
DEPrune: Depth-wise Separable Convolution Pruning
for Maximizing GPU Parallelism

Cheonjun Park1, Mincheol Park23, Hyunchan Moon4, Myung Kuk Yoon5,
Seokjin Go6, Suhyun Kim3∗, Won Woo Ro2∗

1 Samsung Electronics 2 Yonsei University 3 Korea Institute of Science and Technology
4 LG Electronics 5 Ewha Womans University 6 Georgia Institute of Technology

{cheonjun.park, mincheol.park, wro}@yonsei.ac.kr,
{mhcqwe92, dr.suhyun.kim}@gmail.com,

myungkuk.yoon@ewha.ac.kr, seokjin.go@gatech.edu

Abstract

Depth-wise Separable Convolution (DSConv) has a powerful representation even
with fewer parameters and computation, leading to its adoption by almost all of
the state-of-the-art CNN models. DSConv models are already compact making it
hard to apply pruning, and there are few previous pruning techniques that target
depth-wise convolution (DW-conv). In this paper, we present Depth-wise Separable
Convolution Pruning (DEPrune), a novel pruning method applied to both point-wise
and depth-wise convolutions. DEPrune is optimized by analyzing the computation
of DSConv on GPUs. DEPrune employs a fine-grained pruning approach, yet it
achieves the structured sparsity typically absent in fine-grained pruning, enabling
practical hardware acceleration. Moreover, this method maintains a high pruning
ratio without causing any accuracy drop. We additionally represent techniques
that further enhance DEPrune performance: 1) balanced workload tuning (BWT),
and 2) hardware-aware sparsity recalibration (HSR). Experiment results show that
DEPrune achieves up to 3.74× practical speedup in DSConv inference on GPUs
while maintaining the accuracy of EfficientNet-B0 on ImageNet.

1 Introduction

In computer vision tasks, Convolutional Neural Networks (CNNs) have dramatically gained param-
eters and computation [54] to solve complex and varied tasks [8]. Such massive computation and
memory footprint poses challenges in environments with limited hardware resources, such as mobile
devices. Many research efforts have been made to address such problems, and two techniques have
been most effective: Depth-wise Separable Convolution (DSConv) [6] and DNN pruning [17].

DSConv [6, 43, 45] is composed of Depth-wise Convolution (DW-conv) and Point-wise Convolution
(PW-conv), allowing it to have a similar representation power to traditional CNNs that use standard
convolution, even with fewer parameters and computation [3]. Therefore, modern CNNs primarily
adopt DSConv when designing models [9, 40, 46, 48].

DNN pruning eliminates redundant weight parameters without compromising representation power.
Weight pruning [18] brings a significant pruning ratio (PR) due to the fine-grained approach but rarely
reduces inference time compared to the unpruned model because of index computation overhead [54].
In contrast, structured pruning [16, 30, 32, 21, 38] is a coarse-grained approach that is GPU-friendly
and leads to a practical reduction in inference time.

∗co-corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: Depth-wise convolution is rearranged to multi sub-GEMM on GPU by applying Diagonal-
wise Refactorization (DR). The ’X’ and ’O’ symbols indicate the absence and presence of corre-
sponding characteristics for each method. Applying (a) Structured Pruning and (b) DEPrune (DCP)
to multi sub-GEMM results in a structured data pattern. But (b) DEPrune (DCP) is more fine-grained
method than (a) Structured Pruning.

In DSConv, despite the DW-conv has only about 1% of the parameters, it spends over 82% of the
overall inference time [41]. As a result, reducing the computation time of DW-conv can inherently
impact the overall network execution time, and employing pruning on DW-conv can provide an
effective solution to accelerate DSConv. Applying existing structured pruning [27, 20, 37] to PW-conv
is not difficult, because PW-conv has the same GPU operation characteristic as standard convolution.
Conversely, DW-conv has two challenges in applying previous pruning methods. First, DW-conv has
particularly fewer parameters, so applying coarse-grained pruning that creates a hardware-friendly
structured data pattern causes significant accuracy loss. Second, the operation of DW-conv on GPU
underutilizes the parallelism since the input unit is smaller than the operation unit, thus applying
previous pruning methods is useless in this condition. Therefore, we propose Depth-wise Separable
Convolution Pruning (DEPrune), a hardware-aware pruning approach specialized for DW-conv for
fast and memory-efficient DSConv.

First, to address the aforementioned challenges: accuracy loss and underutilization, we analyze the
operation of DW-conv on a widely used GPU. On GPUs, DW-conv computes by being transformed
into multiple-GEMV (GEneral Matrix-Vector Multiplication) [41], and this structure does not fully
utilize the GPU parallelism. Thus, for efficient operation on GPU, previous work applies Diagonal-
wise Refactorization (DR) [41]. DR is a method of rearranging DW-conv to multiple sub-GEMM
(GEneral Matrix-Matrix Multiplication) operations to maximize GPU parallelism (Fig. 1). DR places
the weights diagonally and zero padding the rest. Therefore, if one non-zero weight is removed,
all elements on the same column line have zero value, so the corresponding line is all zero vector
(Fig. 1). At this point, we apply fine-grained pruning on DW-conv rearranged by DR, as we call
the Depth-wise Convolution Pruning (DCP) (Sec. 4.1). DCP’s fine-grained approach provides
novel PR and since most of the sub-GEMM is zero-padded, it brings regular sparsity even with fine-
grained pruning. This hardware-friendly format results in inference speedup without representation
power loss. DEPrune also applies conventional structured pruning to PW-conv; however, taking into
account the computational significance of the DSConv model, we selectively prune PW-conv layers
to maximize the pruning ratio without sacrificing accuracy.

Second, for DEPrune enhancement we consider the overall operation flow of DSConv to optimize
GPU utilization. When DCP is applied, the PR is different for each sub-GEMM, which executes in
different processing units. This results in a workload imbalance problem between processing units
which directs to GPU under-utilization. The total execution time is set to the longest GEMM, thereby
other idle processing units are forced to wait until the longest GEMM finishes. To solve this problem,
we propose a Balanced Workload Tuning (BWT) that sets the same target PR for each sub-GEMM
when applying DCP (Sec. 5.1). Our DEPrune applies existing structured pruning [37, 27, 20] on
PW-conv, and this approach avoids workload imbalance problem.

