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Abstract

In scientific domains—from biology to social
sciences—many questions boil down to What ef-
fect will we observe if we intervene on a partic-
ular variable? If the causal relationships (e.g. a
causal graph) are known, it is possible to es-
timate the intervention distributions. Without
this domain knowledge, the causal structure must
be discovered from available observational data.
However, observational data are often compati-
ble with multiple causal graphs, making meth-
ods that commit to a single structure prone to
overconfidence. A principled way to manage this
structural uncertainty is via Bayesian inference,
which averages over a posterior distribution of
possible causal structures and functional mecha-
nisms. Unfortunately, the number of causal struc-
tures grows super-exponentially with the number
of nodes in the graph, making computations in-
tractable. We circumvent this intractability by us-
ing meta-learning to create an end-to-end model:
the Model-Averaged Causal Estimation Trans-
former Neural Process (MACE-TNP). The model
is trained to predict the Bayesian model-averaged
interventional posterior distribution, and its end-
to-end nature bypasses the need for expensive
calculations. Empirically, we show MACE-TNP
outperforms strong baselines, establishing meta-
learning as a flexible and scalable paradigm for ap-
proximating complex Bayesian causal inference.
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1. Introduction
Answering interventional questions such as: ”What hap-
pens to Y when we change X?” is central to areas such as
healthcare (Little and Rubin, 2000) and economics (Spiegler,
2020). One can estimate such interventional distributions
by actively intervening on the variable of interest and ob-
serving the effects (obtaining interventional data), but this
can be costly, difficult, unethical, or even impossible in prac-
tice (Li et al., 2019). Causal inference offers an alternative
by leveraging readily available observational data along-
side knowledge of the underlying causal relationships in the
form of a causal graph (Pearl, 2009). A causal graph can
be manually specified when domain knowledge is available.
In the absence of this, causal discovery techniques attempt
to learn the causal structure from data (Mooij et al., 2016).
However, causal discovery from purely observational data
is notoriously difficult. It is often the case that data provides
plausible evidence for a set of causal graphs, even though
each of these graphs may imply drastically different causal
effects. Picking a single graph can thus result in poor down-
stream decisions (Pearl, 2014; Bellot, 2024). In this work,
we address the challenge of tractably estimating interven-
tional distributions when the true causal graph is uncertain,
a common scenario in real-world applications.

Instead of using a single graph to drive decisions, the
Bayesian framework provides a principled way to manage
the uncertainty over the causal models through a posterior
distribution over possible causal structures and functions
relating variables. However, this procedure has two main
challenges. First, the space of causal graphs grows super-
exponentially with the number of variables, making exact
posterior inference intractable, and sampling difficult to
scale. Second, even with a posterior over causal graphs,
estimating an interventional distribution in each plausible
causal graph necessitates computing the posterior over func-
tional mechanisms, which is analytically intractable except
in simple models. Poor approximations at any point in
this pipeline can result in inaccurate interventional distri-
butions. Consequently, most works restrict themselves to
simple functional mechanisms and constrain the allowable
structures, limiting their applicability.
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To overcome these bottlenecks, we turn to recent advances
in meta-learning. Neural processes (NPs) (Garnelo et al.,
2018a;b) are a family of meta-learning models that approxi-
mate the Bayesian posterior with guarantees (Gordon et al.,
2019), by directly mapping from datasets to the predictive
distribution of interest, thus bypassing the intractable ex-
plicit modelling of intermediate posteriors. Recently, NPs
have been applied to causal discovery (Ke et al., 2023; Lorch
et al., 2022; Dhir et al., 2024b), with Dhir et al. (2025) show-
ing that they can accurately recover posterior distributions
over causal graphs. However, these existing approaches
cannot estimate interventional distributions.

In this work, we apply NPs to the problem of causal in-
ference directly from data by developing a meta-learning
framework that targets Bayesian posteriors for interven-
tional queries—the Model-Averaged Causal Estimation
Transformer Neural Process (MACE-TNP). Our method
amortises the full Bayesian causal inference pipeline (learn-
ing the posterior over the causal structure and functions,
and marginalising over them), all within a single model.
By directly estimating the interventional distribution, our
approach avoids compounding errors from approximations
of posteriors and marginalisation, enabling more accurate
and computationally-efficient inference under model uncer-
tainty. Our contributions are twofold. First, we propose an
end-to-end model trained on synthetic datasets to directly
approximate the Bayesian posterior interventional distribu-
tion. Second, we demonstrate that MACE-TNP outperforms
a range of Bayesian and non-Bayesian baselines across ex-
perimental settings of increasing complexity, highlighting
the method’s potential to scale to high-dimensional datasets.
Our framework paves the way for meta-learning-based foun-
dation models for estimating interventions.

2. Background
Our goal is to compute interventional distributions that ac-
count for uncertainty in both the causal structure and func-
tional mechanisms. We assume no hidden confounders,
aligning with assumptions in causal discovery. We discuss
related work in Appendix A.

Bayesian causal inference: Since observational data of-
ten identify only a class of indistinguishable graphs, each
implying different interventions, uncertainty is inherent in
causal inference. The Bayesian framework allows for quan-
tifying the model uncertainty, both in the causal structure
and functions, and use it for downstream decision making.
Definition 2.1. We define a Bayesian causal model (BCM)
as the following hierarchical Bayesian model over a directed
acyclic graph (DAG) G with node set V = {1, . . . , D},
functions f = {f1, . . . , fD}, and an observational dataset
Dobs of Nobs samples: G ∼ pBCM(G), f ∼ pBCM(f |G),
Dobs := {Xn}Nobs

n=1 ∼
∏Nobs

n=1

∏
i∈V pBCM(xn

i |fi,G), where

xn
i denotes the i-th node of the n-th observational sample.

This implies the joint distribution pBCM(Dobs, f ,G).

As BCMs are defined with a causal graph, they induce a
distribution over interventional quantities as well. Interven-
tions pBCM(xi|do(xj), fi,G) can be computed by setting
fj(·) = xj and leaving all other mechanisms unchanged.

Given a datasetDobs, our task is to estimate an interventional
distribution of interest. This requires inferring the possible
graphs and functional mechanisms that generated the dataset.
The Bayesian answer to this question is through the pos-
terior pBCM(f ,G | Dobs) ∝ pBCM(Dobs | f ,G)pBCM(f |
G)pBCM(G). If the underlying model is identifiable, for
example by restricting the function class of f (Peters et al.,
2017, Ch. 4), then, under suitable conditions1, the posterior
over G concentrates on the true graph in the infinite data
limit (Dhir et al., 2024a;b; Chickering, 2002). However,
for finite data, or if the causal model is not identifiable, the
posterior quantifies the uncertainty over causal graphs.

To make use of the uncertainty, Bayes prescribes to average
the interventions over the plausible models (Madigan and
Raftery, 1994), which we call the posterior interventional
distribution pBCM(xi | do(xj),Dobs)∑

G

∫
pBCM(xi|do(xj), f ,G)pBCM(f ,G|Dobs)df (1)

Computing the above quantity is often intractable for
two main reasons: 1) computing pBCM(G|Dobs) is
challenging as the number of causal graphs increases
super-exponentially with the number of variables, 2)
pBCM(f |G,Dobs) is only tractable for simple models.

