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ABSTRACT

Current time series analysis methods predominantly rely on quantitative ap-
proaches, providing accurate yet often superficial statistical indicators. However,
these methods struggle to capture the underlying evolution patterns and lack in-
tuitive, qualitative insights. This paper addresses these gaps by seeking explicit
mathematical expressions for the time-varying nature of time series, offering a
more intuitive understanding. We frame this task as a combinatorial optimization
problem and propose a reinforcement learning-inspired approach. Using Monte-
Carlo Tree Search (MCTS) as the basis, we incorporate symbolic regression to
derive expressions for the non-linear dynamics in time series. To overcome the
inefficiencies and excessive randomness in MCTS, we enhance it with neural
networks, forming the Neural-Enhanced Monte-Carlo Tree Search (NEMoTS)
method. This integration leverages neural networks’ superior fitting capabilities
to introduce priors and replace the simulation phase, significantly improving gen-
eralizability and computational efficiency. Experiments on six real-world datasets
demonstrate NEMoTS’s clear advantages in performance, efficiency, reliability,
and interpretability.

1 INTRODUCTION

Currently, time series analysis frameworks predominantly rely on quantitative tools such as spectral
analysis Koopmans (1995); Warner (1998), time-domain analysis Jones (2019); Bence (1995), and
moment analysis Brillinger (2002); Gabr (1988). While effective in capturing statistical properties,
these methods often fail to provide intuitive and qualitative insights into the underlying mechanisms
of time series data. They focus primarily on how data evolves over time, but largely overlook
what drives these changes and why specific patterns emerge. By deriving explicit mathematical
expressions for time series, we can uncover global evolution patterns across different timeframes
Angelis et al. (2023); Makke & Chawla (2022b;a).

For instance, Fig. 1 (A) offers limited information, showing only increasing values and periodic
oscillations with growing amplitude, due to the absence of an explicit expression. In contrast, Fig.
1 (B) presents the expression: f(t) = 0.0974t

(
log(1.6042t)2.65

)
+ 0.9t cos

(
(0.11t)1.66

)
. which

reveals a logarithmic trend alongside a seasonal component characterized by significant cyclical
fluctuations driven by the cosine function. As t increases, both the amplitude and frequency of
these fluctuations grow linearly. This example clearly demonstrates how an analytical expression
can provide deeper insights in an intuitive and qualitative manner. Particularly for experts, such
expressions can be effectively combined with traditional quantitative tools to enhance interpretability
and offer a more comprehensive understanding of time series dynamics.

Symbolic regression, a classical and highly interpretable machine learning approach, effectively
connects inputs and outputs using mathematical expressions made of basic functions, as highlighted
in Makke & Chawla (2022a;b). Symbolic regression uses explicit analytical expressions in a data-
driven way to skillfully reveal nonlinear system dynamics without prior constraints (e.g., linear
assumptions, polynomial assumptions, or trigonometric function assumptions) Carleson & Gamelin
(2013). In time series analysis, this technique not only provides qualitative insights but also enables
an in-depth quantitative examination of fundamental evolutionary processes Angelis et al. (2023);
Makke & Chawla (2022b). Unlike traditional quantitative methods, symbolic regression delves
deeper into the intrinsic dynamics of time series itself, offering substantial insights into the what
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f(t) = 0.0974t(log(1.6042t)2.65) + 0.9tcos((0.11t)1.66)
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Figure 1: (A) Blue crosses represent the observed values, which is hard to summarize its pattern;
and (B) red curve represents the fitted analytical expression of the time series data, which is more
intuitive and qualitative for analysis.

and why behind evolution. This method excels in analyzing complex, nonlinear systems where
standard modeling techniques might fail to grasp system intricacies.

However, current symbolic regression techniques, mainly designed for fitting specific sample, and
based on combinatorial optimization methods, often depend on complex heuristic designs to fit a par-
ticular case. They use simulation or search algorithms to generate expressions matching that case
Angelis et al. (2023); Makke & Chawla (2022b). These methods face challenges such as computa-
tional inefficiency, high complexity, and restricted generalization abilities, especially when handling
larger datasets Udrescu & Tegmark (2020); Nicolau & Agapitos (2021); Chen et al. (2016). The in-
creased computational requirements and extended model search durations, particularly in extensive
iterative processes, diminish their effectiveness in big data scenarios. Additionally, because these
techniques concentrate on fitting specific samples, they struggle to identify common patterns across
different samples and lack broader learning abilities. This not only hinders performance improve-
ment but also underutilizes the rich knowledge embedded in extensive datasets.

To overcome these limitations, we propose Neural-Enhanced Monte-Carlo Tree Tearch (NEMoTS)
for time series analysis. NEMoTS uses the Monte-Carlo Tree Search (MCTS) framework, where
expressions are represented as tree structures. This approach aligns with parse tree structures and
follows context-free grammar rules, ensuring the validity of generated expressions Hopcroft et al.
(2001); Kusner et al. (2017). By balancing exploration and exploitation, NEMoTS narrows the
search space, improving search efficiency and expression quality compared to other methods Sun
et al. (2022); Kamienny et al. (2023). Considering that several challenges still affect the performance
of MCTS in symbolic regression, for example: during the selection phase, MCTS relies on random
selection without the guidance of a prior distribution, leading to exponential growth of the search
space and limited generalization capability. In the simulation phase, the complex rollout operations
are computationally demanding and time-consuming. To address these issues, NEMoTS integrates
neural networks into the MCTS framework. Neural networks guide the selection of promising nodes,
focusing the search, and replace complex simulations with advanced fitting capabilities, streamlining
MCTS operations and improving efficiency. This integration also allows NEMoTS to learn from
larger datasets, enhancing both fitting accuracy and generalization capacity.

