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Abstract001

Large Language Models (LLMs) have demon-002
strated effectiveness in code generation tasks.003
To enable LLMs to address more complex cod-004
ing challenges, existing research has focused005
on crafting multi-agent systems with agentic006
workflows, where complex coding tasks are007
decomposed into sub-tasks, assigned to special-008
ized agents. Despite their effectiveness, cur-009
rent approaches heavily rely on hand-crafted010
agentic workflows, with both agent topologies011
and prompts manually designed, which limits012
their ability to automatically adapt to different013
types of coding problems. To address these014
limitations and enable automated workflow015
design, we propose Self-Evolving Workflow016
(SEW), a novel self-evolving framework that017
automatically generates and optimises multi-018
agent workflows. Extensive experiments on019
three coding benchmark datasets, including020
the challenging LiveCodeBench, demonstrate021
that our SEW can automatically design agen-022
tic workflows and optimise them through self-023
evolution, bringing up to 33% improvement on024
LiveCodeBench compared to using the back-025
bone LLM only. Furthermore, by investigating026
different representation schemes of workflow,027
we provide insights into the optimal way to028
encode workflow information with text.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable capabilities in automatic code032

generation, enabling developers to translate nat-033

ural language descriptions into executable pro-034

grams (Hong et al., 2023; Liu et al., 2024a). How-035

ever, as coding tasks grow in complexity, relying036

on a single LLM instance (single-agent) to handle037

all aspects of code generation becomes increas-038

ingly challenging. To address this, recent studies039

have explored multi-agent systems (Huang et al.,040

2023; Islam et al., 2024) where multiple LLM-041

powered agents collaborate to solve intricate prob-042

lems through structured workflows (Hong et al.,043

Initialized Agents and Workflow

Code Rewriting
Agent

Code
Generation Agent

Task Description

Implement a Python function sum_squares(n) that calculates the sum of
squared integers from 1 to n inclusive. 

def sum_squares(n):
    total = 0
    for i in range(1, n):  # Wrong 
        total += i       
    return total

def sum_squares(n):
    total = 0
    for i in range(1, n+1): # Correct  
        total += i**2    
    return total
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Code Generation
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Figure 1: Illustration of agent and workflow evolution
in code generation. The initialized setup (left) includes
agents with naive prompts while the evolved setup
(right) is equipped with enhanced prompts generated by
SEW and a more sophisticated workflow structure.

2023). These multi-agent systems decompose com- 044

plex programming tasks into sub-tasks, assigning 045

them to specialized agents with tailored prompts, 046

enhancing execution and output quality. 047

Despite their effectiveness, current multi-agent 048

systems rely heavily on manually designed work- 049

flows, where both the workflow topology and 050

agents’ prompts are manually crafted, hindering 051

their adaptability to more complex coding task. For 052

instance, a workflow optimised for machine learn- 053

ing task (Chi et al., 2024) differs significantly from 054

one tailored for software development task (Qian 055

et al., 2023). Manually crafting workflows for each 056

task is inefficient and does not leverage LLM’s full 057

potential for autonomous adaptation. 058

To address these limitations, we propose Self- 059

Evolving Workflow (SEW), a novel framework 060

designed to automatically generate and optimise 061

multi-agent workflow. In particular, SEW achieves 062

this by leveraging a novel evolutionary scheme to 063

improve the workflow, i.e., the topology of work- 064

flows and the prompt of each agent. Figure 1 shows 065

the agent and workflow evolution in code genera- 066
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tion. In addition, to effectively represent agentic067

