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Abstract

Optical flow estimation aims to find the 2D motion field
by identifying corresponding pixels between two images.
Despite the tremendous progress of deep learning-based
optical flow methods, it remains a challenge to accurately
estimate large displacements with motion blur. This is
mainly because the correlation volume, the basis of pixel
matching, is computed as the dot product of the convolu-
tional features of the two images. The locality of convo-
lutional features makes the computed correlations suscep-
tible to various noises. On large displacements with mo-
tion blur, noisy correlations could cause severe errors in
the estimated flow. To overcome this challenge, we pro-
pose a new architecture “CRoss-Attentional Flow Trans-
former” (CRAFT), aiming to revitalize the correlation vol-
ume computation. In CRAFT, a Semantic Smoothing Trans-
former layer transforms the features of one frame, mak-
ing them more global and semantically stable. In addi-
tion, the dot-product correlations are replaced with trans-
former Cross-Frame Attention. This layer filters out feature
noises through the Query and Key projections, and com-
putes more accurate correlations. On Sintel (Final) and
KITTI (foreground) benchmarks, CRAFT has achieved new
state-of-the-art performance. Moreover, to test the robust-
ness of different models on large motions, we designed an
image shifting attack that shifts input images to generate
large artificial motions. Under this attack, CRAFT per-
forms much more robustly than two representative meth-
ods, RAFT and GMA. The code of CRAFT is is available
at https://github.com/askerlee/craft.

1. Introduction
Optical flow estimates pixel-wise 2D motions between

two consecutive video frames by matching corresponding

*Equal contribution.
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Figure 1. The optical flow fields estimated by RAFT, GMA and

CRAFT on two frames from Sintel test set, in which a dragon is

chasing a chicken. On the Clean pass, all the three methods per-

form similarly. On the Final pass, as the area enclosed in the red

rectangle has large motions (80 ∼ 100 pixels) with motion blur,

RAFT and GMA only identified part of the motions. Nonetheless,

CRAFT still performs well.

pixels. It is a fundamental computer vision task with broad

applications in action recognition [31, 34, 37], video seg-

mentation [43, 45], video frame interpolation [17], medical

image registration [28], representation learning [10,41], au-

tonomous driving [26], and robot navigation [5].

In recent years, deep learning based methods have ad-

vanced optical flow estimation tremendously [7, 13, 18, 30,

36, 38, 42, 47]. Although newest methods are very accurate

on benchmark data, under certain conditions, such as large

displacements with motion blur [9], flow errors could still

be large. It spurs us to dig deeper to identify the root causes.



Most of these methods perform optical flow estimation

based on a correlation volume (also known as a cost vol-

ume), which stores the pairwise similarity between each

pixel in Frame 1 and another in Frame 2. Given the cor-

relation volume, subsequent modules try to match the two

images, with an aim of maximizing the overall correlations

between matched regions. The current paradigm computes

the pairwise pixel similarity as the dot product of two con-
volutional feature vectors. Due to the locality and rigid

weights of convolution, limited contextual information is

incorporated into pixel features, and the computed correla-

tions suffer from a high level of randomness, such that most

of the high correlation values are spurious matches (Figure

6). Noises in the correlations increase with noises in the in-

put images, such as loss of texture, lighting variations and

motion blur. Naturally, noisy correlations may lead to un-

successful image matching and inaccurate output flow (Fig-

ure 1). This problem becomes more prominent when there

are large displacements. Reducing noisy correlations can

lead to substantial improvements of flow estimation [11,46].

Recent years have witnessed the widespread adoption of

transformers for computer vision tasks [4, 6]. An impor-

tant advantage of Vision Transformers (ViTs) over convolu-

tion is that, transformer features better encode global con-

text, by attending to pixels with dynamic weights based on

their contents. For the optical flow task, useful informa-

tion can propagate from clear areas to blurry areas, or from

non-occluded areas to occluded areas [18], to improve the

flow estimation of the latter. A recent study [29] suggests

that, ViTs are low-pass filters that do spatial smoothing of

feature maps. Intuitively, after transformer self-attention,

similar feature vectors take weighted sums of each other,

smoothing out irregularities and high-frequency noises.

