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Abstract

Dyslexia can affect writing, leading to unique001
patterns such as letter and homophone swap-002
ping. As a result, text produced by people003
with dyslexia often differs from the text typ-004
ically used to train natural language process005
(NLP) models, raising concerns about their ef-006
fectiveness for dyslexic users. This paper exam-007
ines the fairness of four commercial machine008
translation (MT) systems toward dyslexic text009
through a systematic audit using both synthet-010
ically generated dyslexic text and real writing011
from individuals with dyslexia. By program-012
matically introducing various dyslexic-style er-013
rors into the WMT dataset, we present insights014
on how dyslexia biases manifest in MT systems015
as the text becomes more dyslexic, especially016
with real-word errors. Our results shed light on017
the NLP biases affecting people with dyslexia018
– a population often rely on NLP tools as as-019
sistive technologies, highlighting the needs for020
more diverse data and user representation in the021
development of foundational NLP models.022

1 Introduction023

Dyslexia is one of the most common learning dis-024

abilities, estimated to affect 10% to 17% of the025

English speaking population (Brunswick, 2010).026

While dyslexia primarily affects one’s ability to027

process and produce textual information (Shaywitz028

and Shaywitz, 2005), it can lead to long-term so-029

cial, emotional, and economic challenges such as030

less peer acceptance, poor self-image, lower educa-031

tional attainment, and reduced employment oppor-032

tunities (Ingesson, 2007; Riddick, 2009).033

Rapid development and adoption of neural lan-034

guage technologies, such as ChatGPT, make them035

an important part of today’s information ecosys-036

tem and a promising assistive tool for people with037

dyslexia (Wu et al., 2019; Goodman et al., 2022).038

However, most of existing neural language models039

have been developed and evaluated over typical040

text (e.g. WikiText (Merity et al., 2016), Common- 041

Crawl1), with little consideration of dyslexia use 042

case. The fairness and accessibility of neural lan- 043

guage technologies for users with dyslexia remain 044

largely underexplored. 045

To better understand NLP systems’ ability to 046

serve dyslexic users, we perform a systematic au- 047

dit of mainstream machine translation (MT) ser- 048

vices using real and synthetic dyslexic text. Our 049

results show all audited services - including ad- 050

vanced LLMs - struggle with dyslexia-style input 051

text, making substantially more lexical and seman- 052

tic mistakes in their translations. By varying the 053

quantity and types of dyslexia style errors injected 054

into the original text, we also observe a near lin- 055

ear relationship between the number of injected 056

dyslexia errors and the degradation in performance 057

for all services, especially for real-word errors such 058

as homophone confusion (Rello et al., 2015a). 059

Our contribution to NLP fairness and accessi- 060

bility research is twofold: 1) Our findings reveal 061

disparities in the performance of commercial MT 062

systems when translating dyslexia-style text; 2) 063

Our data augmentation technique to generating 064

synthetic dyslexia data provides a valuable instru- 065

ment for further investigating the potential sources 066

and mechanisms behind such disparities in typi- 067

cally “black-boxed” systems, especially when real 068

dyslexia datasets are scarce. As an early explo- 069

ration in NLP fairness for dyslexia, our work in- 070

vites further investment and attention from NLP 071

researchers and commercial companies to develop 072

accessible and fair NLP models in collaboration 073

with people with dyslexia – a community deeply 074

impacted by and highly experienced with language 075

technologies. 076

1https://commoncrawl.org/overview
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2 Background and Related Work077

