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Global vegetation structure mapping is critical for understanding the global carbon cycle and maximizing the
efficacy of nature-based carbon sequestration initiatives. Moreover, vegetation structure mapping can help
reduce the impacts of climate change by, for example, guiding actions to improve water security, increase
biodiversity and reduce flood risk. Global satellite measurements provide an important set of observations
for monitoring and managing deforestation and degradation of existing forests, natural forest regeneration,
reforestation, biodiversity restoration, and the implementation of sustainable agricultural practices. In this
paper, we explore the effectiveness of fine-tuning of a geospatial foundation model to estimate Above-Ground
Biomass (AGB) using space-borne data collected across different eco-regions in Brazil. The fine-tuned model
architecture consisted of a Swin-B transformer as the encoder (i.e., backbone) and a single convolutional layer
for the decoder head. All results were compared to a U-Net which was trained as the baseline model.

Experimental results of this sparse-label prediction task demonstrate that the fine-tuned geospatial foun-
dation model with a frozen encoder has comparable performance to a U-Net trained from scratch. This is
despite the fine-tuned model having 13 times less parameters requiring optimization, which saves both time
and compute resources. Further, we explore the transfer-learning capabilities of the geospatial foundation
models by fine-tuning on satellite imagery with sparse labels from different eco-regions in Brazil.
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1 INTRODUCTION

The accurate estimation of forest attributes, such as tree height, plays an important role in under-
standing forest structure and changes in biomass and carbon sequestration. Forest services typically
use traditional field-based methods to compile forest inventory data, examining tree attributes such
as tree height, diameter at breast height, canopy diameter, and species type. These measurements
are then converted into tree biomass using species-specific alometric equations [11], which can
then be used to estimate the carbon sequestrated in each tree. However, field-based measurements
are time-consuming, labor-intensive, expensive, and limited to accessible locations, thus making
the compiled datasets sparse in space and time and difficult to generalize to large scales [8].

Remote sensing techniques have emerged as a promising alternative to traditional in-situ mea-
surement methods, offering cost-effective solutions for tree height estimation at various spatial and
temporal scales. Among the different remote sensing methods of relevance to vegetation structure
mapping, airborne and spaceborne Light Detection and Ranging (LiDAR) systems, Synthetic Aper-
ture Radar (SAR), and multispectral and hyperspectral imagery have gained significant attention in
recent years [25].

LiDAR technology has proven highly effective in estimating canopy height and delineating trees,
offering a high degree of accuracy [8]. Although high-quality LiDAR data, such as aerial LiDAR,
has been gathered in numerous locations and its significance acknowledged, the availability of
such data is not uniform worldwide. However, the advent of space-based LiDAR observations,
such as the Global Ecosystem Dynamics Investigation (GEDI) [6] and the Ice, Cloud, and Land
Elevation Satellite ICESAT-2) [17], has provided direct measurements of vegetation characteristics,
including canopy height, in regions previously unmeasured. Nonetheless, these space-based LIDAR
measurements are sparse in terms of spatial distribution. Consequently, the process of transforming
these sparse data points into spatially continuous AGB estimates requires the use of geostatistical
methods including machine learning [1, 12].

Predicting forest characteristics such as Above-Ground Biomass (AGB) and canopy height has
been explored using supervised machine learning approaches. Examples include the use of linear
regression [1], ensemble methods such as random forests [7] and gradient boosting [13], support
vector machines [23], and more recently the use of deep learning approaches based on deep neural
networks [12, 16, 19].

A recent self-supervised learning breakthrough in artificial intelligence are models known as
foundational models. These are large models that learn global patterns and general features from
extensive unlabeled data. In comparison, classical deep learning models such as Convolutional
Neural Networks (CNNs) and U-Nets focus training on local dependencies only [10]. The foundation
model approach, that is very successful in language modeling, has been extended to images where
masked auto-encoders partially obscure images for the reconstruction of masked parts [9]. Satellite
imagery with its abundant and open availability of moderate spatial resolution Landsat and Sentinel
satellites have been used to successfully build Geospatial Foundation Models (GFMs).