3. A transformer model for meta-learning
causal inference

Causal inference with neural processes: This work fo-
cuses on causal inference directly from data—predicting the
distribution of a variable of interest Xi under an interven-
tion do(xj) given access to only Dobs. We directly learn the
map fromDobs to pBCM(xi | do(xj),Dobs) in an end-to-end
fashion with NPs. To do this, we minimise, with respect to
the model parameters θ, the expected Kullback-Leibler (KL)
divergence over the tasks ξ := (Dobs, i, j,Xj) between the
true posterior interventional distribution and the NP model
predictions pθ(xi|do(xj),Dobs):

Eξ [KL(pBCM(Xi|do(Xj),Dobs)∥pθ(Xi|do(Xj),Dobs))]

=
[
EXi|ξ [log pθ(Xi|do(Xj),Dobs)]

]
+ C, (2)

whereξ∼p(Dobs, i, j, xj), Xi|ξ∼pBCM(xi|do(Xj),Dobs),
and C is some constant independent of θ.

1The true generating process lies within the support of the prior.
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Table 1. Results for MACE-TNP and baselines on the three-node experiments. We show the NLPID (↓) and report the mean ± the error
of the mean over 100 datasets. Each row corresponds to a different functional mechanism used in the test set (GP or NN). A separate
MACE-TNP model was trained for each mechanism.

MACE-TNP DiBS-GP ARCO-GP BCI-GPN DECI NOGAM+GP

GP 563.9± 23.4 644.2± 27.2 630.7± 22.3 628.5± 27.5 632.0± 25.6 749.4± 43.0
NN 527.9± 19.8 807.6± 50.1 851.2± 55.0 706.8± 5.0 588.0± 23.6 815.6± 58.4

Hence, our objective requires us to generate tasks, and in-
terventional data from BCMs, in order to find the optimal
parameters. To do this we, 1) sample a graph G ∼ pBCM(G),
and 2) a functional mechanism for each of the D variables
from the graph f ∼ pBCM(f |G). Conditioned on the sam-
pled graph G and functional mechanism f we then 3) draw
Nobs samples for each variable to construct the observa-
tional data Dobs ∼ PBCM(Dobs|f ,G). To construct the in-
terventional data, keeping the same graph and functions
as the observational data, we 4) randomly sample a vari-
able index j to intervene upon and Nint intervention val-
ues Xj ∼ N (0, I), set the values of node j to be xj , and
5) draw Nint samples of each node forming an interven-
tional dataset Dint ∼ pBCM(Dint|do(xj), f ,G). Finally we
sample an outcome node index i and extract samples of
pBCM(xi|do(xj), fi,G) from Dint.

Model architecture and desirable properties: Given we
are interested in predicting pBCM(xi|do(xj),Dobs), vari-
ables play distinct roles as either the outcome node Xi,
the intervening node Xj , or the nodes that are being
marginalised. The distribution of interest also satisifies
certain symmetries. For example, the interventional dis-
tribution is permutation-invariant with respect to observa-
tional samples and permutation-equivariant with respect to
interventional samples. Thus, properties of this distribution,
and the role of the variables, guide our architecture choice.
An architecture flexible enough to satisfy these desiderata
is the transformer (Vaswani et al., 2017; Lee et al., 2019).
As interventional distributions can be non-Gaussian even in
simple cases, we opt for a Mixture of Gaussians (MoG) rep-
resentation of pθ(xi|do(xj),Dobs) (Bishop, 1994). More
details on the target distribution’s constraints and model
components are given in Appendix B.

Recovery of exact prediction map: Bruinsma (2022,
Proposition 3.26) shows that, in the limit of infinite tasks
and model capacity, the global maximum of Equation (2)
is achieved if and only if the model exactly learns the map
(Dobs,xj) 7→ pBCM(xi|do(xj),Dobs) (Gordon et al., 2019).
While the constraint of infinite tasks is limiting when ap-
plying NP to real-world datasets, if the tasks are generated
through a known Bayesian causal model, we have in theory
access to an infinite amount of tasks.

4. Experiments
We evaluate the performance of our model, MACE-TNP,
against Bayesian causal inference baselines, and a causal
discovery method that selects a single graph. With our
experiments we aim to answer: 1) How does our model
compare against baselines when the baselines’ assumptions
are respected, 2) How does our model perform when the
number of nodes are scaled, 3) How does our model perform
when we do not have knowledge of the data-generating
process? Moreover, in Appendix F we empirically show that,
in cases where the true posterior is analytically tractable,
that MACE-TNP converges to it.

To train MACE-TNP, we randomise the number of ob-
servational samples Nobs ∼ U{50, 750}, and set Nint =
1000 − Nobs. The training loss is evaluated on these Nint
samples. For testing, we sample 500 observation points and
compute the loss against 500 intervention points.

Baselines: We benchmark against methods that infer distri-
butions over causal graphs and sample to marginalise across
these graphs when estimating posterior interventional dis-
tributions. DiBS-GP (Toth et al., 2022), ARCO-GP (Toth
et al., 2025), and BCI-GPN (Giudice et al., 2024) all use GP
networks, but differ in the inference procedure over graphs.
We also compare against DECI (Geffner et al., 2022), which
assumes additive noise and uses autoregressive neural net-
works to learn a distribution over causal graphs while only
learning point estimates for functions. Finally, to show that
learning a distribution over graphs is useful, we compare
against a non-Bayesian baseline that uses NOGAM (Mon-
tagna et al., 2023) to infer a single DAG, and estimates the
interventional distribution by using GPs: NOGAM-GP.

Metrics: We report the negative log-posterior inter-
ventional density (NLPID) of the true intervention
outcomes under the model (Gelman et al., 2014):
−EXj∼N (0,1)[EpBCM(xi|do(xj),D)[log pθ(Xi|do(Xj),D)]].

4.1. Three-node experiments

First, we test our model in a three-node setting, where there
are 25 graphs in total, making inference over the graph easier
than in higher-node settings. Given that most baselines
either use neural networks or GPs, we compare MACE-
TNP to the baselines under two scenarios: 1) when tested on
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Table 2. Results for MACE-TNP and baselines on the higher dimension experiment. D represents the number of variables used. We show
the NLPID (↓) and report the mean ± the error of the mean over 100 datasets.

D MACE-TNP DiBS-GP ARCO-GP DECI NOGAM+GP

20 660.4± 5.2 701.9± 4.0 701.9± 4.0 686.3± 6.7 942.7± 23.8
30 653.3± 5.7 713.2± 4.7 713.0± 4.7 675.6± 6.1 946.9± 19.2
40 665.8± 4.8 711.5± 4.6 712.1± 4.6 683.0± 5.1 986.0± 20.0

GP data, and 2) when tested on data generated using neural
networks (NN). For each functional mechanism, we train a
separate MACE-TNP model. Full experimental details are
provided in Appendices C.1 and D.1.

