CLUSCAM: CLUSTERED VISUAL EXPLANATIONS FOR VISION MODELS IN IMAGE CLASSIFICATION

Anonymous authorsPaper under double-blind review

ABSTRACT

As deep neural networks continue to achieve considerable success in high-stakes computer vision applications, the demand for transparent and interpretable decisionmaking is becoming increasingly critical. Post-hoc explanation methods, such as Class Activation Mapping (CAM), were developed to enhance interpretability by highlighting important regions in input images. However, existing methods often treat internal representation (feature maps or patch tokens) as independent and equally important, neglecting their semantic interactions, which can result in irrelevant or noisy signals in the explanation. To overcome these limitations, we propose ClusCAM, a gradient-free post-hoc explanation method that groups internal representations into meaningful clusters, referred to as meta-representations. We then quantify their importance using logit differences with dropout and temperaturescaled softmax to focus on the most influential groups. By modeling group-wise interactions, ClusCAM produces sharper and more interpretable explanations. The approach is architecture-agnostic and applicable to both Convolutional Neural Networks and Vision Transformers. Through our extensive experiments, ClusCAM outperforms the state-of-the-art methods by up to 17.8% and 24.19% improvement in Increase in Confidence and Average Gain, respectively, and produces visualizations more faithful to the model's prediction.

1 Introduction

Deep vision models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (VTs), have become the foundation of modern image classification systems. However, they are often criticized as "black boxes" due to their lack of interpretability: it remains unclear which internal representations drive specific decisions, making these models difficult to trust and analyze in critical applications (Bharati et al., 2023; Belharbi et al., 2022). The need to assess model behavior, therefore, has led to the development of eXplainable Artificial Intelligence (XAI) techniques, particularly posthoc explanation methods. Among these, Class Activation Mapping (CAM) represents a foundational line of work that generates class-specific saliency maps by linearly combining activation maps, typically, from the final convolutional layer in CNNs (Zhou et al., 2016). These maps highlight spatial regions in the input image that most contribute to the model's prediction. Due to its architectural simplicity and extensibility, CAM has become a standard baseline for explaining CNNs and has been extended to VTs in recent works (Zhang et al., 2024; Wu et al., 2024).

Over the years, CAM-based methods have evolved into two main groups: gradient-based and gradient-free approaches. Gradient-based methods, such as GradCAM (Selvaraju et al., 2016), Grad-CAM++ (Chattopadhay et al., 2018), and LayerCAM (Jiang et al., 2021), compute the gradients of the target output with respect to intermediate feature maps, thereby estimating which activations have the strongest influence on the prediction. In contrast, gradient-free methods, including ScoreCAM (Wang et al., 2020), AblationCAM (Ramaswamy et al., 2020), ReciproCAM (Byun & Lee, 2024), Poly-CAM (Englebert et al., 2024), and OptiCAM (Zhang et al., 2024), ShapleyCAM (Cai, 2025), avoid gradient computations by masking or perturbing the feature maps and directly observing the impact on the output logits or probabilities. However, most existing methods treat internal representations (e.g., activation maps or patch tokens) as independent and equally important, ignoring possible interactions and their collective contributions. This may lead to less reliable saliency maps, limiting interpretability. To overcome these shortcomings, we introduce ClusCAM, a novel post-hoc explainability method that clusters internal representations into similar groups called meta-representations

and attributes class-specific importance to them based on logit differences. This group-wise modeling captures high-level interactions among features and filters out irrelevant grouped components, as illustrated in Fig. 1.

Following other state-of-the-art (SoTA) CAMbased methods in the literature, ClusCAM is evaluated on the ILSVRC benchmark (Russakovsky et al., 2015). We also further validate the effectiveness of ClusCAM in health-care through a real-world Alzheimer's disease dataset (Falah.G.Salieh, 2023). Quantitative results coupled with qualitative visualizations demonstrate that ClusCAM provides explanations that are more interpretable and better aligned with the model's predictions. In summary, our key contributions are as follows:

- We propose *ClusCAM*, a gradient-free method that overcomes the limitations of current methods that treat internal representations independently and equally (Sec. 3).
- We introduce a principled procedure for selecting key hyperparameters $(K, r, \text{ and } \tau)$ based on validation dynamics, curvature analysis, and probabilistic modeling, eliminating the need for manual tuning (Sec. 3.4).
- We empirically demonstrate that ClusCAM significantly outperforms SoTAs in terms of interpretability and faithfulness across multiple metrics, highlighting the effectiveness of our group-level attribution strategy (Sec. 4).

Figure 1: Overview of ClusCAM: Internal representations are clustered into meta-representations, each of which masks the input to obtain a logit. The scores, computed as the logit differences from the predicted class logit with dropout and temperature scaling, serve as respective weights. Then, a score-weighted summation of the meta-representations yields the final saliency map.

2 Related work

Numerous methods have been developed to interpret how vision models predict from input images. Among these, CAM (Zhou et al., 2016) is a prevalent approach thanks to its intuitive mechanism. Given a CNN containing a Global Average Pooling (GAP) layer between the last convolution layer and the last Fully Connected (FC) layer, for a target class c, the CAM explanation is defined as follows:

$$E_{\text{CAM}}^c = \sigma(\sum_i \alpha_i^c A^i),\tag{1}$$

where α_i^c denotes the weight of the i-th neuron after GAP, A^i is the i-th feature map, and σ represents the ReLU function. Although CAM has limited flexibility due to its constraints with architectures with a GAP layer followed by an FC classifier (He et al., 2022), it has laid a foundation for subsequent studies in the domain. Typically, these works can be categorized into two main groups: gradient-based and gradient-free methods.

2.1 Gradient-based methods

Gradient-based methods score the importance of each feature map using integrated gradients and can be applied to any classification architecture based on backpropagation. Selvaraju et al. (2016) extended the original CAM to GradCAM by incorporating gradients from any target class into the last convolutional layer, which is formulated as:

$$E_{\text{Grad}}^{c} = \sigma \left(\frac{1}{Z} \sum_{i} \sum_{u,v} \frac{\partial y^{c}}{\partial A^{i}(u,v)} A^{i} \right), \tag{2}$$

where Z is the number of pixels in feature map A^i , y^c is the logit (pre-softmax output) for class c, and $A^i(u,v)$ represents the pixel at (u,v) in A^i .

Building on the same principle of using partial derivatives, later methods such as GradCAM++ (Chattopadhay et al., 2018) and XGradCAM (Fu et al., 2020) refine the computation of importance weights to enhance visualization precision and stability, while providing more flexibility for interpreting CNNs. Likewise, other methods like LayerCAM (Jiang et al., 2021) and GroupCAM (Zhang et al., 2021) still rely on gradients but incorporate additional information from the CNN itself (e.g., intermediate feature maps).

However, virtually all gradient-based methods are constrained in *post-deployment settings* (e.g., ONNX (Bai et al., 2019) or OpenVINO (Intel, 2019)) with frozen model weights. Additionally, Wang et al. (2020) have identified two more drawbacks of such approaches: *saturation*, where gradients can become noisy or vanish due to non-linearities (e.g., the saturation region of the sigmoid or the flat zero-gradient area of ReLU); and *false confidence*, where feature maps with high weights may contribute little to the model's output. These issues highlight the need for gradient-free methods.

2.2 Gradient-free methods

Gradient-free methods estimate feature importance through the effect of masked or ablated feature maps on the model's output. Among the SoTAs, ScoreCAM (Wang et al., 2020) generates explanations (saliency maps) by masking the input with upsampled feature maps and measuring the change in the model's output relative to a baseline:

$$E_{\text{Score}}^{c} = \sigma \left(\sum_{i} \operatorname{softmax} \left(y^{c}(x_{i}') - y^{c}(x_{b}) \right) A^{i} \right), \tag{3}$$

where x_b is the baseline image, and $x_i' = x \odot \text{NormalizeUpsample}(A^i)$, with \odot denoting the point-wise product. However, the choice of x_b as a black image is not well-justified, as the resulting weights reflect absolute scores rather than deviations from a meaningful reference, thus reducing their ability to capture each feature map's relative influence. Another approach, AblationCAM (Ramaswamy et al., 2020), estimates feature-map importance by quantifying the change in prediction upon its removal.

