑧 = 𝑧𝑟 as well: 𝐹⊤

𝑧𝑟𝑧𝑟 is the
𝑄-function of 𝜋𝑧𝑟 . Again, the policies 𝜋𝑧 are defined in (5) as the greedy policies of 𝐹⊤

𝑧 𝑧, for any 𝑧.
Therefore, 𝜋𝑧𝑟 is the argmax of its own 𝑄-function. Hence, 𝜋𝑧𝑟 is the optimal policy for the reward 𝑟.
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B DERIVATION OF THE FORWARD-BACKWARD LOSS

Here we quickly derive the loss (8) used to train 𝐹 and 𝐵 such that 𝑀𝜋(𝑠, 𝑎,d𝑠′) ≈
𝐹 (𝑠, 𝑎)⊤𝐵(𝑠′) 𝜌(d𝑠′). Training is based on the Bellman equation satisfied by 𝑀𝜋. This holds
separately for each policy parameter 𝑧, so in this section we omit 𝑧 for simplicity.

Here 𝜌(d𝑠′) is the distribution of states in the dataset. Importantly, the resulting loss does not require
to know this measure 𝜌(d𝑠′), only to be able to sample states 𝑠 ∼ 𝜌 from the dataset.

The successor measure 𝑀𝜋 satisfies a Bellman-like equation 𝑀𝜋 = 𝑃 + 𝛾𝑃𝜋𝑀
𝜋 , as matrices in the

finite case and as measures in the general case (Blier et al., 2021). We can learn FB by iteratively
minimizing the Bellman residual 𝑀𝜋 − (𝑃 + 𝛾𝑃𝜋𝑀

𝜋) on the parametric model 𝑀 = 𝐹⊤𝐵𝜌.

𝑀𝜋(𝑠, 𝑎,d𝑠′) is a measure on 𝑠′ for each (𝑠, 𝑎), so it is not obvious how to measure the size of the
Bellman residual. In general, we can define a norm on such objects 𝑀 by taking the density with
respect to the reference measure 𝜌,

‖𝑀‖2𝜌 := E(𝑠,𝑎)∼𝜌
𝑠′∼𝜌

[︃(︂
𝑀(𝑠, 𝑎,d𝑠′)

𝜌(d𝑠′)

)︂2
]︃

(21)

where 𝑀(𝑠,𝑎,d𝑠′)
𝜌(d𝑠′) is the density of 𝑀 with respect to 𝜌. 1 For finite states, 𝑀 is a matrix 𝑀𝑠𝑎𝑠′ and

this is just a 𝜌-weighted Frobenius matrix norm, ‖𝑀‖2𝜌 =
∑︀

𝑠𝑎𝑠′ 𝑀
2
𝑠𝑎𝑠′ 𝜌(𝑠, 𝑎)/𝜌(𝑠′). (This is also

how we proceed to learn a low-rank approximation of 𝑃 in (16).)

We define the loss on 𝐹 and 𝐵 as the norm of the Bellman residual on 𝑀 for the model 𝑀 = 𝐹⊤𝐵𝜌.
As usual in temporal difference learning, we use fixed, non-trainable target networks 𝐹 and �̄� for the
right-hand-side of the Bellman equation. Thus, the Bellman residual is 𝐹⊤𝐵𝜌−

(︀
𝑃 + 𝛾𝑃𝜋𝐹

⊤�̄�𝜌
)︀
,

and the loss is

ℒ(𝐹,𝐵) :=
⃦⃦
𝐹⊤𝐵𝜌−

(︀
𝑃 + 𝛾𝑃𝜋𝐹

⊤�̄�𝜌
)︀⃦⃦2

𝜌
(22)

When computing the norm ‖·‖𝜌, the denominator 𝜌 cancels out with the 𝐹⊤𝐵𝜌 terms, but we are
left with a 𝑃/𝜌 term. This term can still be integrated, because integrating 𝑃 (d𝑠′|𝑠, 𝑎)/𝜌(d𝑠′)
under 𝑠′ ∼ 𝜌 is equivalent to directly integrating under 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎), namely, integrating under
transitions (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) in the environment. This plays out as follows:

ℒ(𝐹,𝐵) = E(𝑠𝑡.𝑎𝑡)∼𝜌
𝑠′∼𝜌

[︃(︂
𝐹 (𝑠𝑡, 𝑎𝑡)

⊤𝐵(𝑠′)− 𝑃 (d𝑠′|𝑠𝑡, 𝑎𝑡)
𝜌(d𝑠′)

− 𝛾 E𝑠𝑡+1∼𝑃 (d𝑠𝑡+1|𝑠𝑡,𝑎𝑡)[𝐹 (𝑠𝑡+1, 𝜋(𝑠𝑡+1))⊤�̄�(𝑠′)]

)︂2
]︃

(23)

= E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌
𝑠′∼𝜌

[︂(︁
𝐹 (𝑠𝑡, 𝑎𝑡)

⊤𝐵(𝑠′)− 𝛾𝐹 (𝑠𝑡+1, 𝜋(𝑠𝑡+1))⊤�̄�(𝑠′)
)︁2]︂

− 2E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌

[︀
𝐹 (𝑠𝑡, 𝑎𝑡)

⊤𝐵(𝑠𝑡+1)
]︀

+ Const (24)

where Const is a constant term that we can discard since it does not depend on 𝐹 and 𝐵.

Apart from the discarded constant term, all terms in this final expression can be sampled from the
dataset. Note that we have a −2𝐹 (𝑠𝑡, 𝑎𝑡)

⊤𝐵(𝑠𝑡+1) term where Touati & Ollivier (2021) have a
−2𝐹 (𝑠𝑡, 𝑎𝑡)

⊤𝐵(𝑠𝑡) term: this is because we define successor representations (1) using 𝑠𝑡+1 while
Touati & Ollivier (2021) use 𝑠𝑡.

See also Appendix L for pseudocode (including the orthonormalization loss, and double networks for
𝑄-learning as described in Appendix G).

1This is the dual norm on measures of the 𝐿2(𝜌) norm on functions. It amounts to learning a model of
𝑀(𝑠, 𝑎, d𝑠′) by learning relative densities to reach 𝑠′ knowing we start at (𝑠, 𝑎), relative to the average density
𝜌(d𝑠′) in the dataset.
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The orthonormalization loss. An auxiliary loss is used to normalize𝐵 so that E𝑠∼𝜌[𝐵(𝑠)𝐵(𝑠)⊤] ≈
Id. This loss is

ℒnorm(𝐵) :=
⃦⃦
E𝜌[𝐵𝐵⊤]− Id

⃦⃦2
Frobenius

(25)

= E𝑠∼𝜌, 𝑠′∼𝜌

[︁
(𝐵(𝑠)⊤𝐵(𝑠′))2 − ‖𝐵(𝑠)‖22 − ‖𝐵(𝑠′)‖22

]︁
+ Const. (26)

(The more complex expression in Touati & Ollivier (2021) has the same gradients up to a factor 4.)

The auxiliary loss ℒ′ (9). Learning 𝐹 (𝑠, 𝑎, 𝑧) is equivalent to learning 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧′ for all vectors
𝑧′. Yet the definition of the policies 𝜋𝑧 in FB only uses 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. Thus, as was done for SFs in
Section 5.1, one may wonder if there is a scalar rather than vector loss to train 𝐹 , that would reduce
the error in the directions of 𝐹 used to define 𝜋𝑧 .

In the case of FB, the full vector loss is needed to train 𝐹 and 𝐵. However, one can add the following
auxiliary loss on 𝐹 to reduce the errors in the specific direction 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. This is obtained as
follows.