Inspired by the feature denoising property of ViTs, we

propose “CRoss-Attentional Flow Transformer” (CRAFT),

a novel architecture for optical flow estimation. With two

novel components, CRAFT revitalizes the computation of

the correlation volume. First, a semantic smoothing trans-
former layer fuses the features of one image, making them

more global and semantically smoother. Second, a cross-
frame attention layer replaces the dot-product operator for

correlation computation. It provides an additional level of

feature filtering through the Query and Key projections, so

that the computed correlations are more accurate.

We performed extensive evaluations of CRAFT on com-

mon optical flow benchmarks. On Sintel (Final) and KITTI

(foreground) benchmarks, CRAFT has achieved new state-

of-the-art (SOTA) performance. In addition, to test the ro-

bustness of different models on large motions, we designed

an image shifting attack that shifts input images to generate

large artificial motions. As the motion magnitude increases,

CRAFT performs robustly, while two representative meth-

ods, RAFT and GMA, deteriorate severely.

2. Related Work

FlowNet [7] is a pioneering work that uses deep neural

networks to do end-to-end optical flow learning. It inspires

a series of deep learning methods, such as FlowNet2.0 [13],

DCFlow [42], SpyNet [30], PWC-Net [36], MaskFlowNet

[47] LiteFlowNet3 [11], ScopeFlow [2] and IRR [12]. Most

of these methods use a correlation volume as the basis of

pixel matching.

RAFT [38] is an important development of deep learn-

ing flow methods. By using multi-scale correlation volumes

and iterative flow refinement, RAFT achieves good perfor-

mance, and is the precursor of a few successive works, such

as GMA [18], RAFT-Stereo [21] and CRAFT. GMA [18] is

among the first works to incorporate transformer into opti-

cal flow methods. In the motion regression stage (cf. Figure

2), it uses self-attention to propagate motion features from

non-occluded areas to occluded areas, and helps estimate

more accurate flow of occluded areas. It complements with

the improvements of CRAFT on correlation volumes.

All the aforementioned methods compute correlations

using dot-product or cosine similarity of convolutional fea-

tures. Within this paradigm, some works improve the ef-

ficiency of the correlation volume, such as VCN [44] and

DICL [40]. Similar to our objective, Separable Flow [46]

aims to improve the accuracy of the correlation volume,

by decomposing the 4D correlation volume into two 3D

volumes, for the u- and v-directional flow regression, re-

spectively. Separable Flow essentially imposes stronger

inductive biases to obtain more accurate correlations than

RAFT, as well as more accurate flow1. In contrast, CRAFT

improves correlation computation by using contextualized

frame features and reducing feature noises.

Optical flow training requires large, expensive annotated

datasets. SelFlow [22] and Autoflow [35] are two self-

supervised methods that generate synthetic annotations.

SMURF [33] integrates a set of techniques to do self-

supervised learning on unannotated video frames and has

achieved promising results.

3. The CRAFT Architecture

Figure 2 presents the architecture of CRAFT. It inher-

its the influential flow estimation pipeline of RAFT [38].

Our main contribution is to revitalize the correlation vol-

ume computation part (the dashed green rectangle) with two

novel components: the Semantic Smoothing Transformer

on Frame-2 features, and a Cross-Frame Attention Layer

to compute the correlation volume. These two components

help suppress spurious correlations in the correlation vol-

ume, as visualized in Figure 6.

1Unfortunately, we could not compare Separable Flow with CRAFT

wrt. the correlation volume accuracy, as their source code is unavailable.
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Figure 2. CRAFT architecture. In the correlation volume computation part (the dashed green rectangle), two novel components are

highlighted as boxes with red borders: the Semantic Smoothing Transformer fuses and smooths the Frame-2 features, and the Cross-Frame
Attention layer computes the correlation volume. The GMA module at the bottom is a Global Motion Aggregation module [18].