2



Pruning for DSConv
Pruning for DW-conv Pruning for PW-conv

DCP
[ours]

Enhance Method Structured†
Pruning

Enhance Method
Status BWT [ours] HSR [ours] HSR [ours]

DEPrune ✓ - - ✓ -
DEPrune-B ✓ ✓ - ✓ -
DEPrune-BH ✓ ✓ ✓ ✓ ✓

Table 1: Terminology of DEPrune method. This symbol (†) means ‘we apply our methodology
to determine which PW-conv to prune for better performance (Sec. 4.2)’. BWT and HSR are our
proposed method to enhance DEPrune. BWT and HSR are described in Sec. 5.1 and Sec. 5.2,
respectively. This symbol (✓) means ‘Applied’.

Lastly, for DEPrune enhancement we found that in addition to balancing PR between sub-GEMMs,
adjusting the pruning ratio proportional to the GPU execution unit could further lead to significant
speed improvements. Due to our technique’s structured data format, theoretically, the acceleration
should increase proportionally as the pruning ratio increases. However, because GPU operates
in a specific execution unit, the computational workload should scale with the unit of execution
to maximize the acceleration effect. Considering this unit operation, we additionally determine
negligible weight parameters for more pruning, and this results in an additional significant speed
improvement of 3-16% for DW-conv and also PW-conv without any accuracy loss. We call this
Hardware-aware Sparsity Recalibration (HSR), an algorithm that recalibrates the appropriate
target PR for DW-conv and PW-conv considering the execution unit of the GPU (Sec. 5.2).

To further optimize DSConv, various techniques are considered, which led to a diverse and some-
what complex set of terms being used throughout the paper. Therefore we provide Table 1 which
summarizes the structure and terminology of our DEPrune.

Figure 2: (a) DW-conv is rearranged to multi GEMV through (b) Channel-by-Channel on GPU
execution. (c) Diagonal-wise Refactorization (DR) rearranges DW-conv into multiple sub-GEMMs.
After DR, due to GPU tile size [14], we group M GEMVs into units of 32, resulting in a total of G
sub-GEMMs.

2 Preliminary

Prerequisites DW-conv’s weight filter is 3D tensor. Given lth DW-conv layer as D(l) ∈
RM×kh×kw , where M , kh, and kw are the number of channels, height, and width of the filters,
respectively. Ih, and Iw are the height and width of the input, respectively.

Channel-by-Channel As shown in Fig. 2-(a), DW-conv is composed of 3D input (RM×Ih×Iw ),
3D Weight (RM×kh×kw ), each with M channels performing independent 2D convolution operations.
GPU rearranges standard convolution to GEMM, using im2col [2, 5] to enable data reuse. Similarly,
major deep learning frameworks (e.g., Caffe, PyTorch, MXNet, and TensorFlow) rearrange DW-conv
to M multiple GEMV operations, using Channel-by-Channel (Fig. 2-(b)). GEMV consists of a

3



weight vector of size kh × kw and an input matrix of size (kh × kw) × (Ih × Iw). However, this
approach suffers from the limitation of weight vector size being too small (9 or 25) to fully utilize the
GPU’s processing units effectively.

Diagonal-wise Refactorization (DR) To address under-utilization, Diagonal-wise Refactorization
(DR) [41] arranges the weight vectors of the GEMVs diagonally and sequentially places the input
matrix (Fig. 2-(c)). Next, zero padding is added to the empty spaces to create a complete dense
GEMM, which consists of M×(M×kh×kw) weight matrix and an (M×kh×kw)×(Ih×Iw) input
matrix. However, the rearranged GEMM is excessively large (M×kh×kw), so this operation requires
significant additional computation on the GPU such as tiling [41]. Therefore, DR further divides this
dense GEMM into smaller sub-GEMMs of a certain size. When executing matrix multiplication on
GPUs, grouping with a size of 32 channels is found to be the most efficient, resulting in a total of G
sub-GEMM operations (G = M

32 ). Thus each sub-GEMM is composed of a 32 × (32 × kh × kw)
weight matrix and a (32 × kh × kw) × (Ih × Iw) input matrix. This approach allows for highly
optimized GPU execution using specialized cuDNN libraries [5].

3 Related Works

3.1 Hardware-aware Pruning

Among the previous DNN pruning techniques, the following three methods consider hardware
characteristics to reduce inference time: structured pruning, balanced pruning, and block pruning.
Structured pruning [32, 16, 53] determines redundancy at the vector level for pruning, thereby creating
a regular sparsity. This structured data pattern requires almost no additional index computation on
GPU, making it effective in reducing inference time [54]. Block pruning [15, 36, 49]that considers
the tiling technique [5], applies structural pruning at the small matrix level and has less representation
power loss at the same PR compared to structured pruning. Balanced pruning [58, 51, 31, 23, 37] is
a technique that divides the weight into consistent ranges and assigns an equal PR to each segment,
ensuring a workload balanced characteristic. Most balanced pruning achieves approximately a 2×
speedup when a specific GPU with a dedicated accelerator (e.g. sparse tensor core) is used at only
50% PR [35]. These pruning methods are based on the optimization technique of lowering for
standard convolutions. Therefore, such pruning methods are difficult to apply to DW-conv. However,
our DEPrune considers the hardware computation of DW-conv, enabling performance improvement.

3.2 Optimizations for DSConv

Since DSConv operates differently from standard convolution, continuous research is rapidly ongoing
for the optimization of DSConv through dedicated software and hardware optimization.

On the pruning side, Multi-stage gradual pruning [47] prune the filters on DSConv using gradual
pruning principle [57]. Probability-based channel pruning [56] considers batch normalization when
pruning in DSConv and requires little fine-tuning. WP-UNet [42] utilizes fine-grained pruning in
DSConv to merely reduce parameters without considering speedup. The filter pruning [34] sorts and
prunes the filters according to their variance in each DW-conv. However, existing studies either only
apply pruning on PW-conv or do not lead to noticeable substantial inference speed improvement even
if pruning is also applied to DW-conv.

On the software side, DepthShrinker [10] removes non-linear activation functions after training and
merges consecutive linear operations into a single dense operation to maximize hardware efficiency
without compromising accuracy.

On the hardware side, GPU optimization [33] proposes a dynamic tile size scheme for GPUs to
improve GPU utilization and hide memory access latency in DW-conv. The method [55] suggests
loop rescheduling and register tiling on DW-conv, because when executing DW-conv on the parallel
processor, traffic overload occurs between the cache, memory, and register. Diagonal-wise Refac-
torization (DR) [41] maximizes the parallelism of the GPU by proposing a rearrange method that
combines all filters of DW-conv into a multi GEMM.