workflows in textual format, we explore and com-068

pare five different representation schemes, namely069

BPMN (White, 2004), CoRE (Xu et al., 2024b),070

Python code (Zhang et al., 2024c), YAML (Zhang071

et al., 2024b), and pseudo-code (Xiao et al., 2024).072

We evaluate each scheme based on how well it can073

be interpreted and optimised by our SEW frame-074

work, aiming to identify the optimal scheme for075

workflow representation and optimization.076

Our contributions are: (1) We investigate dif-077

ferent workflow representation schemes, such as078

BPMN, Python, CoRE, YAML, and pseudo-code,079

to determine the most effective format for LLM080

interpretation; (2) Unlike prior work that builds081

agents by assembling predefined operators, our082

framework automatically constructs agentic work-083

flows from scratch, conditioned solely on task de-084

scriptions. (3) We introduce a self-evolving work-085

flow design approach, SEW, where LLMs jointly086

improve workflow structures and agent prompts087

to optimise performance; (4) We conduct exten-088

sive experiments on three benchmark datasets, in-089

cluding MBPP, HumanEval, and LiveCodeBench,090

demonstrating that SEW can consistently improve091

workflow performance through self-evolution.092

2 Related Work093

2.1 Workflow Representations in Agents094

In multi-agent systems, workflows establish095

structured information flows and task execution096

pipelines, enabling agents to solve complex prob-097

lems (Hong et al., 2023; Gao et al., 2024). While098

natural language can describe workflows, its in-099

herent ambiguity often leads to inconsistent inter-100

pretations, hindering precise task execution across101

agents (Xu et al., 2024b). To address this challenge,102

several studies have introduced specific representa-103

tion schemes for SOPs. For example, Business Pro-104

cess Model and Notation (BPMN) (White, 2004)105

is a graphical modeling language designed to de-106

pict workflows by specifying the execution order107

of activities. Similarly, Code Representation and108

Execution (CoRE) (Xu et al., 2024b) provides a109

unified framework that integrates natural language110

programming, pseudo-code, and flow-based pro-111

gramming to improve workflow representation and112

execution. Additionally, Python code (Zhang et al.,113

2024c; Xu et al., 2024a), YAML (Qiao et al., 2023;114

Zhang et al., 2024b), and pseudo-code (Xiao et al.,115

2024; Li et al., 2025) are also commonly employed116

to define and manage agentic workflows. 117

2.2 Self-Evolving Agents 118

Existing agentic methods often yield suboptimal 119

responses when prompts are poorly constructed. To 120

address this, prompt optimization techniques (Zhou 121

et al., 2022; Fernando et al., 2024; Agarwal et al., 122

2024; Liu et al., 2024b) have moved beyond static, 123

manually crafted in-context prompts. For instance, 124

automatic prompt engineer (APE) (Zhou et al., 125

2022) enhances prompts by searching through a 126

pool of candidates. Similarly, Promptbreeder (Fer- 127

nando et al., 2024) employs LLMs to mutate 128

and evolve a population of task-specific prompts. 129

MIPRO (Opsahl-Ong et al., 2024) is an optimizer 130

designed to enhance multi-stage language model 131

programs by refining both instructions and few- 132

shot examples for each module. In multi-agent 133

systems, recent studies have explored the evolu- 134

tion of agentic workflows and topologies (Zhang 135

et al., 2024a; Zhou et al., 2024, 2025; Zhang et al., 136

2025). For example, MASS (Zhou et al., 2025) 137

exploits the optimization of both prompt and work- 138

flow over a configurable topology space. Simi- 139

larly, AFlow (Zhang et al., 2024a) employs a Monte 140

Carlo Tree Search to enhance workflow efficiency, 141

while EvoFlow (Zhang et al., 2025) introduces a 142

framework for the automated search of heteroge- 143

neous agentic workflows. EvoAgent (Yuan et al., 144

2024) is designed to automatically extend expert 145

agents into multi-agent systems using evolution- 146

ary algorithms. In contrast, our SEW introduces 147

a self-evolving mechanism that leverages diverse 148

workflow representation schemes, jointly optimis- 149

ing prompts for both agents and their workflow. 150

3 SEW 151

Task Definition. We focus on the task of code 152

generation, a task that requires multi-agent col- 153

laboration (Hong et al., 2023), aiming to produce 154

executable code based on a textual coding prob- 155

lem. To tackle this task, we deploy an LLM-based 156

multi-agent system to generate code, where each 157

agent processes a textual prompt and produces a 158

corresponding textual output. We define the textual 159

prompt of an LLM agent a as T and a sequence of 160

LLM agents, i.e., a workflow as W . 161

Preliminary. Evolutionary prompts are central 162

to SEW. Rather than relying on training data, 163

SEW employs LLMs as mutation operators by con- 164

catenating the evolutionary prompts with the task 165
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Direct Evolution (DE)  Hyper Evolution (HE)