When tested in-distribution (on datasets from the same dis-
tribution the model was trained on), MACE-TNP consis-
tently outperforms all baselines across both functional mech-
anisms, as shown in Table 1. MACE-TNP outperforms
GP-based methods through its implicit handling of hyperpa-
rameter inference, that the GP baselines may struggle with.
It also surpasses DECI (an NN-based approach) on both GP
and NN data by employing a Bayesian treatment over func-
tions. This highlights a key advantage of MACE-TNP: it
can easily incorporate complex Bayesian causal models into
its training pipeline by sampling training datasets, whereas
traditional Bayesian methods rely on inadequate approxima-
tions for complex scenarios. While the baseline models will
face scenarios where they are misspecified (for example,
the GP-based methods on the NN dataset), MACE-TNP
trivially allows to train on more diverse data to learn a mix-
ture of priors and thus avoid misspecification. We show
in Appendix E.1 that this strategy improves MACE-TNP’s
generalisation capabilities, and provide additional results
for different architecture choices.

4.2. Higher dimensional experiment

We next investigate the scalability of our method. We do
so by testing a single trained model on increasingly higher-
dimensional data, scaling up from 20 up to 40 nodes. The
functional mechanisms used are a mix of NNs and functions
drawn from a GP, with an additional latent variable input to
ensure the final distribution is non-Gaussian. More details
on data generation are given in Appendix C.2.

Table 2 shows that MACE-TNP outperforms both the
Bayesian and non-Bayesian baselines across all node sizes.
Moreover, similarly to the three-node case, the underperfor-
mance of the non-Bayesian baseline NOGAM+GP under-
scores the importance of capturing uncertainty over causal
structures. The majority of our baselines involve GP-based
approaches, which can become prohibitively expensive with
a higher number of variables. For example, we do not report
BCI-GPN as its MCMC scheme is too expensive for these
node sizes. In contrast, MACE-TNP can readily leverage

advancements that have made neural network architectures
scale favourably in other domains. Inference after training
only requires a forward pass through the network.

4.3. Unknown dataset generation process

Finally, we apply our method on the Sachs proteomics
dataset (Sachs et al., 2005), which includes measurements
of D = 11 proteins from thousands of cells under various
molecular interventions. Crucially, we do not retrain any
model for this task; instead, we reuse the model from Sec-
tion 4.2, which was trained exclusively on synthetic data.
Following (Brouillard et al., 2020; Lippe et al., 2022; Wang
et al., 2017), we only retain samples with interventions
targeting one of the D = 11 proteins, and take 500 observa-
tional sample and test five single-protein perturbations on
500 interventional samples. The results indicate that our
method performs competitively with our strongest baseline,
giving an NLPID for MACE-TNP of 998.9 ± 104.9 com-
pared to 1000.9±133.5 for DECI, when averaged over 5 in-
terventional queries and 10 outcome nodes. We provide ad-
ditional comparisons to the other baselines in Appendix E.2.
This shows the potential of tackling interventional queries in
real-world settings with a fast, data-driven framework that
captures uncertainty in a principled manner and leverages
flexible and expressive neural network architectures.

5. Conclusions
We address the challenge of efficiently estimating inter-
ventional distributions when the causal graph structure is
unknown. Our solution, MACE-TNP, is an end-to-end meta-
learning framework that directly approximates the Bayesian
model-averaged interventional distribution by mapping ob-
servational data to posterior interventional distributions.
When employing complex functional mechanisms, as well
as high-dimensional data (up to 40 nodes), MACE-TNP
outperforms strong Bayesian and non-Bayesian baselines,
with the only requirement being access to samples from a
prior distribution (implicit or explicit) at meta-train time.
We also show competitive performance on a challenging,
real-life dataset, showcasing the practical implications of
our flexible, end-to-end framework. One limitation of our
model is its reliance on substantial training-time compute
and real or synthetic data.
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A. Related Work

Figure 1. Overview of MACE-TNP. Unlike classical approaches, that usually require a two-step procedure which 1) first involves posterior
inference over the graph structure, followed by 2) complicated inference over the functional mechanism, MACE-TNP amortises the full
causal inference pipeline.

Estimating the posterior interventional distribution (Equation (1)) is challenging. The dominant paradigm involves a two-
stage process: 1) obtaining samples from the high-dimensional posterior over graphs, and 2) estimating the interventional
distribution under each sampled DAG, followed by averaging the result. Figure 1 provides a diagram illustrating these two
steps. Although principled, this process faces computational challenges in both stages.

The first stage is challenging due to the super-exponential size of the space of DAGs. Early score-based methods addressed
this by leveraging score equivalence, allowing search over the small space of MECs instead of individual DAGs. To achieve
this, they used restricted the model family to linear Gaussians, with specific priors to make the scores analytically tractable
(Heckerman, 1995; Geiger and Heckerman, 2002). To accommodate broader model classes, Madigan et al. (1995) introduced
an MCMC scheme over the space of DAGs. However, the large space of DAGs leads to slow mixing and convergence issues,
limiting the number of effective posterior samples (Friedman and Koller, 2003; Koivisto and Sood, 2004; Teyssier and
Koller, 2005; Niinim et al., 2016; Kuipers and Moffa, 2017). A common bottleneck in these approaches is that scoring the
proposed structures at each MCMC step requires expensive marginal likelihood estimation. This is often mitigated through
reducing the graph space by restricting the in-degree of each node. Variational inference (VI) offers a cheaper alternative
(Charpentier et al., 2022) but struggles to capture multi-modal posteriors inherent in causal discovery (Toth et al., 2025,
Sec. 3.1), and can still have a demanding computational costs (e.g. SVGD used in (Lorch et al., 2021) scales quadratically
with samples). Crucially, any inaccuracies or biases in this stage affects the downstream estimation in the second stage.

The second stage—averaging over the posterior of causal graphs—has its own significant computational burden. It requires
performing inference with a potentially complex functional model for every single DAG sampled from the approximate
posterior p(G|Dobs). As a result, previous work has only considered simple functional models where the inference is not too
prohibitive. While early work in simple settings like linear Gaussian models allowed for closed-form averaging (Viinikka
et al., 2020; Castelletti and Consonni, 2021), recent works often employ Gaussian Process (GP) networks (Friedman and
Nachman, 2000) where this is not possible. To tackle this, Giudice et al. (2024) use complex MCMC schemes for both
hyperparameter posteriors of the GPs and graph sampling, but have to resort to approximating the final interventional
posterior distribution with a Gaussian for computational tractability. Toth et al. (2022; 2025) also use GP networks but use
the cheaper alternative of using MAP estimates for hyperparameters. However, both ultimately rely on the expensive process
of estimating interventions by sampling from the GP posterior conditional on each DAG. Hence, despite variations, the core
limitation of expensive inference persists across these approaches, especially prohibiting the use of more flexible function
model classes.