On the other hand, PolyCAM (Englebert et al., 2024) exploits channel-wise confidence variation using an input image, a baseline, and multi-scale operations (upsampling and downsampling) across all channels, but at the cost of higher computational complexity. More fine-grained approaches, including ReciproCAM (Byun & Lee, 2024) and ShapleyCAM (Cai, 2025), apply pixel-level masking across all feature maps to assess importance. However, these methods may yield fragmented saliency maps when they fail to capture the broader semantic context through pixel relationships. Notably, these methods have primarily been designed and validated on CNNs, with limited evidence of their applicability and effectiveness on VTs. Addressing this gap, OptiCAM (Zhang et al., 2024) generalizes CAM to VTs by extending feature-map combination from a linear to a non-linear formulation via optimized contribution weights. Specifically, it formulates an optimization problem to maximize the target-class logit for masked images generated from individual feature maps. Unlike prior works, OptiCAM is explicitly designed and benchmarked on VTs, where it exhibits superior performance over earlier CAM variants, underscoring the need for methods that generalize across both CNNs and VTs.

Limitations of existing CAM-based methods. Beyond their methodological differences and previously discussed limitations, existing CAM methods share two additional potential drawbacks. First, they typically assign importance scores at the level of individual representations (feature maps or patch tokens), implicitly assuming independence among feature maps. This overlooks the compositional nature of CNNs, where multiple feature maps can interact to encode higher-level semantic concepts (Stone et al., 2017; Zeiler & Fergus, 2014). Consequently, group-level dependencies and cooperative effects among feature maps remain under-explored, limiting the fidelity and alignment of the resulting saliency maps. Second, not all internal representations are equally meaningful for a specific prediction (Zimmermann et al., 2021), yet existing methods tend to neglect this heterogeneity. They typically aggregate information from all representations, without assessing which ones contribute significantly to the model's output. Such a lack of selective evaluation introduces irrelevant or even distracting insights, ultimately weakening the explanation and undermining its interpretability. Moreover, the growing use of VTs calls for explanation techniques that can generalize across both CNNs and VTs.

```
162
            Algorithm 1 ClusCAM Algorithm
163
            Input: Image x, trained vision model f, target class c, number of groups K, dropout ratio r,
164
            temperature \tau.
            Output: E_{\text{Clus}}^c, saliency map for class c.
166
            Procedure:
167
             1: Extract internal representations \{F_1, \ldots, F_d\} from f(x);
168
             2: Flatten each F_i \in \mathbb{R}^{h \times w} into a h \times w vector;
             3: Cluster \{F_i\} into K disjoint groups \{G_1, \dots, G_K\} using K-Means++;
169
170
             4: for all group G_j do
                    \mathcal{M}_j \leftarrow \frac{1}{|\mathcal{G}_i|} \sum_{F \in \mathcal{G}_i} \text{NormalizeUpsample}(F);
171
172
173
             7: for all meta-representation \mathcal{M}_i do
174
                     Generate masked input: x^{(j)} \leftarrow x \odot \mathcal{M}_i;
                     Compute importance: s_j^c \leftarrow f_{\text{logit}}^c(x^{(j)}) - f_{\text{logit}}^c(x);
175
176
            10: end for
177
            11: Select top-(1-r)\% scoring groups: S \leftarrow \text{TopR}(\{s_i^c\});
            12: for all j \in \mathcal{S} do
178
                    \alpha_j \leftarrow \frac{\exp(s_j^c/\tau)}{\sum_{k \in \mathcal{S}} \exp(s_k^c/\tau)};
179
181
            15: Compute saliency map and normalize to [0, 1]:
182
                      E_{\text{Clus}}^c \leftarrow \text{Normalize}\left(\sum_{j \in \mathcal{S}} \alpha_j \cdot \mathcal{M}_j\right);
183
```

3 METHODOLOGY: CLUSCAM EXPLANATION

We propose ClusCAM, a gradient-free visual explanation method that accounts for feature interactions and aligns importance attribution. The core idea is to cluster internal representations into meaningful groups (meta-representations) and quantify their contribution to the model's prediction. Fig. 1 provides an overview of the overall pipeline, while Alg. 1 details the corresponding procedure. The following subsections elaborate on its components in more detail.

3.1 Internal representation grouping

We begin by describing how ClusCAM groups internal representations into meta-representations that capture the dependencies and interactions among these representations. Consider a pre-trained vision model (CNN or VT) with an input image $x \in \mathbb{R}^{H \times W \times D}$, where D denotes the channel dimension. For CNNs, the output of the last convolutional layer is a set of d internal representations (feature maps), $\{F_1, \ldots, F_d\}$, where each $F_i \in \mathbb{R}^{h \times w}$ encodes localized patterns. For VTs, the corresponding representations are the patch tokens.

To capture interactions and dependencies beyond individual internal representations alone, subsets of co-activated representations are aggregated into meta-representations, which encode higher-level features. Concretely, each internal representation F_i is first flattened into a vector of dimension $h \times w$. K-Means++ clustering is then applied to partition them into K disjoint groups: $\{\mathcal{G}_1,\mathcal{G}_2\ldots,\mathcal{G}_K\}$ such that $\bigcup_j \mathcal{G}_j = \bigcup_i F_i$ and $\mathcal{G}_i \cap \mathcal{G}_j = \emptyset$. Here, we adopt K-Means++ since representations that co-activate over similar spatial support naturally lie close under Euclidean distance and can thus be aggregated into compact clusters, while the plus-plus initialization accelerates convergence and improves stability.

In each group G_j that captures a set of co-activated patterns in the input, a meta-representation \mathcal{M}_j is defined as a group representation:

$$\mathcal{M}_{j} = \frac{1}{|\mathcal{G}_{j}|} \sum_{F \in \mathcal{G}_{j}} \text{NormalizeUpsample}(F), \tag{4}$$

where Normalize(.) denotes a normalization function that maps each element of the input matrix into the range [0;1] and Upsample(.) is an operation that resizes F into the input size.

3.2 SCORING VIA LOGIT DIFFERENCES

Once the meta-representations \mathcal{M}_j are constructed, their relevance to the target class is quantified through a logit-based ablation process. Let $f_{\text{logit}}(x) \in \mathbb{R}^C$ denote the model's output logits over C classes, and let $c \in \{1, \dots, C\}$ be the target class. The importance of \mathcal{M}_j is assessed by measuring the change in class logit when only the regions emphasized by \mathcal{M}_j are retained in the input image. The importance score of \mathcal{M}_j is then defined as the logit difference:

$$s_j^c = f_{\text{logit}}^c(x \odot \mathcal{M}_j) - f_{\text{logit}}^c(x), \tag{5}$$

where \odot denotes element-wise product.

3.3 Dropout and Softmax-Based Group Selection

Not all meta-representations contribute positively to the prediction. Some may capture spurious patterns that distract the model and reduce class logit (c.f. empirical example in the Appendix). To suppress such possible effects, ClusCAM filters out noisy groups using a dropout mechanism and temperature-scaled weighting. Specifically, we discard the r% least important meta-representations, ranked by their scores s_j^c , and retain a subset $\mathcal{S} \subset \{1,\ldots,K\}$ of the most influential ones for the target class.