Workflow Evolution 

Workflow Generation

Task Description

The code generation task in LiveCodeBench involves generating correct and functional code from a natural language problem description, where
the model is evaluated based on its ability to pass a set of unseen test cases.
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Figure 2: The overall framework of SEW. The process begins with workflow generation, followed by workflow
evolution. Then each agent within the evolved workflow will be equipped with enhanced prompts generated by the
agent evolution module. Such an agent evolution module is driven by the Direct Evolution (DE) operator and Hyper
Evolution (HE) operator, leveraging LLMs, where we use a mutation prompt Tmut or a hyper-mutation prompt
Thmut to enhance the prompt of an agent.

prompt to generate a more effective task prompt.166

We define two evolutionary operators, namely the167

Direct Evolution (DE) operator F(·) and the Hy-168

per Evolution (HE) operatorH(·), where F(·) and169

H(·) take a workflow W or an agent a as the input170

and output an enhanced workflow W ′ or an agent171

a′. Specifically, F(·) and H(·) operators lever-172

age (1) mutation prompts Tmut, (2) hyper-mutation173

prompt, and (3) thinking-style prompts Tthink (Fer-174

nando et al., 2024). Figure 3 shows examples175

of these evolutionary prompts and how they are176

evolved by both DE and HE.177

Overview of SEW. Our SEW framework consists178

of three main modules: (a) Workflow Generation,179

(b) Workflow-Evolution, and (c) Agent-Evolution.180

The overview of our SEW framework is illustrated181

in Figure 2. As shown in Figure 2, our SEW first182

generates an initial workflow based on the task de-183

scription using one of the representation schemes184

introduced in Section 4. Second, the workflow185

evolution module of SEW will leverage our evolu-186

tion method to reconstruct the initial workflow. Fi-187

nally, inspired by PromptBreeder (Fernando et al.,188

2024), our agent evolution module will apply ei-189

ther the agentic DE or agentic HE method to equip190

each agent with a more sophisticated prompt. The191

pseudo-code of SEW is shown in Algorithm 1.192

Workflow Generation. To generate workflows,193

we use an LLM to generate default workflows194

based on the given task description D 1 and a tem- 195

plate workflow W temp. A template workflow can 196

be denoted with different workflow representation 197

schemes. In particular, our SEW explore five dif- 198

ferent schemes, namely Business Process Model 199

and Notation (BPMN) (White, 2004), Code Repre- 200

sentation and Execution (CoRE) (Xu et al., 2024b), 201

python, YAML and pseudo-code, with their detailed 202

description presented in Section 4. Figure 4 shows 203

two examples of the template workflow. 204

From the workflow generation process as shown 205

in Algorithm 1, we can obtain a set of default work- 206

flows W def . Later, we will present how to use 207

our workflow evolution module to rearrange and 208

modify the structure of W def . 209

Workflow Evolution. To formalise the workflow 210

evolution process of SEW, first we define a work- 211

flow W represented with a certain representation 212

scheme rep, where all W in rep are in textual for- 213

mat. We use the DE operator F(·) to generate an 214

evolved workflow as follows: 215

W ′ = F(Wdef |Tmut), (1) 216

where W ′ is the self-evolved workflow, Tmut is the 217

mutation prompt and F(·) representing the opera- 218

tion that an LLM takes Wdef and Tmut as input and 219

output W ′ (see Figure 3 for more details). 220

1Appendix A.2 shows all of the task descriptions.

3



"You are a proficient Python
programmer...... You will NOT return
anything except for the program."

"Modify this instruction in a way that no
self-respecting LLM would!"

Mutation Prompt:

Agent's Prompt: 
"In one short sentence, here is how I
would best follow this instruction."

"**Creative
Instruction:**\n\n**Challenge Accepted:
Python Code Wizardry!**\n\nAs a
skilled Python programmer, your
mission is to conjure up......"

Updated Agent's Prompt:

First-order Direct Evolution

"You are a proficient Python
programmer...... You will NOT return
anything except for the program."

"Modify this instruction in a way that no
self-respecting LLM would!"

Mutation Prompt:

Agent's Prompt: 

"**Creative Instruction:**Challenge
Accepted: Python Code Wizardry!**As a
skilled Python programmer, your
mission is to conjure up......"