3.1. Semantic Smoothing Transformer

Given two consecutive images – Frame 1 and Frame 2 –

as input, the first step of the flow pipeline is to extract frame

features using a convolutional feature network.

To enhance the frame features with better global context,

the Semantic Smoothing Transformer (or simply SSTrans) is

used to transform the Frame-2 features.

To better accommodate diverse features, we adopt the

Expanded Attention proposed in [20] as the SSTrans, in-

stead of the commonly used Multi-Head Attention (MHA)

[39]. Expanded Attention is a type of Mixture-of-Experts

[32] with higher capacities, and has demonstrated advan-

tages over MHA for image segmentation tasks.

An Expanded Attention (EA) layer consists of N modes

(sub-transformers), computing N sets of features, which are

aggregated into one set using dynamic mode attention [20]:

X
(k)
out =Transformer(k)(X), (1)

B(k) =Linear(k)(X
(k)
out), (2)

with k ∈ {1, · · · , N}, (3)

G =softmax
(
B(1), · · · ,B(N)

)
, (4)

EA(X) =G� ·
(
X

(1)
out, · · · ,X(N)

out

)
, (5)

where B(k) are mode attention scores, and the mode atten-

tion probabilities G are softmax of all B(k) along the mode

dimension. The output features EA(X) are a linear combi-

nation of all mode features.

To better preserve original frame features, we add a

weighted skip connection with a learnable weight w1:

SSTrans(X) = w1X + (1− w1) EA(X), (6)

To impose spatial biases, we found conventional posi-

tional embeddings do not form meaningful biases, and use

a relative position bias [8, 23] instead. The bias is a ma-

trix B ∈ R
(2r+1)×(2r+1), added to the computed attention,

where r is the radius specifying the local range of the bias.

Specifically, suppose the original attention matrix is re-

shaped to a 4-dimensional tensor A ∈ R
H×W×H×W ,

where H,W are the height and width of the frame feature

maps. For each pixel at i, j, where i ∈ {1, · · · , H}, j ∈
{1, · · · ,W}, A(i, j) is a matrix, specifying the attention

weights between pixel (i, j) with all the pixels in the same

frame. The relative position bias B is added to the neigh-

borhood of radius r of pixel (i, j):

A′(i, j, i+ x, j + y)

=

{
A(i, j, i+ x, j + y) +B(x, y), if |x| ≤ r, |y| ≤ r

A(i, j, i+ x, j + y). otherwise

(7)

In our implementation, we choose the number of modes

to be 4, and the radius r of the relative position bias to be 7.

Figure 3 visualizes the learned relative position bias of

CRAFT trained on Sintel. Two interesting patterns are ob-

served:



Figure 3. Learned relative positional bias with radius r = 7. Two

interesting patterns can be observed, as detailed below.

1. The minimum bias value is around −2 located at (0, 0),
which means that, when computing the new features of

a pixel (i, j), this bias term will reduce the weight of
its own features by 2. Without this term, the attention

weight of pixel (i, j) to itself will probably dominate

the weights to other pixels, as a feature vector is most

similar to itself. This term reduces the proportions of

the old features of a pixel in the combined output fea-

tures, effectively encouraging inflow of new informa-
tion from other pixels.

2. The largest weights are 2 ∼ 3 pixels2 away from the

center pixel, meaning that features of these surround-

ing pixels are most often used to supplement the fea-

tures of the central pixel.

These two observations are confirmed in Figure 8, where

each query draws new features from a nearby area. Setting

the position bias to 0 leads to performance degradation.