To combine the retained meta-representations into a final saliency map, we normalize their scores using a temperature softmax with the parameter $\tau \in (0;1)$ that controls the sharpness of the distribution:

$$\alpha_j = \frac{\exp(s_j^c/\tau)}{\sum_{k \in \mathcal{S}} \exp(s_k^c/\tau)}, \quad j \in \mathcal{S},$$
 (6)

This helps highlight salient regions and suppress less relevant ones in the final explanation visualization, making it a more focused and interpretable. Now, the class-specific saliency map is computed as a weighted sum of the selected meta-representations:

$$E_{\text{Clus}}^c = \text{Normalize}(\sum_{j \in \mathcal{S}} \alpha_j \cdot \mathcal{M}_j). \tag{7}$$

In summary, three stages of ClusCAM jointly enable the generation of faithful and focused saliency maps. By clustering representations into meta-representations, quantifying their class relevance through logit differences, and filtering out spurious groups via dropout and temperature softmax, ClusCAM yields structured visualizations that better align with the model's behavior.

3.4 Selecting hyperparameters K, r, and τ

ClusCAM's effectiveness depends on appropriate choices of the number of groups K, the dropout ratio r, and the softmax temperature τ . We describe below how these hyperparameters are selected based on the validation set.

Selecting K. We determine K using a data-driven Elbow criterion based on curvature analysis (Bholowalia & Kumar, 2014). In particular, we define a proxy function P(K) over a held-out validation set to quantify the average logit gain when clustering internal representations:

$$P(K) = \frac{1}{K|V|} \sum_{x \in V} \sum_{i=1}^{K} \left(f_{\text{logit}}^{c}(x^{(i)}) - f_{\text{logit}}^{c}(x) \right), \tag{8}$$

where V is the validation set. The optimal K is selected where P(K) begins to saturate, following the Elbow principle.

Estimating r. The dropout ratio $r \in (0,1)$, representing the fraction of discarded groups, is estimated via a two-component Gaussian Mixture Model over group importance scores. We compute the expected proportion of non-salient groups using posterior probabilities:

$$r = \frac{1}{K|V|} \sum_{i=1}^{K|V|} \mathbb{P}(z_i = \text{non-salient } | s_i), \tag{9}$$

where z_i is the latent group assignment and s_i its importance.

Setting τ **.** The temperature τ controls the sharpness of importance weights across selected groups. We define:

$$\tau = \frac{1}{\log(1 + rK)}.\tag{10}$$

This adaptive scaling ensures sharper distributions when more groups are retained. Moreover, this simplifies hyperparameter selection by depending only on r and K, eliminating an extra tuning constant. It also guarantees $\tau > 0$ for all valid r, K, avoiding negative or undefined temperatures.

We provide two algorithms for selecting K and r, as well as a sensitive analysis in the Appendix B.

4 EXPERIMENT

 Our experimental analysis is organized into four parts. First, we show that meta-representations can increase model logits (confidence). Second, we provide a quantitative evaluation using three standard metrics to benchmark ClusCAM against the seven most common CAM-based approaches. Next, we perform a qualitative assessment of explanation quality under different visual scenarios. Finally, we do the ablation study to understand the impact of each component in our design.

Datasets. Following other baseline methods in the domain, we use the ILSVRC2012 benchmark (Russakovsky et al., 2015) for natural images. We also employ the Alzheimer's MRI dataset (Falah.G.Salieh, 2023) to evaluate ClusCAM in medical imaging applications.

Network architectures. We employ widely-used models in image classification, including CNNs such as the ResNet family (ResNet-18/34/50/101), EfficientNet, and InceptionNet, as well as VTs like ViT-B, Swin-B, LeViT-192/256, CaiT-XXS-24, and PVTv2.

More details about the experimental implementation can be found in the Appendix A, the complete code is provided in the Supplementary Materials.

4.1 EFFECT OF META-REPRESENTATIONS ON MODEL LOGITS

To evaluate the impact of meta-representations, we compare them against the baseline obtained by averaging the internal representations. Both approaches produce cluster-level logits for the same set of 2,000 samples from the ILSVRC dataset. Fig. 2 clearly illustrates that meta-representations yield higher logits. The boxplots confirm that this effect holds for each group, while the histogram shows the global distribution of differences shifted far to the positive side. The statistical tests in Tab. 1 further support this observation: Both parametric and non-parametric tests strongly reject H_0 (all one-sided; $p < 10^{-199}$), and the effect sizes are uniformly large ($d \approx 0.82$), providing strong evidence that meta-representations significantly increase model logits compared to the baseline.

Figure 2: Comparison of model outputs obtained with meta-representations versus the baseline. (**Left**) Boxplots: group-wise differences for the top 10 groups. (**Right**) Histogram: overall distribution of differences across all groups and samples.

Table 1: Statistical summary. We report average logit differences between meta-representations and the baseline, effect sizes (Cohen's d), and p-values from a one-sided paired t-test (H_0 : $\mu \le 0$) and a one-sided Wilcoxon signed-rank test (H_0 : median ≤ 0).

	Mean Difference (range)	Cohen's d (range)	p (t-test)	p (Wilcoxon)
Across all clusters	$1.31 \pm 0.05 \ (1.25 - 1.41)$	$0.82 \pm 0.04 \; (0.76 - 0.88)$	$< 10^{-202}$	$< 10^{-199}$

Table 2: Evaluation of various CAM-based approaches on the ILSVRC and Alzheimer's datasets, averaged over 6 CNNs and 6 VTs. AD: Average Drop; IC: Increase in Confidence; AG: Average Gain; ↓ / ↑: lower/higher is better. The best is highlighted in **bold** while the second rank is in *italics*.

ILSVRC	Metric	GradCAM	GradCAM++	ScoreCAM	AblationCAM	ReciproCAM	OptiCAM	ShapleyCAM	ClusCAM
	AD (↓)	18.93 ± 4.82	20.00 ± 6.47	14.66 ± 9.25	18.99 ± 4.87	23.59 ± 6.36	8.75 ± 2.08	18.59 ± 4.84	7.82 ± 2.40
CNNs	IC (†)	35.07 ± 4.62	33.35 ± 5.59	47.99 ± 9.88	34.68 ± 4.51	30.95 ± 4.74	41.78 ± 3.42	35.32 ± 5.29	$\textbf{59.58} \pm \textbf{5.82}$
	AG (†)	17.25 ± 4.34	15.87 ± 4.66	26.15 ± 9.60	14.21 ± 5.19	15.42 ± 3.93	13.90 ± 4.96	15.26 ± 6.34	$\textbf{33.10} \pm \textbf{8.01}$
	AD↓	76.68 ± 14.01	70.53 ± 13.03	56.21 ± 26.64	65.19 ± 17.36	40.46 ± 12.86	$\textbf{4.12} \pm \textbf{1.72}$	74.58 ± 18.36	5.64 ± 4.07
VTs	IC ↑	4.52 ± 3.27	4.95 ± 3.19	14.76 ± 12.20	7.92 ± 5.24	10.39 ± 4.81	41.28 ± 10.93	5.03 ± 4.43	$\textbf{54.71} \pm \textbf{21.53}$
	AG↑	1.61 ± 1.47	1.81 ± 1.77	6.93 ± 5.66	5.94 ± 8.07	4.80 ± 2.66	9.00 ± 7.35	1.13 ± 0.52	$\textbf{31.22} \pm \textbf{23.91}$
Alzheimer's	Metric	GradCAM	GradCAM++	ScoreCAM	AblationCAM	ReciproCAM	OptiCAM	ShapleyCAM	ClusCAM
	$\mathrm{AD}\left(\downarrow\right)$	17.92 ± 20.00	17.12 ± 18.57	13.87 ± 17.32	16.34 ± 20.51	17.71 ± 18.81	$\textbf{9.51} \pm \textbf{19.51}$	18.18 ± 20.54	11.25 ± 14.95
CNNs	IC (†)	32.02 ± 24.65	33.06 ± 23.66	41.96 ± 27.24	34.48 ± 23.07	31.68 ± 25.17	49.60 ± 19.90	31.59 ± 25.12	$\textbf{65.00} \pm \textbf{21.97}$
	$AG\left(\uparrow\right)$	32.55 ± 26.48	33.76 ± 26.84	42.71 ± 27.38	34.77 ± 24.86	32.14 ± 27.17	34.03 ± 17.93	32.12 ± 26.51	$\textbf{58.22} \pm \textbf{17.42}$
	AD (↓)	49.58 ± 33.32	45.50 ± 27.51	39.36 ± 20.98	47.67 ± 33.24	40.55 ± 39.33	8.93 ± 11.36	47.40 ± 31.98	$\textbf{8.79} \pm \textbf{8.95}$
VTs	IC (†)	16.41 ± 21.05	14.87 ± 18.62	23.81 ± 24.04	14.02 ± 21.85	22.28 ± 22.09	46.30 ± 23.16	16.33 ± 19.69	$\textbf{55.24} \pm \textbf{21.62}$
	AG (↑)	8.81 ± 17.54	8.25 ± 15.77	11.41 ± 20.59	7.97 ± 16.92	7.76 ± 14.88	9.96 ± 11.66	8.60 ± 16.95	$\textbf{17.44} \pm \textbf{21.15}$