In contrast to this explicit two-stage procedure, we propose leveraging NPs (Garnelo et al., 2018b) to directly learn an
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estimator for the target interventional distribution conditional on the observational data Dobs. Our approach aims to learn
a mapping Dobs 7→ p(y|do(x),Dobs) that does not require approximating potentially problematic intermediate quantities.
This effectively amortises the complex inference and averaging procedure over the training of the NP. Our method thus
seeks to mitigate the severe computational bottlenecks and avoid the compounding of approximation errors inherent in the
standard two-stage pipeline for Bayesian causal inference. This is schematically shown in Figure 1.

There have been recent attempts at end-to-end or meta-learning approaches to estimating interventional distributions. While
some methods assume knowledge of the ground truth causal graph (Bynum et al., 2025; Mahajan et al., 2024; Zhang et al.,
2024), others offer a similar data driven approach as ours, but only in restricted settings. For example, Geffner et al. (2022)
offer an end-to-end approach but restrict to additive noise models, and do not perform functional inference. Sauter et al.
(2025) also use meta-learning to directly target the interventional distribution. Apart from differences in architecture and the
loss used, their method is limited to discrete interventions. In contrast, we propose a general framework that is not restricted
to types functional mechanisms or types of interventions. Further, by viewing meta-learning through a Bayesian lens, we
provide insight into the role of the training data as encoding a prior distribution (Gordon et al., 2019; Müller et al., 2022;
Hollmann et al., 2023). Tying our method to Bayesian inference also provides an understanding of the behaviour of our
model under identifiability and non-identifiability of the causal model (Chickering, 2002; Dhir et al., 2024b;a).

B. Model architecture
This section provides the definitions of the model architecture, as well as motivation for the primary design choices.

Desirable properties As noted in the main text, given that we are interested in predicting pBCM(xi|do(xj),Dobs), variables
play distinct roles as either the outcome node Xi, the intervening node Xj , or the nodes that are being marginalised. Thus,
properties of this distribution, and the role of the variables, guide our architecture choice. First, the interventional distribution
remains invariant when the observational data samples are permuted or the nodes being marginalised over are permuted
(permutation-invariance with respect to observational samples and to all nodes except the outcome Xi and intervention
Xj). Second, permuting the interventional queries should permute the samples of the target distribution accordingly
(permutation-equivariance with respect to interventional samples). Similarly, permuting any nodes involving the outcome or
intervention nodes should yield the corresponding permuted interventional distribution (permutation-equivariance with
respect to outcome and intervention nodes). For example, permutting the outcome and intervention nodes i↔ j should
result in the permuted p(xj |do(xi),Dobs).

Furthermore, we assume no correlations among the interventional samples and, as such, restrict our attention to the
family of conditional neural processes (CNPs), where the predictive distributions factorises over the interventional samples
pθ(xi|do(xj),Dobs) =

∏Nint
n=1 pθ(x

n
i |do(xn

j ),Dobs). In order to model non-Gaussian interventional distributions, we opt for
a Mixture of Gaussians (MoG) representation of pθ(xi|do(xj),Dobs) (Bishop, 1994).

An architecture that is flexible enough to satisfy these desiderata is the transformer (Vaswani et al., 2017; Lee et al., 2019).
We provide a high-level schematic architecture for our proposed model, the Model-Averaged Causal Estimation Transformer
Neural Process (MACE-TNP), in Figure 2. We next describe the model components in detail, beginning with the core
operations used in the transformer blocks, and then explaining how these are integrated into an architecture tailored for
estimating causal interventional effects.

B.1. Transformers

Transformers (Vaswani et al., 2017) can be viewed as general set functions (Lee et al., 2019), making them ideally suited for
NPs, which must ingest datasets. We begin by briefly overviewing transformers, defining the attention operations and how
we construct a transformer layer, followed by how we integrate transformers into the MACE-TNP architecture.

MHSA and MHCA Throughout this work we make use of two operations: multi-head self-attention (MHSA) and
multi-head cross-attention (MHCA). Let Z ∈ RN×Dz be a set of N tokens of dimensionality Dz . Then, for ∀ n = 1, . . . , N ,
the MHSA operation updates this set of tokens as follows

zn←cat
({ N∑

m=1

αh(zn, zm)zm
TWV,h

}H

h=1

)
WO, (3)
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Figure 2. Overview of MACE-TNP yielding pθ(xi|do(xj),Dobs). Inputs are 1) embedded via variable-specific MLPs, 2) fed into a
transformer encoder that alternates sample-wise and node-wise attention. The resulting outcome node representation from the unknown
interventional distribution is 3) decoded to obtain the parameters of the NP distribution.

where WV,h ∈ RDz×DV and WO ∈ RHDV ×Dz are the value and projection weight matrices, H denotes the number of
heads, and αh is the attention mechanism. We opt for the most widely used softmax formulation

αh(zn, zm) = softmax({zTnWQ,hW
T
K,hzm}Nm=1)m, (4)

where WQ,h ∈ RDz×DQK and WK,h ∈ RDz×DQK are the query and key matrices.

The MHCA operation performs attention between two different sets of tokens Z1 ∈ RN1×Dz and Z2 ∈ RN2×Dz . For
∀ n = 1, . . . , N1, the following update on z1,n is performed:

z1,n ← cat
({ N2∑

m=1

αh(z1,n, z2,m)z2,m
TWV,h

}H
h=1

)
WO. (5)

In order to obtain the attention blocks used within the transformer, these operations are typically combined with residual
connections, layer-isations and point-wise MLPs.

More specifically, we define the MHSA operation as follows:

Z̃← Z+MHSA(layer-norm1(Z))

Z← Z̃+MLP(layer-norm2(Z̃)).
(6)

Similarly, the MHCA operation is defined as:

Z̃1 ← Z1 +MHCA(layer-norm1(Z1), layer-norm1(Z2))

Z1 ← Z̃1 +MLP(layer-norm2(Z̃1)).
(7)

Masked-MHSA Consider the general case in which we want to update N token Z ∈ RN×Dz . There might be some
situations where we want to make the update of a certain token zn ∈ Z independent of some other tokens. In that case, we can
specify a set Mn ⊆ N+

≤N containing the indices of the tokens we want to make the update of zn independent of. Then, we can
modify the pre-softmax activations within the attention mechanism α̃h(zn, zm), where αh(zn, zm) = softmax(α̃h(zn, zm))
as follows:

α̃h(zn, zm) =

{
−∞ if m ∈Mn

zTnWQ,hW
T
K,hzm otherwise

(8)

From the indices of Mn we can construct a binary masking matrix M ∈ {0, 1}N×N :

Mn,m =

{
0 if m ∈Mn

1 otherwise

When used in the context of MHSA, we refer to this operation as masked-MHSA and represent it as Z =
masked-MHSA(Z,M).
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B.2. Model-Averaged Causal Estimation Transformer Neural Processes (MACE-TNPs)

We refer to (Nguyen and Grover, 2022; Ashman et al., 2024) for a complete description of standard TNP architectures, and
focus on describing the architecture of the MACE-TNP in more detail. Our proposed architecture is conceptually similar to
the standard TNP architectures, but incorporates specific design choices and inductive biases that make it suitable for causal
estimation.