2.1 Dyslexic Writing Data078

Although widely used by the dyslexia community,079

most spellcheckers are not designed with dyslexic-080

style writing in mind (Wu et al., 2019). In partic-081

ular, mainstream spellcheckers struggle with real-082

word errors (Pedler, 2007) (e.g. form v.s. from),083

which account for 17% of writing errors made by084

people with dyslexia (Quattrini Li et al., 2013). De-085

spite some research efforts in developing dyslexia-086

centered writing support tools (Quattrini Li et al.,087

2013; Rello et al., 2015b; Pedler, 2007; Wu et al.,088

2019; Goodman et al., 2022), these systems remain089

experimental.090

A major bottleneck in advancing language tech-091

nologies for dyslexia is the lack of large-scale, pub-092

licly available dyslexia text corpora (Wu et al.,093

2019; Goodman et al., 2022). Direct collection094

of text written by people with dyslexia presents095

both ethical and practical challenges. As an “invis-096

ible” disability that carries social stigma, many097

individuals with dyslexia feel pressured to con-098

ceal their condition, often spending extra efforts099

proofreading their writing or avoiding writing al-100

together (Reynolds and Wu, 2018). Even when101

people with dyslexia consent to share their data,102

it remains difficult to effectively anonymize the103

data without losing the distinctive characteristics104

of dyslexic writing. Existing dyslexic text corpora,105

such as Rauschenberger et al. (2016), are small106

and context-specific – often consists of homework107

and school essays by dyslexic children, making108

them inadequate for today’s data-intensive machine109

learning techniques.110

Existing work on data augmentation has shown111

great promise in addressing the limitations of112

data availability for underrepresented, low-resource113

communities (Kourkounakis et al., 2020; Bartelds114

et al., 2023; Wu et al., 2019). Following this ap-115

proach, we adopt and extend the technique pro-116

posed by Wu et al. (2019) to perturb typical text117

with synthetic dyslexic writing errors, creating the118

largest dyslexic text dataset that covers with a wide119

range of dyslexic conditions and writing styles.120

Our data augmentation method is informed by121

existing research on dyslexia-style writing that122

identified major typographical errors and real-word123

errors in dyslexic text (Rello et al., 2012; Pedler,124

2007). Typical dyslexic-style typographical errors125

include letter substitution, insertion, deletion, and126

transposition, with substitution being the most com-127

mon (Rello et al., 2014). We leveraged the large 128

word confusion set compiled by Pedler and Mitton 129

(2010) to generate synthetic real-word errors. 130

2.2 Biases and Fairness of NLP Systems 131

There has been growing evidence and public in- 132

terests in the biases and fairness of AI systems 133

towards marginalized social groups. Previous work 134

by Buolamwini and Gebru (2018) and Koenecke 135

et al. (2020) has highlighted racial and intersec- 136

tional disparities in face recognition and automatic 137

speech recognition systems. Similar issues have 138

been identified in NLP, where racial and gender 139

biases have been reported in various tasks, includ- 140

ing text generation and machine translation (Field 141

et al., 2021; Deas et al., 2023; Prates et al., 2020). 142

While recent studies have begun examining NLP 143

biases against people with disabilities (?Hassan 144

et al., 2021), little is known about biases and fair- 145

ness issues experienced by people with dyslexia – 146

a demographic that often relies on and is deeply af- 147

fected by NLP tools for accessibility needs. As 148

NLP models are often trained on text gathered 149

from the web, where text written by people with 150

dyslexia is significantly underrepresented (esti- 151

mated at just 0.005% by Baeza-Yates and Rello 152

(2011)), those models can develop potential bi- 153

ases against dyslexic text. Inspired by recent 154

research that uncovers NLP biases by measur- 155

ing performance disparities across different social 156

groups (Fraser and Kiritchenko, 2024; Chang et al., 157

2019; Mehrabi et al., 2021), this study audits four 158

mainstream MT services to quantitatively assess 159

their biases against dyslexic text. 160

3 Method 161

For our exploratory audit, we selected machine 162

translation (MT) task because it is well-defined, 163

with well-established metrics and benchmarking 164

datasets, as well as popular consumer-facing appli- 165

cations such as Google Translate2. We also limit 166

our initial benchmarking to the translation from En- 167

glish to French - two well-resourced languages for 168

machine learning, to reduce potential confounding 169

factors due to languages. 170

To address the data limitation, we leveraged and 171

modified the WMT14 (en2fr) (Bojar et al., 2014) 172

test dataset by injecting synthetic dyslexic-style er- 173

rors in the English language source text. We also 174

supplement the synthetic dyslexia dataset with a 175

2https://translate.google.com/
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small set of real dyslexic text collected from Red-176