4



Figure 3: (a) Comparison of accuracy drop between DCP and channel pruning on EfficientNet-B0
using ImageNet. (b) Measurement of the GEMV execution time of DW-conv 6th layer of EfficientNet-
B0 on GPU. (c) Measurement of imbalance overhead of Mobilenet-V2 on ImageNet. The imbalance
overhead is the difference between minimum sub-GEMM pruning ratio (PR) and layer’s target PR.

4 Proposed Method: DEPrune

4.1 DCP: Depth-wise Convolution Pruning

(a) Motivation 1: Channel pruning on DW-conv has a large pruning unit size problem As
shown in Fig. 2-(b), DW-conv generates a multi-GEMV format for each channel, on GPUs. DW-
conv can also achieve structured data format, by evaluating the significance of each GEMV and
eliminating an unnecessary weight vector of GEMV. Nevertheless, when compared to the 4D tensor
weight of the standard convolution, the DW-conv weight is a 3D tensor (RM×kh×kw ), notably fewer
parameters. Consequently, eliminating a single channel (R1×kh×kw ) from DW-conv can greatly
diminish its representation power. As shown in Fig. 3-(a), when pruning is done channel-wise,
there’s a representation power loss of 1.66% compared to the unpruned model even at just a 40%
PR (EfficientNet-B0 on ImageNet). This indicates that channel-wise pruning on DW-conv is not an
appropriate choice.

(b) Motivation 2: Hardware-unfriendly problem of weight pruning without DR Weight pruning
experiences the least representation power loss among DNN pruning techniques with the highest
pruning ratio. When applying weight pruning to the multiple GEMVs of DW-conv, the representation
power loss due to increased PR is much less than the previously mentioned channel pruning. Looking
at Fig. 3-(a) as our DCP similar to weight pruning, there are very minor representation power losses of
0.94% and 1.15% at 50% and 70% PRs, respectively. However, weight pruning without considering
DR does not result in practical speedup from pruning. As shown in Fig. 2-(b), the vector size of
DW-conv GEMV is kh×kw (e.g., 9 or 25). Since this is smaller than the GPU’s tile size (32), there is
almost no change in inference time (Fig. 3-(b)) since GEMV underutilizes processing units of GPU.

(c) Method: DCP We propose Depth-wise Convolution Pruning (DCP) to address the above two
issues. We discover that weight pruning after DR can even achieve a structured sparsity in DW-conv
with high PR, and making large matrix multiplication fully utilizes GPU parallelism. As shown in
Fig. 4, first, we take the weight matrix rearranged in the form of matrix multiplication by DR. The
height of the weight matrix is M , and the width is M × kh × kw. As shown in Fig. 4, the unpruned
values in the weight matrix are placed diagonally, while the rest are zero-padded. Second, we sort
the unpruned values in ascending order and select the threshold value that corresponds to the target
pruning ratio. When calculating the target pruning ratio, zero-padded values are not considered.
Last, for each unpruned value, if it is smaller than the threshold, we change it to 0 (i.e., magnitude
pruning [18]). Since the other values in the same column are already zero values, the column vector
becomes a zero column vector, which is hardware-friendly.

Figure 4: Process of Depth-wise Convolution Pruning (DCP).

5



4.2 Methodology for Determining which PW-conv Layer to Prune

When filter pruning is applied to PW-conv, the parameters of the subsequent layers are removed
with the same sparsity. DSConv has the following structure: PW-conv1→DW-conv→PW-conv2. In
DSConv, if PW-conv1 is filter pruned, the parameters of DW-conv are also removed at the channel
level. The existing PW-conv pruning methods prune all PW-conv layers of DSConv, inadvertently
leading to prune DW-conv layers as well. However, the parameters of DW-conv are only 1.34% of
those in PW-conv [41], so each weight element is more sensitive to accuracy, thus for DW-Conv,
rather than channel pruning, a more fine-grained pruning is necessary. Therefore, our DEPrune does
not directly prune all PW-conv layers. DEPrune applies fine-grained pruning directly to DW-conv
and does not prune PW-conv1 directly. We only apply filter pruning to PW-conv2. Pruning only
PW-conv2, removes only the parameters in the subsequent DSConv’s PW-conv1, which is less
sensitive to accuracy drop. Thus, DEPrune effectively prune all the layers of DSConv with high PR
and representation power.

5 Enhance DEPrune

We propose the following two techniques to enhance DEPrune performance: BWT and HSR.

Figure 5: Overview of DCP and Balanced Workload Tuning (BWT). (a) DCP is an element-wise
pruning method that creates a structured data pattern. (b) BWT equalizes the PR of all sub-GEMMs.
The balanced range of BWT is 32× kh × kw.

5.1 DEPrune-B

(a) Motivation: Imbalance overhead problem of DCP GPUs allocate operations of a certain size
to streaming multiprocessors (SMs) for massively parallel processing. Therefore, DW-conv’s multiple
sub-GEMMs are also assigned to SMs, respectively. However, when applying DCP on DW-conv, the
pruning ratio (PR) of sub-GEMMs may differ, given the varying importance of weights between
sub-GEMMs. In that case, the execution time varies for each sub-GEMM due to the difference in PR.
This results in a workload imbalance problem in that the other SMs of the GPU have to wait until the
SM with the lowest PR finishes. The acceleration effect of DCP is then determined by the minimum
sub-GEMM PR, not by the layer target PR. Referring to Fig. 3-(c), the difference between the
minimum sub-GEMM PR and the layer target PR is compared for each layer of EfficientNet-B0.
In DW Layer 13, when the layer target PR is 60%, the minimum sub-GEMM PR is 50.4%, which
varies up to 9.6%, which indicates that it decelerates execution by the amount specified.

(b) Method: Balanced Workload Tuning (BWT) To address the workload imbalance issue of
DCP, we propose a DW-conv-specific Workload Balanced Technique that takes into account the
operation structure of DW-conv (Fig. 5). DW-conv is a dense matrix where non-zero values are
arranged diagonally due to DR, while the remainder consists of zero values. We group all non-zero
values within sub-GEMM, which we call a balanced range as illustrated in Fig. 5-(b). Within each
balanced range, we rank weight elements with redundancy and systematically prune the lower-ranked
elements until the target PR is reached. As every sub-GEMM achieves the same target PR like
Fig. 5-(b), this resolves the workload imbalance issue associated with DCP. Since DCP is fine-grained
pruning (pruning unit size: R), the representation power loss due to additional BWT is almost
negligible. A detailed analysis related to this is in Sec. 6.1.