NEMoTS consists of four main components: a pre-defined basic function library, Monte-Carlo Tree
Search (MCTS), a policy-value network, and a coefficient optimizer. At its core, MCTS guides the
process. In MCTS, the selection and simulation phases are influenced by the policy-value network’s
assessment and output regarding the overall state of the expression. Each operation within MCTS
and the resulting expression originate from a pre-defined basic function library. MCTS produces
an initial expression ’backbone’, which lacks numerical coefficients. These are then refined by the
coefficient optimizer to create a full expression. Expanding on ideas from Sun et al. (2022), we
integrate a Symbolic Augmentation Strategy (SAS) during training. SAS improves the simulation
phase of the Monte-Carlo tree search by accumulating high-rewarded composite functions. This
approach is akin to frequent pattern mining Agrawal et al. (1993), involving the random amalga-
mation of various basic functions to identify frequent, high-rewarded composite function patterns.
These frequently occurring composite functions are then added to the function library based on their
average rewards, significantly enhancing the model’s fitting abilities.
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We carried out comprehensive experiments on six real-world time series datasets. The outcomes
reveal that NEMoTS not only excels in symbolic regression tasks for time series, exhibiting excep-
tional fitting ability and efficiency, but also demonstrates superior performance in extrapolation with
the expressions it derives, which implies the reliability of the expressions.

The key contributions of this paper are outlined as follows:

• We utilize symbolic regression to enhance the analysis and understanding of time series
data, especially in qualitative aspect. The integration of Monte-Carlo Tree Search (MCTS)
in symbolic regression for time series leads to the discovery of high-quality, valid expres-
sions, providing new insights into time series analysis.

• To overcome the inefficiencies and generalization limits of traditional MCTS in time se-
ries data, neural networks have been incorporated into the framework. This advancement
not only increases the model’s efficiency but also expands its learning and generalization
capabilities, resulting in enhanced performance.

• Building upon these innovations, we present the Neural-Enhanced Monte-Carlo Tree
Tearch (NEMoTS), specifically tailored for symbolic regression in time series. The unique
inclusion of a symbolic augmentation strategy, inspired by frequent pattern mining, further
boosts the model’s performance.

• Comprehensive experiments on six real-world time series datasets, NEMoTS demonstrates
its remarkable ability and efficiency in symbolic regression tasks for time series.

2 PROBLEM DEFINITION

We formally define our task, similar to the classical Empirical Risk Minimization (ERM) approach
Vapnik (1991).

Input: Given a time series D = (ti, vi)
N−1
i=0 containing N records, where ti ∈ R represents the

timestamp and vi ∈ R represents the value corresponding to the timestamp ti.

Objective: The goal is to discover an analytical expression f(·) and evaluate it using the following
reward function:

R =
ηs

1 +
∑N−1

i=0

√
(vi − f(ti))2

, (1)

where η is a constant slightly less than 1, and s denotes the size of the generated analytical expres-
sion. Generally, the value of this reward function ranges between 0 and 1, balancing the complexity
of the generated expression and its fitting degree. The closer it is to 1, the simpler the discovered
expression and the higher the achieved fitting accuracy.

3 NEURAL-ENHANCED MCTS

3.1 MODEL OVERVIEW

The overview of our proposed NEMoTS (Neural-Enhanced Monte-Carlo Tree Search) for time
series is illustrated in Fig. 2.

The NEMoTS comprises four main components: a pre-defined basic function library, Monte-Carlo
Tree Search (MCTS), a policy-value network, and a coefficient optimizer. The first three com-
ponents collaborate to form the basic structure of an expression, named ”backbone”, which lacks
any numerical coefficients. This basic structure is then refined by the coefficient optimizer, which
determines appropriate coefficients, resulting in a full expression.

Below, we first outline the collaboration among components:

• Monte-Carlo Tree Search (MCTS): A key component of NEMoTS, MCTS is a four-
phase process: selection, expansion, simulation, and back-propagation, with a function
library and policy-value network playing vital roles. It creates an expression’s structural
”backbone,” determining layout and basic functions, but not the numerical coefficients,
which are set later by a coefficient optimizer.

3
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Figure 2: The overview of NEMoTS.

• Function Library: Crucial in MCTS’s expansion phase, this library provides mathematical
operations for building new nodes in the expression tree, such as addition, subtraction, and
trigonometric functions.

• Policy-Value Network: Integral in MCTS’s selection and simulation phases, this neural
network evaluates the current expression and target time series. It selects promising nodes,
assigns probabilities to operations, and scores the current state, enhancing decision-making
in the search.

• Coefficient Optimizer: An independent part of NEMoTS, the optimizer zeroes in on find-
ing optimal coefficients for the MCTS-created structure using efficient numerical methods.
This finalizes the analytical expression, moving from a structural to a functional form.

3.2 MAIN PIPELINE

In this section, we will discuss how to generate the ”backbone” of an expression using NEMoTS. It
is important to note that each node in the tree maintains two variables: the total reward Q and the
visited count N .

3.2.1 SELECTION

Initially, a node designated as ”Root” serves as a starting point for subsequent operations but does
not contribute to expression generation.

The selection phase commences at the ”Root” node and involves iterative selection of child nodes
(potential mathematical operations from the pre-defined function library) until a partially expanded
or unexpanded node is encountered. This process is a tree traversal employing a specific recursive
strategy known as the Polynomial Upper Confidence Tree (PUCT). Formally, under tree state S, the
PUCT score for a child node a is given by:

Score(S, a) = Q(S, a) + c · P (S, a) ·
√∑

b N(S, b)

1 +N(S, a)
, (2)

• Q(S, a): The average or expected reward of choosing action a in state S, based on its
performance in similar situations.

• P (S, a): The prior probability of picking action a in state S, as estimated by the policy-
value network. It gauges the potential worth of the action.

• N(S, a): The number of times action a has been chosen in state S, measuring how much
the action has been explored.

• c: A constant that balances exploration (trying less-visited operations) and exploitation
(using known high-rewarded operations). Higher c favors exploration; the lower favors
exploitation.
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•
∑

b N(S, b) The total number of visits to all actions b in state S, used for normalizing
exploration rewards.

Utilizing Eqn. 2, the child node with the highest score is chosen for further exploration until an un-
explored node is reached. The path formed based on the PUCT is then converted into an expression.

3.2.2 EXPANSION

The expansion phase begins after the selection phase, focusing on a node that is either partially ex-
panded or unexpanded, referred to as the ”target node.” This node is critical for adding new elements
to the expression tree, central to the entire expansion process.

In this phase, a function from the library is randomly selected for expansion, following a uniform
distribution. The selected operation, denoted as a , is then integrated into the tree as a new node. This
node’s visit count N(S, a) and total reward Q(S, a) are initially set to zero. This method ensures
equal opportunity for each function to be chosen, promoting fairness and variety in the exploration.