It is tempting to apply transformers on the features of

both frames. However, in our experiments, doing so leads to

performance drop. Our hypothesis is based on the common

belief that image matching heavily relies on high-frequency

(HF) features that are local and structural [14]. Meanwhile,

there are abundant HF noises that pollute informative fea-

tures and hinder matching. SSTrans serves as a low-pass fil-

ter to suppress HF noises [29], but at the same time, may re-

duce HF features and enhance low-frequency (LF) features.

Hence, the model learns to trade off between the LF and HF

components in Frame 2 for matching with Frame 1. After

applying SSTrans on both frames, both frames contain less

HF and more LF components. Matching them may yield

many spurious correlations and hurt flow accuracy. This in-

tuition is confirmed in Figure 7.

3.2. Cross-Frame Attention for Correlation Volume

In the current paradigm, a correlation volume is the ba-

sis of cross-frame pixel matching. After the frame fea-

tures f1 ∈ R
H×W×D and f2 ∈ R

H×W×D are com-

puted, the correlation volume is computed as a 4D tensor

2Here “pixels” mean points in feature maps, which correspond to ×8
pixels in the input image.

C ∈ R
H×W×H×W (dashed green rectangle in Figure 2).

Traditionally, the correlation volume is computed as the

pairwise dot-product between f1 and f2 [38]:

C(i, j,m, n) =
1√
D
f1(i, j)

� · f2(m,n). (8)

Conceptually, the correlation volume is essentially Cross

Attention [39] in transformers, without feature transforma-

tion by the Query and Key projections. The query/key pro-

jections can be viewed as feature filters that separate out

most informative features for correlations. In addition, to

capture diverse correlations, we could use multiple query

and key projections, as with Expanded Attention (EA) [20].

Similar multi-faceted correlations are pursued in VCN [44]

with multiple channels. These benefits motivate us to re-

place the dot-product with a simplified EA:

Ck(i, j,m, n) =
1√
D
(f1(i, j)Qk)

� ·Kkf2(m,n), (9)

C(i, j,m, n) =

K∑
k=1

softmax(Ck(i, j,m, n))Ck(i, j,m, n),

(10)

where Qk, Kk are the k-th query and key projections, re-

spectively; Ck(i, j,m, n) is the correlation computed with

the k-th mode. The softmax operator is taken along the K
modes, and aggregates the K correlations. The EA here is

simplified by removing the value projection and the feed-

foward network. The weights of Qk and Kk are tied, as the

correlation between two frames is symmetric.

Global correlation normalization Sometimes ex-

treme values may appear in the correlation volume, which

may disrupt the pixel matching. To match a pixel, intu-

itively the relative orders of the correlations with candidate

pixels are more important than absolute correlation values.

In this light, we perform layer normalization [1] on the

whole correlation volume to stabilize correlations. Empiri-

cally, this leads to slightly improved performance.

4. Experiments
Our experiments consist of six parts:

1. Standard evaluation. We evaluate different methods

on Sintel [3] and KITTI [27]. On the two public leader-

boards, CRAFT has achieved the state-of-the-art per-

formance on both Sintel (final pass) and KITTI (fore-

ground regions).

2. Error distribution wrt. motion magnitudes. To

study the model behavior when the motion becomes

larger, we calculate the flow error distribution wrt. dif-

ferent magnitudes of motions. CRAFT is significantly

more accurate than other methods on large motions,

and performs equally well on small motions.



3. Ablation studies. To analyze the impact of different

components in CRAFT, i.e., the Semantic Smoothing

transformer, the Cross-Frame Attention and the GMA

module, we remove each of them and evaluate the ab-

lated models on the KITTI-2015 benchmark. All these

components show importance to the final performance.

4. Image Shifting attack. To test the robustness of mod-

els, we manually create large motions by shifting the

first frames. At very large shifts, RAFT and GMA de-

teriorate severely. CRAFT is significantly more robust.

5. Visualization of correlation volumes. We visualize

the correlations between a query point in Frame 1 and

all pixels in Frame 2, to intuitively learn the differences

between the correlation volumes computed by differ-

ent models. CRAFT has the fewest spurious correla-

tions compared with RAFT and GMA.