6



Figure 6: (a) Measurement of speed increase by layer due to HSR. The orange bar is the max speedup
layer. DW-conv PR is 71%. (b) Measurement of DW-conv inference time of EfficientNet-B0 on
ImageNet dataset. Inference time decreases with additional pruning of 32 or more vectors. GPU tile
size is 32 [14].

5.2 DEPrune-BH

(a) Motivation: Unaligned problem As shown in Fig. 7-(a), to maximize parallelism, GPUs
divide GEMM operations into small tiles. In general, the size of the tile depends on the hardware
specification of GPUs, but it is usually a multiple of 32 [14]. However, if the width of the unpruned
weight matrix in Fig. 7-(a) is not a multiple of 32, some parts of the weight tiles are empty. This
can cause an unaligned memory access problem on GPUs [11, 13]. In Fig. 6-(b), the inference time
does not decrease linearly with an increase in the size of the pruned vector. Whenever the number of
pruned vectors increases by 32, the inference time decreases significantly like a step function graph.
In DW-conv of Stage 2, the inference time decreases by 7% for each removal of only one tile. Thus,
by removing a few additional weight vectors for aligned memory access, we can reduce the inference
time by 7% if we align the number of pruned vectors with a multiple of 32 (Fig. 7-(b)).

(b) Method: Hardware-aware Sparsity Recalibration (HSR) We propose Hardware-aware
Sparsity Recalibration (HSR) to solve the unaligned memory access problem and enhance DCP-B. As
shown in Fig. 7-(c), DCP-B with HSR operates in the following four steps. The first step, DCP-B is
applied to DW-conv. The second step, we measure two essential factors (α and ϵ) within the DCP-B
model. (1) α : We measure the speedup obtained by solving the unaligned problem per layer. (2)
ϵ : We count the number of unpruned vectors of the unaligned tile matrix for each layer. We refer
the result obtained by dividing the two parameters, α and ϵ, for each layer as β. The β refers to the
size of speed obtained by removing one overflowed vector. The third step, the β values of all layers
are ranked by comparing them with each other. The last step, the layer with the β value of the top
50% is additionally removed as much as it overflows. The additional removed column vector consists
of one non-zero value and zero-padded elements. Thus, there is no significant side effect on the
representation power. On the other hand, the layer with the β value of the bottom 50% additionally
recovers as much as it is unaligned. The reason why the criteria for recovery and removal of HSR are
set to 50% is to maintain the total target PR.

Figure 7: (a) Problem of unaligned pruning ratio on GPU. (b) Concept of Hardware-aware Sparsity
Recalibration (HSR). (c) Process of DCP-BH (DCP-B + HSR).

7



Model Method Pruning Ratio Top-1 Accuracy (%) Speed†

UpDW-conv Real DW PW-conv Baseline Pruned Diff.

MobileNet-V2 DEPrune 78% 71% 50% 71.92 71.52 -0.40 2.75×
DEPrune-B 78% 78% 50% 71.92 71.51 -0.41 3.35×

MobileNet-V3-Small DEPrune 82% 74% 50% 67.67 67.26 -0.41 3.88×
DEPrune-B 82% 82% 50% 67.67 67.13 -0.54 5.09×

EfficientNet-B0 DEPrune 85% 78% 40% 77.69 77.01 -0.68 4.51×
DEPrune-B 85% 85% 40% 77.69 77.00 -0.69 5.79×

Table 2: Comparison between DEPrune and DEPrune-B (DEPrune + BWT) on ImageNet dataset.
This symbol (†) means ‘DW-conv inference time speedup than unpruned DW-conv’. ‘Real DW’
denotes the minimum pruning ratio among the sub-GEMMs of DW-conv. ‘Diff.’ denotes the
difference in Top-1 accuracy between the baseline and pruned models.

Model Method Pruning Ratio Top-1 Accuracy (%) Speed†

UpDW-conv DW-Pat. PW-conv Baseline Pruned Diff.

MobileNet-V2 DEPrune-B 77.8% - 50.0% 71.92 71.51 -0.41 3.35×
DEPrune-BH 77.9% 9u8o 50.1% 71.92 71.51 -0.41 3.52×

MobileNet-V3-Small DEPrune-B 81.9% - 60.2% 67.67 67.17 -0.50 5.09×
DEPrune-BH 82.1% 6u5o 60.0% 67.67 67.18 -0.49 5.29×

EfficientNet-B0 DEPrune-B 84.8% - 51.9% 77.69 77.00 -0.69 5.79×
DEPrune-BH 84.7% 8u7o 52.0% 77.69 76.84 -0.85 6.15×

Table 3: Comparison between DEPrune-B and DEPrune-BH (DEPrune-B + DW-conv HSR) on
ImageNet dataset. This symbol (†) means ‘DW-conv inference time speedup than unpruned DW-
conv.’ ‘DW-Pat.’ denotes the HSR pattern for DW-conv layers. ‘u’ and ‘o’ denotes under-aligned
and over-aligned layers, respectively. ‘Diff.’ denotes the difference in Top-1 accuracy between the
baseline and pruned models.

6 Experiments

We assess the effectiveness of DEPrune using ImageNet [8] and CIFAR-10 [25]. For the validation
of image classification, we assess our method with CNN models using DSConv: MobileNet-V2 [43],
EfficientNet-B0 [45], and MobileNet-V3 [22].

Experiment setting on ImageNet We utilize pre-trained CNN models sourced from the Pytorch
framework [39]. We perform fine-tuning with only 65 epochs after conducting pruning methods. We
set a batch size of 256. We use SGD optimizer with the weight decay, 1× 10−4, and the momentum
as 0.9 for fine-tuning. The initial learning rate is set to 0.001 and divided by 10 every 30 epoch.
All data are augmented with random cropping and horizontal flipping. We evaluate DEPrune using
NVIDIA RTX 2080 Ti GPUs [1]. We measured the inference time using NVIDIA CUTLASS [24].
We set the batch size to 32 to measure inference time.

6.1 Effect of BWT (DEPrune vs. DEPrune-B)

We analyze the changes in accuracy and speedup resulting from applying the BWT to DEPrune
(Table 2). DEPrune has varying pruning ratios among sub-GEMMs, causing the overall speed to
be dictated by the sub-GEMM with the smallest pruning ratio. In MobileNet-V2, the smallest
sub-GEMM pruning ratio of DEPrune is 71%, as described in the Table 2. Therefore, DEPrune-B
in MobileNet-V2 is 21.8% (2.75× → 3.35×) faster in inference time than DEPrune. In MobileNet-
V3-Small, DEPrune-B achieves a 31.2% (3.88× → 5.09×) improvement in inference time over
DEPrune due to BWT. Since the balanced range of DEPrune-B is significantly large at 32× kh × kw,
DEPrune-B has an accuracy drop of within 0.1% than DEPrune across representative models.