Updated Agent's Prompt:

Second-order Direct Evolution

Mutation Prompt:
LLM

"**Reimagined
Instruction:**\n\n**Challenge:**
As a skilled Python developer,
your mission is to......"

Updated Agent's Prompt:

"How can I simplify the
problem so that it is easier to
solve?"

LiveCodeBench involves ......

Task Description:

Thinking-style Prompt: 

"**Mutator
Prompt:**\n\n**Challenge:**
As a Python virtuoso

Updated Mutation Prompt:

Zero-order Hyper Evolution

"Sure! Please provide the
specific problem description

Updated Agent's Prompt:
"Please summarize

and improve the following
instruction:" 

Hyper-mutation Prompt:

"**Prompt Mutant: The
Python Code Circus! ......"

Updated Mutation Prompt:

First-order Hyper Evolution

"Sure! Please provide the
specific problem
description......

Updated Agent's Prompt:

"In one short sentence, here
is how I would best follow
this instruction."

Mutation Prompt:

"You are a proficient Python
programmer...... You will NOT return
anything except for the program."

Agent's Prompt: 

"You are a proficient Python
programmer...... You will NOT return
anything except for the program."

Agent's Prompt: 

Figure 3: Illustration of the Direct Evolution and Hyper Evolution of SEW. We use green, yellow and blue boxes to
indicate the evolutionary prompt, default agent prompt and textual output of evolutionary operators.

It should be noted that the mutation prompt Tmut221

cannot ensure that W ′ is a valid workflow. For ex-222

ample, W ′ may not strictly follow the format of the223

representation scheme. To measure the validity of224

W ′, we define two rates, namely the Logical Suc-225

cessful Rate (LSR) and Generation Successful Rate226

(GSR). The LSR denotes the probability that gen-227

erated W ′ is valid, and the GSR denotes the prob-228

ability that the output of W ′ is executable Python229

code. Specifically, LSR =
∑|W ′|

i=1 I(isValid(W ′
i ))

|W ′|230

and GSR =
∑|W ′|

i=1 I(isPython(output(W ′
i )))

|W ′| . By mea-231

suring LSR and GSR of a certain representation232

scheme, we can determine which scheme is more233

suitable for SEW.234

Agent Evolution. After modifying the structure of235

workflows using the workflow evolution module,236

the next step is to modify each agent’s prompt. Sim-237

ilar to the workflow evolution, the agent evolution238

also relies on the mutation prompt. As mentioned239

earlier we use Direct Evolution (DE) and Hyper240

Evolution (HE) to improve an agent, where DE241

aims to modify an agent’s prompt by directly ap-242

plying a mutation prompt to it while HE first modi-243

fies the mutation prompt then apply the modified244

mutation prompt to an agent.245

Agentic Direct Evolution. To enhance the perfor-246

mance of an agent, SEW directly apply the muta-247

tion prompt Tmut to an agent’s prompt using the248

direct evolution operator as follows:249

a′ ← F(a|Tmut), (2)250

where a is an agent and a′ is the agent with modi-251

fied prompt, and we define the operation above as252

the first-order direct evolution.253

Algorithm 1: Self-Evolving Workflow
Input: Task Description D, Workflow Template

W temp, Mutation Prompt Tmut, Hyper
Mutation Prompt Thmut, Thinking-style
Prompt Tthink

Output: Optimized Workflow W ′

1 Function SEW(Tdes, Ttemp, Tmut, Thmut, Tthink):
2 1. Workflow Generation;
3 Wdef ← GenerateWorkflows(Tdes, Ttemp);
4 2. Workflow Evolution;
5 for each workflow Wdef do
6 W ′ ← F(Wdef |Tmut);

7 3. Agent Evolution;
8 for each agent a in W ′ do
9 3.1 Select Evolution Method;

10 if First-order DE then
11 a′ ← F(a|Tmut);

12 else if Second-order DE then
13 a′′ ← F(F(a|Tmut)|Tmut);

14 else if Zero-order HE then
15 a′ ← H(a|H(Tdes|Tthink));

16 else if First-order HE then
17 a′′ ← H(a|H(Tmut|Thmut));

18 return W ′;