dit. Using the synthetic and real dyslexic data, we177

benchmark the performance of four mainstream178

MT services in both lexical and semantic dimen-179

sions.180

3.1 Simulating Dyslexia181

Taking a similar approach proposed by Wu et al.182

(2019), we perturbed the English source sentences183

in WMT14 (en2fr) test dataset with the following184

three synthetic errors that are frequent in dyslexic185

input text and less likely to be fixed by mainstream186

spellcheckers before being sent for machine trans-187

lation:188

1. Letter confusion: substituting similar-looking189

or sounding letters (e.g. b v.s p). Letter con-190

fusion is reported as the most frequently oc-191

curred errors in dyslexic writing (Rello et al.,192

2014).193

2. Homophone: replacing a word with its homo-194

phones. Phonetically similar sounding words195

are noted as another common but unique chal-196

lenge for people with dyslexia (Pedler, 2007),197

(Rello et al., 2014), and can potentially create198

issues for NLP models as this type of error is199

relatively rare in typical text used to train the200

models.201

3. Confusion set: substituting a word with an-202

other word that are likely to be confused with203

by people with dyslexia (e.g. “your” and204

“you”). Previous work found confusion sets205

contribute a substantial percentage of dyslexic206

writing errors and are least likely to be caught207

by conventional spellcheckers (Pedler, 2007;208

Rello et al., 2015a; Wu et al., 2019).209

To simulate letter confusion, we constructed a210

letter substitution dictionary in which each letter211

is associated with other letters that people with212

dyslexia are often confused with (Rello et al., 2014).213

The frequency of letter confusion is controlled by214

a parameter pl, which represents the probability215

for letter confusion to occur in the original cor-216

pus. However, following empirical findings that217

letter confusion rarely occurs at the beginning of a218

word (Yannakoudakis and Fawthrop, 1983; Pollock219

and Zamora, 1984; Pedler, 2007), therefore the sub-220

stitution of the first letter would ignored 95% of221

the time during error injection. Also, to be consis-222

tent with the observations that multiple letter con-223

fusions are uncommon in dyslexic writing (Rello224

et al., 2014), we decreased the probability of an- 225

other substitution happening by 90% for that same 226

word after one substitution is made. 227

To simulate homophone errors, we constructed 228

a homophone dictionary in which each word is 229

associated with its phonetically similar sounding 230

words. We leveraged free public resources such as 231

the Homophone Finder website3 to build the ho- 232

mophone dictionary. The frequency of homophone 233

error is again controlled by a parameter ph, which 234

represents the probability for us to swap the current 235

word with its homophone. 236

To simulate errors from confusion set, we con- 237

structed a dictionary using the confusion set identi- 238

fied by Pedler and Mitton (2010). This set contains 239

around 6000 pairs of words that are likely to be 240

confused with each other by people with dyslexia. 241

The frequency of this type of error is controlled 242

by ps, representing the probability of a word being 243

replaced by its paired word in the confusion set. 244

Examples of three types of injected errors are 245

provided in Table 1. 246

By controlling the perturbation probability pl, 247

ph, and ps, we are able to programtically generate 248

different versions of MWT14 (en2fr) test dataset 249

with varying quantities and types of dyslexic er- 250

rors. In this paper, we focus on the percentage 251

of words modified ranging from 10-20% as this 252

follows findings from Rello et al. (2014) from real- 253

world dyslexic text. 254

3.2 Collecting Real World Dyslexic Text 255

To verify our findings from the synthetic text, we 256

collected 170 sentences from users of the subred- 257

dit r/Dyslexia4 following the same protocol as de- 258

scribed by Wu et al. (2019). More specifically, 259

we identified words and tokens that appeared dis- 260

proportionally more frequently in the r/Dyslexia 261

subreddit than in the general Reddit corpus, and 262

queried r/Dyslexia for posts and comments that 263

contained those words. An example sentence in 264

this collection looks like this: “I think I did well 265

becoser I got of to a good stare and I have almost 266

finsder my booklet and I have done a fuwe peturs 267

on the computer and now I am doing a couver.”. 268

The 170 sentences were also manually corrected 269

to in order to create a reference corpus to evalu- 270

ate the MT services. During manual correction, 271

we did notice that text collected from Reddit con- 272

tains fewer typographical errors than observed 273

3https://www.homophone.com
4https://www.reddit.com/r/Dyslexia/
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Table 1: Example synthetic dyslexic sentences with injected dyslexic writing errors

Error Injection Original Sentence Perturbed Sentence

Letter Confusion In Nevada, where about 50 volun-
teers’ cars were equipped with the
devices not long ago, drivers were
uneasy about the government being
able to monitor their every move.