6.2 Effect of HSR (DEPrune-B vs. DEPrune-BH)

We analyze the changes in accuracy and speedup resulting from the application of the HSR technique
to DEPrune-B (Table 3). Since GPUs process operations and memory access in tile units, the actual
speed of the GPU does not decrease linearly with the pruning ratio but rather decreases in a step-wise
manner, as shown in Fig. 6-(b). By adjusting the pruning ratio to fit the tile size, the DW-conv layer can

8



Method Pruning Ratio Pruned FLOPs Top-1 Accuracy Speed Up Time
(us)DW-conv PW-conv Baseline Pruned Diff. DW-conv Total

MobileNet-V2⋆ - - - 71.9% - - 1.00× 1.00× 2306
CafeNet-R [44] 37.1% 37.1% 73.7% 68.2% -5.5% 1.44× 1.46× 1581

AMC [19] - - 30.0% 71.8% 70.8% -1.0% - - -
CC [29] - - 28.3% 71.9% 70.9% -1.0% - - -

MetaPruning [32] - - 30.7% 72.0% 71.2% -0.8% - - -
Random-Pruning [28] - - 29.1% 71.9% 70.9% -1.0% - - -

ATO [50] - - 30.1% 71.9% 72.0% +0.1% - - -
RLAL [12] - - 29.4% 71.8% 71.3% -0.5% - - -
GFS [52] 42.8% 42.8% - 72.0% 68.8% -3.2% 1.58× 1.60× 1448
GFS [52] 37.1% 37.1% - 72.0% 69.7% -2.3% 1.44× 1.46× 1581

CafeNet-R [44] 22.8% 22.8% - 73.7% 71.9% -1.8% 1.22× 1.23× 1871
CafeNet-E [44] 14.2% 14.2% - 73.7% 72.4% -1.3% 1.15× 1.16× 1992

AMC [19] 17.1% 17.1% - 72.0% 70.8% -1.2% 1.17× 1.20× 1971
GFS [52] 22.8% 22.8% - 72.0% 71.2% -0.8% 1.22× 1.23× 1871

CafeNet-R [44] 14.2% 14.2% - 73.7% 73.3% -0.4% 1.15× 1.16× 1992
DEPrune-BH [ours] 77.9% 52.7% 56.1% 71.9% 71.6% -0.3% 3.52× 2.48× 930
DEPrune-BH [ours] 75.1% 64.8% 66.2% 71.9% 71.0% -0.9% 3.11× 2.70× 853

EfficientNet-B0⋆ - - - 77.6% - - 1.00× 1.00× 6650
CafeNet-R [44] 30.2% 30.2% - 76.4% 74.5% -1.9% 1.41× 1.37× 4848
CafeNet-E [44] 26.4% 26.4% - 76.4% 74.6% -1.8% 1.34× 1.30× 5085

DEPrune-BH [ours] 84.7% 62.0% - 77.6% 76.8% -0.8% 6.15× 3.74× 1775
MobileNet-V3-Small⋆ - - - 67.7% - - 1.00× 1.00× 1857

GFS [52] 20.0% 20.0% - 67.5% 65.8% -1.7% 1.24× 1.23× 1499
DEPrune-BH [ours] 82.1% 70.0% - 67.7% 67.1% -0.6% 5.29× 4.12× 450
MobileNet-V3-Large⋆ - - - 74.0% - - 1.00× 1.00× 4892

FPGM [20] 33.0% 33.0% - 74.0% 73.1% -0.9% 1.48× 1.47× 3945
DEPrune-BH [ours] 77.0% 43.0% - 74.0% 73.7% -0.3% 4.13× 2.83× 1187

Table 4: Comparison of inference time (us) with DEPrune-BH and the latest structured pruning on
ImageNet dataset. ‘Diff.’ denotes the difference in Top-1 accuracy between the baseline and pruned
models. DEPrune-BH applies filter pruning using ℓ2-norm to PW-conv [26]. This symbol (⋆) means
‘baseline model’.

achieve an average inference time speedup of 6.37%, as illustrated in Fig. 6-(a). According to Table 3,
applying HSR to DEPrune-B shows almost no difference in accuracy compared to not applying HSR
within 0.16%. Specifically, the accuracy difference is only 0.01% on MobileNet-V3-Small. For
DEPrune-BH, all models have nearly identical numbers of over-aligned and under-aligned layers.
DEPrune-BH achieves 6.2% (5.79× → 6.15×) inference time speedup compared to DEPrune-B on
EfficientNet-B0. Additionally, HSR can be applied to PW-conv layers as well.

6.3 Comparison with Structured Pruning

In Table 4, we conduct experiments comparing DEPrune with the latest structured pruning methods
across four models. On MobileNet-V2, our DEPrune-BH reduces approximately 26.7% more FLOPs
compared to RLAL, while exhibiting a 0.2% smaller accuracy drop. GFS removes up to 42.8%
of DSConv parameters, resulting in an accuracy drop exceeding 3%. In contrast, DEPrune-BH
eliminates 75.1% and 64.8% of parameters in DW-conv and PW-conv, respectively, with an accuracy
drop within 1%. On EfficientNet-B0, while other methods prune around 30% of DW-conv, our method
prunes 84.7% with only a 0.8% accuracy drop. On MobileNet-V3-Small and MobileNet-V3-Large,
DEPrune-BH achieves inference times 3.33 times and 3.32 times faster than GFS and FPGM, with
accuracy drops of 1.1% and 0.6% less, respectively.

6.4 Discussion: Various Pruning on PW-conv

We apply four structured pruning techniques to PW-conv layers to measure the changes in accuracy
(See Table 5). When applying ℓ1-norm pruning and ℓ2-norm pruning to PW-conv layers, the accuracy
difference is within 0.06% for all models except EfficientNet-B0. According to the FP paper [27],
there is minimal difference between ℓ1-norm and ℓ2-norm pruning, and this similarity is also observed
in the case of DEPrune-BH. Conversely, on EfficientNet-B0, FPGM [20] which uses geometric
median achieves 0.33%, and 0.09% higher accuracy compared to ℓ1-norm and ℓ2-norm pruning,
respectively. BCBP [37] is a block-wise pruning method that can be applied PW-conv. However,
applying BCBP to PW-conv following DW-conv eliminates some parameters of DW-conv. Therefore,

9



Model Method Pruning Ratio Top-1 Accuracy (%)
DW-conv PW-conv DW-conv PW-conv Baseline Pruned Diff.