Based on the first-order direct evolution, we pro- 254

pose the second-order direct evolution: 255

a′′ ← F(F(a|Tmut)|Tmut) (3) 256

By applying second-order direct evolution, we aim 257

to further enhance the performance of an LLM 258

agent. 259

Agentic Hyper Evolution. Different from Direct 260

Evolution, Hyper Evolution focuses on generating 261

more effective mutation prompts. In other words, 262

HE first modifies the mutation prompt Tmut then 263

uses the new mutation prompt T ′
mut to improve an 264

4



agent’s prompt. Formally, we define the zero-order265

hyper evolution as below:266

a′ ← H(a|H(Tdes|Tthink)) (4)267

where Tthink are text descriptions of general cogni-268

tive heuristics (Fernando et al., 2024).269

For zero-order HE, we use the general cognitive270

heuristics Tthink to generate useful prompts for271

solving problems described by the task description272

D. Similar to how we use the mutation prompt273

Tmut to modify an agent’s prompt, we can use a274

hyper-mutation prompt instead of Tthink to modify275

Tmut, which is defined as first-order HE.276

From Eq 4, a new mutation prompt is gener-277

ated from the task description and some cognitive278

heuristics. In another way, we can use a hyper-279

mutation prompt to directly generate new variants280

from Tmut as follows:281

a′′ ← H(a|H(Tmut|Thmut)) (5)282

Finally, by combining the workflow-evolution283

and agent evolution, our SEW can generate more284

effective variants of workflows for solving the code285

generation task. In the next section, we will present286

and compare those five different representation287

schemes that can be leveraged by SEW.288

4 Workflow Representation289

To generate a workflow using LLM, appropriate290

workflow textual representation schemes are essen-291

tial. In fact, while it is straightforward to execute292

a workflow using code, representing it in natural293

language is non-trivial. A well-designed represen-294

tation scheme should capture the structural and295

semantic components of a workflow and be easily296

interpreted by LLMs for downstream modification.297

As we discussed in the related work section,298

we explored five different textual representation299

schemes that can be used to denote workflows300

namely, Business Process Model and Notation301

(BPMN) (White, 2004), Code Representation and302

Execution (CoRE) (Xu et al., 2024b), python,303

YAML and pseudo-code, where each representa-304

tion scheme can be used to denote a workflow by305

text. The choice of these five schemes was driven306

by their distinct advantages in facilitating the rep-307

resentation and execution of agentic workflows,308

particularly in the context of self-evolving agentic309

workflows that our method, SEW, aims to optimise.310

Figure 4: A workflow represented by the BPMN and
the CoRE schemes, respectively.

BPMN: This graphical standard is well-established 311

in business process modeling and widely recog- 312

nized for its ability to clearly depict the order of 313

tasks and their dependencies. 314

CoRE: CoRE integrates natural language program- 315

ming, pseudo-code, and flow-based programming, 316

and is a strong candidate for agentic workflows. 317

It allows workflows to be directly executable and 318

interpretable by LLMs, offering advantages for our 319

self-evolving framework. 320

Python: As a widely adopted programming lan- 321

guage, Python is not only familiar to many prac- 322

titioners but also flexible in terms of representing 323

workflows through its readable syntax and exten- 324

sive ecosystem of libraries. For agentic workflows 325

requiring programmatic execution, Python allows 326

for easy integration and adaptation of agents into 327

working solutions. 328

YAML: YAML is a human-readable data seriali- 329

sation format widely used for configuration files 330

and workflow definitions due to its simplicity and 331

readability. YAML’s flexibility in representing hi- 332

erarchical data structures makes it well-suited for 333

workflows that need to be configured or defined by 334

humans but executed by machines. 335

Pseudo-code: Pseudo-code is a high-level repre- 336

sentation that is often used for illustrating algo- 337

rithms and workflows in a way that is easy for both 338

humans and machines to understand. Pseudo-code 339

offers an abstraction that bridges natural language 340

and formal code, making it an excellent choice for 341

expressing workflows that need to be easily read 342

and modified. 343

To clearly illustrate the differences between 344

workflow representation schemes, we present an 345
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example agentic workflow represented using both346