6. Visualization of semantic smoothing transformer
attention. To gain an intuitive idea how a pixel draws

information from surrounding pixels through the SS

transformer, we visualize the self-attention between a

query point and all pixels in Frame 2.

Training Loss Following RAFT [38], the loss function

we adopt is a weighted multi-iteration l1 loss.

Training Schedule We follow the same optical flow train-

ing procedure [18, 38] of first pretraining the models on

FlyingChairs (“C”) [7] for 120k iterations (batch size = 8),

then on FlyingThings (“T”) [25] for another 120k iterations

with (batch size = 6). For Sintel evaluation, we fine-tune all

models on a combination of FlyingThings, Sintel (“S”) [3],

KITTI 2015 (“K”) [27] and HD1K (“H”) [19] for 120k iter-

ations (batch size = 6). For KITTI evaluation, we fine-tune

all models on KITTI 2015 for 50k iterations (batch size =

6). Following [18,38], we adopt the one-cycle learning rate

scheduler with the same learning rates, in which 5 percent

of the iterations are used for warm-up.

Evaluation Metrics The main evaluation metric, also

used by the Sintel leaderboard3, is the average end-point

error (AEPE), which is the average pixelwise flow error,

measured by number of pixels. The KITTI leaderboard4

uses the Fl-fg (%) and Fl-All (%) metrics, which refer to

the percentage of outliers (pixels whose end-point error is

> 3 pixels or 5% of the ground truth flow magnitude), av-

eraged over foreground regions and all pixels, respectively.

4.1. Standard Evaluation

Seven recent methods are compared, most of which are

selected from the top-performing methods on the Sintel and

3http://sintel.is.tue.mpg.de/quant?metric_id=
0&selected_pass=0

4http://www.cvlibs.net/datasets/kitti/eval_
scene_flow.php?benchmark=flow

KITTI leaderboards:

• RAFT [38]: an important recent methods, and was

previous SOTA before being surpassed by GMA.

• RAFT-A [35] uses the synthesized AutoFlow dataset

(instead of “C+T”) to pretrain RAFT, followed by the

standard fine-tuning steps.

• Perceiver-IO [15] is a general architecture not specif-

ically designed for optical flow estimation. It is pre-

trained on Autoflow, the same as RAFT-A. The perfor-

mance on the test sets is not reported in their paper.

• RFPM [24] replaces the downsampling layers of

RAFT to improve the flow estimation on fine details.

The performance under “C+T / Autoflow” training is

not reported in their paper.

• Separable Flow [46] decomposes the 4D correlation

volume as two 3D volumes for the u and v directions.

• GMA [18]: a recent method that enhances RAFT with

a Global Motion Aggregation module to better esti-

mate the motions of occluded pixels.

• CRAFT: with 4 modes in expanded attention layers.

Table 1 summarizes the evaluation results of the seven

methods on Sintel and KITTI. The results on the training

sets (in parentheses, left side of the table) can hardly reflect

how well the models generalize to new data, and are only

listed for reference. The results on the test sets are evaluated

on held-out data by the Sintel and KITTI servers and ob-

tained from their leaderboards, and better reflect model per-

formance. Although performing closely to the other meth-

ods on the training sets, CRAFT shows clear advantages on

the test sets, and outperforms all other optical flow meth-

ods5 on Sintel (Final) and KITTI Fl-fg (i.e., fewest fore-

ground outliers).

We argue that these two performance metrics (AEPE on

Sintel Final pass, and Fl-fg on KITTI) has important prac-

tical implications. For real world performance, the results

on Sintel (Final) are more indicative than on Sintel (Clean),

as the final-pass images more closely resemble real world

videos, with various lighting variation, shadows and motion

blur. In addition, as the foreground objects in KITTI are

usually cars, pedestrians, etc., which naturally are more im-

portant than the background. Hence, smaller pixel errors in

foreground regions as measured by Fl-fg, probably imply

greater practical benefits than smaller errors in background.