MobileNet
V2

DEPrune-BH
[ours]

FP (ℓ1-norm) [27] 78% 40% 71.92 71.59 -0.33
FP (ℓ2-norm) [27] 78% 40% 71.92 71.54 -0.38

FPGM [20] 78% 40% 71.92 71.42 -0.50
BCBP [37] 78% 40% 71.92 71.23 -0.69

MobileNet
V3

Small

DEPrune-BH
[ours]

FP (ℓ1-norm) [27] 82% 50% 67.67 67.11 -0.56
FP (ℓ2-norm) [27] 82% 50% 67.67 67.17 -0.50

FPGM [20] 82% 50% 67.67 67.18 -0.49
BCBP [37] 82% 50% 67.67 66.09 -1.58

EfficientNet
B0

DEPrune-BH
[ours]

FP (ℓ1-norm) [27] 85% 52% 77.69 76.60 -1.09
FP (ℓ2-norm) [27] 85% 52% 77.69 76.83 -0.85

FPGM [20] 85% 52% 77.69 76.93 -0.76
BCBP [37] 85% 52% 77.69 75.91 -1.78

Table 5: Comparison with various pruning methods [27, 20, 37] applied to PW-conv on ImageNet
dataset. ‘Diff.’ denotes the difference in Top-1 accuracy between the baseline and pruned models.

when applying BCBP to PW-conv the accuracy drops on all models described in Table 5 compared to
FP and FPGM.

7 Conclusion

In this work, we propose a new Depth-wise Separable Convolution Pruning (DEPrune) method
tailored for DW-conv to reduce DSConv inference time and fully leverage GPU features. Extensive
experimental results on the ImageNet dataset demonstrate that DEPrune effectively preserves represen-
tation power, even with higher PR than structured pruning, achieving a regular sparsity. Moreover,
two techniques, BWT and HSR, further enhance DEPrune’s capabilities. With these combined
features, DEPrune-BH achieves substantial GPU speed gain of up to 4.1× on MobileNet-V3-Small.

8 Acknowledgements

This work was partly supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.RS-2024-00402898, Simulation-
based High-speed/High-Accuracy Data Center Workload/System Analysis Platform), (RS-2021-
II212068, Artificial Intelligence Innovation Hub), and the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (RS-2024-00357037).

References
[1] J. Burgess. Rtx on—the nvidia turing gpu. IEEE Micro, 40(2):36–44, 2020.

[2] K. Chellapilla, S. Puri, and P. Simard. High performance convolutional neural networks for
document processing. In Tenth international workshop on frontiers in handwriting recognition.
Suvisoft, 2006.

[3] W. Chen, Z. Wang, S. Li, Z. Yu, and H. Li. Accelerating compact convolutional neural networks
with multi-threaded data streaming. In 2019 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pages 519–522. IEEE, 2019.

[4] Y. Chen, X. Dai, D. Chen, M. Liu, X. Dong, L. Yuan, and Z. Liu. Mobile-former: Bridging
mobilenet and transformer. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5270–5279, 2022.

[5] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer.
cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[6] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

10



[7] J. Choquette and W. Gandhi. Nvidia a100 gpu: Performance & innovation for gpu computing.
In 2020 IEEE Hot Chips 32 Symposium (HCS), pages 1–43. IEEE Computer Society, 2020.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[9] X. Ding, X. Zhang, J. Han, and G. Ding. Scaling up your kernels to 31x31: Revisiting large
kernel design in cnns. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11963–11975, 2022.

[10] Y. Fu, H. Yang, J. Yuan, M. Li, C. Wan, R. Krishnamoorthi, V. Chandra, and Y. Lin.
Depthshrinker: a new compression paradigm towards boosting real-hardware efficiency of
compact neural networks. In International Conference on Machine Learning, pages 6849–6862.
PMLR, 2022.

[11] T. Gale, M. Zaharia, C. Young, and E. Elsen. Sparse gpu kernels for deep learning. arXiv
preprint arXiv:2006.10901, 2020.

[12] A. Ganjdanesh, S. Gao, and H. Huang. Jointly training and pruning cnns via learnable agent
guidance and alignment. IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, 2024.

[13] D. Guide. Cuda c++ programming guide. NVIDIA, July, 2020.

[14] C. Guo, B. Y. Hsueh, J. Leng, Y. Qiu, Y. Guan, Z. Wang, X. Jia, X. Li, M. Guo, and Y. Zhu.
Accelerating sparse dnn models without hardware-support via tile-wise sparsity. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–15, 2020.

[15] C. Guo, B. Y. Hsueh, J. Leng, Y. Qiu, Y. Guan, Z. Wang, X. Jia, X. Li, M. Guo, and Y. Zhu.
Accelerating sparse dnn models without hardware-support via tile-wise sparsity. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’20. IEEE Press, 2020.

[16] S. Guo, Y. Wang, Q. Li, and J. Yan. Dmcp: Differentiable markov channel pruning for neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1539–1547, 2020.

[17] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations (ICLR), 2016.

[18] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pages 1135–1143, 2015.

[19] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 784–800, 2018.

[20] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4340–4349, 2019.

[21] Z. Hou, M. Qin, F. Sun, X. Ma, K. Yuan, Y. Xu, Y.-K. Chen, R. Jin, Y. Xie, and S.-Y. Kung.
Chex: Channel exploration for cnn model compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12287–12298, 2022.

[22] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019.

[23] I. Hubara, B. Chmiel, M. Island, R. Banner, J. Naor, and D. Soudry. Accelerated sparse neural
training: A provable and efficient method to find n: m transposable masks. Advances in neural
information processing systems, 34:21099–21111, 2021.

11



[24] J. A. Kerr, D. Merrill, and J. Tran. Cutlass: Fast linear algebra in cuda c++. NVIDIA Developer
Blog, 2017.

[25] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
In International Conference on Learning Representations, 2017.

[28] Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, and L. Van Gool. Revisiting random channel
pruning for neural network compression. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 191–201, 2022.

[29] Y. Li, S. Lin, J. Liu, Q. Ye, M. Wang, F. Chao, F. Yang, J. Ma, Q. Tian, and R. Ji. Towards
compact cnns via collaborative compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6438–6447, 2021.

[30] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao. Hrank: Filter pruning using
high-rank feature map. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1529–1538, 2020.

[31] M. Lin, Y. Zhang, Y. Li, B. Chen, F. Chao, M. Wang, S. Li, Y. Tian, and R. Ji. 1xn pattern for
pruning convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):3999–4008, 2022.