After integrating the new node, the process moves to the simulation phase. This stage is vital for
the overall search strategy, involving simulations to foresee possible actions and outcomes. These
simulations are key to shaping future decisions. The effectiveness of the simulation phase greatly
affects the selection of future nodes and the development of the expression tree.

3.2.3 SIMULATION

In MCTS, particularly within our NEMoTS framework, the simulation phase is key for assessing
the potential rewards of newly expanded nodes. This phase typically follows the expansion phase
and starts from the most recently added node in the expression tree. It involves a rapid simulation
method, often random, and continues until the expression path surpasses a pre-defined length,
the terminal condition. The focus here is on quick evaluation rather than deep exploration.

NEMoTS diverges from traditional random simulations, which are time-intensive. Instead, we uti-
lize the policy-value network’s reward estimator for immediate reward estimations. This approach
effectively evaluates the potential rewards of the current state and enhances the efficiency of the
simulation process.

Crucially, during training, numerous random simulations are essential to provide supervised signals
to the reward estimator. This ensures the policy-value network’s scores are accurate and reflect real-
world outcomes. This accuracy is vital for the effectiveness and precision of NEMoTS’s simulation
phase. The simulation concludes when the expression path reaches a predetermined length. Follow-
ing the simulation phase, the generated expression path is transformed into an expression and further
refined by the coefficient optimizer. The optimized expression is then assessed with the input signal
as per Eqn. 1, leading to the back-propagation phase.

3.2.4 BACK-PROPAGATION

The back-propagation is a critical component in the MCTS, particularly in updating the decision-
making mechanism. It follows the simulation phase and initiates at the node where simulation began,
often the newly expanded node, and proceeds back to the root node, referred to as the ”Root.”

In this phase, for each node along the path from the start node of the simulation to the root, we
update both the visit count N(S, a) and the total reward Q(S, a). These updates are influenced by
the simulation outcomes and serve to adjust Q(S, a), reflecting the new average or expected reward
for an action a in state S. Concurrently, N(S, a) is incremented, indicating an additional visit to that
child node. The reward data obtained at the end of the simulation is vital, as it helps in evaluating
the long-term strategic benefits of the node.

Back-propagation is integral to refining the overall decision-making process. It enables the algo-
rithm to better understand and adapt to the decision space through continuous learning. This phase
ensures more efficient navigation of the expression tree and improves decision-making by reinforc-
ing successful paths and reassessing less effective ones.

The process iterates through these four phases until the expression path reaches a pre-determined
threshold. At this point, a preliminary ”backbone” expression is formed, which still lacks specific

5
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Figure 3: (A) The structure of policy-value network; and (B) The illustration of the symbolic aug-
mentation strategy.

numerical coefficients. We then apply the Powell optimization method to this expression. This
gradient-free algorithm is particularly suited for complex or non-differentiable functions, efficiently
finding the function’s minimum by updating search directions and conducting one-dimensional
searches. This makes it an effective approach for problems where traditional gradient methods
are not applicable, as discussed in Powell (1964).

3.3 MODEL TRAINING

The NEMoTS training process involves two primary components: refining the policy-value network
and augmenting the function library through symbolic augmentation. The objective of optimizing
the policy-value network is to improve its accuracy and efficiency in aiding the MCTS process. On
the other hand, expanding the function library focuses on enriching the initial set of basic func-
tions with more complex ones. This expansion serves a dual purpose: it provides encapsulation for
expressions and customizes the library to more effectively match the specific dataset.

3.3.1 POLICY-VALUE NETWORK

In NEMoTS, the policy-value network serves as a black-box model, handling two types of input: the
expression path sequence and the input signals, namely the time series being modeled. Its outputs
are twofold: the chosen operation and the estimated reward value, both based on the expression path
sequence and input signals.

For our implementation, we employ Long Short-Term Memory (LSTM) networks Hochreiter &
Schmidhuber (1997) to encode the expression path sequence. To process the input signal sequence,
we use Temporal Convolutional Networks (TCN) Oord et al. (2016). We then concatenate the en-
coded representations from these two sources and use a Multilayer Perceptron (MLP) for further
processing. This results in outputs for the three branches, as depicted in Fig. 3 (A).

A key aspect of our approach is optimizing the neural network. This optimization primarily focuses
on designing an effective loss function that aligns with the MCTS process requirements.

• Policy Selector. The primary goal of the policy selector in NEMoTS is to generate accurate
prior probabilities P (S, a), crucial for forming a distinct probability distribution during the
Score(S, a) calculation, as indicated in Eqn. 2. This clarity in distribution is essential,
guiding the model to selectively prioritize nodes for expansion more confidently. Accord-
ingly, the optimization objective of this component is to minimize the Kullback-Leibler
(KL) divergence between the prior probability distribution P (S) and the posterior distribu-
tion Score(S). Minimizing this divergence ensures that the model’s predicted probability
distribution closely mirrors the actual distribution of rewards, thereby significantly enhanc-
ing decision-making accuracy within the MCTS process.
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Loss(PS) =
∑
a∈A

P (S, a)log
(

P (S, a)

Score(S, a)

)
, (3)

where A represents all valid nodes in the selection iteration.
• Reward Estimator. The reward estimator’s function is to circumvent the intricate sim-

ulation phase, directly assessing the current state to produce a reward value. This makes
it essentially a regression model. To train this component of the neural network effec-
tively, we focus on minimizing the Mean Squared Error (MSE) between the output R′ of
the reward estimator and the simulated reward value R. This minimization ensures that
the reward estimator’s predictions are as close as possible to the actual reward outcomes,
thereby refining the model’s efficiency in estimating rewards without the need for complex
simulations:

Loss(RE) = (R′ −R)2 (4)

Thus, optimizing the policy-value network equates to minimizing the loss of the above two parts:

Loss = θ1Loss(PS) + θ2Loss(RE). (5)

θ1, θ2 are coefficients used to balance these terms.

3.3.2 SYMBOLIC AUGMENTATION STRATEGY

In our study, we observed that relying solely on elementary functions in the function library often
proved inadequate for accurately representing complex nonlinear dynamical systems in symbolic
regression tasks. Consequently, the incorporation of more sophisticated composite functions became
essential for precise time series representation. Contrary to previous approaches that depended on
random selection in the MCTS simulation phase to identify high-reward expressions from a plethora
of randomly generated composite functions Sun et al. (2022), our method takes a different path.
We substituted the traditional random simulation with neural networks, which initially lacked the
specialized ability to create specific composite functions for certain samples.