In Nevada, where abouf 50 wolun-
teers’ cars were equipped with thi
devoces not iong ago, driverc were
nneasy about the government being
able to mohitor thein every movo.

Homophone New York City is looking into one. New York City is looking into won.

Confusion Set “The gas tax is just not sustainable,”
said Lee Munnich, a transportation
policy expert at the University of
Minnesota.

“The gas tax is just knot sustainable,”
said Lee Munnich, eye transportation
policy export at the University of
Minnesota.

from dyslexic children’s handwritings (Rello et al.,274

2012), probably due to the use of auto-correct and275

spellcheckers. As a result, the “real” dyslexic text276

likely represents a more sanitized version of raw277

communications from people with dyslexia. On the278

other hand, we were able to identify more confu-279

sion words that were not present in the list curated280

by Pedler and Mitton (2010). For example the281

word pairs: “ocean” v.s. “ocian”, “dyslexia” v.s.282

“dylexia”, “imagine” v.s. “imagen” and more. We283

will release the additional confusion words as a284

new language resource for dyslexia.285

3.3 Commercial Machine Translation Audit286

Our audit included three popular MT services de-287

ployed across major cloud computing platforms288

namely, AWS, Azure and Google Cloud. Based289

on a survey from Public First 51% of businesses290

utilize cloud services, most of which are customers291

of AWS, Azure and Google Cloud 5. We also292

evaluated GPT-3.5 (gpt-3.5-turbo-1106)6, one of293

the most popular consumer facing large language294

models (LLMs) with translation functionality. For295

the cloud-based MT services, we tested the per-296

formance of document translation; and for GPT,297

we did a sentence-level translation as document298

translation was not available. For document trans-299

lation, we submitted text files to the services for300

translation. For sentence-by-sentence translation,301

we were able to call the OpenAI API with Python302

scripts. All of these platforms require payment303

for the use of the translation services. For Google304

Cloud, we used the Cloud Translation API, for305

AWS, we used the Amazon Translate service and306

5https://awsus.publicfirst.co/
6https://platform.openai.com/docs/models/gpt-3-5-turbo

for Azure, we used the Translator in the Cognitive 307

Services. We compare each service’s translation 308

outputs for different versions of synthetic dyslexic 309

data and real dyslexia data with their output for 310

original (unperturbed) data as the baseline. 311

3.4 Evaluation Metrics 312

We evaluate the performance of audited MT ser- 313

vices using different lexical and semantic metrics. 314

While the lexical metrics - such as BLEU (Papineni 315

et al., 2002) and WER (Su et al., 1992) - allow us to 316

benchmark against position our results in relation to 317

a wide range of MT models and tasks, the semantic 318

metrics - such as BLEURT, COMET, BERTScore 319

and LaBSE - help illustrate how dyslexia might 320

impact the user experience of these MT services. 321

To measure how injected dyslexic errors influ- 322

ence translation results at a lexical level, we calcu- 323

lated the BLEU and WER scores using the French 324

translation from perturbed English sentences as hy- 325

pothesis and the original target sentences in French 326

as references. We also calculated the BLEU and 327

WER scores for the translations generated by each 328

MT service over the original, unperturbed English 329

data, as the baseline for our comparison. 330

Similarly, we were able to quantify the semantic 331

divergence of translations over dyslexic text from 332

the baseline translations. 333

3.4.1 Lexical metrics 334

Lexical based metrics have been commonly used in 335

the evaluation of machine translation systems (Lee 336

et al., 2023). One of the most popular lexical 337

based metrics is Bilingual evaluation understudy 338

(BLEU) (Papineni et al., 2002). BLEU measures 339

the n-gram similarity between MT output and 340
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the reference, and it is known for its simplicity,341