4.2 QUANTITATIVE ANALYSIS

The quantitative evaluation is conducted using three widely-used metrics: Average Drop (AD) (Chattopadhay et al., 2018) measures the reduction in prediction confidence when only the most salient regions are retained. Increase in Confidence (IC) (Chattopadhay et al., 2018) measures the proportion of samples for which the model's confidence increases when restricting the input to the highlighted regions. Average Gain (AG) (Zhang et al., 2024) reports the average change in confidence score across all masked inputs. Unlike IC, which focuses on frequency, AG quantifies the magnitude of confidence improvement. Formal definitions of these metrics, along with additional analyses on the localization ability of explanations (i.e., how well the highlighted regions align with the true object of interest), are presented in the Appendix C and D, respectively. Tab. 2 summarizes the results across all evaluated metrics, with the best and second-best scores highlighted per metric and architecture.

On CNN backbones, ClusCAM outperforms all existing CAM-based methods across both datasets, achieving substantial improvements with large margins of 17.8% in IC and 24.19% in AG compared to the second-best approach, except for a slight degradation (1.74%) in AD on the Alzheimer's

On VT architectures, ClusCAM surpasses all baselines across both datasets, with large margins of 13.43% in IC and 22.22% in AG on the ILSVRC dataset, at the cost of a slight degradation of 1.52% in AD. On the Alzheimer's dataset, it consistently achieves the best results across all three metrics, highlighting its strong effectiveness on transformer architectures.

4.3 QUALITATIVE ANALYSIS

To reflect the spatial quality of saliency maps, we qualitatively evaluate how well different methods localize class-relevant regions under three settings as suggested by Byun & Lee (2024), including (i) single-object, (ii) multiple objects of the same class, and (iii) multiple objects with different classes. Fig. 3 summarizes the qualitative comparison of CAM-based methods across three scenarios. In the single-object case (first row), most methods emphasize the head region, while ScoreCAM, OptiCAM, and ClusCAM additionally capture the tail, with ClusCAM highlighting both the tail and the supporting branch more distinctly. For multiple objects of the same class (second row), several baselines tend to focus on a single dominant instance, whereas ScoreCAM, OptiCAM, and ClusCAM succeed in highlighting both. In the different-class setting (last row), GradCAM++, LayerCAM, PolyCAM, and OptiCAM perform poorly, as their saliency maps are either scattered or unfocused, whereas the remaining methods deliver more accurate and localized explanations. Overall, ClusCAM and ScoreCAM consistently produce sharper and more comprehensive explanations across the three scenarios.

Explanation for VTs. In Fig. 4, methods such as GradCAM, GradCAM++, LayerCAM, ReciproCAM, and ShapleyCAM tend to highlight only a few sparse and scattered regions, failing to capture the overall object structure, while the remaining methods activate broader areas. Specifically, ScoreCAM, AblationCAM, and PolyCAM often emphasize background regions rather than the object itself. In contrast, both OptiCAM and ClusCAM successfully focus on the object, but ClusCAM produces more complete and coherent explanations, better aligning with object boundaries. These

Figure 3: Visual explanations generated by various CAM-based methods for ResNet-18, from top to bottom: single-object, multiple objects of the same class, and multiple objects with different classes.

Figure 4: Visual explanations generated by various CAM-based methods for ViT-B.

qualitative results match the quantitative improvements reported in Tab. 4 in the Appendix D, where ClusCAM consistently achieves the lowest localization error compared to all baselines.

4.4 ABLATION STUDY

To understand the impact of each component in our design, we conduct an ablation study by disabling or replacing modules related to clustering, dropout, and importance weighting. We compare the AD and IC of ClusCAM (full pipeline) to two groups of ablated variants. The first group replaces the clustering algorithm while keeping dropout and temperature-softmax: No clustering, spectral, and HDBSCAN clustering. The second group relies on K-Means++ but varies dropout and importance weighting: only logit, only softmax, dropout with softmax, and only temperature softmax. As shown in Fig. 5, all ablated variants underperform the full model, both in terms of AD and IC. This confirms that each component plays a complementary role in generating accurate and discriminative visual explanations.

Figure 5: Ablation study results illustrating the contribution of three key components in our pipeline: clustering, dropout, and temperature softmax.

Effect of clustering. Removing clustering entirely or replacing it with baseline variants such as spectral clustering, or HDBSCAN consistently leads to lower IC scores (typically <45%) and moderately higher AD. This confirms that coherent groupings are crucial for constructing faithful explanations. More specifically, *Spectral clustering*, while theoretically powerful, reduces the feature space dimensionality, which often disrupts the spatial integrity necessary for accurate saliency (Von Luxburg, 2007). *HDBSCAN*, being density-based, tends to produce highly unbalanced or spatially fragmented clusters that fail to capture coherent regions of interest (Campello et al., 2013). By contrast, the

Figure 6: Average running times in the inference phase for different post-hoc explanation methods on CNNs (left) and VTs (right). Here, ClusCAM is decomposed into K-Means and Scoring phases.

K-Means++ approach directly operates in the activation space, creating interpretable clusters where similar meta-representations are aggregated. Interestingly, the *No clustering* variant often outperforms Spectral and HDBSCAN, though it still falls short of K-Means++. This implies that clustering is not universally beneficial; rather, the choice of a suitable clustering strategy is critical to effectively harness internal representations for faithful explanations. In fact, studies in self-supervised representation learning have shown that K-Means++ applied on feature embeddings can discover semantically meaningful clusters sufficient to drive representation learning without labels (Caron et al., 2018; 2020). Similarly, object discovery methods based on ViT rely on K-Means++ to group patch tokens into coherent foreground–background regions (Amir et al., 2021), further confirming that K-Means++ is a natural and effective choice for clustering deep features in explainability tasks.

Effect of dropout and temperature softmax. Disabling dropout or removing temperature scaling leads to clear performance degradation with up to 18.54% and 23.37% in AD and IC, respectively. This aligns with our intuition: without dropout, poorly relevant regions remain in the explanation. Without temperature scaling, the softmax weights become too uniform, reducing contrast between informative and uninformative regions. Notably, when using dropout without temperature scaling (*Dropout Softmax*), IC falls below 43%, indicating that raw softmax weighting cannot sufficiently emphasize high-scoring regions. Similarly, without dropout (*Only temp-soft.* and *Only softmax*) leads to lower precision, as noisy groups are retained. Moreover, temperature softmax shows a slight improvement compared to softmax. In summary, the best performance arises from the joint application of both modules: dropout and temperature softmax.

Running time. Regarding running time (Fig. 6), ClusCAM introduces a modest overhead from the K-Means++ initialization. However, this cost is offset by its efficient scoring phase, which requires only *K* forward passes, in contrast to the hundreds needed by ScoreCAM or AblationCAM. As a result, the overall runtime of ClusCAM remains competitive. The advantage is even more pronounced on the VTs, where the smaller number of patch tokens substantially reduces the cost of scoring-based methods compared to the CNNs.

Overall, the ablation confirms that clustering, dropout, and temperature softmax jointly contribute to faithful explanations with competitive runtime. Remaining issues include clustering overhead, heuristic hyperparameters, and evaluation limited to classification, which we discuss further in Appendix E.