During the training phase, we implemented a strategy similar to frequent pattern mining Agrawal
et al. (1993). This involved tracking expression paths and their corresponding high-reward compos-
ite functions. Typically, these expressions with high rewards emerged from random combination
selections. According to the law of large numbers Durrett (2019), among these paths, some consis-
tently received high rewards. After training, we analyzed the frequency of these high-reward paths.
The most recurrent paths were deemed as optimal composite functions for our dataset and subse-
quently incorporated into our function library. This addition significantly enhanced our model’s
ability to represent time series and boosted the accuracy of modeling complex systems.

For practical applications, a novel element, termed ’augmented symbols’, is introduced into the
function library. During the expansion phase in MCTS, if the model selects this ’augmented sym-
bol’, it triggers a secondary sampling process. This process is based on a probability distribution
reflecting the occurrence frequency of the top k high-reward composite functions. Under this mech-
anism, a higher frequency of a specific ’augmented symbol’ in the dataset indicates its more preva-
lent usage during training, suggesting a better fit for the current dataset, as illustrated in Fig. 3 (B).
This approach markedly improves the model’s adaptability to specific dataset characteristics, thus
enhancing both the accuracy and efficiency of the symbolic regression process.

4 EXPERIMENTS

We conducted experiments on six real-world datasets to answer the following two core questions.
For other questions that need to be addressed through experiments, please see the Appendix.

• Q1: How is the fitting ability and efficiency of NEMoTS?
• Q2: Are the expressions generated by NEMoTS reliable?

To address these questions, we will conduct two sets of experiments: fitting ability performance,
and extrapolation analysis. In addition, other questions and experiment results will be presented in
the Appendix.

7
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4.1 DATASETS AND PRE-PROCESSING

We selected following univariate datasets for analysis, all datasets can be accessed through
https://forecastingdata.org/: The Electricity Demand from Victoria (ELC), Saugeen River Flow
(RiverFlow), US Births, Weighted Influenza-Like Illness Percentage (WILI), Australian Daily
Currency Exchange Rates (ACER), Atmospheric Pressure (AP). The latter three datasets include
ILI, Exchange rate, and Weather, as provided by previous research Zhou et al. (2021); Wu et al.
(2021). We extracted relevant columns from these datasets. For symbolic regression tasks, we mod-
ified the ACER and AP datasets to include only the first 1000 timestamps, creating sub-datasets
due to their time-intensive nature. The entire WILI dataset was utilized for comprehensive analysis
owing to its smaller size.

4.2 EVALUATION METRICS

We evaluate algorithm performance using the coefficient of determination (R2) and the correlation
coefficient (CORR), which counteract the influence of data size. Efficiency is assessed through
the Average Time Cost per sample in seconds (ATC), reflecting the algorithms’ fitting ability and
computational speed, useful for algorithm selection and optimization.

Given the significant random search in symbolic regression algorithms, we use actual time cost for
efficiency evaluation. Though CPU tests were isolated to minimize external process interference,
some variability in time cost due to computing environment fluctuations is expected. Despite their
limitations, these measurements offer a general insight into the models’ efficiency. For both R2

and CORR, values nearing 1 indicate smaller regression error and a trend closer to actual values,
respectively.

4.3 FITTING ABILITY PERFORMANCE

To address Q1, we focused on assessing the overall fitting ability. We used a sliding sampling
method to divide time series data into samples of 36 and 72 time steps, for shorter and longer
series respectively. In NEMoTS neural network training, 10% of each dataset was used for learning
parameters, with the remaining 90% for testing. Importantly, NEMoTS’s network is trained on
the states processed by MCTS rather than directly on time series patterns, which obviates the need
for a validation set. Table 1 provides a comparative performance summary. NEMoTS, once fully
trained, excelled in 16 out of 18 metrics across six experimental sets involving three datasets and
ranked second in the other two, highlighting its overall superiority. Our subsequent analysis will
concentrate on two main aspects: performance, evaluated using the coefficient of determination R2

and correlation coefficient CORR, and efficiency, assessed by average time cost per sample.

4.3.1 BASELINES

We will compare with the following methods: Genetic Programming (GP) Koza et al. (1994); gpl,
Multiple Regression Genetic Programming (MRGP) Arnaldo et al. (2014), Bayesian Symbolic
Regression (BSR) Jin et al. (2019), Physics Symbolic Optimization (PhySO) Tenachi et al. (2023),
Symbolic Physics Learner (SPL) Sun et al. (2022).

For the coefficient-less backbones from these methods, we fit using least squares. Given the random-
ness in symbolic regression algorithms, which affects performance on certain samples, we exclude
obviously abnormal metrics for fair comparison.

4.3.2 PERFORMANCE

The coefficient of determination R2, a ratio of model error to average error, is a dimensionless metric
assessing model fitting ability. Quantitatively, SPL and NEMoTS significantly surpass other models
in the R2 metric. SPL shows an average 203.04% improvement over models like GP, MRGP, BSR,
and PhySO in R2, while NEMoTS averages 229.21% improvement over all but SPL. This high-
lights SPL and NEMoTS’s superior model fitting capabilities. The correlation coefficient (CORR)
assesses the consistency between fitted and actual values. In this metric, SPL and NEMoTS also
demonstrate considerable advantages. SPL achieves a 96.22% average improvement in CORR over
the aforementioned models, and NEMoTS shows a 103.65% improvement over all but SPL. These
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Table 1: Fitting Results. Both R2 and CORR are dimensionless metrics, and ATC (Average Time
Cost) by seconds.