the BPMN and CoRE schemes in Figure 4. In Fig-347

ure 4, a software development pipeline, consisting348

of sequential tasks such as parsing input, refining349

content, generating code, reviewing, and iterating350

improvements, is represented by BPMN and CoRE,351

respectively. Each stage is represented as a task352

node, while dependencies between tasks are cap-353

tured as sequence flows, ensuring clear process354

execution. Although denoted with different rep-355

resentation schemes, they shall perform the same356

function when executed2.357

These five schemes were chosen for their di-358

verse capabilities in representing workflows and359

their practical utility in a self-evolving framework,360

where agents and workflows are dynamically gen-361

erated and optimised. Our exploration of these362

schemes aims to identify the most suitable repre-363

sentation for evolving agentic workflows in code364

generation tasks, where LLMs are leveraged for365

both understanding and executing the workflows.366

5 Experiments367

5.1 Dataset368

To examine our proposed SEW framework, we369

choose the LiveCodeBench (LCB) (Jain et al.,370

2024) dataset, which is a comprehensive bench-371

mark designed to evaluate the coding capabilities372

of LLMs. We randomly sampled 100 samples from373

the code generation subset of LCB3 for validation374

and the remaining 300 samples for testing. In ad-375

dition, we also use the MBPP (Austin et al., 2021)376

and HumanEval (Chen et al., 2021) datasets follow-377

ing the data split in AFlow (Zhang et al., 2024a).378

To evaluate performance on the code generation379

task, each method is required to generate 10 candi-380

date solutions per sample. We use pass@1, pass@5,381

and pass@10 as evaluation metrics.382

5.2 Baselines383

We compare our proposed SEW against five base-384

line prompting techniques across two different385

backbone models (i.e. GPT-4o mini and Gemini-386

1.5-pro-002) on three code generation tasks (i.e Hu-387

manEval, MBPP, and LCB): (1) Backbone Models388

(GPT-4o mini and Gemini-1.5-pro-002). (2) Chain-389

of-Thought (CoT) (Wei et al., 2022) Uses reasoning390

2Additional representation formats, such as Python,
pseudo-code and YAML, are provided in Appendix A.1

3We use the release_v1 version of the code generation
subset of LCB.

Method HumanEval MBPP LCB

GPT-4o mini
GPT-4o mini 80.2 63.4 38.0
CoT 87.2 68.3 40.1
PromptBreeder 90.9 83.2 45.9
ADAS 88.8 73.0 42.5
AFlow 91.6 83.9 -

SEW (GPT-4o mini) 92.1 84.1 50.9

Gemini-1.5-pro-002
Gemini-1.5-pro-002 79.8 61.0 36.7
CoT 86.7 68.3 39.8
PromptBreeder 88.6 71.7 44.8
ADAS 86.7 71.0 43.3
AFlow 89.3 70.0 -

SEW (Gemini-1.5-pro-002) 89.9 74.1 47.8

Table 1: Performance comparison (pass@1) between
our SEW and baselines. ‘-’ refers to out-of-time errors,
where the LLM executor has been trapped in executing
accidental scripts with infinite loops. We adopt two
LLMs, i.e., GPT-4o mini and Gemini-1.5-pro, as back-
bone models for all methods.

steps explicitly stated within the prompt. (3) Au- 391

tomated Design of Agentic Systems (ADAS) (Hu 392

et al., 2024): A methodology that leverages meta- 393

agent frameworks to automatically design and op- 394

timise agentic systems. (4) AFlow (Zhang et al., 395

2024a): An automated framework that efficiently 396

explores and optimises agentic workflows using 397

Monte Carlo Tree Search. (5) PromptBreeder (Fer- 398

nando et al., 2024) is a gradient-free evolutionary 399

framework that improves agents by iteratively mu- 400

tating and selecting prompt variants. 401

5.3 Experimental Setup 402

We conduct an exhaustive search on self-evolved 403

workflows W ′, represented by the following meth- 404

ods, including BPMN, CoRE, python, YAML and 405

pseudo-code. We use all mutation prompts to 406

evolve workflows represented by 5 schemes. Al- 407

though various types of workflows are generated 408

during the self-evolution process, not all of them 409

are valid for code generation tasks. Among all 410

generated workflows, the task parsing workflow 411

and code rewriting workflow4 are more effective 412

than the other counterparts. In particular, variants 413

based on these two workflows can largely outper- 414

form competitive baselines, hence, we choose the 415

best variant to represent our SEW.. 416

5.4 Main Results 417

To compare the performance of SEW and other 418

baselines, we adopt two backbone models i.e., GPT- 419

4We also report the token cost of these two workflows in
the Appendix A.4
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Rep method BPMN CoRE python YAML pseudo-code