language-agnostics, and ability to measure both342

precision and fluency. BLEU score ranges from343

0 to 1 where 1 indicates a perfect translation.344

State-of-the-art (SOTA) MT systems have reported345

BLEU score as high as 0.464 for WMT14 (en2fr)346

task (Liu et al., 2020), which could be considered as347

generally “high-quality translations”7. In contrast,348

BLEU scores lower than 0.2 would be considered349

“hard to understand” and “almost useless”.350

We also utilize Word Error Rate (WER) (Su351

et al., 1992), which measures the edit distance be-352

tween MT output and the reference. As WER can353

be further broken down into the minimum number354

of word substitutions, insertions, and deletions re-355

quired to convert the MT output to the reference356

sentence, it provides additional insights into how357

the translation of perturbed dyslexic sentences dif-358

fer from the original sentences. While WER can359

range from zero to infinity, a WER score higher360

than 0.5 generally suggests a poor performance.361

3.4.2 Semantic Metrics362

Since we are dealing with injected synthetic text,363

the lexical form of words are sometimes very simi-364

lar (for example in third row of Table 1 we have365

“knot” v. “not”). The edit distance between the two366

samples is 1. However, the semantics of the words367

are completely different. This is where our lexical368

metrics would likely fail. In order to fairly compare369

the sentences, we introduce semantic calculations.370

The first method was using BERTScore (Zhang371

et al., 2020) which computes a similarity score372

between 0 and 1 (where 1 is perfect) using con-373

textual embeddings created by a BERT model to374

measure token-level semantic similarity. The sec-375

ond metric we used to benchmark performance was376

BLEURT (Sellam et al., 2020) which is a learned377

metric. Similar to BERTScore, BLEURT lever-378

ages transformer models to assess translation by379

predicting human-like quality scores based on con-380

textual embeddings that have proven to align with381

human judgment. BLEURT is scored between 0382

and 1 (sometimes more or less) where a lower score383

indicates a random output an 1 a perfect transla-384

tion. The third metric we used was COMET (Rei385

et al., 2020) which also leverages a transformer386

model and trained on human-annotated data to de-387

termine translation quality and capture contextual388

understanding. COMET enables the source and ref-389

7BLEU Score Interpretations: https://cloud.google.
com/translate/automl/docs/evaluate

erence translation to be compared to the candidate 390

translation. This metric is also score between 0 and 391

1 where 0 indicates a random translation and 1 a 392

high-quality translation. The final semantic evalu- 393

ation metric we utilized was a language indepen- 394

dent method LaBSE (Feng et al., 2022) where we 395

were able to use the source English sentences from 396

WMT directly for semantic comparison. We calcu- 397

lated the L2-norm of the sentence embeddings from 398

LaBSE to get the similarity between the source 399

English sentences (without injections) to the trans- 400

lations generated by the models. We called this 401

the LaBSE score 8. Similar to the previous metric, 402

the score ranges between 0 and 1 where 1 indi- 403

cates identical sentences and meaning. We must 404

note that a score of 1.0 requires the sentences to be 405

syntactical identical. In other words, two sentences 406

with identical meanings but different writing would 407

not score 1.0, but very close to 1.0. 408

4 Results 409

4.1 Lexical Divergence with Synthetic 410

Dyslexia Data 411

Unsurprisingly, we observed a SOTA level of per- 412

formance in audited MT services at the baseline 413

condition, with BLEU score ranging from 0.429 414

(GPT3.5) to 0.469 (Google). However, the per- 415

formance consistently degrades as more synthetic 416

dyslexic style errors occur. Figure 1 shows a near 417

linear drop in BLEU score, along with the increase 418

of words perturbed with dyslexic errors. While 419

GPT3.5 has the lowest baseline BLEU score, it 420

is also least impacted by the increase of dyslexic 421

errors. In contrast, the performance of Azure MT 422

drops most drastically when encountering more 423

dyslexic errors. In terms of error types, we notice 424

that most services have more difficulties dealing 425

with “real word errors” from homophone and con- 426

fusion set, rather than syntactic errors like letter 427

confusion, with Azure being the only exception. 428

This observation is consistent with previous find- 429

ings that real word errors in dyslexic writing pose 430

greater challenges for NLP models (Pedler and Mit- 431

ton, 2010; Rello et al., 2015a). 432

Similar trend is observed in WER scores. As 433

shown in Figure 1, for all audited services, their 434

WER scores increase steadily as more synthetic 435

dyslexic errors are injected into the source data. 436

The slope of increase is greatest for homophone 437

errors, and lowest for letter confusion. However, 438

8https://huggingface.co/setu4993/LaBSE
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Figure 1: Change in lexical metrics for all audited services. Baseline values indicate the metric score for unperturbed
text, y-axis shows the change in corresponding metric compared to the baseline.