Dataset Metrics GP MRGP BSR PhySO SPL NEMoTS

Seq. Length 36 72 36 72 36 72 36 72 36 72 36 72

ELC
R2 0.693 0.231 0.688 0.421 0.772 0.602 0.498 0.630 0.847 0.775 0.923 0.884

CORR 0.834 0.313 0.792 0.449 0.810 0.683 0.562 0.663 0.903 0.861 0.951 0.909
ATC 82.23 89.54 162.31 168.35 100.23 88.43 145.54 135.52 181.91 200.43 41.33 50.21

RiverFlow
R2 0.408 0.164 0.481 0.342 0.621 0.688 0.513 0.542 0.715 0.653 0.744 0.725

CORR 0.591 0.193 0.552 0.503 0.717 0.702 0.552 0.559 0.782 0.710 0.774 0.751
ATC 76.30 78.66 166.80 158.81 103.93 72.53 121.56 118.80 202.53 192.38 43.26 51.53

USBirth
R2 0.283 0.172 0.310 0.248 0.649 0.412 0.718 0.643 0.910 0.804 0.976 0.886

CORR 0.493 0.233 0.443 0.310 0.801 0.508 0.762 0.682 0.923 0.871 0.981 0.916
ATC 78.23 76.12 159.51 169.31 108.41 78.91 114.06 102.51 188.71 193.52 49.53 51.21

WILI
R2 0.302 0.287 0.377 0.267 0.541 0.089 0.488 0.375 0.937 0.863 0.923 0.890

CORR 0.593 0.502 0.621 0.513 0.603 0.287 0.640 0.447 0.951 0.912 0.940 0.930
ATC 93.35 90.51 203.44 198.51 113.23 57.72 103.51 106.53 223.25 231.01 28.13 42.18

ACER
R2 0.133 0.081 0.318 0.497 0.327 0.238 0.616 0.663 0.752 0.609 0.842 0.738

CORR 0.215 0.178 0.422 0.531 0.541 0.364 0.701 0.715 0.838 0.780 0.857 0.831
ATC 68.49 66.27 133.52 161.52 110.29 66.70 99.63 97.85 269.76 296.41 30.34 44.23

AP
R2 0.769 0.171 0.780 0.397 0.657 0.358 0.231 0.173 0.825 0.858 0.931 0.916

CORR 0.716 0.378 0.707 0.566 0.628 0.461 0.615 0.286 0.869 0.906 0.955 0.943
ATC 123.83 143.65 192.45 203.45 133.51 75.13 123.51 125.47 202.92 217.43 31.41 39.54

results underscore the effectiveness of SPL and NEMoTS in aligning model predictions with actual
data trends.

SPL and NEMoTS’s fitting proficiency partly stems from incorporating the MCTS algorithm.
MCTS’s design calculates historical returns to efficiently select high-rewarded operations and ex-
pressions. It also abstracts expressions as tree structures, ensuring validity and reducing numerical
problems. NEMoTS outperforms SPL, owing to its policy-value network that learns from exten-
sive data, enabling more focused selection and expansion phases in search of quality expressions.
However, MCTS’s inherent randomness can impact model performance stability. Despite this, the
MCTS-based design of NEMoTS and SPL offers robust fitting ability for symbolic regression.

4.3.3 EFFICIENCY

We assessed algorithm efficiency by evaluating the average time cost per sample. The results show
NEMoTS with a substantial reduction in average time cost compared to other methods (GP, MRGP,
BSR, PhySO, SPL), achieving about a 68.06% improvement. This efficiency gain primarily arises
from incorporating the policy-value network. Unlike other models, NEMoTS bypasses numerous
simulations and search steps, using its neural network for direct assessment of the current expres-
sion. This approach, by eliminating the need for time-intensive simulations and searches, markedly
improves NEMoTS’s efficiency. Consequently, NEMoTS exhibits a significant competitive edge in
time efficiency, proving advantageous for large-scale or time-sensitive tasks.

4.4 EXTRAPOLATION

To answer Q2, we undertake an extrapolation task, commonly known as short-term prediction, which
is a pivotal aspect of time series analysis. The fundamental idea is to evaluate whether an expres-
sion, derived through symbolic regression, can accurately predict the future evolution of a time
series. Successfully doing so would demonstrate that the expression has adeptly captured the core
pattern inherent in the time series. This critical evaluation allows us to substantiate the interpretative
reliability of our model, offering insights into its ability to decipher and project data trends.

Practically, we will implement this extrapolation task on the same three datasets previously men-
tioned. In each case, we will analyze time series data covering 30 time steps, with the objective of
forecasting the subsequent 6 time steps. This methodology is designed to rigorously test the model’s
proficiency in short-term forecasting. By doing so, we aim to comprehensively evaluate the model’s
capacity to not only understand but also accurately project the underlying patterns of time series
data. This approach is particularly useful in determining the model’s effectiveness in navigating
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and interpreting complex data sequences, thereby providing a robust assessment of its predictive
capabilities and reliability in real-world scenarios.

In this section, we will use the following time series prediction methods to compare: Auto-
Regressive Integrated Moving Average (ARIMA) Moreira-Matias et al. (2013); Support Vector
Regression (SVR) Awad et al. (2015); Recurrent Neural Networks (RNN) Wen et al. (2017);
Temporal Convolutional Networks (TCN) Oord et al. (2016); Neural Basis Expansion Analysis
(NBeats) Oreshkin et al. (2019).

It is important to note that we do not intend to introduce overly complex prediction models in this
context. This is because the purpose of the extrapolation task is merely to verify whether the derived
expression captures the intrinsic dynamics of the time series. The primary objective of this study is
to offer insights into interpretability, rather than to focus on prediction.

Table 2: Extrapolation performance across different baselines for various datasets.
Dataset Metrics ARIMA SVR RNN TCN NBeats NEMoTS

ELC R2 -0.931 -0.785 0.468 0.354 0.503 0.703
CORR 0.434 0.223 0.503 0.447 0.462 0.715

RiverFlow R2 -0.925 -0.903 0.313 0.235 0.496 0.579
CORR 0.166 0.118 0.170 0.319 0.523 0.617

USBirth R2 -1.193 -1.700 0.182 0.225 0.461 0.528
CORR 0.345 0.223 0.317 0.474 0.488 0.529

WILI R2 -1.512 -1.085 0.231 0.214 0.453 0.617
CORR 0.234 0.181 0.313 0.307 0.312 0.566

ACER R2 -1.187 -0.943 0.435 0.115 0.393 0.479
CORR 0.126 0.228 0.133 0.203 0.465 0.617

AP R2 -1.433 -1.854 0.215 0.336 0.461 0.628
CORR 0.445 0.423 0.417 0.518 0.658 0.629

Overall, the NEMoTS model demonstrates superior performance in most scenarios, particularly
excelling in the R2 metric, where it achieves the highest scores across all three datasets. In contrast,
the ARIMA and SVR models generally exhibit poor performance, especially in the R2 metric, where
these models show negative values in most datasets, indicating lower prediction accuracy. On the
AP dataset, all models exhibit relatively high CORR values, suggesting that their predictions are
more closely correlated with actual outcomes.