The main obstacle to fully benefit from automated general-purpose computer vision tools for
geospatial applications is a shortage of very-large-scale, multi-task remote sensing datasets. Hence,
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there is a keen interest in self-supervised methods which can gain general domain knowledge from
unlabelled datasets. For example, state-of-the-art computer vision architectures, such as Contrastive
Language-Image Pre-Training (CLIP) models [21], Vision Transformers [5] and Swin Transformers
[14] can be pre-trained on large datasets with an aim to not over-fit. Labels are then required
for fine-tuning with tasks ranging from object detection, instance segmentation, and semantic
segmentation. A limited number of labelled remote sensing datasets presently exist such as the
DOTA dataset [27], the iSAID dataset [26], and the Deep-Globe dataset [4]. These datasets contain
less than 10K images, though this is significantly less than the millions of images used to train the
CLIP.

In this paper, we aim to test geospatial foundation models for predicting AGB from NASA’s HLS
imagery. The main contributions of this paper are the following:

e We investigate if fine-tuning of geospatial foundation models with a frozen encoder and only
0.6 million tunable parameters can match the capabilities of a state of the art U-Net with 7.8
million tunable parameters.

e We investigate the generalizability of these foundation models across different eco-regions in
Brazil.

2 RELATED WORK
2.1 Self-Supervised and Multi-Task Learning for Remote Sensing.

Supervised learning is often used for feature extraction from labeled data, but it requires large
amounts of labeled data for model training. This can be challenging, especially in the context
of remote sensing, where manual annotation of large datasets is often impractical. Additionally,
the location sensitivity of annotations such as variations in acquisition geometry, atmospheric
conditions, and land cover phenology can affect the transferability of trained models to new areas.
To address the need for manual annotation, Self-Supervised Learning (SSL) has been explored as
a method for training models using large sets of unlabeled data. In the context of deep learning,
particularly with images, SSL typically involves two tasks: a self-supervised pretext task for model
training, where unlabeled data is manipulated to generate pseudo-labels, and real downstream
tasks associated with applications. The success of SSL depends heavily on the design of the pretext
task [30]. A well-designed pretext task helps the network capture high-level representations of
the input data, enabling the model to learn from a large volume of unlabeled data. Two common
strategies for pretext design are the generative-based tasks that reconstruct parts of the intentionally
perturbed input data, and contrastive-learning based tasks which differentiate inputs with similar
meanings [30]. Those pre-training of SSL seems to the most appreciate approach to deal with Earth
observation tasks with sparse labels, for example, GEDI measurements.

Different approaches have been developed to improve performance on a wide range of down-
stream applications with very few labels. Several proposed methods incorporate temporal augmen-
tations into a contrastive learning framework in which image tiles of the same location captured at
different times are imposed to have more similar representations than images of different locations
[15]. Furthermore, a general-purpose neural architecture with a focus on geospatial tasks was
proposed by combining self-supervised learning with supervised training on diverse tasks [22].
The state of the art computer vision models cannot handle all the label types that naturally occur in
different geospatial downstream tasks. For example, Mask2Former [2] can simultaneously perform
semantic and instance segmentation, though it is not capable of predicting properties of polygons
or classify images due to its architecture design. That does not allow these models to benefit from
transfer learning opportunities in the field of Earth observations. For example, pre-trained models



KDD 2024, Aug. 25-29th, 2024 Muszynski et al.

. EC 1: Tropical & Subtropical Moist Broadleaf Forests
|:| EC 2:Tropical & Subtropical Dry Broadleaf Forests

. EC 3: Tropical & Subtropical Grasslands, Savannas & Shrublands

. = B
| ]

(0-50) (50-100) (100-200) (200-300)
Bin-wise values [Mg/ha]

60

@
g

(b) mECI WEC2 WEC3

Fig. 1. Overview of the Brazil 2022 dataset: a) image tiles selected from three eco-regions in Brazil: the eco-
region Tropical and Subtropical Moist Broadleaf Forests (EC1), the eco-region Tropical and Subtropical Dry
Broadleaf Forests (EC2) and the eco-region Tropical and Subtropical Grasslands, Savannas and Shrublands
(EC3) to build the dataset and b) the distribution of GEDI measurement values for the image tiles from each
of the three eco-regions.

on detecting building polygons could improve image segmentation for land cover and land use,
since land use includes a human-developed category.