We assume we have access to Nobs observational samples and want to predict the distribution of Nint interventional samples.
The inputs to the MACE-TNP are: the observational dataset Dobs ∈ RNobs×D×ddata , the values of the node we intervene upon
xj ∈ RNint (implying we intervene on node index j), and the outcome node index i. Let Dobs,i ∈ RNobs×ddata denote the
observational data at node i. We omit the batch dimension for notational convenience.

Data pre-processing The model takes as input a matrix of Nobs observational samples of D nodes and an intervention
matrix of Nint queries for a node of interest Xj , with the rest of the D − 1 nodes masked out (by zeroing them out). Let
Dint,i ∈ RNint×ddata denote the interventional data at node i. In the following we use Dobs,{k∈[D]\{i,j}} to denote nodes in the
observational dataset that are being marginalised over.

Embedding To differentiate between the different types of variables, we employ six different types of encodings, depending
on the source of the data (observational (obs) or interventional (int)), and the type of the node (node we intervene upon (j),
outcome node (i), or node we marginalise over). These are all performed using 2-layer MLPs of dimension dembed.

observational, intervention node: Zobs,j = MLPobs,j(Dobs,j) (9)
observational, outcome node: Zobs,i = MLPobs,i(Dobs, i)

observational, marginal nodes: Zobs,{k∈[D]\{i,j}} = MLPobs(Dobs,{k∈[D]\{i,j}})

interventional, intervention node: Zint,j = MLPint,j(Dint,j)

interventional, outcome node: Zint,i = MLPint,i(Dint,i)

interventional, marginal nodes: Zint,{k∈[D]\{i,j}} = MLPint(Dint,{k∈[D]\{i,j}}),

where {k ∈ [D] \ {i, j}} represents the set of indices from {1, . . . , D} excluding i and j. The representations are then
concatenated back together in the original node order:

Zobs = concat
(
[Zobs,k]k∈[D]

)
, where Dk =


Zobs,i if k = i

Zobs,j if k = j

Zobs,k otherwise

Zint = concat
(
[Zint,k]k∈[D]

)
, where Zk =


Zint,i if k = i

Zint,j if k = j

Zint,k otherwise

After the embedding stage, we obtain the representation of the observational dataset Zobs ∈ RNobs×D×dembed , and the
representation of the interventional one Zint ∈ RNint×D×dembed .

MACE Transformer Encoder We utilise a transformer-based architecture composed of L layers, where we alternate
between attention among samples, followed by attention among nodes. This choice preserves 1) permutation-invariance with
respect to the obervational samples, 2) permutation-equivariance with respect to the interventional samples, 3) permutation-
invariance with respect to the nodes we marginalise over, and 4) permutation-equivariance with respect to the outcome and
interventional nodes. Although we generally omit the batch dimension for convenience, we include it in this subsection
to accurately reflect our implementation. Thus, the input to the MACE transformer encoder are the observational data
representation Zobs ∈ RB×Nobs×D×dembed and interventional data representation Zint ∈ RB×Nint×D×dembed , with B the batch
size.
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Attention among samples We propose two variants to perform attention among samples. We use the less costly MHSA +
MHCA variant for the experiments in the main paper and show that it performs better in Appendix E.1.

1. Masked-MHSA among the observational and interventional samples: At each layer l, we first move the node di-
mension to the batch dimension for efficient batched attention: Zl

obs ∈ RB×Nobs×D×dembed → R(B×D)×Nobs×dembed

and Zl
int ∈ RB×Nint×D×dembed → R(B×D)×Nint×dembed . We then concatenate the two representations Zl ∈

R(B×D)×(Nobs+Nint)×dembed = [Zl
obs,Z

l
int], and construct a mask M ∈ RNobs+Nint that only allows interventional to-

kens to attend to observational ones.

Mn,m =

{
1 if m < Nobs

0 otherwise

We then perform masked-MHSA: Zl = masked-MHSA(Zl,M). This strategy has a computational complexity
O((Nobs +Nint)

2).

2. MHSA + MHCA: An alternative, less costly strategy, is to perform MHSA on the observational data, followed by
MHCA between the interventional and observational data. More specifically, as in the previous case we move the node
dimension to the batch dimension and then perform:

Zl
obs = MHSA(Zl

obs)

Zl
int = MHCA(Zl

int,Z
l
obs).

We then concatenate the two representations into Zl ∈ R(B×D)×(Nobs+Nint)×dembed = [Zl
obs,Z

l
int]. This strategy has a

reduced computational cost of O(N2
obs +NobsNint) and is the strategy we use for the results in the main paper.

Attention among nodes The output of the attention among samples at layer l Zl ∈ R(B×D)×(Nobs+Nint)×dembed is then
fed into the next stage: attention among nodes. We first reshape the data Zl ∈ R(B×D)×(Nobs+Nint)×dembed → Zl′ ∈
R(B×(Nobs+Nint))×D×dembed , and then perform MHSA between the nodes:

Zl+1 = MHSA(Zl′)

This is then reshaped back into Zl+1 ∈ RB×(Nobs+Nint)×D×dembed , and then split into the observational and intervational data
representations that are fed into layer l + 1: Zl+1

obs ∈ RB×Nobs×D×dembed and Zl+1
int ∈ RB×Nint×D×dembed .

MACE Decoder We parameterise the output distribution of the NP as a Mixture of Gaussians (MoG) with Ncomp compo-
nents. The NP outputs the mean, standard deviation and weight corresponding to each component for each interventional
query {xn

j }Nint
n=1: {µ,σ,w}(xn

j ) := {µk(x
n
j ), σk(x

n
j ), wk(x

n
j )}

Ncomp

k=1 . These are computed based on the outcome interven-
tional representation from the final layer of the MACE Transformer Encoder. More specifically, the input to the decoder is
ZL

int,i ∈ RNint×dembed . This is then passed through a two-layer MLP of hidden size demb, followed by an activation function

zout = activation(MLP(ZL
int,i))

Finally, we use linear layers to project the embedding zout ∈ RNint×dembed to the parameters of a mixture of Ncomp Gaussian
components:

µ = Linearmean(zout) ∈ RNint×Ncomp

pre-σ = Linearstd(zout) ∈ RNint×Ncomp

pre-w = Linearweight(zout) ∈ RNint×Ncomp .

We then apply element-wise transforms to obtain valid parameters:

σ = softplus(pre-σ) w = softmax(pre-w),

with the softmax being applied along the component dimension.
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Loss The output parameters are then used to evaluate the per-dataset loss of the MACE-TNP, which, as shown in Section 3
requires the evaluation of the log-posterior interventional distribution of the MoG:

Lθ(xi, {µ,σ,w}(xj)) =

Nint∑
n=1

log pθ(x
n
i |do(xn

j ),D) =
Nint∑
n=1

log

Ncomp∑
k=1

wk(x
n
j ) · N (xn

i | µk(x
n
j ), σ

2
k(x

n
j ))

 (10)

where N (x|µ, σ) represents the Gaussian distribution with mean µ and standard deviation σ.