4.2. Error Distribution wrt. Motion Magnitudes

To analyze the behavior of different models when facing

varying magnitudes of motions, we divide the pixels into

5As of November 2021.



Training

Data

On Training Sets On Test Sets from Leaderboards

Method Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Clean Final AEPE Fl-all (%) Clean Final Fl-fg (%) Fl-all (%)

C + T /

Autoflow

RAFT [38] (1.43) (2.71) (5.04) (17.4) - - - -

RAFT-A [35] (1.95) (2.57) (4.23) - - - -

Perceiver-IO [15] (1.81) (2.42) (4.98) - - - -

Separable Flow [46] (1.30) (2.59) (4.60) (15.9) - - - -

GMA [18] (1.30) (2.74) (4.69) (17.1) - - - -

CRAFT (1.27) (2.79) (4.88) (17.5) - - - -

C + T +

S/K + H

RAFT [38] (0.76) (1.22) (0.63) (1.5) 1.61 2.86 6.87 5.10

RAFT-A [35] - - - - 2.01 3.14 5.99 4.78

RFPM [24] (0.61) (1.05) (0.60) (1.41) 1.41 2.90 - 4.79

Separable Flow [46] (0.69) (1.10) (0.69) (1.60) 1.50 2.67 6.24 4.64
GMA [18] (0.62) (1.06) (0.57) (1.20) 1.39 2.47 7.03 5.15

CRAFT (0.60) (1.06) (0.58) (1.34) 1.45 2.42† 5.85† 4.79

Table 1. Results on Sintel and KITTI 2015 benchmarks. We report the average end-point error (AEPE) where not otherwise stated, as

well as the Fl-fg and Fl-all metrics for the KITTI dataset, which are the percentages of optical flow outliers (pixels with significant flow

errors), calculated on the foreground regions and all pixels, respectively. “C + T / Autoflow” refers to methods that are pretrained either on

the combined Chairs and Things datasets, or on the Autoflow dataset [35]. “S/K + H” refers to methods that are fine-tuned on the Sintel,

KITTI and HD1K datasets. All results on Sintel (test) are generated with the “warm-start” strategy [38].
†Results are ranked as the top-1 (as of November 2021) on the two public leaderboards, which include many other methods not listed here.

(Result) denotes a result on training sets, listed here for reference purposes.

GT range < 1 [1,10] (10,20] (20,30] > 30 All

Things-Clean

RAFT 0.45 0.54 0.75 1.40 7.55 3.14

GMA 0.42 0.46 0.68 1.29 7.71 3.14

CRAFT 0.43 0.46 0.68 1.26 6.64 2.77
Things-Final

RAFT 0.46 0.52 0.74 1.44 7.11 2.98

GMA 0.41 0.45 0.68 1.25 6.76 2.80

CRAFT 0.42 0.45 0.65 1.21 6.11 2.57

Table 2. AEPE on Things (validation set) in different motion
ranges. CRAFT has significantly lower AEPE on large motions.

five subsets according to their groundtruth motion magni-

tudes, and evaluate the AEPE within each subset. As the

validation/test splits of Sintel and KITTI are unavailable,

the evaluation is done on the validation split of FlyingTh-

ings, Clean pass and Final pass, respectively. Three models,

RAFT, GMA and CRAFT are evaluated. All the models are

trained on “C+T”.

Table 2 presents the AEPE on different magnitudes of

motions. When the motion is < 20 pixels, CRAFT performs

on par with GMA. On large motions that are > 30 pixels,

CRAFT makes 10∼15% less AEPE than RAFT and GMA.

4.3. Ablation Studies

KITTI-15 (test) Fl-fg (%) Fl-all (%)

CRAFT 5.85 4.79

-SS trans 6.41 5.06

-CFA 6.15 4.90

-GMA 6.21 4.93

Table 3. Ablated models on KITTI-2015 (test) leaderboard.