Take the Bellman gap in the main FB loss (22): this Bellman gap is 𝐹⊤𝐵𝜌−
(︀
𝑃 + 𝛾𝑃𝜋𝐹

⊤�̄�𝜌
)︀
. To

specialize this Bellman gap in the direction of 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧, multiply by 𝐵⊤(𝐵𝜌𝐵⊤)−1𝑧 on the right:
this yields 𝐹⊤𝑧 −

(︀
𝑃𝐵⊤(𝐵𝜌𝐵⊤)−1𝑧 + 𝛾𝑃𝜋𝐹

⊤𝑧
)︀

(using that we compute the loss at �̄� = 𝐵).

This new loss is the Bellman gap on 𝐹⊤𝑧, with reward 𝑃𝐵⊤(𝐵𝜌𝐵⊤)−1𝑧.

This is the loss ℒ′ described in (9). It is a particular case of the main FB loss: ℒ = 0 implies ℒ′ = 0,
since we obtained ℒ′ by multiplying the Bellman gap of ℒ.

We use ℒ′ on top of the main FB loss to reduce errors in the direction 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. However, in the
end, the differences are modest.
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C RELATIONSHIP BETWEEN CONTRASTIVE LOSS AND SVD OF SUCCESSOR
MEASURES

Here we prove the precise relationship between the contrastive loss (17) and SVDs of the successor
measure of the exploration policy.

Intuitively, both methods push states together if they lie on the same trajectory, by increasing the dot
product between the representations of 𝑠𝑡 and 𝑠𝑡+𝑘. This is formalized as follows.

Let 𝜋 be the policy used to produce the trajectories in the dataset. Define

�̃� := (1− 𝛾CL)
∑︁
𝑡≥0

𝛾𝑡CL𝑃
𝑡+1
𝜋 (27)

where 𝛾CL is the parameter of the geometric distribution used to choose 𝑘 when sampling 𝑠𝑡 and 𝑠𝑡+𝑘.

�̃� is a stochastic matrix in the discrete case, and a probability measure over 𝑆 in the general case: it
is the normalized version of the successor measure (3) with 𝜋 the exploration policy.

By construction, the distribution of 𝑠𝑡+𝑘 knowing 𝑠𝑡 with 𝑘 ∼ Geom(1− 𝛾CL) is described by �̃� .
Therefore, we can rewrite the loss as

− E𝑘∼Geom(1−𝛾CL)
(𝑠𝑡,𝑠𝑡+𝑘)∼𝒟

[︂
log

exp(cosine(𝜙(𝑠𝑡), 𝜇(𝑠𝑡+𝑘)))

E𝑠′∼𝒟 exp(cosine(𝜙(𝑠𝑡), 𝜇(𝑠′)))

]︂
(28)

= −E𝑠∼𝜌, 𝑠′∼𝜌

[︃
�̃�(𝑠,d𝑠′)

𝜌(d𝑠′)
log exp(cosine(𝜙(𝑠), 𝜇(𝑠′)))

]︃
+ E𝑠∼𝜌 [logE𝑠′∼𝒟 exp(cosine(𝜙(𝑠), 𝜇(𝑠′)))] (29)

Assume that 𝜙 and 𝜇 are centered with unit norm, namely, ‖𝜙(𝑠)‖2 = 1 and E𝑠∼𝜌 𝜙(𝑠) = 0 and
likewise for 𝜇. With unit norm, the cosine becomes just a dot product, and the loss is

· · · = −E𝑠∼𝜌, 𝑠′∼𝜌

[︃
�̃�(𝑠,d𝑠′)

𝜌(d𝑠′)
𝜙(𝑠)⊤𝜇(𝑠′)

]︃
+ E𝑠∼𝜌

[︀
logE𝑠′∼𝒟 exp(𝜙(𝑠)⊤𝜇(𝑠′))

]︀
. (30)

A second-order Taylor expansion provides

logE exp𝑋 = E𝑋 + 1
2 E[𝑋2]− 1

2 (E𝑋)2 +𝑂(|𝑋|3) (31)

and therefore, with E𝜙 = E𝜇 = 0, the loss is approximately

· · · ≈ −E𝑠∼𝜌, 𝑠′∼𝜌

[︃
�̃�(𝑠,d𝑠′)

𝜌(d𝑠′)
𝜙(𝑠)⊤𝜇(𝑠′)

]︃
+ 1

2 E𝑠∼𝜌, 𝑠′∼𝜌

[︁(︀
𝜙(𝑠)⊤𝜇(𝑠′)

)︀2]︁
(32)

= 1
2 E𝑠∼𝜌, 𝑠′∼𝜌

⎡⎣(︃𝜙(𝑠)⊤𝜇(𝑠′)− �̃�(𝑠,d𝑠′)

𝜌(d𝑠′)

)︃2
⎤⎦+ Const (33)

where the constant term does not depend on 𝜙 and 𝜇.

This is minimized when 𝜙⊤𝜇 is the SVD of �̃�/𝜌 in the 𝐿2(𝜌) norm.
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D DO FINITE-RANK MODELS ON THE TRANSITION MATRIX AND ON
SUCCESSOR MEASURES MAKE SENSE?

It turns out finite-rank models are very different for 𝑃 or for
∑︀
𝛾𝑡𝑃 𝑡

𝜋. In typical situations, the
spectrum of 𝑃 is concentrated around 1 while that of

∑︀
𝛾𝑡𝑃 𝑡

𝜋 is much more spread-out.

Despite the popularity of low-rank 𝑃 in theoretical RL works, 𝑃 is never close to low-rank in
continuous-time systems: then 𝑃 is actually always close to the identity. Generally speaking, 𝑃
cannot be low-rank if most actions have a small effect. By definition, for any feature function 𝜙,
(𝑃𝜋𝜙)(𝑠) = E[𝜙(𝑠𝑡+1)|𝑠𝑡 = 𝑠]. Intuitively, if actions have a small effect, then 𝑠𝑡+1 is close to 𝑠𝑡,
and 𝜙(𝑠𝑡+1) ≈ 𝜙(𝑠𝑡) for continuous 𝜙. This means that 𝑃𝜋𝜙 is close to 𝜙, so that 𝑃𝜋 is close to
the identity on a large subspace of feature functions 𝜙. In the theory of continuous-time Markov
processes, the time-𝑡 transition kernel is given by 𝑃𝑡 = 𝑒𝑡𝐴 with 𝐴 the infinitesimal generator of the
process (Levin et al., 2009, §20.1) (Øksendal, 1998, §8.1), hence 𝑃𝑡 is Id +𝑂(𝑡) for small timesteps
𝑡. In general, the transition matrix 𝑃 is better modeled as Id + low-rank, which corresponds to a
low-rank model of the Markov chain Laplacian Id−𝑃 .

On the other hand, though
∑︀
𝛾𝑡𝑃 𝑡

𝜋 is never exactly low-rank (it is invertible), it has meaningful
low-rank approximations under weak assumptions. For large 𝑡, 𝑃 𝑡

𝜋 becomes rank-one under weak
assumptions (ergodicity), as it converges to the equilibrium distribution of the transition kernel.
For large 𝛾, the sum

∑︀
𝛾𝑡𝑃 𝑡

𝜋 is dominated by large 𝑡. Most eigenvalues of 𝑃𝜋 are close to 1, but
taking powers 𝑃 𝑡

𝜋 sharpens the differences between eigenvalues: with 𝛾 close to 1, going from 𝑃𝜋 to∑︀
𝛾𝑡𝑃 𝑡

𝜋 = (Id−𝛾𝑃𝜋)−1 changes an eigenvalue 1− 𝜀 into 1/𝜀.

In short, on 𝑃 itself, there is little learning signal to differentiate between eigenvectors, but differences
become visible over time. This may explain why FB works better than low-rank decompositions
directly based on 𝑃 or the Laplacian.