There are still many unanswered questions regarding how to effectively adapt methods commonly
used in other domains to the specific properties of Earth observation data. In particular, the potential
of self-supervised learning in the context of above-ground biomass prediction has received limited
attention, despite some promising results that have been reported [20].

3 DATASET

In the last decades, forests in Brazil have been subjected of de-forestation and conversion to
agricultural lands. Being willing to explore biological changes in the Brazilian eco-system, we
consider four main eco-regions in Brazil: Tropical and Subtropical Moist Broadleaf Forests (EC1),
Tropical and Subtropical Dry Broadleaf Forests (EC2), Tropical and Subtropical Grasslands, Savannas
and Shrublands (EC3), and Flooded Grasslands and Savannas (EC4) [18] in this work. We have
merged EC3 with EC4 due to the small size of the eco-region EC4 and then we call the joint
eco-region EC3. In Figure 1a), we show the distribution of GEDI measurements over those three
main eco-regions collected in 2022. The majority of aboveground biomass measurements are in
the bin (0-50) and the bin (100-200), as shown in Figure 1b), therefore our AGB regressors should
mainly focus on accurate predictions of low and medium AGB values.

Preprocessing of raw satellite images is required and encompasses a range of additional steps. We
describe the most relevant steps, below. Harmonized Landsat-8 Sentinel-2 (HLS) data that consist
of six channels: Blue, Green, Red, NIR-Narrow, SWIR 1 and SWIR 2 are often contaminated with
large amounts of clouds or no-data values. To ensure high quality data for training or fine-tuning,
we proposed a pre-processing methodology that excludes images with large numbers of missing
values and/or containing cloud coverage. To achieve that, we took advantage of the cloud mask
corresponding to each HLS tile for a given timestamp. Across a time interval and leaf on season, all
tiles are analyzed at pixel level and the median cloud free pixel is considered to create a cloud free
image for a given area. The cloud free image is used to fine-tune the model for AGB prediction.
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Fig. 2. The encoder-decoder architecture diagram of the geospatial foundational model used to estimate
AGB in Brazil.

3.1 Fine-tuning, Validation, and Testing Set

To evaluate generalization of fine-tuned geospatial foundation models, we estimate the average
performance over fine-tuning sets extracted from three major eco-regions in Brazil in 2022. All
labeled data from a validation set (i.e., unseen data) is held out for an objective evaluation of
fine-tuned geospatial foundation model regressors and our baseline, U-Net on samples from the
same eco-region on which they have not been fine-tuned or trained.

4 METHODOLOGY

To address our AGB pixel-wise regression task, we fine-tune a geospatial foundation model that is
based upon Prithvi [10] but with a Swin-B backbone and a state-of-the-art U-Net regressor. The
models are fine-tuned and trained, respectively, on different training datasets representing three
major eco-regions in Brazil. The details of the models are described in this section.

4.1 Fine-tuning the geospatial foundation model and training the U-Net

The foundation model is based upon that described in [10] except that the backbone is a Swin-B
transformer [14]. Briefly, for pre-training, we leverage SimMIM [29], a SSL strategy based on
masking large parts of the input and tasking the model with reconstructing them. Following
SimMIM [29], during pre-training, a small decoder composed of a single convolutional layer
followed by a Pixel Shuffle [24] module is used to reconstruct all image patches. In this work, we
used two versions of the geospatial foundation model, one pre-trained with 1000 HLS image tiles
sampled across the globe (i.e., Global GFM) and another pre-trained on HLS image tiles sampled
across the US, mainly in Texas and Louisiana (i.e., Local GFM). More details can be found in [10].