C. Data Generation
We provide in Figure 3 a diagram showing how we sample data from the specified Bayesian Causal Model.

Figure 3. Overview of the data generation process. We first sample a graph G, and a functional mechanism (conditioned on the sampled
graph) for each of the D nodes in the dataset. These are then used to draw Nobs observational samples. To construct the interventional
dataset, we first randomly sample a node to intervene upon j, draw Nint intervention values xj ∼ N (0, I), and set the values of node j to
be xj . We then drawn Nint samples of each node to form an interventional dataset Dint.

C.1. Three-node Experiments

In the three-node experiments (Section 4.1) we use two datasets with two different functional mechanisms fi(·): one sample
from a GP prior, and one based on neural networks. In both cases, we sample Erdős–Rényi graphs with graph degree chosen
uniformly from {1, 2, 3}. Following Ormaniec et al. (2025), we standardise all variables upon generation.

GP functional mechanism To model fi(·) we use a GP with a squared exponential kernel, with a randomly sampled
lengthscale for each parent set PAi of size |PAi|. More specifically, we sample the lengthscale from a log- distribution
{λp}|PAi|

p=1 ∼ Log(−1, 1), followed by clipping between λp = clip(λp, 0.1, 5) to ensure that a too long lengthscale does not
result in independence of the variable from a parent. This defines the kernel matrix between the n-th and m-th samples as:

Knm = exp(−(PAn
i − PAm

i )TΛ−1(PAn
i − PAm

i )),

with Λ := Diag(λ1, . . . , λ|PAi|). We then add noise with variance σ2 ∼ Gamma(1, 5) and sample the variables as follows

Xi ∼ N (0,K+ σ2I)

Neural network-based functional mechanism We sample each variable as follows

ηi ∼ N (0, 1)

Xn
i ∼ ResNetθ([PA

n
i , ηi]) + σϵ,

where σ2 ∼ Gamma(1, 10), ϵ ∼ N (0, 1). ResNetθ is a residual neural network with a randomly sampled number of
blocks Nblocks ∼ U{1, . . . , 8} and randomly sampled hidden dimension dhidden ∼ U{25, 26, 27, 28}. We use the GELU
(Hendrycks and Gimpel, 2016) activation function.
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C.2. Higher-dimensional experiments

For the higher dimension experiments in Section 4.2, we generate the data as follows:

• We sample number of variables D ∼ U [5, 40].

• We sample a type of graph, either an Erdős–Rényi graph or a scale-free graph (Barabási and Albert, 1999).

• The density of the graph (number of edges) is sampled from U
[
D
2 , 6D

]
.

• For each node, we sample a functional mechanism randomly from either a GP with an additional latent variable input,
or a Neural network with an additional latent variable input:

– GP with latent: We sample a latent ηi ∼ N (0, 1), and lengthscales {λp}|PAi|+1
p=1 ∼ Log(−0.5, 1), where PAi

denotes the set of parents of node index i. Functions are sampled from a squared exponential kernel with ηi
included as an input and Gaussian noise added with variance σ2 ∼ Gamma(1, 5).

– NN with latent:

ηi ∼ N (0, 1)

Xn
i ∼ NNθ([PA

n
i , ηi]) + σϵ,

where σ2 ∼ Gamma(1, 10), ϵ ∼ N (0, 1). NNθ denotes a randomly initialised neural network with 128 hidden
dimensions and one hidden layer. We use the GELU activation function.

Using a latent as an input ensures that the final distribution is not Gaussian. Following Ormaniec et al. (2025), we standardise
all variables during the data generation process.

For testing in each variable size in Table 2, we only generate Erdős–Rényi graphs with density 4D. This is to test the
performance of the baselines and our method in the difficult dense graph case. The rest of the data generation process is the
same as the training data.

D. Experimental Details
This section provides additional details and results for the experiments presented in Section 4.

D.1. Architecture, training details and hardware

Throughout our experiments we use H = 8 attention heads, each of dimension DQ = DKV = dmodel/8. The MLPs used in
the encoding use two layers and a hidden dimension of dembed = dmodel. Unless otherwise specified, we use a learning rate
of 5× 10−4 with a linear warmup of 2% of the total iterations, and a batch size of 32.

To train MACE-TNP, we randomise the number of observational samples Nobs ∼ U{50, 750}, and set Nint = 1000−Nobs.
The training loss is evaluated on these Nint samples. For testing, we sample 500 observation points and compute the loss
against 500 intervention points.

Two-node linear Gaussian model We use L = 2 transformer encoder layers, where each transformer encoder layer
involves the attention over samples, followed by attention over nodes. The model dimension is dmodel = 128, and feedforward
width dff = 128. We train the model for 1 epoch on 50.000 datasets and test on 100 datasets. Training takes roughly 60
minutes on a single NVIDIA GeForce RTX 2080 Ti GPU 11GB, and testing is performed in less than 5 seconds.

Three-node experiments For the experiment in the main paper, we use L = 2 transformer encoder layers, a model
dimension dmodel = 128, and feedforward width dff = 128. We train the model for 2 epochs on 50.000 datasets for the GP
experiment and 100.000 datasets for the NN one, and test on 100 datasets in both cases. When testing the OOD performance,
we train on the union of the two datasets for 2 epochs. Training the models described in the main text required roughly 4− 6
hours of GPU time; however, because we ran them on a shared cluster, actual runtimes may vary with cluster utilization.
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Higher dimensional and Sachs experiments For the higher dimensional experiments we use L = 4 encoder layers. The
model dimension is dmodel = 256 with feedforward dimension dff = 1024. We train the model on data generated as listed
in Appendix C.2, with 2, 500, 000 datasets in total. The model was trained on an NVIDAI A100 80GB GPU for 2 epochs
which took roughly 20 hours. We use the model trained for the higher dimensional experiment for the Sachs experiment.

Hardware For the two- and three-node experiments, we ran both training and inference on a single NVIDIA GeForce
RTX 2080 Ti (11 GB) with 20 CPU cores on a shared cluster. The only exception was for our largest three-node GP and NN
models (with dmodel = 1024), where we used a single NVIDIA RTX 6000 Ada Generation (50 GB) paired with 56 CPU
cores; those models required roughly 25 GB of GPU memory. For the higher-node experiments, we used a single NVIDIA
A100 80GB GPU, as well as an RTX 4090 24GB GPU.

E. Additional Results
E.1. Three-node Experiments

In this section we provide additional results on the three-node experiments. First of all, we investigate the performance
of MACE-TNP when tested on out-of-distribution data, and discuss how its generalisation capabilities can be enhanced.
We then provide results for a range of architectural choices, including varying the number of components in the MoG, the
attention mechanism, the model dimension dmodel, the feedforward width dff, and the number of layers L.