For instance, consider the nearest-neighbor random walk on a length-𝑛 cycle {0, 1, . . . , 𝑛 − 1
mod 𝑛}, namely, moving in dimension 1. (This extends to any-dimensional grids.) The associated
𝑃𝜋 is not low-rank in any reasonable sense: the corresponding stochastic matrix is concentrated
around the diagonal, and many eigenvalues are close to 1. Precisely, the eigenvalues are cos(2𝑘𝜋/𝑛)
with integer 𝑘 = {0, . . . , 𝑛/2}. This is ≈ 1− 2𝜋2(𝑘/𝑛)2 when 𝑘 ≪ 𝑛. Half of the eigenvalues are
between

√
2/2 and 1.

However, when 𝛾 → 1,
∑︀
𝛾𝑡𝑃 𝑡

𝜋 has one eigenvalue 1/(1 − 𝛾) and the other eigenvalues are
1

1−cos(2𝑘𝜋/𝑛) ≈ 𝑛2/2𝜋2𝑘2 with positive integer 𝑘: there is one large eigenvalue, then the others
decrease like cst/𝑘2. With such a spread-out spectrum, a finite-rank model makes sense.
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E WHICH FEATURES ARE ANALOGOUS BETWEEN LOW-RANK 𝑃 AND SFS?

Here we explain the relationship between a low-rank model of 𝑃 and successor features. More
precisely, if transition probabilities from (𝑠, 𝑎) to 𝑠′ can be written exactly as 𝜒(𝑠, 𝑎)⊤𝜇(𝑠′), then SFs
with basic features 𝜙 := 𝜇 will provide optimal policies for any reward function (Theorem 3).

Indeed, under the finite-rank model 𝑃 (d𝑠′|𝑠, 𝑎) = 𝜒(𝑠, 𝑎)⊤𝜇(𝑠′)𝜌(d𝑠′), rewards only matter via the
reward features E𝑠′∼𝜌 𝜇(𝑠′)𝑟(𝑠′): namely, two rewards with the same reward features have the same
𝑄-function, as the dynamics produces the same expected rewards. Then 𝑄-functions are linear in
these reward features, and using successor features with 𝜙 := 𝜇 provides the correct 𝑄-functions, as
follows.
Theorem 3. Assume that 𝑃 (d𝑠′|𝑠, 𝑎) = 𝜒(𝑠, 𝑎)⊤𝜇(𝑠′)𝜌(d𝑠′). Then successor features using the
basic features 𝜙 := 𝜇 provide optimal policies for any reward function.

This is why we use 𝜇 rather than 𝜒 for the SF basic features. This is also why we avoided the
traditional notation 𝑃 (𝑠′|𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝜇(𝑠′) often used for low-rank 𝑃 , which induces a conflict
of notation with the 𝜙 in SFs, and suggests the wrong analogy.

Meanwhile, 𝜒 plays a role more analogous to SFs’ 𝜓, although for one-step transitions instead of
multistep transitions as in SFs: 𝑄-functions are linear combinations of the features 𝜒. In particular,
the optimal 𝑄-function for reward 𝑟 is 𝑄⋆

𝑟 = 𝜒⊤𝑤𝑟 for some 𝑤𝑟. But contrary to successor features,
there is no simple correspondence to compute 𝑤𝑟 from 𝑟.

Proof. Let 𝜋 be any policy. On a finite space in matrix notation, and omitting 𝜌 for simplicity,
the assumption 𝑃 = 𝜒⊤𝜇 implies 𝑃𝜋 = 𝜒⊤𝜋𝜇 where 𝜒𝜋(𝑠) := E𝑎∼𝜋(𝑠) 𝜒(𝑠, 𝑎) are the 𝜋-averaged
features. Then,

𝑄𝜋
𝑟 = 𝑃

∑︁
𝑡≥0

𝛾𝑡𝑃 𝑡
𝜋𝑟 (34)

= 𝜒⊤𝜇
∑︁
𝑡≥0

𝛾𝑡
(︀
𝜒⊤𝜋𝜇

)︀𝑡
𝑟 (35)

= 𝜒⊤
(︁∑︀

𝑡≥0 𝛾
𝑡
(︀
𝜇𝜒⊤𝜋

)︀𝑡)︁
𝜇𝑟. (36)

Thus, 𝑄-functions are expressed as 𝑄𝜋
𝑟 (𝑠, 𝑎) = 𝜒(𝑠, 𝑎)⊤𝑤(𝜋, 𝑟) with 𝑤(𝜋, 𝑟) =(︁∑︀

𝑡≥0 𝛾
𝑡(𝜇𝜒⊤𝜋)𝑡

)︁
𝜇𝑟.

Moreover, rewards only matter via 𝜇𝑟. Namely, two rewards with the same 𝜇𝑟 have the same
𝑄-function for every policy.

In full generality on continuous spaces with 𝜌 again, the same holds with 𝜇(𝑠)𝜌(d𝑠) instead of 𝜇(𝑠),
and E𝑠∼𝜌 𝜇(𝑠)𝑟(𝑠) instead of 𝜇𝑟.

Now, let 𝑟 be any reward function, and let 𝑟′ be its 𝐿2(𝜌)-orthogonal projection onto the space
generated by the features 𝜇. By construction, 𝑟−𝑟′ is𝐿2(𝜌)-orthogonal to 𝜇, namely, E𝜌 𝜇(𝑟−𝑟′) = 0.
So E𝜌 𝜇𝑟 = E𝜌 𝜇𝑟

′. Therefore, by the above, 𝑟 and 𝑟′ have the same 𝑄-function for every policy.

By definition, 𝑟′ lies in the linear span of the features 𝜇. By Theorem 1, SFs with features 𝜙 = 𝜇 will
provide optimal policies for 𝑟′. Since 𝑟 and 𝑟′ have the same 𝑄-function for every policy, an optimal
policy for 𝑟′ is also optimal for 𝑟.
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F RELATIONSHIP BETWEEN LAPLACIAN EIGENFUNCTIONS AND LOW-RANK
𝑃 LEARNING

The loss (16) used to learn a low-rank model of the transition probabilities 𝑃 is an asymmetric version
of the Laplacian eigenfunction loss (14) with 𝜆 = 1.

Said equivalently, if we use the low-rank 𝑃 loss (16) constrained with 𝜒 = 𝜇 to learn a low-rank
model of 𝑃𝜋 instead of 𝑃 (with 𝜋 the exploration policy), then we get the Laplacian eigenfunction
loss (14) with 𝜆 = 1.

Indeed, set 𝜆 = 1 in (14). Assume that the distributions of 𝑠𝑡 and 𝑠𝑡+1 in the dataset are identical on
average (this happens, e.g., if the dataset is made of long trajectories or if 𝜌 is close enough to the
invariant distribution of the exploration policy). Then, in the Laplacian loss (14), the norms from the
first term cancel those from the second, and the Laplacian loss simplifies to

(14) = E(𝑠𝑡,𝑠𝑡+1)∼𝒟

[︁
‖𝜙(𝑠𝑡)− 𝜙(𝑠𝑡+1)‖2

]︁
+ E 𝑠∼𝒟

𝑠′∼𝒟

[︀
(𝜙(𝑠)⊤𝜙(𝑠′))2 − ‖𝜙(𝑠)‖22 − ‖𝜙(𝑠′)‖22

]︀
(37)

= E𝑠𝑡∼𝒟 ‖𝜙(𝑠𝑡)‖2 + E𝑠𝑡+1∼𝒟 ‖𝜙(𝑠𝑡)‖2 − 2E(𝑠𝑡,𝑠𝑡+1)∼𝒟
[︀
𝜙(𝑠𝑡)

⊤𝜙(𝑠𝑡+1)
]︀

(38)

+ E 𝑠∼𝒟
𝑠′∼𝒟

[︀
(𝜙(𝑠)⊤𝜙(𝑠′))2 − ‖𝜙(𝑠)‖22 − ‖𝜙(𝑠′)‖22

]︀
(39)

= −2E(𝑠𝑡,𝑠𝑡+1)∼𝒟
[︀
𝜙(𝑠𝑡)

⊤𝜙(𝑠𝑡+1)
]︀

+ E 𝑠∼𝒟
𝑠′∼𝒟

[︀
(𝜙(𝑠)⊤𝜙(𝑠′))2

]︀
. (40)

This is the same as the low-rank loss (16) if we omit actions 𝑎 and constrain 𝜒 = 𝜇.
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Figure 3: Maze, Walker, Cheetah and Quadruped environments used in our experiments. In the
Mmaze domain (left), we show an example of an initial state (yellow point) and the 20 test goals (red
circles).