The performance of all models on two key metrics is only moderately satisfactory, mainly due
to two factors: the challenging nature of the datasets, which are non-stationary and non-periodic,
making prediction difficult; and the limited training data, with only 10% of samples used from 1000
timestamps, leading to insufficient training of neural network-based methods. These issues combine
to limit the models’ ability to accurately forecast future trends.

Despite these challenges, NEMoTS outperforms other prediction models, demonstrating not only
its strength in prediction and extrapolation tasks but also its ability to capture key evolutionary traits
of time series data. Its accuracy in identifying underlying dynamics, despite various influencing
factors, highlights its effectiveness. This success in recognizing intrinsic patterns showcases the
model’s robustness in handling complex data and reinforces its value in practical applications where
understanding and predicting data trends are essential.

5 CONCLUSION

In this study, we apply symbolic regression techniques to time series analysis, improving its inter-
pretability by extracting analytical expressions. To tackle the large search space in symbolic regres-
sion, we adopt Monte-Carlo Tree Search (MCTS), which narrows down the search space and ensures
expression validity through structured constraints. We enhance the efficiency and generalization by
integrating neural networks, which guide MCTS and replace conventional simulations, boosting ef-
ficiency and learning capabilities. Additionally, our Symbolic Augmentation Strategy captures and
utilizes common composite functions, enhancing the fitting ability. Our extensive tests on six real-
world datasets demonstrate the superior performance, efficiency, reliability, and interpretability in
time series analysis.
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A RELATED WORKS

A.1 SYMBOLIC REGRESSION

Symbolic Regression (SR) emerges as a sophisticated technique in regression analysis, uniquely
characterized by its ability to simultaneously identify both the parameters and the functional forms
of equations that best describe given datasets. This method stands apart from traditional regres-
sion approaches, such as linear or quadratic regression, by offering a more holistic and adaptable
framework for data analysis Angelis et al. (2023); Tohme et al. (2022); McConaghy (2011).

Central to SR’s methodology is its data-driven nature, which operates independently of preconceived
models or theories about the system under investigation Kabliman et al. (2019). This characteris-
tic is particularly advantageous when dealing with datasets that encompass ambiguous or complex
relationships. SR’s capacity to unearth these intricate associations not only provides innovative so-
lutions to challenging problems but also fosters a deeper comprehension of systems that are only
partially understood. Furthermore, SR’s prowess in generating closed-form mathematical expres-
sions renders it an invaluable asset in the realm of generalizable AI. Its compatibility with various
modeling tools, such as finite element solvers, underscores its versatility and broad applicability
Gilpin (2021).

One of the most notable achievements of SR is its ability to rediscover and validate fundamental
physical laws, exemplified by its replication of Newton’s law of gravitation through purely data-
driven means Lemos et al. (2023); Liu & Tegmark (2021). This capacity underscores SR’s potential
in empirically grounding theoretical constructs. However, it’s important to acknowledge the chal-
lenges inherent in this method. The risk of deriving spurious results due to oversimplified datasets or
the absence of robust evaluation metrics is a notable concern Matsubara et al. (2022). SR shows par-
ticular efficacy in analyzing complex, nonlinear dynamic systems, distilling governing expressions
directly from observational data. Despite these strengths, SR’s effectiveness can be compromised
by factors such as data scarcity, low fidelity, and noise. Nevertheless, the application of Bayesian
methodologies has shown promise in mitigating these limitations Wilstrup & Kasak (2021). Com-
pared to several machine learning models, SR has demonstrated superior performance, especially
in scenarios involving small datasets. However, a significant drawback of SR is its computational
intensity, as the evaluation of numerous potential equations can be time-consuming. This aspect
makes SR more suitable for scenarios with a limited number of input parameters Cao & Zhang
(2022).
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A.2 MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) is a prominent method in artificial intelligence for making op-
timal decisions by sampling randomly in the decision space and constructing a search tree based
on the outcomes Browne et al. (2012). This approach has significantly impacted AI, particularly in
fields that can be modeled as trees of sequential decisions, like games and planning problems Silver
et al. (2016; 2017).

A typical MCTS consists of four main stages:

1. Selection: The process begins at the root node and involves selecting successive child nodes
until a leaf node is reached. This selection is based on a tree policy, typically the Upper
Confidence Bound (UCB) applied to trees, which balances exploration and exploitation.
The UCB formula takes into account both the average reward of the node and the number
of times it has been visited;

2. Expansion: Once a leaf node is reached, one or more child nodes are added to expand the
tree, depending on the available actions. This step is crucial for exploring new parts of the
search space;

3. Simulation: This involves simulating a play from the newly added nodes to the end of the
game using a default or random policy. The simulation phase is where MCTS diverges
from traditional tree search methods, as it involves playing out random scenarios to get an
estimate of the potential outcome from the current state.

4. Back-propagation: In the final phase, the results of the simulation are propagated back up
the tree. The nodes visited during the selection phase are updated with the new information,
typically involving updating their average reward based on the outcome of the simulation
and incrementing the visit count.

MCTS is fundamentally a decision-making algorithm grounded in search and probability rather than
a conventional machine learning algorithm. However, due to its complex heuristic rules, the algo-
rithm encounters several challenges: (1) Its intricate simulation process requires numerous simula-
tions, resulting in high complexity and low efficiency; (2) As a decision-making algorithm, MCTS
operates only at the instance level and lacks the capacity to learn from large-scale data, thus missing
the opportunity for inductive learning from extensive datasets to enhance performance. This paper
addresses these two critical issues. We adapt MCTS to the specific needs of symbolic regression
tasks, focusing on discovering expressions while also aiming to enhance MCTS’s efficiency in this
domain. Additionally, we enable MCTS to acquire learning capabilities, allowing it to optimize
itself with vast amounts of data.

B COMPLEXITY DISCUSSION: NEMOTS AND NAIVE MCTS

B.1 OVERVIEW

This section compares the complexity of NEMoTS (Neural-Enhanced Monte Carlo Tree Search) and
naive MCTS in symbolic regression tasks. We consider the case where the maximum expression
length is L, and the size of the symbol set is |A|. Since both NEMoTS and naive MCTS use
probabilistic search methods, it is challenging to precisely determine their complexity for specific
problems. Therefore, we analyze their complexity based on the worst-case scenario.

For complexity testing of these methods, see Section 4.3.