5 CONCLUSIONS

We present ClusCAM, a novel gradient-free post-hoc explanation method that clusters internal representations into meta-representations and attributes their importance using dropout and temperature softmax mechanisms. Unlike conventional CAM-based methods that assess features independently and equally, ClusCAM accounts for high-level dependencies and interactions through group-wise attribution. Empirical results on both CNNs and VTs demonstrate that ClusCAM consistently outperforms SoTA baselines across multiple quantitative metrics and produces more faithfully aligned explanations. These findings highlight that explicitly modeling inter-feature dependencies is essential for generating faithful and generalizable visual explanations in deep vision models for image classification tasks.

REFERENCES

- Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features as dense visual descriptors. *arXiv preprint arXiv:2112.05814*, 2(3):4, 2021.
- Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.com/onnx/onnx, 2019.
 - Soufiane Belharbi, Aydin Sarraf, Marco Pedersoli, Ismail Ben Ayed, Luke McCaffrey, and Eric Granger. F-cam: Full resolution class activation maps via guided parametric upscaling. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 3490–3499, 2022.
 - Subrato Bharati, M Rubaiyat Hossain Mondal, and Prajoy Podder. A review on explainable artificial intelligence for healthcare: Why, how, and when? *IEEE Transactions on Artificial Intelligence*, 2023.
 - Purnima Bholowalia and Arvind Kumar. Ebk-means: A clustering technique based on elbow method and k-means in wsn. *International Journal of Computer Applications*, 105(9), 2014.
 - Seok-Yong Byun and Wonju Lee. Reciprocam: Lightweight gradient-free class activation map for post-hoc explanations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8364–8370, 2024.
 - Huaiguang Cai. Cams as shapley value-based explainers. arXiv preprint arXiv:2501.06261, 2025.
 - Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hierarchical density estimates. In *Pacific-Asia conference on knowledge discovery and data mining*, pp. 160–172. Springer, 2013.
 - Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised learning of visual features. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 132–149, 2018.
 - Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. *Advances in neural information processing systems*, 33:9912–9924, 2020.
 - Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE winter conference on applications of computer vision (WACV), pp. 839–847. IEEE, 2018.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - Alexandre Englebert, Olivier Cornu, and Christophe De Vleeschouwer. Poly-cam: high resolution class activation map for convolutional neural networks. *Machine Vision and Applications*, 35(4): 89, 2024.
- Falah.G.Salieh. Alzheimer mri dataset, 2023. URL https://huggingface.co/datasets/Falah/Alzheimer_MRI.
 - Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo, Yinghui Gao, and Biao Li. Axiom-based grad-cam: Towards accurate visualization and explanation of cnns. *arXiv preprint arXiv:2008.02312*, 2020.
 - Jacob Gildenblat and contributors. Pytorch library for cam methods. https://github.com/jacobgil/pytorch-grad-cam, 2021.
- Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs Douze. Levit: a vision transformer in convnet's clothing for faster inference. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12259–12269, 2021.

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Mingwei He, Bohan Li, and Songlin Sun. A survey of class activation mapping for the interpretability of convolution neural networks. In *International Conference On Signal And Information Processing, Networking And Computers*, pp. 399–407. Springer, 2022.
 - Intel. Openvino toolkit. https://software.intel.com/en-us/openvino-toolkit, 2019.
 - Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao Wei. Layercam: Exploring hierarchical class activation maps for localization. *IEEE Transactions on Image Processing*, 30:5875–5888, 2021.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
 - PyTorch Team. Torchserve model zoo documentation. https://docs.pytorch.org/serve/model_zoo.html. Accessed: August 4, 2025.
 - Harish Guruprasad Ramaswamy et al. Ablation-cam: Visual explanations for deep convolutional network via gradient-free localization. In *proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 983–991, 2020.
 - Sukrut Rao, Moritz Böhle, and Bernt Schiele. Towards better understanding attribution methods. In *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp. 10223–10232, 2022.
 - Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115:211–252, 2015.
 - Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say that? *arXiv preprint arXiv:1611.07450*, 2016.
 - Rakshith Shetty, Bernt Schiele, and Mario Fritz. Not using the car to see the sidewalk–quantifying and controlling the effects of context in classification and segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8218–8226, 2019.
 - Austin Stone, Huayan Wang, Michael Stark, Yi Liu, D Scott Phoenix, and Dileep George. Teaching compositionality to cnns. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5058–5067, 2017.
 - Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2818–2826, 2016.
 - Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.
 - Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper with image transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 32–42, 2021.
 - Ulrike Von Luxburg. A tutorial on spectral clustering. *Statistics and computing*, 17(4):395–416, 2007.
 - Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 24–25, 2020.

- Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. *Computational visual media*, 8(3):415–424, 2022.
- Junyi Wu, Bin Duan, Weitai Kang, Hao Tang, and Yan Yan. Token transformation matters: Towards faithful post-hoc explanation for vision transformer. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pp. 10926–10935, 2024.
- Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13*, pp. 818–833. Springer, 2014.
- Hanwei Zhang, Felipe Torres, Ronan Sicre, Yannis Avrithis, and Stephane Ayache. Opti-cam: Optimizing saliency maps for interpretability. *Computer Vision and Image Understanding*, 248: 104101, 2024.
- Qinglong Zhang, Lu Rao, and Yubin Yang. Group-cam: Group score-weighted visual explanations for deep convolutional networks. *arXiv* preprint arXiv:2103.13859, 2021.
- Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2921–2929, 2016.
- Roland S Zimmermann, Judy Borowski, Robert Geirhos, Matthias Bethge, Thomas Wallis, and Wieland Brendel. How well do feature visualizations support causal understanding of cnn activations? *Advances in Neural Information Processing Systems*, 34:11730–11744, 2021.

THE USE OF LARGE LANGUAGE MODELS

LLMs were only used to improve the clarity and writing quality of the manuscript.

A T. 6

648

649 650

651 652 653

654 655

656

657

658

659

660

661

662

663

664 665

666

667

668

669

670 671

672

673

674

675

676

677 678

679 680

681

683

684

685

686

687 688 689

690 691 692

693

694

695 696

697

699

700

701

A IMPLEMENTATION DETAILS

All experiments were performed using an RTX 3090Ti GPU, with the code developed in Python version 3.12.2.

Datasets. For ImageNet (ILSVRC2012), we evaluated on 1,000 images from the validation set and 2,000 images for performance testing. In the ablation study, a reduced subset of 500 images was used due to resource constraints. For Alzheimer's disease classification, we employed an MRI dataset comprising four categories: Non-Demented, Very Mild Demented, Mild Demented, and Moderate Demented. Models were fine-tuned on a training set of 5,120 samples, validated on 380 images, and tested on 900 images. All images are resized to (224 × 224 × 3), scaled to the [0, 1] range, and normalized using a mean vector of [0.485, 0.456, 0.406] and a standard deviation vector of [0.229, 0.224, 0.225].

Baselines. We leveraged the codebase from the PyTorch-CAM library (Gildenblat & contributors, 2021), with the exception of ReciproCAM and OptiCAM, which were obtained from their respective GitHub repositories.

ClusCAM. The hyperparameters are detailed in Tab. 3. We also provide the complete code in the attached Supplementary Materials.

Networks. We utilized pre-trained networks, including CNNs such as the ResNet family (ResNet-18/34/50/101 (He et al., 2016)), EfficientNet (Tan & Le, 2019), and InceptionNet (Szegedy et al., 2016), as well as VTs like ViT-B (Dosovitskiy et al., 2020), Swin-B (Liu et al., 2021), LeViT-129/256/'(Graham et al., 2021), CaiT-XXS-24 (Touvron et al., 2021), and PVTv2 (Wang et al., 2022) from the PyTorch model zoo (PyTorch Team). For CNN-based models, saliency maps were generated by hooking into the final convolutional layer, while for transformer-based models, we hooked immediately after either the patch embedding layer or the final convolutional layer.