G EXPERIMENTAL SETUP

In this section we provide additional information about our experiments.

Code snippets for the main losses are given in Appendix L. The full code can be found at
https://github.com/facebookresearch/controllable_agent

G.1 ENVIRONMENTS

All the environments considered in this paper are based on the DeepMind Control Suite (Tassa et al.,
2018).

• Point-mass Maze: a 2-dimensional continuous maze with four rooms. The states are
4-dimensional vectors consisting of positions and velocities of the point mass (𝑥, 𝑦, 𝑣𝑥, 𝑥𝑦),
and the actions are 2-dimensional vectors. At test, we assess the performance of the agents
on 20 goal-reaching tasks (5 goals in each room described by their (𝑥, 𝑦) coordinates).

• Walker: a planar walker. States are 24-dimensional vectors consisting of positions and
velocities of robot joints, and actions are 6-dimensional vectors. We consider 4 different
tasks at test time: walker_stand reward is a combination of terms encouraging an
upright torso and some minimal torso height, while walker_walk and walker_run
rewards include a component encouraging some minimal forward velocity. walker_flip
reward includes a component encouraging some mininal angular momentum.

• Cheetah: a running planar biped. States are 17-dimensional vectors consisting of positions
and velocities of robot joints, and actions are 6-dimensional vectors. We consider 4 different
tasks at test time: cheetah_walk and cheetah_run rewards are linearly proportional
to the forward velecity up to some desired values: 2 m/s for walk and 10 m/s for run. Sim-
ilarly, walker_walk_backward and walker_run_backward rewards encourage
reaching some minimal backward velocities.

• Quadruped: a four-leg ant navigating in 3D space. States and actions are 78-
dimensional and 12-dimensional vectors, respectively. We consider 4 tasks at test
time: quadruped_stand reward encourages an upright torso. quadruped_walk
and quadruped_run include a term encouraging some minimal torso velecities.
quadruped_walk includes a term encouraging some minimal height of the center of
mass.

G.2 ARCHITECTURES

We use the same architectures for all methods.

• The backward representation network 𝐵(𝑠) and the feature network 𝜙(𝑠) are represented by
a feedforward neural network with three hidden layers, each with 256 units, that takes as
input a state and outputs a 𝐿2-normalized embedding of radius

√
𝑑.

• For both successor features 𝜓(𝑠, 𝑎, 𝑧) and forward network 𝐹 (𝑠, 𝑎, 𝑧), we first preprocess
separately (𝑠, 𝑎) and (𝑠, 𝑧) by two feedforward networks with two hidden layers (each with
1024 units) to 512-dimentional space. Then we concatenate their two outputs and pass it
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into another 2-layer feedforward network (each with 1024 units) to output a 𝑑-dimensional
vector.

• For the policy network 𝜋(𝑠, 𝑧), we first preprocess separately 𝑠 and (𝑠, 𝑧) by two feedforward
networks with two hidden layers (each with 1024 units) to 512-dimentional space. Then
we concatenate their two outputs and pass it into another 2-layer feedforward network
(each with 1024 units) to output to output a 𝑑𝐴-dimensional vector, then we apply a Tanh
activation as the action space is [−1, 1]𝑑𝐴 .

For all the architectures, we apply a layer normalization (Ba et al., 2016) and Tanh activation in the
first layer in order to standardize the states and actions. We use Relu for the rest of layers. We also
pre-normalized 𝑧: 𝑧 ←

√
𝑑 𝑧
‖𝑧‖2

in the input of 𝐹 , 𝜋 and 𝜓. Empirically, we observed that removing
preprocessing and pass directly a concatenation of (𝑠, 𝑎, 𝑧) directly to the network leads to unstable
training. The same holds when we preprocess (𝑠, 𝑎) and 𝑧 instead of (𝑠, 𝑎) and (𝑠, 𝑧), which means
that the preprocessing of 𝑧 should be influenced by the current state.

For maze environments, we added an additional hidden layer after the preprocessing (for both policy
and forward / successor features) as it helped to improve the results.

G.3 SAMPLING OF 𝑧

We mix two methods for sampling 𝑧:

1. We sample 𝑧 uniformly in the sphere of radius
√
𝑑 in R𝑑 (so each component of 𝑧 is of size

≈ 1).

2. We sample 𝑧 using the formula for 𝑧𝑟 corresponding to the reward for reaching a ran-
dom goal state 𝑠 in Theorems 1–2. Namely, we set 𝑧 = 𝐵(𝑠) for FB and 𝑧 =(︀∑︀𝑚

𝑖=1 𝜙(𝑠𝑖)𝜙(𝑠𝑖)
⊤)︀+ 𝜙(𝑠) for SFs, where 𝑠 ∼ 𝜌 is a random state sampled from the

replay buffer and 𝑠𝑖 are states in a minibatch.

For the main series of results, we used a 50% mix ratio for those two methods. Different algorithms
can benefit from different ratios: this is explored in Appendix

G.4 LEARNING THE POLICIES 𝜋𝑧 : POLICY NETWORK

As the action space is continuous, we could not compute the arg max over action in closed form.
Instead, we consider a latent-conditioned policy network 𝜋𝜂 : 𝑆 × 𝑍 → 𝐴, and we learn the policy
parameters 𝜂 by performing stochastic gradient ascent on the objective E𝑠,𝑧[𝐹 (𝑠, 𝜋𝜂(𝑠), 𝑧)⊤𝑧] for
FB or E𝑠,𝑧[𝜓(𝑠, 𝜋𝜂(𝑠), 𝑧)⊤𝑧] for SFs.

We also incorporate techniques introduced in the TD3 paper (Fujimoto et al., 2018) to address
function approximation error in actor-critic methods: double networks and target policy smoothing,
adding noise 𝜀 to the actions.

Let 𝜃1 and 𝜃2 the parameters of two forward networks and let 𝜔 the parameters of the backward
network. Let 𝜃−1 , 𝜃−2 and 𝜔− be the parameters of their corresponding target networks.

Let {(𝑠𝑖, 𝑎𝑖, 𝑠next𝑖 )}𝑖∈𝐼 ⊂ 𝒟 a mini-batch of size |𝐼| = 𝑏 of transitions and let {𝑧𝑖}𝑖∈𝐼 a mini-batch
of size |𝐼| = 𝑏 of latent variables sampled according to G.3. The empirical version of the main FB
loss in (8) is (with an additional 1/2 factor):

L (𝜃𝑘, 𝜔) =
1

2𝑏(𝑏− 1)

∑︁
𝑖,𝑗∈𝐼2

𝑖 ̸=𝑗

(︂
𝐹𝜃𝑘(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)

⊤𝐵𝜔(𝑠next𝑗 )− 𝛾 min
𝑙=1,2

𝐹𝜃−
𝑙

(𝑠next𝑖 , 𝜋𝜂(𝑠next𝑖 ) + 𝜀𝑖, 𝑧𝑖)
⊤𝐵𝜔−(𝑠next𝑗 )

)︂2

− 1

𝑏

∑︁
𝑖∈𝐼

𝐹𝜃𝑘(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)
⊤𝐵𝜔(𝑠next𝑖 ) ∀𝑘 = 1, 2 (41)

where 𝜀𝑖 is sampled from a truncated centered Gaussian with variance 𝜎2 (for policy smoothing).
The empirical version of the auxiliary 𝐹 loss in (9) is: for 𝑘 = 1, 2,
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L ′(𝜃𝑘) =
1

𝑏

∑︁
𝑖∈𝐼

(︂
𝐹𝜃𝑘(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)

⊤𝑧𝑖 −𝐵𝜔(𝑠next𝑖 )⊤ Cov+ 𝑧𝑖 − 𝛾 min
𝑙=1,2

𝐹𝜃−
𝑙

(𝑠next𝑖 , 𝜋𝜂(𝑠next𝑖 , 𝑧) + 𝜀𝑖, 𝑧𝑖)
⊤𝑧𝑖

)︂2

(42)

where Cov+ is the pseudo-inverse of the empirical covariane matrix Cov = 1
𝑏

∑︀
𝑖∈𝐼 𝐵𝜔(𝑠𝑖)𝐵𝜔(𝑠𝑖)

⊤.
We use 1/𝑑 as regularization coefficient in front of L ′(𝜃𝑘).