For fine-tuning, we froze the encoders and replaced the decoder used in pretraining with a
UPerNet [28] decoder, as suggested in [14], adapted for the pixel-wise regression task. The standard
UPerNet implementation (available in mmseg [3]) using Swin-B as a backbone predicts a final
feature map 4x smaller than the input. This is then be upsampled, typically through bilinear
interpolation, to match the input size, before an argmax operation that is commonly used for
pixel-wise classification. While such an operation may be reasonable in semantic segmentation,
when one is limited to a small discrete set of classes, we find that it is unsuitable for regression
tasks, producing blurry results similar to what is observed when bilinear interpolation is used on
standard images. In order to resolve this, we append two Pixel Shuffle [24] layers to the UPerNet
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Fig. 3. Performance of AGB prediction models measured by bin-wise RMSE values on image tiles from: a)
all the three eco-regions together, b) the eco-region Tropical and Subtropical Moist Broadleaf Forests (EC1),
c) the eco-region Tropical and Subtropical Dry Broadleaf Forests (EC2) and d) the eco-region Tropical and
Subtropical Grasslands, Savannas and Shrublands (EC3).

decoder, resulting in a learned 4x upscaling. The final adaptation of for the regression task is the
prediction of a single output value and the introduction of a ReLU activation function.

The Global GFM and Local GFM were fine-tuned to estimate AGB using 8 A100 GPUs for 100
epochs, with a maximum learning rate of 2e-4 and a cosine decay schedule with a warm-up of 10
epochs.

For a baseline model, we use a U-Net-based architecture following the state-of-the-art work
on for carbon storage and above-ground biomass estimation [19]. Considering the existing U-Net
models, we selected a learning rate of 0.01 and a batch size of 128, that we consistently used across
training of all U-Net based AGB regressors. We also used the Adam optimizer that has been proven
to outperform classical optimizers in a range of scenarios to optimize our RMSE loss function. It is
worth mentioning that fine-tuning of GFMs with frozen encoders requires optimization of only
around 0.6 millions decoder parameters while training from scratch of U-Net involves learning of
around 7.8 millions parameters.

Finally, we evaluated the performance of all regression models by calculating the bin-wise Root
Mean Square Error (RMSE) on a validation set. It is important to mention that we remove pixels
corresponding to the invalid values from our evaluation procedure, as no labels exist for those
areas. Moreover, we provide statistics on model performance per Brazilian eco-region.

5 RESULTS

In Figure 3, we present the AGB prediction results of the Global GFM, Local GFM and U-Net
regressor for image tiles from a) all the three eco-regions together, b) the eco-region EC1, c) the
eco-region EC2 and d) the eco-region EC3. The bin-wise Root Mean Squared Error (RMSE) is
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calculated only on the validation set. There are some differences in model performance across AGB
ranges and ecoregions. For example, when we analyse the results for all three eco-regions together
or EC1, the GFMs are more accurate across AGB ranges of 50-200 Mg/ha than the U-Net. However,
overall the U-Net slightly outperforms the GFMs (i.e., Global GFM and Local GFM) by achieving an
RMSE of 65.5 Mg/ha compared to 68.7 Mg/ha and 70.9 Mg/ha, respectively.

The performance of the GFMs is impressive given the tunable parameters amount to less than 10
percent compared to the U-Net. This results in a model that is faster to train and likely more robust
to label-limited problems, common in forest-based applications.

To examine generalizability, we fine-tine those models on each of Brazilian eco-regions. For low
AGB values (i.e., bin (0-50 Mg/ha)), we can observe that the Global GFM and Local GFM slightly
outperform our baseline, U-net independently of eco-regions in Figure 3. However, we can see that
U-Net predictions are characterized by lower RMSE for the eco-region EC2 and EC3, when we
analyze moderate AGB values (i.e., bin (100-200 Mg/ha)).

6 CONCLUSIONS AND FUTURE WORK

In this work, we have investigated AGB predictions to estimate the total carbon sequestered in
forests across the three different ecoregions in Brazil. We provided insights on the fine-tuning
process of GFMs as well as a comprehensive evaluation of a task where labels are sparse. In terms
of performance, we showed that the fine-tuned GFMs with frozen encoders match the performance
of a state-of-the-art U-Net trained from scratch while having 13 times less parameters requiring
optimization. Extending the transfer learning capabilities of geospatial foundation models to infer
AGB in regions where data is sparse can provide quick insight into carbon sequestration. Future
development of GFMs will include integrating new multimodal data sources and testing those
models under more realistic conditions, for example, using radar in the presence of persistent cloud
cover.
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