CRAFT has three important components: the Semantic

Smoothing transformer (“SS trans”), the Cross-Frame At-

tention (“CFA”), and the GMA module. To study their in-

dividual contributions, in each turn we remove one of them,

train the ablated models with the standard schedule, and

evaluate on the KITTI-2015 leaderboard.

Table 3 shows that all the three components make impor-

tant contributions to the overall performance.

4.4. Image Shifting Attack

Typically, most pixels in standard benchmark images are

with small motions, and large motions only appear in lo-

cal areas. As a result, when the model makes big errors

on large local motions, as these errors are local, they may



Frame 1, shifted by (220, 110) Frame 2 (unchanged)

GMA, AEPE 286 pixels CRAFT, AEPE 1.57 pixels

Shifted groundtruth

RAFT, AEPE 366 pixels

Figure 4. Flows fields estimated by RAFT, GMA and CRAFT on

two frames from the Slow Flow dataset. (Δu,Δv) = (220, 110)
pixels. RAFT and GMA failed with huge AEPE. CRAFT still

yielded accurate estimation.

be easily corrected by considering the contextual small mo-

tions, so that the final flow may still be accurate. Thereby,

the fragility on large motions is hidden under small AEPE.

To fully reveal the model robustness on large motions,

we design an image shifting attack, i.e., create large mo-

tions by shifting one image along the u, v plane. Local cor-

rections would hardly work on such image pairs, as all the

pixels will have large displacements.

Specifically, we shift the first frame I1 by (Δu,Δv) to-

wards the bottom right, getting a new image shiftu,v(I1).
The new image is truncated at the original image boundary.

Suppose a model M estimates the flow F0 accurately on

the original image pairs: F0 = M(I1, I2) ≈ Fgt, where Fgt

is the groundtruth flow. We test M on the shifted pairs and

get new flow: F1 = M(shiftu,v(I1), I2). Then we unshift

F1 and get F2. If the model is robust against the shift, it can

be proven that the following equation should hold:

F2 ≈ shiftu,v(F0)−(Δu,Δv) ≈ shiftu,v(Fgt)−(Δu,Δv).
(11)

Figure 4 presents an example of the shifting attack. The

two frames are from Slow Flow [16], a dataset with motion

blur (flow magnitude=100, blur duration=3). After down-

sampling the original images from (1280, 720) to (640,

360), the first image is shifted by (220, 110). RAFT and

GMA completely fail to estimate the flow, with huge AEPE.

In contrast, CRAFT still yields accurate estimation.

Figure 5 presents the quantitative evaluations of RAFT,

GMA and CRAFT under the shifting attack. The models

are trained with “C+T+S+K+H”, and evaluated on the train-

ing split of Sintel (Clean) and Sintel (Final), as well as on

Slow Flow (flow magnitude=100, blur duration=3), under

varying (Δu,Δv). In our experiments, the horizontal shift

Δu ∈ [100, 300], and the vertical shift Δv
.
= 1

2Δu. When

Δu ≤ 160, all models perform well with AEPE < 8. When

Δu goes beyond 160, RAFT and GMA quickly deteriorate;

in contrast, CRAFT performs much more robustly with sig-

nificantly smaller AEPE. Possibly due to motion blur, the

AEPE of RAFT and GMA on Slow Flow is 80 ∼ 100 pixels

larger than on Sintel, while the AEPE of CRAFT on Slow

Flow is only 35 pixels larger, showing its robustness against

motion blur.

4.5. Visualization of Correlation Volumes

The main reason that CRAFT performs more robustly

is probably that the computed correlation volumes contains

much fewer spurious correlations, thanks to the SS trans-

former and the cross-frame attention layer.