Table 3: The hyperparameters used for ClusCAM implementation. Arch. r(%)r(%)K τ Arch. K τ ResNet-18 30 37.12 0.40 ViT-B 40 14.93 0.51 ResNet-34 40 36.09 0.37 Swin-B 45 14.04 0.50 ResNet-50 45 51.71 0.31 LeViT-192 45 15.32 0.48

LeViT-256

PVTv2

CaiT-XXS-24

50

40

45

19.52

16.02

16.25

0.42

0.50

0.47

0.30

0.33

0.33

B SELECTING HYPERPARAMETERS

50

50

45

54.17

40.78

45.08

ResNet-101

EfficientNet

InceptionV3

Number of clusters. Increasing K improves semantic granularity but also introduces risks such as over-segmentation, increased computational cost, and reduced interpretability due to noisy or fragmented groups. As mentioned in section 3, we address this via a curvature-based Elbow strategy that captures the point of diminishing returns in a principled and data-driven manner.

Alg. 2 describes our strategy. First, we evaluate a performance proxy P(K) across a range of candidate group sizes. This proxy quantifies the average gain in logit confidence when internal representations are partitioned into K groups and used to generate masked inputs. To identify the "elbow" point, where increasing K yields diminishing returns, we compute the discrete curvature $C(K_j)$ based on changes in P(K) and the spacing between candidate values. The optimal group number K^* is then chosen as the point with the maximum curvature, reflecting the most informative yet compact grouping.

702 Algorithm 2 Optimal Group Number Selection via Normalized Elbow 703 **Input:** Validation set V, trained vision model f, target class c, candidate group sizes $\{K_1, \ldots, K_M\}$ 704 in ascending order. 705 **Output:** Optimal number of groups K^* . 706 **Procedure:** 1: **for** K in $\{K_1, ..., K_M\}$ **do** 708 Compute proxy: $P(K) \leftarrow \frac{1}{K|V|} \sum_{x} \left(\sum_{i} \left(f_{\text{logit}}^{c}(x^{(i)}) - f_{\text{logit}}^{c}(x) \right) \right);$ 709 3: 710 4: end for 711 5: **for** $j \leftarrow 3$ to M **do** 712 Compute proxy change: 713 $\Delta P(\bar{K_i}) \leftarrow P(K_j) - P(K_{j-1});$ 714 8: Compute spacing: 715 $\Delta K(K_j) \leftarrow K_j - K_{j-1};$ 9: 716 10: Compute normalized gain: 717 $S(K_i) \leftarrow \Delta P(K_i) / \Delta K(K_j);$ 11: Compute discrete curvature: 718 12: $C(K_i) \leftarrow (S(K_i) - S(K_{i-1})) / \Delta K(K_i);$ 719 13: 14: **end for** 720 15: $K^* \leftarrow \arg\max_{j=3,...,M} C(K_j)$; 721 16: return K^*

Algorithm 3 Dropout Ratio Estimation via GMM Posterior Expectation

Input: Score matrix $\mathbf{S} \in \mathbb{R}^{N \times K}$ from validation set.

Output: Estimated dropout ratio $r \in (0, 1)$.

Procedure:

9: return r

722 723

724 725

726

727 728

729

730

731

732

733

734

735

736

738

739

740

741

742

743 744

745

746

747

748

749

750

751 752

753 754

755

```
1: Flatten score matrix: \mathcal{S} \leftarrow \texttt{Flatten}(\mathbf{S});
2: Fit 2-component Gaussian Mixture Model to \mathcal{S};
3: Identify salient component:
4: \texttt{salient} \leftarrow \arg\max_{c \in \{1,2\}} \mu_c;
5: Compute posterior probabilities:
6: \forall s \in \mathcal{S}, \quad p_{\text{non}}(s) \leftarrow \mathbb{P}(z = \text{non-salient} \mid s);
7: Estimate dropout ratio:
8: r \leftarrow \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} p_{\text{non}}(s);
```

Dropout Ratio r. We aim to determine the dropout ratio $r \in (0, 1)$, the fraction of groups to discard, using a probabilistic approach based on data.

Let $S \in \mathbb{R}^{N \times K}$ be the matrix of group importance scores from a validation set of N images, each with K groups. We flatten this into a vector S and fit a two-component Gaussian Mixture Model (GMM) to model the score distribution:

$$p(s) = \pi_1 \cdot \mathcal{N}(s \mid \mu_1, \sigma_1^2) + \pi_2 \cdot \mathcal{N}(s \mid \mu_2, \sigma_2^2),$$

where π_1, π_2 are mixture weights and μ_c, σ_c^2 are the mean and variance of each Gaussian component $c \in \{1, 2\}$. We assume one component captures salient groups and the other corresponds to non-salient (noise) groups.

We identify the non-salient component as the one with the lower mean, e.g., if $\mu_1 < \mu_2$, then component 1 is non-salient. For each score $s \in \mathcal{S}$, we compute the posterior probability of belonging to the non-salient class:

$$\mathbb{P}(z = \text{non-salient} \mid s) = \frac{\pi_{\text{non}} \cdot \mathcal{N}(s \mid \mu_{\text{non}}, \sigma_{\text{non}}^2)}{p(s)}.$$

The dropout ratio r is then estimated as the expected proportion of non-salient scores. The full procedure is summarized in Alg. 3.

Figure 7: The change in importance scores using softmax (middle row) and temperature softmax with dropout (bottom row). The latter sharpens the saliency map. The higher the score, the more important the meta-representation.

Figure 8: Effect of temperature τ on the quality of saliency maps on ResNet-18. As τ decreases from 1.0 to 0.1 (left to right), the highlighted regions become sharper and more localized. The maps show best visual clarity and semantic focus when τ is in the range [0.3; 0.5].

Temperature-scaled τ . We visualize the effect of temperature τ on the quality of saliency maps in Fig. 8. As τ decreases, the saliency maps become progressively more focused and concentrated, highlighting sharper and more localized regions. This reflects a stronger confidence in specific spatial activations. Conversely, when τ increases (e.g., $\tau \geq 0.9$), the maps become more diffuse and less discriminative, often highlighting large, ambiguous areas. Empirically, we observe that saliency maps generated with $\tau \in [0.3, 0.5]$ yield the best visual clarity and semantic relevance. Moreover, we show that temperature softmax with dropout can sharpen the saliency map in Fig. 7.

C EVALUATION METRICS

Given a model f and the saliency map (explanation) E^c generated from the test image x with the class of interest c. Let p=f(x) and $\tilde{p}=f(x\odot E^c)$. For localization ability, B_p and B are the predicted bounding box and the ground truth bounding box, respectively. Here, B_p is generated by binarizing the saliency map by thresholding at its average value. Moreover, to be simple, we only consider the ground truth bounding box containing only one box, similar to the experiment in (Wang et al., 2020). We report five standard metrics used:

(1) Average Drop (AD) (Chattopadhay et al., 2018), lower is better, measures the drop in confidence when only the explanation region is shown:

$$AD := \frac{1}{N} \sum_{i=1}^{N} \frac{\max(0, p_i - \tilde{p}_i)}{p_i}.$$
 (11)

(2) Increase in Confidence (IC) (Chattopadhay et al., 2018), higher is better, proportion of samples where model confidence increases after masking:

IC :=
$$\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[\tilde{p}_i > p_i]$$
 (12)

(3) Average Gain (AG) (Zhang et al., 2024), higher is better, quantifies how much predictive power, measured as class probability, is gained when we mask the image:

$$AG := \frac{1}{N} \sum_{i=1}^{N} \frac{\max(0, \tilde{p}_i - p_i)}{1 - p_i}$$
 (13)

(4) Energy Pointing game (EP) (Wang et al., 2020), higher is better, extracts the maximum point in the saliency map to see whether the maximum falls into the object bounding box:

$$EP := \frac{\sum_{(i,j) \in B} E^c(i,j)}{\sum_{(i,j)} E^c(i,j)},$$
(14)

where $E^c(i, j)$ is the pixel at coordinates (i, j) of E^c .