B.2 COMPLEXITY ANALYSIS OF NAIVE MCTS

MCTS is a probabilistic search algorithm where each node in the tree represents a symbolic oper-
ation. For a maximum expression length of L and a symbol set of size |A|, in the worst case, the
search tree is a |A|-ary tree with a maximum number of nodes:

N =

L∑
i=0

|A|i = |A|
L+1 − 1

|A| − 1
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Therefore, we conclude:

• Space Complexity: In the worst case, the search tree is fully expanded, containing approx-
imately |A|L nodes. Thus, the space complexity is O(|A|L). Note that such full expansion
may not be common in practical applications due to pruning and heuristic strategies that
limit tree growth.

• Time Complexity: Analyzing the main phases of MCTS:

– Selection Phase: Traverses from the root to a leaf node, with a maximum path length
of L, so the time complexity is O(L).

– Expansion Phase: Adds a new node, with time complexity O(1).
– Simulation Phase: Performs random simulation steps, with the number of steps S.

The time complexity is O(S), where S is usually much larger than L.
– Backpropagation Phase: Updates statistical information along the path from the cur-

rent node to the root, with time complexity O(L).
Combining the above phases, the time complexity per iteration is:

TMCTS = O(L) +O(1) +O(S) +O(L) = O(2L+ S)

B.3 COMPLEXITY ANALYSIS OF NEMOTS

NEMoTS introduces neural networks into MCTS to improve the efficiency of the simulation phase.
Its complexity analysis is as follows:

• Space Complexity: The search tree structure of NEMoTS is the same as MCTS, so the
space complexity remains O(|A|L).

• Time Complexity: Analyzing the main phases of NEMoTS:

– Selection Phase: Time complexity is O(L).
– Expansion Phase: Time complexity is O(1).
– Simulation Phase: Uses a pre-trained neural network for evaluation, assuming the

inference time of the neural network is TNN. Although the inference time is not strictly
constant, it can be approximated as O(1) if the network is of moderate size.

– Backpropagation Phase: Time complexity is O(L).
Therefore, the time complexity per iteration of NEMoTS is:

TNEMoTS = O(L) +O(1) +O(TNN) +O(L)
If TNN can be approximated as constant, then:

TNEMoTS = O(2L)
Compared to MCTS, NEMoTS reduces the time complexity of the simulation phase from
O(S) to O(TNN), significantly improving efficiency.

B.4 QUANTITATIVE ANALYSIS OF EFFICIENCY IMPROVEMENT

The simulation phase is usually the most time-consuming part of MCTS. Suppose in naive MCTS,
the number of simulation steps is S, e.g., S = 200. In NEMoTS, the simulation phase uses a neural
network evaluation, assuming inference time TNN ≈ 1.

The efficiency improvement ratio can be expressed as:

Efficiency Improvement Ratio =
TMCTS − TNEMoTS

TMCTS
=

(2L+ S)− (2L+ TNN)

2L+ S
=

S − TNN

2L+ S

When L = 20, S = 200, and TNN = 1:
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Efficiency Improvement Ratio =
200− 1

40 + 200
=

199

240
≈ 82.9%

This indicates that under these parameters, NEMoTS can reduce the time complexity per iteration
by approximately 82.9%, significantly enhancing the algorithm’s efficiency.

B.5 ASSUMPTIONS AND CONSIDERATIONS

To make the above derivation more rigorous, we need to clarify the following assumptions:

• Inference Time of Neural Network: Assuming that the inference time TNN of the neural
network can be approximated as constant. This is reasonable when the neural network is of
moderate size and inference is fast, but for large networks, this may need to be reevaluated.

• Worst-Case Analysis: Our complexity analysis is based on the worst-case scenario where
the search tree is fully expanded. In practical applications, pruning and heuristic strategies
may significantly reduce the actual space and time complexity.

• Importance of the Simulation Phase: In MCTS, the simulation phase is used to evaluate
the potential value of nodes. NEMoTS replaces random simulations with a neural network,
and the prediction accuracy of the neural network is crucial to the algorithm’s performance.
If the neural network’s predictions are inaccurate, it may affect the effectiveness of the
search.

• Specificity of Symbolic Regression Tasks: In symbolic regression tasks, the search space
is enormous, but not all expressions are valid. Using heuristic methods like neural networks
can effectively guide the search and improve efficiency.

B.6 CONCLUSION

By introducing neural networks, NEMoTS significantly reduces the time complexity while maintain-
ing the same space complexity as naive MCTS, particularly reducing the overhead of the simulation
phase. Under the parameters L = 20 and S = 200, NEMoTS can reduce the time complexity per
iteration by approximately 82.9%, demonstrating its advantages in symbolic regression tasks.

C ALGORITHM PROCESS

The detailed algorithm process is shown as follows.

Algorithm 1: Process of Neural-Enhanced Monte-Carlo Tree Search (NEMoTS)

Input: Time series data D, function library, policy-value network
Output: Full expression

Procedure: NEMoTS
Initialize root node as ”Root”
while (not the terminal condition) do

leaf ← Select(root)
child← Expand(leaf )
reward← Simulate(child)
Back-Propagate(child, reward)
Symbolic Augmentation Strategy(child, reward)

end while
backbone← Generate backbones from root
fullExpression← Optimize Coefficients(backbone)

end Procedure

Function Select(node):
while (node not fully expanded) do

node← PUCT(node)
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end while
return node

Function Expand(node):
% Get expansion probabilities using policy-value network
Randomly select an operation from function library
if (select operation is the augmented symbols) then

Perform secondary sampling from augmented symbols
end if
Add new child node to node with selected operation
return new child node

Function Simulate(node):
Evaluate node using reward estimator
return evaluation reward

Function Back-Propagate(node, reward):
while (node not null) do

Update node’s total reward Q and visit count N
node← parent of node

end while

Function PUCT(node):
Calculate PUCT score for each child of node
return child with highest PUCT score

Function Optimize Coefficients(expression):
Optimize expression using gradient-free methods (e.g., Powell’s method)
return optimized expression

Function Symbolic Augmentation Strategy(node, reward):
Record expression path and reward of node
Update symbol enhancement records based on reward
Adjust function library based on records

D CASE STUDIES

In this part, we will answer the question: How can the interpretability of NEMoTS be analyzed?
To this end, We compare NEMoTS-derived symbolic regression expressions with actual dataset data,
as shown in Fig. D. These visualizations demonstrate NEMoTS’s effectiveness in fitting complex
real data with succinct mathematical models, capturing time series trends. This confirms NEMoTS’s
capability in fitting intricate data and its efficiency in trend extraction and representation, provid-
ing insightful analysis of time series. Additionally, our analysis includes predictive assessments
on future data not used in the fitting, shown in sections with a gray background in the figures.
NEMoTS not only accurately fits existing data but also forecasts future trends reliably. This indi-
cates NEMoTS’s strong predictive power, enhancing the value of its identified expressions. The
ability of NEMoTS to accurately predict future trends signifies its interpretability and reliability.
This accuracy is crucial for deeper understanding and forecasting of time series data, especially in
domains that demand precise data prediction and interpretation.