For policy training, the empirical loss is:

L (𝜂) = −1

𝑏

∑︁
𝑖∈𝐼

min
𝑙=1,2

𝐹𝜃𝑙(𝑠𝑖, 𝜋𝜂(𝑠𝑖, 𝑧) + 𝜀𝑖, 𝑧𝑖)
⊤𝑧𝑖 (43)

The same techniques are also used for SFs.

G.5 HYPERPARAMETERS

Table 1 summarizes the hyperparameters used in our experiments.

A hyperparameter sensitivity analysis for two domains (Walker and Cheetah) is included in Ap-
pendix J.

Table 1: Hyperparameters used in our experiments.
Hyperparameter Value
Replay buffer size 5× 106 (10× 106 for maze)
Representation dimension 50 (100 for maze)
Batch size 1024
Discount factor 𝛾 0.98 (0.99 for maze)
Optimizer Adam
Learning rate 10−4

Mixing ratio for 𝑧 sampling 0.5
Momentum coefficient for target networks 0.99
Stddev 𝜎 for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 106

Number of reward labels for task inference 104

Discount factor 𝛾CL for CL 0.6 (0.2 for maze)
Regularization weight for orthonormality loss (spectral methods) 1

Hyperparameter tuning. Since all methods share the same core, we chose to use the same
hyperparameters rather than tune per method, which could risk leading to less robust conclusions.

We did not do hyperparameter sweeps for each baseline and task, first because this would have been
too intensive given the number of setups, and, second, this would be too close to going back to a
supervised method for each task.

Instead, to avoid any overfitting, we tuned architectures and hyperparameters by hand on the Walker
environment only, with the RND replay buffer, and reused these parameters across all methods and
tasks (except for Maze, on which all methods behave differently). We identified some trends by
monitoring learning curves and downstream performance on Walker, and we fixed a configuration
that led to overall good performance for all the methods. We avoided a full sweep to avoid overfitting
based on Walker, to focus on robustness.

For instance, the learning rate 10−4 seemed to work well with all methods, as seen in Appendix J.

Some trends were common between all methods: indeed, all the methods share a common core
(training of the successor features 𝜓 or 𝐹 , and training of the policies 𝜋) and differ by the training of
the basic features 𝜙 or 𝐵.
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For the basic features 𝜙, the various representation learning losses were easy to fit and had low
hyperparameter sensitivity: we always observed smooth decreasing of losses until convergence. The
challenging part was learning 𝜓 and 𝐹 and their corresponding policies, which is common across
methods.
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H DETAILED EXPERIMENTAL RESULTS

We report the full experimental results, first as a table (Section H.1).

In Section H.2 we plot aggregated results for easier interpretation: first, aggregated across all tasks
with a plot of the variability for each method; second, aggregated over environments (since each
environment corresponds to a trained zero-shot model); third, for each individual task but still
aggregated over replay buffers.

In Section H.3 we plot all individual results per task and replay buffer.

In Section H.4 we plot aggregate results split by replay buffer.

H.1 FULL TABLE OF RESULTS

Buffer Domain Task Method
Rand AEnc ICM Latent Trans Lap LRA-P CL LRA-SR FB APS

APS

cheetah run 145±7 97±3 432±8 49±14 133±15 198±4 8±1 2±0 247±10 267±33 25±3
run-backward 189±20 365±6 404±3 32±3 382±3 221±4 1±0 14±6 261±5 238±7 98±21
walk 665±60 404±19 928±54 302±67 287±53 900±49 75±31 2±1 918±22 844±51 144±11
walk-backward 653±75 982±0 986±0 453±105 985±0 937±17 8±1 150±51 983±0 981±1 452±77

maze reach 11±5 5±1 8±3 10±4 15±5 432±18 436±16 12±3 145±8 410±16 59±7
quadruped jump 784±5 727±12 164±20 554±24 624±14 718±18 309±50 102±29 632±20 649±23 311±24

run 487±1 459±5 91±19 382±14 411±16 491±3 238±21 53±15 448±6 476±8 196±10
stand 966±3 925±16 248±46 752±36 890±17 963±1 497±53 56±9 872±20 924±13 417±10
walk 543±19 444±8 108±25 489±20 490±20 524±13 228±26 45±14 463±18 712±29 205±6

walker flip 158±10 317±31 452±3 299±53 471±15 454±12 340±18 69±26 186±21 413±16 39±2
run 96±4 127±8 290±9 359±11 263±12 289±10 115±11 63±11 204±26 346±14 35±3
stand 486±27 617±37 925±19 868±57 864±24 895±9 643±35 205±51 591±35 822±26 176±17
walk 177±30 462±58 724±41 857±8 816±30 386±40 159±20 76±44 671±19 817±15 34±2

Proto

cheetah run 58±8 84±10 333±14 27±5 322±5 142±2 149±3 0±0 209±10 210±13 -
run-backward 149±6 262±7 329±3 30±5 274±7 146±2 133±6 16±13 230±6 157±7 -
walk 287±38 327±51 961±24 112±11 929±13 722±19 770±31 1±0 860±31 908±18 -
walk-backward 664±39 973±3 987±0 101±15 982±0 798±16 629±31 151±86 979±1 742±46 -

maze reach 27±5 7±1 7±2 15±4 8±1 571±16 556±15 19±5 134±7 326±16 -
quadruped jump 196±29 185±37 137±27 209±32 282±27 177±26 184±25 57±14 113±12 183±24 -

run 134±17 234±8 88±13 123±17 191±14 125±14 166±19 65±16 99±9 137±14 -
stand 413±56 321±42 220±29 270±38 436±34 231±52 264±34 86±12 215±47 287±53 -
walk 148±21 171±21 122±10 156±24 212±12 135±16 172±21 40±13 100±26 280±52 -

walker flip 133±12 346±6 510±13 443±30 456±10 548±33 281±22 78±21 551±13 507±18 -
run 84±2 234±9 259±18 347±20 303±9 280±22 183±28 45±5 391±15 336±9 -
stand 415±26 905±9 910±13 582±62 951±5 937±5 687±41 253±49 874±23 902±25 -
walk 125±21 632±33 839±17 791±17 832±16 883±30 300±31 92±16 867±12 917±7 -