comparing to AWS and GPT3.5, Google and Azure439

seem to be particularly challenged by letter confu-440

sion errors, showing a degradation in translation441

quality almost as rapidly as when encountering syn-442

thetic real word errors. Further inspection of their443

translation results in this condition suggests that the444

MT services by Google and Azure are less likely to445

recover from a misspelled word, but tend to directly446

copy it in the translation. For example, when the447

baseline sentence “The American Civil Liberties448

Union is deeply concerned” is perturbed to become449

“The American Cavil Liberties Union is deeply con-450

cerned”, Google and Azure would translate the451

perturbed sentence to “L’American Cavil Liberties452

Union est profondément préoccupée”, with the mis-453

spelling “Cavil” preserved in the translation.454

We also broke down the different types of edits455

used for calculating WER and inspect them sep-456

arately. Figure 2 shows the breakdown of substi-457

tutions, insertions, and deletions in the translation458

of 20% perturbed text from the reference. While459

the overall trends are similar for all MT services460

with three types of synthetic errors, we do observe461

some small difference in Azure and Google when462

handling letter confusion. These two services ap-463

pear to make more deletions than insertions in their464

translation of text with letter confusion errors, sug- 465

gesting potential loss of semantic information in 466

the translation when source data contain signifi- 467

cant amount of dyslexic misspellings. On the other 468

hand, services like AWS and GPT3.5, despite more 469

robust performance, tend to insert words in their 470

translations. A deeper investigation on insertion er- 471

rors found that articles (“déterminants” in French) 472

are most often being inserted (see Figure 3) to cre- 473

ate structurally correct sentences but result in a 474

deviation of the original meaning of the sentences. 475

While GPT3.5 generally performs better with 476

synthetic dyslexic text, its performance still de- 477

clines and could sometimes make serious mistakes 478

due to dyslexic errors. For example, when the base- 479

line sentence “The technology is there to do it” is 480

perturbed to “The technology is there to do ti. ”, 481

the translation by GPT3.5 diverges from “La tech- 482

nologie est là pour le faire” to “La technologie le 483

frappe de plein fouet” (“technology hitting it head 484

on”). 485

4.2 Semantic Divergence with Synthetic 486

Dyslexia Data 487

While lexical divergence, such as the insertion and 488

deletion of particles, might not significantly impact 489
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Figure 2: Breakdown of WER scores by edit type (20% word perturbed)

Figure 3: Most commonly inserted words by AWS when
translating synthetic dyslexic text with 20% word con-
fusion errors

the quality of translations, semantic change in the490

translation of dyslexic text from non-dyslexic text491

could have direct user experience consequences.492

While all audited services demonstrate high per-493

formance with unperturbed text at the semantic di-494

mension (BERTScores and LaBSE scores all above495

0.9), the semantic of the translation diverges as496

more dyslexic writing errors occur. As shown in497

Figure 4, the BERTScore drops when the percent-498

age of synthetic errors in text increases. Among499

all the audited services, the performance of Google500

and Azure declines most rapidly, while GPT3.5501

maintains a relatively robust level of performance.502

Similar trend is observed with BLEURT, COMET, 503

and LaBSE measures (see Figure 5 in Appendix A). 504

Even if the semantic divergence is smaller com- 505

paring to the lexical divergence, the disparity be- 506

tween the baseline and text with 20% dyslexic er- 507

rors is statistically significant, suggesting a clear 508

gap in MT service quality for dyslexic users. 509

4.3 Performance Divergence with Real 510

Dyslexia Data 511

Our collection of real dyslexic text from Reddit, al- 512

though at a much smaller in scale, confirms the 513

trends we observed with synthetic data. With 514

15.3% words modified from the original text dur- 515

ing manual correction, all MT services showed 516

various lexical and semantic divergence in transla- 517

tions from the original and from the corrected text. 518

The greatest lexical divergence was observed in the 519

results by ChatGPT, while the greatest semantic 520

divergence happened with results by AWS. This 521

result again suggests LLMs relative robustness in 522

preserving meaning when translating dyslexic text. 523

5 Discussion 524

Our results uncover potential disparities in the qual- 525

ity of MT services for people with and without 526

dyslexia. As part of the cloud infrastructure, these 527
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Figure 4: Change in BERT score for all audited services. Baseline values indicate the metric score for unperturbed
text, y-axis shows the change in corresponding metric compared to the baseline.