(5) Localization Error (LE) (Zhang et al., 2024), lower is better, measures the maximum overlap of the predicted bounding box with any ground truth bounding box:

$$LE := 1 - IoU(B, B_p), \tag{15}$$

where IoU is intersection over union.

D ADDITIONAL RESULTS

D.1 Internal representation combination

We empirically show that combining internal representations can increase the model confidence in Fig. 9. The logit change represents the model confidence; higher is better. Across all clusters, meta representations (red stars) consistently yield higher logit shifts than the internal cluster means (green triangles), indicating that the meta representations are more influential than the average behavior of the group. This suggests that our representation clustering mechanism effectively combines high-impact feature maps rather than simply using the internal representation independently. This supports the motivation behind ClusCAM's selection strategy, which prioritizes semantic saliency.

D.2 OBJECT LOCALIZATION

Localization metrics evaluate how accurately saliency maps align with the ground truth bounding boxes of target foreground objects. While these metrics stem from the weakly supervised object localization task, their objectives differ from those of model explanation, as contextual information, often outside the object itself, can significantly influence a DNN's decision (Shetty et al., 2019; Rao et al., 2022). This misalignment is further reinforced by the findings of Zhang et al. (2024), who analyze the contributions of the object and its surrounding context to the model's decision. Their results show that using the ground truth bounding box alone, as a proxy saliency map, can degrade classification performance, even more so than its complement. Moreover, combining the bounding box with standard saliency maps often worsens performance across multiple metrics. These insights demonstrate that localization metrics, which rely solely on object-bound regions, fail to capture the full decision-making behavior of deep networks and are thus inadequate for evaluating interpretability methods. Nevertheless, we still report the results in Tab. 4. No single method consistently leads across all backbone architectures, except for ClusCAM. While ReciproCAM and ScoreCAM perform strongly on specific CNN models (e.g., ResNet-50, InceptionV3), ClusCAM demonstrates competitive localization performance on transformer-based backbones, achieving the lowest localization error.

D.3 DETAIL RESULTS ON ILSVRC AND ALZHEIMER'S DATASETS

We report the detailed quantitative results of different CAM-based approaches on the ILSVRC and Alzheimer's datasets in Tab. 5 and Tab.6, respectively. These results allow a comprehensive comparison across both CNN and VT backbones, providing insights into the effectiveness and generalizability of ClusCAM under different architectures and domains.

Figure 9: Comparison of individual feature map logit shifts with their corresponding cluster representations across two random samples. Each blue dot represents the logit shift of a feature map within a specific cluster. Red stars denote the logit shift of the meta representation, while green triangles indicate the mean of the internal representation's logit shift.

Table 4: Localization metrics for various CAM-based approaches across eight different backbone architectures on the ILSVRC dataset (Russakovsky et al., 2015). EP: Energy Pointing game; LE: Localization Error; ↓ / ↑: lower/higher is better. The best is highlighted in **bold**.

Method	ResN	et-18	ResN	let-34	ResN	et-50	ResN	et-101	Efficie	entNet	InceptionV3		
	EP (†)	LE (↓)	EP (†)	LE (↓)	EP (↑)	LE (↓)							
GradCAM	51.60	74.33	51.81	73.91	53.34	73.18	53.35	73.13	52.27	82.15	55.44	71.06	
GradCAM++	51.49	72.89	51.73	72.89	53.21	71.68	53.30	71.78	53.14	83.71	55.19	70.14	
ScoreCAM	50.99	73.55	50.82	73.94	52.64	72.29	52.32	73.58	53.49	88.18	53.65	73.01	
AblationCAM	51.53	73.50	51.84	73.23	53.30	71.89	53.33	72.09	52.30	82.16	55.18	70.53	
ReciproCAM	51.88	77.12	51.44	75.06	53.64	76.35	53.74	76.46	52.34	84.35	57.21	77.57	
OptiCAM	48.76	75.31	48.10	75.84	50.09	74.11	52.17	68.68	51.80	79.97	54.19	69.53	
ShapleyCAM	51.59	74.71	51.79	74.21	53.33	73.78	53.41	73.54	52.21	82.31	55.42	71.31	
ClusCAM	50.45	73.66	50.10	74.62	52.28	72.98	51.94	73.29	51.09	72.29	53.12	74.11	
Method	Vi	Г-В	Swi	in-B	LeVi	T-192	LeVi	T-256	CaiT-Y	XXS-24	PVTv2		
Wichiou	EP (†)	LE (↓)	EP (↑)	LE (↓)	EP (†)	LE (↓)	EP (†)	LE (↓)	EP (†)	LE (↓)	EP (↑)	LE (↓)	
GradCAM	47.84	90.64	45.72	97.46	45.22	87.82	40.25	88.48	46.14	91.06	23.99	97.53	
GradCAM++	47.02	89.85	47.90	87.72	45.55	87.40	46.15	86.95	47.57	87.01	16.92	98.14	
ScoreCAM	47.05	86.31	49.30	84.40	48.39	84.94	49.86	82.99	46.47	90.57	10.01	98.75	
AblationCAM	46.24	85.24	49.66	82.40	44.30	88.38	32.13	87.32	46.67	93.26	25.57	96.72	
ReciproCAM	48.08	85.66	47.11	80.35	48.50	85.12	49.01	84.81	46.84	71.82	50.06	80.76	
OptiCAM	48.56	79.32	49.02	81.43	48.58	74.20	49.91	72.83	49.10	78.39	51.19	73.06	
ShapleyCAM	47.98	91.00	46.16	97.27	42.70	85.89	41.76	84.56	43.99	89.99	10.93	99.09	
ClusCAM	46.75	71.59	46.96	68.70	47.47	71.37	47.77	70.24	47.27	68.83	46.44	69.39	

E DISCUSSION

Our study highlights the importance of modeling interactions between internal representations when generating saliency maps. By clustering activations into meta-representations, ClusCAM captures compositional structures that traditional CAM variants often overlook. This group-wise attribution

Table 5: Evaluation of various CAM-based approaches across eight different backbone architectures on the ILSVRC dataset (Russakovsky et al., 2015). AD: Average Drop; IC: Increase in Confidence; AG: Average Gain; \downarrow / \uparrow : lower/higher is better. The best is highlighted in **bold** while the second rank is in *italics*.