Out-of-distribution testing: A natural question is: how does the model perform when tested on out-of-distribution (OOD)
data? To probe this, we evaluate MACE-TNP (GP) on NN-generated data and MACE-TNP (NN) on GP-generated data. As
expected, performance degrades when the test mechanism differs from training, since our model lacks built-in inductive
bias for unseen mechanisms: MACE-TNP (GP) tested on NN achieves 608.3± 17.3, compared to MACE-TNP (NN) with
527.9 ± 19.8. Similarly, MACE-TNP (NN) tested on GP achieves 678.0 ± 10.0, compared to MACE-TNP (GP) with
563.9 ± 23.4. However, NPs trivially support additional training on any data likely to be informative. Indeed, training
MACE-TNP on the combined GP+NN data nearly recovers in-distribution accuracy, achieving 531.0± 19.4 on NN data
and 583.9± 21.5 on GP data (see Table 3).

Table 3. Results for the OOD two-node experiment. We show the NLPID (↓) and report the mean ± the error of the mean over 100
datasets. Each row corresponds to a different functional mechanism used in the test set (GP / NN).

Training→
Test ↓ GP NN GP+NN

GP 563.9± 23.4 678.0± 10.0 583.9± 21.5
NN 608.3± 17.3 527.9± 19.8 531.0± 19.4

Results for different architectural choices: Next, we aim to address three questions: 1) between the MHSA and MHCA
schemes for sample attention introduced in Appendix B.2, which one performs better? 2) Does increasing the number of
MoG components improve performance, and 3) How does the model performance vary with the size of the architecture?

Table 4 shows the results for the two functional mechanisms used in the three-node experiments: GP and NN-based. For
each model configuration, we present four sets of results: for a model trained on GP and tested on GP (GP / GP), a model
trained on NN and tested on NN (NN / NN), and for a model trained on the combination between the two datasets and
tested on each of them (GP+NN / GP and GP+NN / NN). These results allow us to assess whether the influence of model
architecture is consistent across the functional mechanisms. Notably, models trained on the combined GP+NN dataset are
able to match—within error—the performance of models trained specifically on either GP or NN data. This highlights the
strength of the meta-learning approach: even when trained on data generated from diverse functional mechanisms, a single
model can generalise effectively across both, achieving performance comparable to specialised models while also benefiting
from broader prior coverage. We summarise the findings from Table 4:

1. MHSA + MHCA outperforms the masked-MHSA strategy for attention over samples.

2. Increasing the number of MoG components increases the performance of MACE-TNP. There is a larger gap in
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performance when going from 1 to 3 mixture components, indicating the importance of allowing the model to output
non-Gaussian marginal predictions. Increasing the number of components to 10 further improves performance, but the
gains are not as significant.

3. Scaling up the model architecture generally leads to decreased NLPID.

4. Training a model on the combination of the two datasets (GP+NN) is able to recover—within error—the performance
on both datasets.

Table 4. Results of MACE-TNP under different architectural configurations. M-SA stands for Masked-MHSA, while SA+CA indicates
the MHSA+MHCA attention mechanism. For each model, the column name under NLPID indicates the training set / test set (i.e. GP+NN
/ GP indicates we trained the model on the GP+NN dataset and tested it on the GP one). We report the mean ± the error of the mean of
the NLPID over 100 datasets.

NLPID (↓)
MoG Attention dmodel dff L GP / GP NN / NN GP+NN / GP GP+NN / NN

1 M-SA 128 128 4 629.0± 20.0 664.1± 16.0 640.1± 17.3 668.3± 17.2
1 SA+CA 128 128 4 617.4± 20.1 664.9± 16.4 629.8± 17.5 688.0± 31.5
3 M-SA 128 128 4 581.8± 21.8 538.9± 19.1 597.6± 19.9 547.1± 17.8
3 SA+CA 128 128 4 569.3± 23.1 540.5± 17.1 582.1± 21.6 540.6± 18.8
10 M-SA 128 128 4 572.1± 21.9 533.2± 18.3 599.4± 20.3 531.5± 19.6
10 SA+CA 128 128 4 563.9± 23.4 527.9± 19.8 583.9± 21.5 531.0± 19.4
10 SA+CA 512 256 8 555.7± 24.6 527.0± 19.1 564.6± 23.6 532.1± 18.4
10 SA+CA 1024 256 8 558.0± 23.9 518.2± 19.7 565.6± 22.3 521.1± 20.8

E.2. Sachs Experiment

In Table 5, we show the performance of all the baselines, and the MACE-TNP for the Sachs dataset (Section 4.3). The
MACE-TNP performs competitively along with DECI, and they both outperform the other methods.

Table 5. Shows the NLPID (↓) for the Sachs dataset (Sachs et al., 2005). The numbers reported are the mean of the NLPID across 10
nodes across 5 interventions ± the error of the mean.

Sachs

MACE-TNP 998.9± 104.9
DiBS-GP 1417.5± 186.7
ARCO-GP 1400.7± 208.7
DECI 1000.9± 133.5
NOGAM+GP 1763.7± 297.4

F. Two-node Linear Gaussian model
We consider the simple case of n independent and identically distributed (i.i.d.) random vectors with 2 nodes of the form
Xi := [Xi

1, X
i
2]

T with i ∈ {1, 2, . . . n}. To simplify notation, we omit the subscript BCM from pBCM throughout this
section. In this setting, there are three distinct possible additive noise linear structural causal models:

G1 :=

[
0 0
1 0

]
: X1 = wX2 + U1 and X2 = U2 (11)

G2 :=

[
0 1
0 0

]
: X1 = U1 and X2 = wX1 + U2 (12)
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G3 :=

[
0 0
0 0

]
: X1 = U1 and X2 = U2 (13)

Identifiable case: We begin with the case where the noise variances of U1 and U2 are equal and known—a setting shown to
be identifiable in Peters and Bühlmann (2013). Fixing σ2, σ2

w ∈ R+, we consider the following hierarchical model:

G ∼ U{G1,G2,G3}, Ui ∼ N (0, σ2) for i = 1, 2

w ∼ N (0, σ2
w) if G ∈ {G1,G2}.

Non-identifiable case: Second, we consider the errors’ variances to be unknown and hence, place priors on these extra
parameters as well. We propose the following hierarchical model for fixed α > 1

2 ,

G ∼ U{G1,G2,G3}
If G = G1, then τ21 ∼ InvGamma(α, 0.5), τ22 ∼ InvGamma(α− 0.5, 0.5), w ∼ N (0, τ21 )

If G = G2, then τ21 ∼ InvGamma(α− 0.5, 0.5), τ22 ∼ InvGamma(α, 0.5), w ∼ N (0, τ22 )

If G = G3, then τ21 ∼ InvGamma(α− 0.5, 0.5), τ22 ∼ InvGamma(α, 0.5).

We use asymmetric priors for τ21 and τ22 to ensure that the posterior assigns equal weight to the graphs G1 and G2, which are
in the same Markov equivalence class. This setup corresponds to the prior structure proposed by Geiger and Heckerman
(2002, Equation 12), obtained by setting the precision matrix T in the Wishart distribution to the identity. As noted in their
Geiger and Heckerman (2002, Section 4), a change of variables transforms the Wishart prior on the covariance of X into the
prior used here for the weights w and error variances τ21 and τ22 .