RND

cheetah run 64±3 68±5 96±8 183±26 66±4 50±5 6±1 163±14 138±17 247±9 -
run-backward 96±6 162±18 160±22 60±4 143±17 90±7 2±0 124±13 82±8 185±17 -
walk 289±22 337±28 401±40 567±70 286±30 330±65 29±11 622±28 446±36 827±41 -
walk-backward 469±38 542±70 743±60 345±59 572±100 499±40 14±1 517±60 352±45 793±66 -

maze reach 9±2 4±1 4±1 8±4 8±4 707±12 759±7 736±3 532±20 710±8 -
quadruped jump 770±7 474±40 176±13 663±20 806±14 490±48 447±31 326±72 731±9 651±8 -

run 465±4 415±10 98±13 418±10 478±8 399±26 301±12 263±40 461±6 429±3 -
stand 919±19 770±28 426±45 830±31 973±2 720±27 552±32 529±70 944±11 815±2 -
walk 586±28 486±37 90±13 527±21 552±33 410±30 310±14 210±42 516±30 528±10 -

walker flip 267±28 332±18 461±9 34±3 399±19 569±30 512±27 50±9 454±23 578±10 -
run 96±8 167±12 251±11 47±22 250±6 299±20 325±10 38±5 350±14 388±8 -
stand 516±36 733±22 813±10 191±62 853±18 836±38 904±21 326±41 828±20 890±15 -
walk 152±35 457±33 518±74 30±2 607±31 748±75 818±36 53±10 853±15 760±19 -

Table 2: Score of each method, split by task and replay buffer. Average over ten random seeds, with
±1𝜎 estimated standard deviation on this average estimator. For Maze, we report the average over the
20 goals defined in the environment. We highlight the three leading methods (four when confidence
intervals overlap) for each task.
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H.2 AGGREGATE PLOTS OF RESULTS

Here we plot the results, first averaged over everything, then by environment averaged over the tasks
of that environment, and finally by task.
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Figure 4: Zero-shot scores of ten SF methods and FB, aggregated over tasks using normalized scores
as described in the text. To assess variability, the box plot on the right shows the variations of the
distribution of normalized scores over random seeds, environments, and replay buffers.
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Figure 5: Zero-shot scores averaged over tasks for each environment, with supervised online and
offline TD3 as toplines. Average over 3 replay buffers and 10 random seeds.
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Figure 6: Zero-shot scores for each task, with supervised online and offline TD3 as toplines. Average
over 3 replay buffers and 10 random seeds.
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H.3 FULL PLOTS OF RESULTS PER TASK AND REPLAY BUFFER
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Figure 7: Per-task results on the RND replay buffer, average over 10 random seeds.
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Figure 8: Per-task results on the APS replay buffer, average over 10 random seeds.
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Figure 9: Per-task results on the Proto replay buffer, average over 10 random seeds.
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H.4 INFLUENCE OF THE REPLAY BUFFER

Here we plot the influence of the replay buffer, by reporting results separated by replay buffer, but
averaged over the tasks corresponding to each environment (Fig 10).

Overall, there is a clear failure case of the Proto buffer on the Quadruped environment: the TD3
supervised baseline performs poorly for all tasks in that environment.

Otherwise, results are broadly consistent on the different replay buffers: with a few exceptions, the
same methods succeed or fail on the same environments.
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Figure 10: Results on each replay buffer: RND (top), APS (middle), Proto (bottom). Average over 4
tasks for the Walker, Cheetah and Quadruped environments, average over 20 goals for Maze.
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In Fig. 11, we plot results aggregated over all tasks but split by replay buffer. Box plots further show
variability within random seeds and environments for a given replay buffer.

Overall method rankings are broadly consistent between RND and APS, except for CL. Note that
the aggregated normalized score for Proto is largely influenced by the failure on Quadruped: nor-
malization by a very low baseline (Fig. 10, Quadruped plot for Proto), somewhat artificially pushes
Trans high up (this shows the limit of using scores normalized by offline TD3 score), while the other
methods’ rankings are more similar to RND and APS.

FB and Lap work very well in all replay buffers, with LRA-SR and Trans a bit behind due to their
feailures on some tasks.
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Figure 11: Zero-shot scores by replay buffer, as a percentage of the supervised score of offline TD3
trained on the same buffer, averaged over tasks and environments and random seeds. Top: RND
buffer; middle: APS buffer; bottom: Proto buffer.

29



Published as a conference paper at ICLR 2023

I ANALYSIS OF THE LEARNED FEATURES

I.1 FEATURE RANK

Here we test the hypothesis that feature collapse for some methods is responsible for some cases of
bad performance. This is especially relevant for Maze, where some methods may have little incentive
to learn more features beyond the original two features (𝑥, 𝑦).

We report in Table 3 the effective rank of learned features 𝐵 or 𝜙: this is computed as in (Lyle
et al., 2022), as the fraction of eigenvalues of E𝑠∼𝜌𝐵(𝑠)𝐵(𝑠)⊤ or E𝑠∼𝜌 𝜙(𝑠)𝜙(𝑠)⊤ above a certain
threshold.

Domain Method
Rand AEnc ICM Latent Trans Lap LRA-P CL LRA-SR FB

Maze 0.38 0.31 0.33 0.32 0.15 1.0 1.0 1.0 1.0 1.0
Walker 1,0 0.91 1.0 1.0 0.90 1.0 1.0 0.65 1.0 1.0
Cheetah 1.0 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Quadruped 1.0 0.98 0.30 1.0 0.15 1.0 0.84 1.0 1.0 1.0

Table 3: Feature rank (Lyle et al., 2022) of 𝜙 or 𝐵 for each method, computed as
1
𝑑 #

{︀
𝜎 ∈ eig

(︀
1
𝑛

∑︀𝑛
𝑖=1 𝜙(𝑠𝑖)𝜙(𝑠𝑖)

⊤)︀ | 𝜎 > 𝜀
}︀

, trained on RND replay buffer and averaged over
10 random seeds. We use 𝑛 = 100, 000 samples to estimate the covariance, and 𝜀 = 10−4.

For most methods and all environments except Maze, more than 90% (often 100%) of eigenvalues
are above 10−4, so the effective rank is close to full.

The Maze environment is a clear exception: on Maze, for the Rand, AEnc, Trans, Latent and
ICM methods, only about one third of the eigenvalues are above 10−4. The other methods keep 100%
of the eigenvalues above 10−4. This is perfectly aligned with the performance of each method on
Maze.

So rank reduction does happen for some methods. This reflects the fact that two features (𝑥, 𝑦)
already convey the necessary information about states and dynamics, but are not sufficient to solve
the problem via successor features. In the Maze environment, auto-encoder or transition models
can perfectly optimize their loss just by keeping the original two features (𝑥, 𝑦), and they have no
incentive to learn other features, so the effective rank could have been 2.

These methods may benefit from auxiliary losses to prevent eigenvalue collapse, similar to the
orthonormalization loss used for 𝐵. We did not include such losses, because we wanted to keep
the same methods (autoencoders, ICM, transition model...) used in the literature. But even with an
auxiliary loss, keeping a full rank could be achieved just by keeping (𝑥, 𝑦) and then blowing up some
additional irrelevant features.
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I.2 EMBEDDING VISUALIZATION VIA T-SNE

We visualize the learned state feature embeddings for Maze by projecting them into 2-dimensional
space using t-SNE (Van der Maaten & Hinton, 2008) in Fig. I.2.

AEnc, Trans, FB, LRA-P and CL all recover a picture of the maze. For the other methods the
picture is less clear (notably, Rand gets a near-circle, possibly as an instance of concentration of
measure theorems).

Whether t-SNE preserves the shape of the maze does not appear to be correlated to performance:
AEnc and Trans learn nice features but perform poorly, while the t-SNE of Lap is not visually
interpretable but performance is good.