E ABLATION STUDIES

In this part, we will answer the question: What enhancements in performance and efficiency do
NEMoTS achieve through improvements? To this end, we carried out ablation studies by individ-
ually omitting the policy-value network and the symbolic augmentation strategy from NEMoTS to
evaluate their impacts on efficiency and performance. Specifically, we tested the model under four
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Figure 4: Case studies

Figure 5: The results of ablation studies.

scenarios: 1) NEMoTS without the policy selector (NEMoTS(w/o PS)), utilizing the UCB score for
node selection; 2) NEMoTS without the reward estimator (NEMoTS(w/o RE)), employing a random
strategy for reward simulation; 3) NEMoTS lacking the entire policy-value network (NEMoTS(w/o
PVN)); and 4) NEMoTS minus the symbolic augmentation strategy (NEMoTS(w/o SAS). The ex-
periments were conducted on the AP dataset, with sequence lengths of 36 and 72. Results of the
ablation study are displayed in Fig. 5.

E.1 POLICY SELECTOR

The policy selector in NEMoTS plays a critical role in evaluating the expression sequence and time
series data from the root node, essential for guiding the selection of child nodes in Monte-Carlo
Tree Search (MCTS). It effectively narrows the search space, enhancing efficiency and precision.
Ablation study results emphasize its significance. Its removal results in a 6.45% decrease in the
coefficient of determination (R2) and a 6.89% reduction in the correlation coefficient (CORR). This
suggests that without the policy selector, MCTS is less efficient at identifying optimal operations,
negatively affecting overall performance. Notably, the absence of the policy selector also leads to a
lower average time cost per sample. In the ablation model without the policy selector, the standard
prior distribution is replaced by a uniform distribution, thereby reducing the need for neural network
operations and shortening processing time.
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Figure 6: Parameter sensitivity. Different colors represent different datasets. The solid lines illustrate
the fitting ability, referring to the left vertical axis, while the dashed lines indicate the extrapolation
ability, referring to the right one.

E.2 REWARD ESTIMATOR

The reward estimator is pivotal for evaluating the current state’s reward score, thereby bypassing the
need for extensive simulations typical in traditional MCTS. Our ablation study shows that while its
removal slightly improves model performance, it substantially increases the time cost. This higher
time cost is due to traditional MCTS’s dependence on numerous, time-intensive simulations. The
slight improvement in performance may be because neural network-based reward estimations aren’t
as precise as those from simulations, which could impact the model’s precision. Essentially, the
neural network offers a faster but potentially less accurate scoring method compared to traditional
simulations. Therefore, removing the reward estimator leads to a minor improvement in perfor-
mance but a significant increase in time cost. This trade-off underlines the importance of balancing
performance gains and time efficiency in practical scenarios, especially when deciding on the use of
a reward estimator.

E.3 POLICY-VALUE NETWORK

In the Monte-Carlo Tree Search (MCTS) process, each element of the policy-value network – the
policy selector and the reward estimator – is vital, greatly influencing decision accuracy, expansion
efficiency, and precision in reward assessment. Without the policy selector, there’s a decline in effi-
ciency for selecting optimal operations. Conversely, removing the reward estimator could enhance
performance but at the expense of increased time cost. The removal of the entire policy-value net-
work underscores the combined impact of these components. This exclusion can result in varied
model performance, highlighting the need for a balanced interplay among the different elements in
the model.

E.4 SYMBOLIC AUGMENTATION STRATEGY

Symbolic augmentation strategy enhances the function library by incorporating high-reward com-
posite functions developed during training. These functions capture specific dataset patterns more
comprehensively than basic elementary functions, offering a fuller understanding of time series
characteristics.In standard Monte-Carlo Tree Search (MCTS), identifying complex patterns is often
difficult. However, the symbolic augmentation strategy aids in recognizing and using these complex
patterns more effectively, significantly boosting model performance. Without this strategy, there’s
a potential for underutilization of these intricate patterns, which could lead to a marked decrease in
performance. In summary, the symbolic augmentation strategy is key in NEMoTS, as it includes
high-reward composite functions in the function library. This enhances the model’s ability to iden-
tify and articulate complex time series patterns, thus improving accuracy and efficiency in both
analysis and prediction.

F PARAMETER SENSITIVITY

In this part, we will answer the question: How will different hyperparameters in the model affect
its performance? To this end, we focus on two hyperparameters closely tied to the model: the
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maximum length of expression paths and the number of augmented symbols (k) in the Symbolic
Augmentation Strategy. The experiment is conducted on three datasets: WILI, ACER, and AP, with
detailed comparisons shown in Fig. 6, including fitting and extrapolation performance. The results
indicate that as the max length of expression paths increases, fitting ability improves significantly,
which is expected since longer paths allow for more complex analytical expressions, enabling a more
accurate fit to the data. However, this improvement shows diminishing returns beyond a certain
threshold, approximately 20 in our experiment, where further increases yield limited performance
gains. Conversely, as the max length increases, extrapolation ability declines, more noticeably as the
length extends. This decline is due to the overfitting phenomenon, where the analytical expression
fits the training data too well, reducing its generalization and extrapolation capabilities.

Regarding the number of augmented symbols (k), this hyperparameter does not have a direct impact
on the model, affecting neither fitting nor extrapolation ability. We found that augmented symbols,
derived from frequent pattern mining, are ordered by occurrence frequency, following a power-law
distribution. As the augmented symbols expands, the newly added symbols appear less frequently,
resulting in the modeling primarily relying on the highest frequency symbols. This explains why
expanding the augmented symbols library does not significantly influence performance.
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