[32] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3296–3305, 2019.

[33] G. Lu, W. Zhang, and Z. Wang. Optimizing depthwise separable convolution operations on
gpus. IEEE Transactions on Parallel and Distributed Systems, 33(1):70–87, 2021.

[34] Y. Mao, Z. He, Z. Ma, X. Tang, and Z. Wang. Efficient convolution neural networks for object
tracking using separable convolution and filter pruning. IEEE Access, 7:106466–106474, 2019.

[35] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh, C. Yu, and P. Micikevicius.
Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378, 2021.

[36] S. Narang, E. Undersander, and G. Diamos. Block-sparse recurrent neural networks. arXiv
preprint arXiv:1711.02782, 2017.

[37] C. Park, M. Park, H. J. Oh, M. Kim, M. K. Yoon, S. Kim, and W. W. Ro. Balanced column-wise
block pruning for maximizing gpu parallelism. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 9398–9407, 2023.

[38] M. Park, D. Kim, C. Park, Y. Park, G. E. Gong, W. W. Ro, and S. Kim. Reprune: Channel
pruning via kernel representative selection. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 14545–14553, 2024.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[40] D. Qin, C. Leichner, M. Delakis, M. Fornoni, S. Luo, F. Yang, W. Wang, C. Banbury, C. Ye,
B. Akin, et al. Mobilenetv4-universal models for the mobile ecosystem. arXiv preprint
arXiv:2404.10518, 2024.

12



[41] Z. Qin, Z. Zhang, D. Li, Y. Zhang, and Y. Peng. Diagonalwise refactorization: An efficient
training method for depthwise convolutions. In 2018 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2018.

[42] P. K. Rao and S. Chatterjee. Wp-unet: Weight pruning u-net with depthwise separable convolu-
tions for semantic segmentation of kidney tumors. Research Square, 2021.

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[44] X. Su, S. You, T. Huang, F. Wang, C. Qian, C. Zhang, and C. Xu. Locally free weight sharing
for network width search. In International Conference on Learning Representations, 2021.

[45] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning, pages 6105–6114. PMLR, 2019.

[46] M. Tan and Q. Le. Efficientnetv2: Smaller models and faster training. In International
conference on machine learning, pages 10096–10106. PMLR, 2021.

[47] C.-H. Tu, J.-H. Lee, Y.-M. Chan, and C.-S. Chen. Pruning depthwise separable convolutions for
mobilenet compression. In 2020 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2020.

[48] P. K. A. Vasu, J. Gabriel, J. Zhu, O. Tuzel, and A. Ranjan. Mobileone: An improved one
millisecond mobile backbone. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 7907–7917, 2023.

[49] D. T. Vooturi, D. Mudigere, and S. Avancha. Hierarchical block sparse neural networks. arXiv
preprint arXiv:1808.03420, 2018.

[50] X. Wu, S. Gao, Z. Zhang, Z. Li, R. Bao, Y. Zhang, X. Wang, and H. Huang. Auto-train-once:
Controller network guided automatic network pruning from scratch. IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, 2024.

[51] Z. Yao, S. Cao, W. Xiao, C. Zhang, and L. Nie. Balanced sparsity for efficient dnn inference
on gpu. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
5676–5683, 2019.

[52] M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu. Good subnetworks provably exist:
Pruning via greedy forward selection. In International Conference on Machine Learning, pages
10820–10830. PMLR, 2020.

[53] J. Yu and T. Huang. Network slimming by slimmable networks: Towards one-shot architecture
search for channel numbers. arXiv preprint arXiv:1903.11728, 3, 2019.

[54] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke. Scalpel: Customizing dnn
pruning to the underlying hardware parallelism. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pages 548–560. IEEE, 2017.

[55] P. Zhang, E. Lo, and B. Lu. High performance depthwise and pointwise convolutions on mobile
devices. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 6795–6802,
2020.

[56] H.-L. Zhao, K.-J. Shi, X.-G. Jin, M.-L. Xu, H. Huang, W.-L. Lu, and Y. Liu. Probability-based
channel pruning for depthwise separable convolutional networks. Journal of Computer Science
and Technology, 37(3):584–600, 2022.

[57] M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

[58] M. Zhu, T. Zhang, Z. Gu, and Y. Xie. Sparse tensor core: Algorithm and hardware co-design
for vector-wise sparse neural networks on modern gpus. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 359–371. ACM, 2019.

13



A Appendix

A.1 Limitation of Balanced Pruning

A number of pruning studies [51, 37, 58, 7, 31] have been proposed to balanced pruning. In a
high pruning ratio, the balanced pruned model has negligible accuracy drop. However, achieving a
balanced pruned model’s speedup is difficult without support for specific hardware architecture or
kernel. Therefore, NVIDIA has changed its hardware structure for balanced pruning [7].

A.2 Why Balanced Pruning Cannot Be Applied to DW-conv?

Balanced pruning [51] is a pruning method that accelerates performance by considering workload
balance. This approach divides the weight matrix into consistent vector units and assigns an identical
PR to each vector. The designated vector range is referred to as a ‘balanced range’. Elements
within the vector are ranked based on their redundancy, and those with the lower ranks are pruned
sequentially until the target PR is achieved. However, directly applying traditional balanced pruning
to DW-conv is not suitable. This is because the balanced pruning method doesn’t take into account
the structure of DW-conv. Since non-zero value weights in DW-conv with DR are arranged diagonally
when setting a balanced range, the majority of the values within that range end up being zeros.

A.3 Limitation

The limitation of DEPrune is that it is specialized for DW-conv. Specifically, DEPrune is difficult to
apply to the Vision Transformer series. Although some models in the Vision Transformer [4] use
DW-conv, most of the computations in Vision Transformers are performed using self-attention and
feed-forward network layers. However, our proposed HSR technique appears to be applicable to
these layers.

A.4 Experiments on CIFAR-10 Dataset

We experiment the effectiveness of our proposed method using the CIFAR-10 dataset [25]. For the
validation of image classification, we experiment our method with CNN models: MobileNet-V2 [43]
and EfficientNet-B0 [45] We perform fine-tuning with only 100 epochs after processing pruning
methods on CIFAR-10.