Method	R	lesNet-1	.8	R	esNet-3	4	R	ResNet-5	60	R	esNet-10	01
Withou	$\overline{\mathrm{AD}\left(\downarrow\right)}$	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)
GradCAM	21.36	32.15	13.24	17.80	35.35	16.53	14.62	38.70	19.52	13.50	42.20	22.28
GradCAM++	22.09	29.80	11.75	18.22	34.20	15.22	14.87	38.00	18.10	13.45	40.75	20.99
ScoreCAM	15.90	41.20	18.19	11.94	50.20	26.25	9.74	53.75	28.96	8.42	57.60	34.83
AblationCAM	21.38	30.80	12.44	18.05	34.25	15.67	14.59	38.60	18.49	13.48	41.40	21.22
ReciproCAM	25.73	27.60	11.61	20.11	32.80	15.73	18.08	34.40	17.52	16.63	37.80	20.38
OptiCAM	11.96	42.10	14.21	10.76	41.90	14.58	7.35	45.5	15.14	7.57	43.75	15.64
ShapleyCAM	21.01	33.20	13.98	17.20	36.30	17.34	14.38	39.75	20.26	13.11	42.90	22.98
ClusCAM (Ours)	11.50	50.50	22.99	9.16	57.50	32.06	8.58	57.20	32.19	6.57	61.50	36.37
Method	Ef	ficientN	let	In	ception	V3		ViT-B		Swin-B		
	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)
GradCAM	26.72	30.35	11.28	19.57	31.65	20.64	73.40	7.20	4.54	95.63	0.50	0.57
GradCAM++	31.52	25.30	9.27	19.85	32.05	19.91	74.46	7.45	5.32	68.72	1.90	1.55
ScoreCAM	32.73	31.35	13.65	9.24	53.85	38.31	56.03	19.10	15.50	47.70	8.10	9.93
AblationCAM	26.86	30.60	7.93	19.57	31.65	9.49	57.94	15.25	20.14	43.24	8.50	11.23
ReciproCAM	32.89	26.75	9.95	28.09	26.35	17.63	52.46	9.00	8.68	48.33	2.30	7.53
OptiCAM	6.93	35.80	4.99	7.93	41.95	19.74	4.69	36.30	13.12	7.20	21.60	21.95
ShapleyCAM	26.41	31.10	11.59	19.41	20.90	5.40	74.44	5.21	1.22	95.66	0.35	0.61
ClusCAM (Ours)	4.84	67.15	28.36	6.29	63.60	46.64	5.21	60.75	73.96	8.22	22.9	45.49
Method	L	eViT-19	2	L	eViT-25	66	Ca	iT-XXS	-24		PVTv2	
	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)
GradCAM	62.16	8.50	1.54	64.58	6.15	1.06	72.26	3.45	0.88	92.02	1.30	1.07
GradCAM++	61.99	8.60	1.44	59.16	7.05	1.15	64.09	3.80	1.02	94.76	0.90	0.38
ScoreCAM	33.21	28.90	8.19	28.09	27.60	6.32	72.49	4.85	1.64	99.71	0	0
AblationCAM	63.00	8.45	1.43	55.19	11.40	1.39	83.58	1.80	0.41	88.21	2.15	1.03
ReciproCAM	36.29	15.85	3.10	28.73	14.70	3.12	23.36	10.30	2.20	53.62	10.20	4.14
OptiCAM	3.30	47.20	3.42	2.35	50.85	2.84	3.02	43.05	7.50	4.15	48.7	5.20
ShapleyCAM	59.88	9.70	1.93	52.85	10.80	1.42	67.60	3.45	1.05	97.03	0.70	0.56
ClusCAM (Ours)	1.33	80.25	20.30	1.55	74.75	15.52	5.51	41.8	15.38	12.03	47.8	16.66

leads to sharper and more faithful explanations. The dropout mechanism and temperature scaling further refine the final explanations by suppressing spurious groups and emphasizing the most relevant ones. Notably, our method generalizes effectively across both CNNs and VTs, outperforming existing methods on a wide range of architectures and metrics.

Nonetheless, while the proposed method shows strong empirical performance, several limitations remain. First, ClusCAM introduces additional computational overhead compared to conventional CAM variants. The clustering of internal representations increases inference time, especially on large-scale models. Although faster than exhaustive methods like ScoreCAM, AblationCAM, and OptiCAM on VTs, a promising direction for improvement is to design more efficient clustering algorithms that can retain grouping power while reducing the computational burden, since the scoring phase itself already incurs negligible cost.

Second, the selection of hyperparameters (K, r, τ) , while guided by principles such as curvature-based saturation (for K), Gaussian mixture modeling (for r), and temperature scaling heuristics (for τ), currently lacks a strong theoretical foundation. Although our ablation study confirms their empirical effectiveness, future work could aim to derive stronger theoretical guarantees or formulate principled optimization objectives that justify these design choices.

Third, ClusCAM is currently evaluated only on image classification tasks. Its design, however, is not inherently limited to classification. Extending our method to dense prediction tasks such as semantic segmentation, object detection, or even video-based activity recognition could unlock its full potential. These tasks may require adapting the clustering mechanism to account for spatial continuity or temporal consistency, but the core idea of meta-representation attribution remains applicable.

Table 6: Evaluation of various CAM-based approaches across eight different backbone architectures on the Alzheimer's dataset (Falah.G.Salieh, 2023). AD: Average Drop; IC: Increase in Confidence; AG: Average Gain; \downarrow / \uparrow : lower/higher is better. The best is highlighted in **bold** while the second rank is in *italics*.

Method	R	ResNet-1	.8	R	esNet-3	34	R	ResNet-5	50	R	esNet-10	01	
	$\overline{\mathrm{AD}\left(\downarrow\right)}$	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	
GradCAM	0.45	25.49	16.98	1.73	60.13	42.49	8.66	2.97	1.18	21.11	19.70	11.40	
GradCAM++	0.43	28.85	20.30	1.83	58.87	42.66	8.24	3.44	1.34	20.97	19.62	12.05	
ScoreCAM	0.38	34.01	24.36	1.06	79.52	68.98	3.30	13.21	7.62	13.49	32.40	22.96	
AblationCAM	0.42	28.46	19.56	1.70	62.00	45.40	3.38	9.85	5.56	17.17	22.52	14.76	
ReciproCAM	0.48	22.91	15.32	1.74	61.69	42.11	9.98	2.66	1.02	21.72	17.90	10.19	
OptiCAM	0.31	58.72	25.89	0.62	73.03	20.37	0.03	38.31	26.50	1.23	37.29	26.71	
ShapleyCAM	0.44	25.57	16.89	1.73	60.67	43.17	8.70	2.89	1.09	21.25	18.06	9.65	
ClusCAM (Ours)	0.25	47.30	35.21	0.98	84.28	75.07	0.52	79.51	42.28	9.98	76.08	52.26	
Method	Ei	ficientN	let	In	ception	V3		ViT-B		Swin-B			
Michiga	$\overline{\mathrm{AD}\left(\downarrow\right)}$	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	
GradCAM	54.32	19.39	66.18	21.27	64.43	57.07	7.43	57.86	44.54	81.61	3.44	2.43	
GradCAM++	50.34	23.46	70.11	20.93	64.11	56.10	7.43	52.54	40.33	55.70	6.33	3.98	
ScoreCAM	45.70	21.03	67.02	19.26	71.62	65.30	7.33	69.27	53.30	57.03	7.43	5.19	
AblationCAM	54.34	19.62	66.39	21.05	64.43	56.93	7.43	55.90	42.39	74.86	0.47	0.19	
ReciproCAM	51.33	20.95	67.70	21.00	63.96	56.49	7.43	49.49	37.89	78.86	1.64	0.80	
OptiCAM	49.09	22.44	69.27	5.76	67.79	35.43	2.73	58.64	19.22	3.71	45.27	29.45	
ShapleyCAM	55.80	17.90	64.80	21.13	64.43	57.10	7.40	55.36	43.14	81.38	3.67	2.52	
ClusCAM (Ours)	38.38	28.77	75.47	17.39	74.04	69.00	6.10	76.39	57.10	4.86	37.29	25.55	
Method	L	eViT-19)2	L	eViT-25	56	CaiT-XXS-24 PV			PVTv2	Tv2		
	$\overline{\mathrm{AD}\left(\downarrow\right)}$	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	AD (↓)	IC (†)	AG (†)	
GradCAM	88.13	2.89	0.69	21.21	8.37	0.50	64.68	7.58	1.27	34.45	18.30	3.41	
GradCAM++	85.00	3.67	0.86	21.53	10.95	0.77	54.74	6.80	1.06	48.57	8.91	2.48	
ScoreCAM	46.20	32.13	4.60	18.85	14.39	0.71	54.04	11.42	2.18	52.73	8.21	2.47	
AblationCAM	72.35	4.69	0.86	18.52	1.88	0.46	84.31	0.78	0.17	28.54	20.41	3.74	
ReciproCAM	99.49	0.08	0.01	18.34	20.80	0.83	32.32	13.06	1.71	6.85	48.63	5.34	
OptiCAM	14.71	28.77	3.20	29.69	11.10	0.59	0.89	74.90	3.88	1.84	59.11	3.39	
ShapleyCAM	84.52	4.85	1.05	20.10	9.07	0.45	56.18	7.97	1.10	34.84	17.04	3.35	
ClusCAM (Ours)	25.19	41.91	6.06	12.60	29.24	1.11	0.94	78.89	6.68	3.04	67.71	8.15	

Addressing these limitations could improve both the scalability and generality of ClusCAM in real-world deployments.