Raw State Rand AEnc

ICM Trans Latent

Lap LRA-P CL

LRA-SR FB

Figure 12: Visualization of embedding vectors obtained by each method (𝜙 for SF and 𝐵 for FB) on
the maze domain after projecting them in two-dimensional space with t-SNE .
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J HYPERPARAMETERS SENSITIVITY
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Figure 13: Return for each method trained in Walker domain on the RND replay buffer, for different
choices of hyperparameters. Average over Walker tasks and 5 random seeds.
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Figure 14: Return for each method trained in Cheetah domain, on the RND replay buffer, for different
choices of hyperparameters. Average over Cheetah tasks and 5 random seeds.
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K GOAL-ORIENTED BASELINES

Goal-oriented methods such as universal value functions (UVFs) (Schaul et al., 2015) learn a 𝑄-
function 𝑄(𝑠, 𝑎, 𝑔) indexed by a goal description 𝑔. When taking for 𝑔 the set of all possible target
states 𝑠′ ∈ 𝑆, these methods can learn to reach arbitrary target states. For instance, Ma et al. (2020)
use a mixture of universal SFs and UVFs to learn goal-conditioned agents and policies.

In principle, such goal-oriented methods are not designed to deal with dense rewards, which are linear
combinations of goals 𝑔. Indeed, the optimal 𝑄-function for a linear combination of goals is not the
linear combination of the optimal 𝑄-functions.

Nevertheless, we may still try to see how such linear combinations perform. The linear combination
may be applied at the level of the 𝑄-functions, or at the level of some goal descriptors, as follows.

Here, as an additional baseline for our experiments, we test a slight modification of the scheme from
Ma et al. (2020), as suggested by one reviewer. We learn two embeddings (𝜓,𝑤) using state-reaching
tasks. The 𝑄-function for reaching state 𝑠′ (goal 𝑔 = 𝑠′) is modeled as

𝑄(𝑠𝑡, 𝑎𝑡, 𝑠
′) = 𝜓(𝑠𝑡, 𝑎𝑡, 𝑤(𝑠′))⊤𝑤(𝑠′). (44)

trained for reward 1𝑠𝑡+1=𝑠′ . A policy network 𝜋(𝑠, 𝑤(𝑠′)) outputs the action at 𝑠 for reaching goal
𝑠′. Thus, the training loss is

ℒ(𝜓,𝑤) := E(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝜌
𝑠′∼𝜌

[︀
𝜓(𝑠𝑡, 𝑎𝑡, 𝑤(𝑠′))⊤𝑤(𝑠′)− 1{𝑠𝑡+1=𝑠′} − 𝛾𝜓(𝑠𝑡+1, 𝜋(𝑠𝑡+1, �̄�(𝑠′)), �̄�(𝑠′))⊤�̄�(𝑠′)

]︀2
(45)

Similarly to the other baselines, the policy network 𝜋(𝑠, 𝑤(𝑠′)) is trained by gradient ascent on the
policy parameters to maximize

E 𝑠∼𝜌
𝑠′∼𝜌

[𝑄(𝑠, 𝜋(𝑠, 𝑤(𝑠′)), 𝑠′)] = E 𝑠∼𝜌
𝑠′∼𝜌

[︀
𝜓(𝑠, 𝜋(𝑠, 𝑤(𝑠′)), 𝑤(𝑠′))⊤𝑤(𝑠′)

]︀
(46)

At test time, given a reward 𝑟, we proceed as in FB and estimate

𝑧 = E𝑠∼𝜌[𝑟(𝑠)𝑤(𝑠)] (47)

and use policy 𝜋(𝑠, 𝑧). This amounts to extending from goal-reaching tasks to dense tasks by linearity
on 𝑤, even though in principle, this method should only optimize for single-goal rewards.

We use the same architectures for (𝜓,𝑤) as for (𝐹,𝐵), with double networks 𝜓1, 𝜓2 and policy
smoothing as in (43).

The sparse reward 1{𝑠𝑡+1=𝑠′} could suffer from large variance in continuous state spaces. We mitigate
this either by:

• biasing the sampling of 𝑠′ by setting 𝑠′ to 𝑠𝑡+1 half of the time.
• replacing the reward by a less sparse one, 1{‖𝑠𝑡+1−𝑠′‖2≤𝜀}.

Table 4 reports normalized scores for each domain, for the two variants just described, trained on the
RND replay buffer, averaged over tasks and over 10 random seeds.

The first variant scores 84% on Maze, 62% on Quadruped tasks, 17% on Walker tasks, and 2% on
Cheetah tasks. The second variant is worse overall.

So overall, this works well on Maze (as expected, since this is a goal-oriented problem), moderately
well on Quadruped tasks (where most other methods work well), and poorly on the other environments.
This is expected, as this method is not designed to handle dense combinations of goals.

Relationship with FB. The use of universal SFs in Ma et al. (2020) is quite different from the
use of universal SFs in Barreto et al. (2017) and Borsa et al. (2018). The latter is mathematically
related to FB, as described at the end of Section 4. The former uses SFs as an intermediate tool for a
goal-oriented model, and is more distantly related to FB (notably, it is designed to deal with single
goals, not linear combinations of goals such as dense rewards).

A key difference between FB and goal-oriented methods is the following. Above, we use
𝜓(𝑠, 𝑎, 𝑤(𝑔))⊤𝑤(𝑔) as a model of the optimal 𝑄-function for the policy with goal 𝑔. This is reminis-
cent of 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔) with 𝑧 = 𝐵(𝑔), the value of 𝑧 used to reach 𝑔 in FB.
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Reward Domain
Maze Walker Cheetah Quadruped

1{𝑠=𝑠′} 83.82 17.06 1.60 61.92
1{‖𝑠−𝑠′‖2≤𝜀} 87.44 12.42 0.74 20.25

Table 4: Normalized score for each domain of two variants of USF from Ma et al. (2020) trained on
RND replay buffer, averaged over tasks and 10 random seeds

However, even if we restrict FB to goal-reaching by using 𝑧 = 𝐵(𝑔) only (a significant restriction),
then FB learns 𝐹 (𝑠, 𝑎,𝐵(𝑔))⊤𝐵(𝑔′) to model the successor measure, i.e., the number of visits to each
goal 𝑔′ for the policy with goal 𝑔, starting at (𝑠, 𝑎). Thus, FB learns an object indexed by (𝑠, 𝑎, 𝑔, 𝑔′)
for all pairs (𝑔, 𝑔′).

Thus, FB learns more information (it models successor measures instead of 𝑄-functions), and allows
for recovering linear combinations of goals in a principled way. Meanwhile, even assuming perfect
neural network optimization in goal-reaching methods, there is no reason the goal-oriented policies
would be optimal for arbitrary linear combinations of goals, only for single goals.

34



Published as a conference paper at ICLR 2023

L PSEUDOCODE OF TRAINING LOSSES

Here we provide PyTorch snippets for the key losses, notably the FB loss, SF loss as well as the
various feature learning methods for SF.

1

2 def compute_fb_loss(agent, obs, action, next_obs, z, discount):
3

4 # compute target successor measure
5

6 with torch.no_grad():
7 mu = agent.policy_net(next_obs, z)
8 next_action = TruncatedNormal(mu=mu, stddev=agent.cfg.stddev, clip=

agent.cfg.stddev_clip)
9 target_F1, target_F2 = agent.forward_target_net(next_obs, z,

next_action) # batch x z_dim
10 target_B = agent.backward_target_net(next_obs) # batch x z_dim
11 target_M1, target_M2 = [torch.einsum(’sd, td -> st’, target_Fi,

target_B) for target_Fi in [F1, F2]] # batch x batch
12 target_M = torch.min(target_M1, target_M2)
13

14 # compute the main FB loss
15

16 F1, F2 = agent.forward_net(obs, z, action)
17 B = agent.backward_net(next_obs)
18 M1, M2 = [torch.einsum(’sd, td -> st’, Fi, B) for Fi in [F1, F2]] #

batch x batch
19 I = torch.eye(*M1.size(), device=M1.device)
20 off_diag = ~I.bool()
21 fb_offdiag: tp.Any = 0.5 * sum((M - discount * target_M)[off_diag].pow