A.5 Limitation of Channel Pruning on DW-conv

When channel pruning is applied to depth-wise convolution, the pruned model has a structured data
pattern. However, the pruning unit size of channel pruning is kh × kw. Since channel pruning is
9 (32) or 25 (52) times larger than DEPrune with a pruning unit size of 1, thereby channel pruning
reduces more representation power than DEPrune. In Mobilenet-V2 on CIFAR-10, when PR is 50%,
the difference in accuracy between DEPrune and channel pruning is 0.23% (See Table 6). Even when
PR is 70%, the difference of accuracy is 0.35%. Therefore, our proposed DEPrune, which has not
only a structured data pattern but also representation power advantage, is appropriate for DW-conv.

MobileNet-V2 on CIFAR-10
Pruning Ratio Accuracy

DW-conv PW-conv Channel Pruning DEPrune
50% 30% 93.07% 93.30%
60% 30% 92.95% 92.99%
70% 30% 92.45% 92.80%

Table 6: Comparison of accuracy between DEPrune and Channel Pruning with MobileNet-V2 on
CIFAR-10 dataset.

A.6 Comparison between DCP and Filter Pruning on PW-conv

When filter pruning is applied to PW-conv, the PW-conv pruned model has a structured data pattern.
If filter pruning is performed on PW-conv, the channel of DW-conv that follows is also removed. Even

14



the channel of PW-conv behind DW-conv is removed as well. Therefore, the pruning unit size of filter
pruning is not simply a filter of the corresponding PW-conv. The pruning unit size includes also the
parameters of following layers. The larger the pruning unit size, the greater the probability that a core
parameter is included in the removing group, which influences the representation power. On the other
hand, our proposed DCP does not remove the parameters of other layers. Therefore, when the PR is
70%, our DCP is 0.62% higher in representation power than filter pruning of PW-conv (See Fig. 8).

Figure 8: Comparison of accuracy (%) with DCP and filter pruning (FP) on PW-conv of MobileNet-
V2 on CIFAR-10.

A.7 Effect of Balanced Range

Research on n:m sparsity is currently very active topic in the field of pruning. However, this sparsity
approach has two major limitations: a lack of flexibility and the requirement for specialized hardware.
First, it lacks flexibility because it is fixed at a 50% pruning ratio, specifically 2:4 pruning [37].
As seen in Table 7, we conducted comparative experiments between NVIDIA’s n:m sparsity and
DEPrune on MobileNet-V2 using CIFAR-10. At the same pruning ratio of 50%, DEPrune-B achieves
0.31% higher accuracy than n:m sparsity. This is because DEPrune-B achieves a 50% pruning ratio
within total parameters, whereas n:m sparsity achieves a 50% pruning ratio within a parameter size
of 4 [23]. Secondly, in n:m sparsity, achieving optimal performance requires specialized hardware
(NVIDIA A100) that can quickly handle index processing [37]. In contrast, our approach requires
only a customized GPU kernel for execution.

MobileNet-V2 on CIFAR-10
Method Pruning Ratio Accuracy Diff.

MobileNet-V2 - 93.86% -
NVIDIA n:m sparsity 50% 92.99% -0.87%

DEPrune-B 50% 93.30% -0.56%
Table 7: Comparison of accuracy (%) with DEPrune-B and NVIDIA n:m pruning on CIFAR-10
dataset. ‘Diff.’ denotes the difference in accuracy between the baseline and pruned model. NVIDIA
n:m pruning’s n and m size are 2 and 4. DEPrune-B applies filter pruning using ℓ2-norm to PW-conv.

A.8 Effect of Balanced Workload Tuning (BWT)

We propose Balanced Workload Tuning (BWT) to solve the workload imbalance problem on DCP
(Sec. 5.1). However, the BWT method may slightly reduce the representation power. As shown in
Table 8, we compare DCP-B (DCP + BWT) with DCP on EfficientNet-B0 of CIFAR-10. When PR
is 50%, the difference between the DCP-B and DCP accuracy is 0.17%. Therefore, there is little
representation power loss due to BWT.

A.9 Peak Memory Usage

According to paper [41], the extra overhead in total memory consumption due to zero-padding is
approximately 0.3%. To assess the impact of DEPrune-BH, we measured and presented the peak
memory usage of MobileNet-V2 before and after applying DEPrune-BH with a 50% pruning ratio, as

15



EfficientNet-B0 on CIFAR-10
Pruning Ratio Accuracy

DW-conv PW-conv DCP DCP-B
10% 10% 91.25% 91.49%
20% 10% 91.18% 91.31%
50% 10% 91.16% 91.33%

Table 8: Comparison between DCP and DCP-B of EfficientNet-B0 on CIFAR-10 dataset.

shown in Table 9. Before applying DEPrune-BH, the peak memory usage is 7.22 MB, whereas after
application, it decreases to 3.63 MB, representing a reduction of approximately 49.8%.

Peak Memory Usage (MobileNet-V2 on ImageNet)
Pruning Method : DEPrune-BH

Pruning Ratio Pre-pruning After-pruning GAP
50% 7.22 MB 3.63 MB 3.59 MB

Table 9: Analysis of Peak Memory Usage (MB) with DEPrune-BH on ImageNet dataset. ’GAP’
means the after-pruning peak memory usage difference rate compared to pre-pruning. DEPrune-BH
applies filter pruning using ℓ2-norm to PW-conv.

16



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: We have fully reflected our arguments in abstract section and introduction
section.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We write a limitation for our study in appendix.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: Our paper does not include theoretical results.
Guidelines:

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We write a information for our study in experiment section.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No] .
Justification: We are going to open source the code later.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: We write a experimental setting for our study in experiment section.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: The paper does not include experiments.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We write a computer resource for our study in experiment section.

9. Code Of Ethics

17



Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: Our research conform NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: There is no societal impact of the work performed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We cite the original paper that produced the code package or dataset.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

18

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Preliminary
	Related Works
	Hardware-aware Pruning
	Optimizations for DSConv

	Proposed Method: DEPrune
	DCP: Depth-wise Convolution Pruning
	Methodology for Determining which PW-conv Layer to Prune

	Enhance DEPrune
	DEPrune-B
	DEPrune-BH

	Experiments
	Effect of BWT (DEPrune vs. DEPrune-B)
	Effect of HSR (DEPrune-B vs. DEPrune-BH)
	Comparison with Structured Pruning
	Discussion: Various Pruning on PW-conv

	Conclusion
	Acknowledgements
	Appendix
	Limitation of Balanced Pruning
	Why Balanced Pruning Cannot Be Applied to DW-conv?
	Limitation
	Experiments on CIFAR-10 Dataset
	Limitation of Channel Pruning on DW-conv
	Comparison between DCP and Filter Pruning on PW-conv
	Effect of Balanced Range
	Effect of Balanced Workload Tuning (BWT)
	Peak Memory Usage