To gain an intuitive understanding of the differences be-

tween the correlation volumes computed by different mod-

els, we visualize the correlations between a query point

in Frame 1 and all pixels in Frame 2. The query point

is marked as a small red square in Frame 1 (projected to

the small green square in Frame 2). It moves to the small

red square in Frame 2. The dashed green rectangle is a

256 × 256-pixel square centered at the query point, trun-

cated at the image boundary. It encloses the field of view

(FoV) of the model at the first iteration of flow estimation.

Only correlations within the FoV are shown.

Figure 6 visualizes the correlation volumes on two

frames from Sintel (Final), which is rendered with shad-

ows and motion blur. Bright blobs in the heatmaps are high

correlations, and those not at the groundtruth location (red

square) are spurious and may be targets for mismatch. The

correlation volumes6 computed by RAFT and GMA con-

tain many more spurious correlations than CRAFT. If re-

moving the SS transformer (the cross-frame attention layer

remains), CRAFT yields more noisy correlations, but they

are still fewer than RAFT and GMA, suggesting that the

cross-frame attention layer also helps denoising.

In addition, as stated in Section 3.1, we tested to apply

the SS transformer to both Frame 1 and Frame 2 (referred

to as “Double SSTrans”), and observed degraded perfor-

mance. To shed light on why this happens, Figure 7 vi-

sualizes the computed correlations with Double SSTrans.

Compared with the standard “Single SSTrans”, many more

spurious correlations are observed. This may explain the

degradation of the flow accuracy.

4.6. Visualization of the Self-Attention of Semantic
Smoothing Transformer

Figure 8 visualizes the SS transformer self-attention

weights on three queries in Frame 2. For each query (the

small red square), its attention weights with all pixels in the

6All matrices have been normalized into [0, 1] to make sure the pattern

differences are not caused by range discrepancy.
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Figure 5. The AEPE of RAFT, GMA and CRAFT change differently with the magnitude of image shifts. (a)-(c) are on Sintel (Clean),

Sintel (Final) and Slow Flow, respectively. The horizontal shift Δu change from 100 to 300, and the vertical shift Δv
.
= 1

2
Δu. When Δu

goes beyond 160, RAFT and GMA quickly deteriorate, and CRAFT performs much more robustly.

Frame 1

GMA

CRAFT

RAFT

Frame 2

CRAFT (no SS trans)

Figure 6. Heatmaps of the correlations between Frame 2 and a

query point in Frame 1 (the small red square), on Sintel test set

(Final pass). The small green square in Frame 2 indicates the orig-

inal position of the query in Frame 1. As the images are blurry with

coarser details, RAFT and GMA make many noisy correlations. In

contrast, CRAFT has significantly fewer noisy correlations.

Single SSTransNo SSTrans Double SSTrans

Figure 7. The correlations between Frame 2 and a query point in

Frame 1, on Sintel test set (Final pass). Images are cropped. The

standard CRAFT setting (“Single SSTrans”) has fewest noisy cor-

relations. “Double SSTrans” yields many more noisy correlations.

same image are displayed as a heatmap. The highest atten-

tion areas are somewhere around the query points (at differ-

ent relative directions). We guess that these areas may pro-

vide texture or contextual information absent at the queries.

Slow Flow Query Point 1 Query Point 2

Sintel (Final) Query Point 3

Figure 8. Heatmaps of the SS transformer self-attention, between

a query point (a red rectangle) and all pixels in the same image.

The most intense areas are where the query points pay the highest

attention and draw features to enrich themselves.

5. Conclusions

We present a novel optical flow estimation method

Cross-Attentional Flow Transformer (CRAFT). It revital-

izes the computation of correlation volumes with two novel

components: Semantic-Smoothing Transformer and Cross-

Frame Attention. They help compute more accurate cor-

relation volumes by spatially smoothing feature semantics

and filtering out feature noises. CRAFT has achieved new

state-of-the-art performance on a few metrics, and is espe-

cially robust on large displacements with motion blur.
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