(2).mean() for M in [M1, M2])
22 fb_diag: tp.Any = -sum(M.diag().mean() for M in [M1, M2])
23 fb_loss = fb_offdiag + fb_diag
24

25 # compute the auxiliary loss
26

27 next_Q1, nextQ2 = [torch.einsum(’sd, sd -> s’, target_Fi, z) for
target_Fi in [target_F1, target_F2]]

28 next_Q = torch.min(next_Q1, nextQ2)
29 cov = torch.matmul(B.T, B) / B.shape[0]
30 inv_cov = torch.linalg.pinv(cov)
31 implicit_reward = (torch.matmul(B, inv_cov) * z).sum(dim=1) #

batch_size
32 target_Q = implicit_reward.detach() + discount * next_Q # batch_size
33

34 Q1, Q2 = [torch.einsum(’sd, sd -> s’, Fi, z) for Fi in [F1, F2]]
35 q_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q)
36 q_loss /= agent.cfg.z_dim
37 fb_loss += q_loss
38

39 # compute Orthonormality losss
40

41 Cov = torch.matmul(B, B.T)
42 orth_loss_diag = - 2 * Cov.diag().mean()
43 orth_loss_offdiag = Cov[off_diag].pow(2).mean()
44 orth_loss = orth_loss_offdiag + orth_loss_diag
45 fb_loss += agent.cfg.ortho_coef * orth_loss
46

47 return fb_loss

Listing 1: Pytorch code for FB training loss

1 def compute_sf_loss(agent, obs, action, next_obs, z, discount):
2

3 # compute target q-value
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4 with torch.no_grad():
5 mu = agent.policy_net(next_obs, z)
6 next_action = TruncatedNormal(mu=mu, stddev=agent.cfg.stddev, clip=

agent.cfg.stddev_clip)
7 next_F1, next_F2 = agent.successor_target_net(next_obs, z,

next_action) # batch x z_dim
8 target_phi = agent.feature_net(next_goal).detach() # batch x z_dim
9 next_Q1, next_Q2 = [torch.einsum(’sd, sd -> s’, next_Fi, z) for

next_Fi in [next_F1, next_F2]]
10 next_Q = torch.min(next_Q1, next_Q2)
11 target_Q = torch.einsum(’sd, sd -> s’, target_phi, z) + discount *

next_Q
12

13 F1, F2 = agent.successor_net(obs, z, action)
14 Q1, Q2 = [torch.einsum(’sd, sd -> s’, Fi, z) for Fi in [F1, F2]]
15 sf_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q)
16

17 return sf_loss

Listing 2: Pytorch code for SF training loss

1

2 def compute_phi_loss(agent, obs, next_obs):
3

4 phi = agent.feature_net(obs)
5 next_phi = agent.feature_net(next_obs)
6 loss = (phi - next_phi).pow(2).mean()
7

8 # compute Orthonormality losss
9

10 Cov = torch.matmul(phi, phi.T)
11 I = torch.eye(*Cov.size(), device=Cov.device)
12 off_diag = ~I.bool()
13 orth_loss_diag = - 2 * Cov.diag().mean()
14 orth_loss_offdiag = Cov[off_diag].pow(2).mean()
15 orth_loss = orth_loss_offdiag + orth_loss_diag
16

17 loss += orth_loss
18

19 return loss

Listing 3: Pytorch code for Laplacian Eigenfunctions Lap loss

1 def compute_phi_loss(agent, obs, future_obs):
2

3 future_phi = agent.feature_net(future_obs)
4 mu = agent.mu_net(obs)
5 future_phi = F.normalize(future_phi, dim=1)
6 mu = F.normalize(mu, dim=1)
7 logits = torch.einsum(’sd, td-> st’, mu, future_phi) # batch x batch
8 I = torch.eye(*logits.size(), device=logits.device)
9 off_diag = ~I.bool()

10 logits_off_diag = logits[off_diag].reshape(logits.shape[0], logits.
shape[0] - 1)

11 loss = - logits.diag() + torch.logsumexp(logits_off_diag, dim=1)
12 loss = loss.mean()
13

14 return loss

Listing 4: Pytorch code for the contrastive CL loss

1 def compute_phi_loss(agent, obs, action, next_obs):
2

3 phi = agent.feature_net(obs)
4 next_phi = agent.feature_net(next_obs)
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5 predicted_action = agent.inverse_dynamic_net(torch.cat([phi, next_phi],
dim=-1))

6 loss = (action - predicted_action).pow(2).mean()
7

8 return loss

Listing 5: Pytorch code of ICM loss

1 def compute_phi_loss(agent, obs, action, next_obs):
2

3 phi = agent.feature_net(obs)
4 predicted_next_obs = agent.forward_dynamic_net(torch.cat([phi, action],

dim=-1))
5 loss = (predicted_next_obs - next_obs).pow(2).mean()
6

7 return loss

Listing 6: Pytorch code for Trans loss

1 def compute_phi_loss(agent, obs, action, next_obs):
2 phi = agent.feature_net(obs)
3 with torch.no_grad():
4 next_phi = agent.target_feature_net(next_obs)
5 predicted_next_obs = agent.forward_dynamic_net(torch.cat([phi, action],

dim=-1))
6 loss = (predicted_next_obs - next_phi.detach()).pow(2).mean()
7

8 # update target network
9 for param, target_param in zip(agent.feature_net.parameters(), agent.

target_feature_net.parameters()):
10 target_param.data.copy_(tau * param.data +
11 (1 - tau) * target_param.data)
12

13 return loss

Listing 7: Pytorch code for Latent loss

1 def compute_phi_loss(agent, obs):
2

3 phi = agent.feature_net(obs)
4 predicted_obs = agent.decoder(phi)
5 loss = (predicted_obs - obs).pow(2).mean()
6

7 return loss
8

Listing 8: Pytorch code for AEnc loss

1 def compute_phi_loss(agent, obs, action, next_obs):
2

3 phi = agent.feature_net(next_obs)
4 mu = agent.mu_net(torch.cat([obs, action], dim=1))
5 P = torch.einsum("sd, td -> st", mu, phi)
6 I = torch.eye(*P.size(), device=P.device)
7 off_diag = ~I.bool()
8 loss = - 2 * P.diag().mean() + P[off_diag].pow(2).mean()
9

10 # compute orthonormality loss
11 Cov = torch.matmul(phi, phi.T)
12 I = torch.eye(*Cov.size(), device=Cov.device)
13 off_diag = ~I.bool()
14 orth_loss_diag = - 2 * Cov.diag().mean()
15 orth_loss_offdiag = Cov[off_diag].pow(2).mean()
16 orth_loss = orth_loss_offdiag + orth_loss_diag
17 loss += orth_loss
18
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19 return loss
20

Listing 9: Pytorch code for LRA-P loss

1 def compute_phi_loss(agent, obs, action, next_obs, discount):
2

3 phi = agent.feature_net(next_obs)
4 mu = agent.mu_net(obs)
5 SR = torch.einsum(’sd, td -> st’, mu, phi)
6 with torch.no_grad():
7 target_phi = agent.target_feature_net(next_obs)
8 target_mu = agent.target_mu_net(next_obs)
9 target_SR = torch.einsum("sd, td -> st", target_mu, target_phi)

10

11 I = torch.eye(*SR.size(), device=SR.device)
12 off_diag = ~I.bool()
13 loss = - 2 * SR.diag().mean()
14 + (SR - discount * target_SR.detach())[off_diag].pow(2).mean()
15

16 # compute orthonormality loss
17 Cov = torch.matmul(phi, phi.T)
18 orth_loss_diag = - 2 * Cov.diag().mean()
19 orth_loss_offdiag = Cov[off_diag].pow(2).mean()
20 orth_loss = orth_loss_offdiag + orth_loss_diag
21 loss += orth_loss
22

23 return loss

Listing 10: Pytorch code for LRA-SR loss
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