services have been ubiquitously adopted as founda-528

tion for many other digital products and services.529

Our work shows how typical dyslexic writing er-530

rors could lead to the degradation of SOTA MT531

services. Even advanced LLMs, which have been532

believed as a solution for dyslexia, struggle with533

real word errors from homophones and confusion534

set. While LLMs are better than other services in535

terms of lexical and syntactic mistakes, they do536

still produce semantic divergence when translat-537

ing dyslexic text, and such divergence could be538

even harder to be noticed by users with dyslexia,539

resulting in higher user risk and potentially worse540

experience in the long term.541

6 Limitations and Future Work542

Although we were able to experiment with a wide543

variety of configurations with the quantities and544

types of dyslexic writing errors, our synthetic545

datasets are nevertheless limited in their ability to546

capture the full heterogeneity of dyslexic writing.547

Like any other neurodivergence, dyslexia affects548

people differently: the way it manifests in writing549

differs across individuals and situations. Disability550

simulations have been criticized to reinforce stereo-551

types and further exclude people with disability552

from the research process (Nario-Redmond et al.,553

2017). Our data augmentation approach should not554

be applied as a replacement for real dyslexic text.555

More authentic data from people with dyslexia is556

required to better represent this community in data557

in order to develop fair and accessible NLP models558

for dyslexia. Researchers should prioritize the col-559

laboration and involvement of people with dyslexia560

in future work in this direction.561

Our audit is limited to a few publically avaible,562

commercial MT services, without covering the563

full landscape of MT models and systems. While 564

we prioritize MT services and products – such as 565

Google Translate and ChatGPT – as they have 566

been ubiquitously deployed and used by millions 567

of people everyday, including people with dyslexia, 568

extending the scope of evaluation to more open- 569

sourced, academically developed MT models will 570

potentially provide even deeper insights into the 571

innerworks of MT systems in relation to dyslexia. 572

We also look forward to extend our methodol- 573

ogy to other communities and application domains, 574

making it easier to audit a wide range of AI models 575

and services using synthetic data about marginal- 576

ized, sensitive populations. 577

7 Conclusion 578

we developed a systematic method to inject typical 579

dyslexic writing errors into standard NLP datasets, 580

showing the promise to increase the representa- 581

tion of dyslexic text in NLP systems in an effi- 582

cient, privacy-preserving way. Our synthetically 583

generated data captured three specific yet common 584

dyslexic writing patterns, allowing us to benchmark 585

the gap in MT service performance in these con- 586

trolled, simulated dyslexia conditions to detect and 587

diagnose MT’s “hidden” biases against dyslexia – a 588

community deeply impacted by NLP technologies. 589

Our results show lexical and semantic divergence 590

in the translations over dyslexic text, especially the 591

real-word errors are present. By measuring MT’s 592

performance disparities between dyslexic and non- 593

dyslexic input text, our work sheds light on the 594

potential user experience challenges for dyslexic 595

users of everyday NLP tools, and calls for the atten- 596

tion of the research community to close the equity 597

gap for this population. 598
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(a) BLEURT drops as more dyslexic errors occur
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(b) COMET scores drops as more dyslexic errors occur

AWS 
 baseline = 0.915

Google 
 baseline = 0.920

Azure 
 baseline = 0.920

GPT3.5 
 baseline = 0.915

10 20 10 20 10 20 10 20

−0.06

−0.04

−0.02

% of words perturbedch
an

ge
 in

 L
aB

S
E

 s
co

re

Error Type Letter confusion Homophone Confusion set

(c) LaBSE scores drop as more dyslexic errors occur

Figure 5: Change in semantic metrics for all audited services. Baseline values indicate the metric score for
unperturbed text, y-axis shows the change in corresponding metric in comparison to the baseline.
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