F.1. Experiments

We study the performance of MACE-TNP in both identifiable and non-identifiable causal settings by generating data
according to the models described above. For all experiments, we set σ = σw = 1 in the identifiable case and α = 3 in the
non-identifiable case. Closed-form expressions are available for both the posterior over graphs p(G | Dobs) (Geiger and
Heckerman, 2002) and the posterior interventional distribution p(xi | do(xj),Dobs). We define the average KL between the
ground-truth interventional posterior and MACE-TNP’s output:

EXj∼N (0,1)

[
KL(pBCM (xi|do(Xj),Dobs)∥pθ(xi|do(Xj),Dobs))

]
. (14)

Additionally, given that we work with synthetic data, in this experiment we also have access to the following quantity, where
{f∗,G∗} characterise the true data-generating mechanism:

EXj∼N (0,1)

[
KL(pBCM (xi|do(Xj), f

∗,G∗)∥pθ(xi|do(Xj),Dobs))

]
. (15)

This measures the distance between the interventional posterior conditioned on the true data-generating mechanism and
MACE-TNP’s output. This is different to Equation (14)—in the non-identifiable case, pBCM (xi|do(Xj),Dobs) does not
converge necessarly to pBCM (xi|do(Xj), f

∗,G∗) even in the limit of infinite observational data.

The results are shown in Figure 4 for the identifiable (left) and non-identifiable (right) cases. They confirm that the output
of MACE-TNP does indeed converge to the Bayesian optimal posterior, as the dark blue lines indicating the average KL
between the ground-truth posterior distribution and MACE-TNP’s output (Equation (14)) go to 0 with increasing sample
size in both cases. This is also the case in the identifiable scenario for the average KL between the posterior distribution
conditioned on the true data-generating mechanism and MACE-TNP’s output (Equation (15)), as shown with the red line
in the left plot. However, as expected, in the right plot, this quantity no longer goes to 0 due to the non-identifiability of
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the causal graph. This indicates that in the identifiable case, our model recovers the true posterior as well as the correct
interventional distribution (conditioned on the true function and graph), whereas in the non-identifiable case it recovers
the true posterior but remains uncertain about the correct interventional distribution (conditioned on the true function and
graph).

The flexibility of our architecture also allows for conditional queries, multiple interventions, as well as easily incor-
porating interventional data to help identify causal relations. Hence, we investigate here whether providing a small
number Mint = 5 of true interventional samples, alongside the observational data, resolves identifiability challenges
in the non-identifiable case. As shown in Figure 4 (right) with the green line, we find that this does indeed lower the
KL(pBCM (xi|do(xj), f

∗,G∗)∥pθ(xi|do(xj),Dobs, {xn
i }Mint

n=1)), suggesting that even limited interventions can enhance iden-
tifiability. We also test this with an increasing number of interventional samples in Figure 5. As soon as the interventional
information is rich enough (Mint ∈ {50, 300}), the NP recovers the interventional disribution of the true data-generating
mechanism even with little to no observational data, as indicated by the near-flat KL curves.

Finally, we show in Figure 6 two examples where the intervention is made at x = 1 for the identifiable model and at
x = 2 for the non-identifiable model. A clear distinction is observed between the two settings: for the identifiable case,
the analytical posterior interventional distribution is a mixture of two Gaussian distributions, which, at high observational
sample sizes, converges to a single Gaussian (i.e. because the observational data gives information regarding the causal
structure, the weight corresponding to one mode collapses to 0). In contrast, for the non-identifiable case, the posterior
places equal mass on both G1 and G2, and therefore, the mixture structure persists across both regimes. In both settings, the
NP-predicted distributions closely match the correct interventional distributions, with accuracy improving as the number of
observational samples increases. This improvement is due to two factors. First, larger sample sizes provide the NP with
more information about the underlying causal model, allowing for enhanced inference. Second, in the non-identifiable case,
the posterior interventional distribution is a mixture of two Student-t distributions with a number of degrees of freedom
proportional to the number of observational samples. Thus, in the high sample regime, the mixture distribution converges to
a mixture of Gaussians, which is the class that parameterises the output of the NP model.
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Figure 4. KL divergences as a function of the observational sample size, for the identifiable case (left) and the non-identifiable one (right).
Dark blue denotes pBCM—the posterior interventional distribution defined in Equation (1), red and green use p∗BCM—the interventional
distribution conditioned on {f∗,G∗}. We additionally provide MACE-TNP with Mint = 5 interventional samples. We indicate the median
and the 10-90% quantiles.
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Figure 5. Average KL divergence between the interventional distribution of the true generating mechanism, {G∗, f∗}, and the NP-
predicted distribution shown as a function of the observational sample size for the non-identifiable setting. Results are shown for various
interventional sample sizes. For simplicity, we only report the medians.

19



Estimating Interventional Distributions with Uncertain Causal Graphs through Meta-Learning

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity

Posterior interventional distribution at x = 1  (#samples = 5)

weight 0.95: N(0.96, 1.02)
weight 0.05: N(0.83, 0.94)
NP prediction
Analytical

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Posterior interventional distribution at x = 2 (#samples = 5)

weight 0.13: N(1.38, 1.61)
weight 0.39: N(-0.12, 1.30)
weight 0.48: N(2.84, 0.58)
NP prediction
Analytical

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity

Posterior interventional distribution at x = 1  (#samples = 50)

weight 0.96: N(1.13, 1.00)
weight 0.04: N(0.87, 0.93)
NP prediction
Analytical

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Posterior interventional distribution at x = 2 (#samples = 50)

weight 0.14: N(1.37, 1.49)
weight 0.39: N(-0.12, 1.52)
weight 0.46: N(2.60, 0.59)
NP prediction
Analytical

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity

Posterior interventional distribution at x = 1  (#samples = 100)

weight 0.96: N(1.06, 1.00)
weight 0.04: N(0.84, 0.94)
NP prediction
Analytical

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Posterior interventional distribution at x = 2 (#samples = 100)

weight 0.14: N(1.38, 1.17)
weight 0.41: N(-0.11, 1.12)
weight 0.45: N(2.46, 0.46)
NP prediction
Analytical

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity

Posterior interventional distribution at x = 1  (#samples = 500)

weight 0.93: N(0.78, 1.00)
weight 0.07: N(0.74, 0.94)
NP prediction
Analytical

4 2 0 2 4
Outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Posterior interventional distribution at x = 2 (#samples = 500)

weight 0.15: N(1.28, 1.31)
weight 0.39: N(-0.11, 1.13)
weight 0.45: N(2.39, 0.54)
NP prediction
Analytical

Figure 6. Fitted NP posterior interventional distributions vs. true posterior interventional distributions for identifiable (left) and non-
identifiable models (right) at increasing observational sample sizes {5, 50, 100, 500}.
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