LSR 87.3% 74.5% 87.3% 78.2% 52.7%
GSR 47.3% 72.7% 29.1% 47.3% 36.4%

Table 2: Logic Successful Rate (LSR) and Generation
Successful Rate (GSR) for Business Process Model and
Notation, Code Representation and Execution, python,
YAML and pseudo-code.

4o mini and Gemini-1.5-pro-002. From Table 1,420

we find that (1) SEW can largely outperform those421

two backbone models at both settings; (2) SEW422

is more effective than CoT, a robust prompting423

technique for enhancing LLM’s ability to solve424

complex tasks by breaking them down into se-425

quential thought processes; (3) when leveraging426

the same backbone model, our SEW outperform427

other state-of-the-art workflow designing methods428

such as ADAS and AFlow. Therefore, we can con-429

clude that our SEW framework is more effective430

than different types of baselines under the same431

setting in the code generation task. In addition,432

we observe that across the three datasets, methods433

using GPT-4o mini as the backbone generally out-434

perform those using Gemini-1.5-pro-002. Hence,435

to save space, we report only the analysis of SEW436

(GPT-4o mini) in the following sections.437

5.5 Analysis438

RQ1: Which scheme is the most effective
for structuring agentic workflows?

439

To identify the most suitable workflow scheme440

for LLMs among the five, we conducted an exhaus-441

tive search using various mutation prompts. For a442

given workflow W represented in Python, 100 dif-443

ferent mutation prompts generated 100 variants. If444

50 of these variants are parsable and 30 can gener-445

ate executable codes, the LSR and GSR for Python446

are 50% and 30%, respectively. Notably, LSR is al-447

ways greater than or equal to GSR, as not all parsed448

workflows can complete the task.449

As shown in Table 2, BPMN and Python450

achieved the highest LSR at 87.3%. However, their451

GSR performance was suboptimal, whereas the re-452

cently proposed CoRE method achieved the best453

GSR. This suggests that while traditional BPMN454

and Python representations are easier for LLMs to455

parse, the CoRE method – which integrates natu-456

ral language programming, pseudo-code program-457

ming, and flow programming – is the most effective458

for workflow representation. We therefore con-459

clude that CoRE enables optimal comprehension460

Method HumanEval MBPP LCB

GPT-4o mini 80.2 63.4 38.0

task parsing workflow
Only Workflow-Evolved 87.2 72.3 42.3
Workflow + Agent Co-Evolved 91.0 84.1 50.9
%improv. 4.35 16.3 20.3

code rewriting workflow
Only Workflow-Evolved 88.8 70.5 40.1
Workflow + Agent Co-Evolved 92.1 80.8 46.8
%improv. 3.71 14.6 16.7

Table 3: Performance comparison (pass@1) between
the default version of two representative workflows gen-
erated from workflow evolution and their improved vari-
ants using agent evolution. All workflows use GPT-4o
mini as their backbone model.

and utilisation when denoting agentic workflows. 461

RQ 2: How do SEW’s workflow evolution
and agent evolution modules affect the per-
formance of coding generation?

462

To understand how our workflow evolution and 463

agent evolution modules affect the performance of 464

workflows generated by SEW, we select two rep- 465

resentative workflows generated by SEW, namely 466

task parsing workflow and code rewriting work- 467

flow. We chose these two workflows since most 468

of the variants built upon these two workflows can 469

bring large improvements. Specifically, the task 470

parsing workflow leverages an agent to first parse 471

the task and then send the parsed result to a cod- 472

ing agent to generate the code subsequently. In 473

comparison, a code rewriting workflow incorpo- 474

rates a code generation agent to generate the initial 475

outcome and then uses the code reviewing agent to 476

determine if this outcome can pass the test followed 477

by a code rewriting agent to rewrite the code based 478

on the feedback from the code reviewing agent.5 479

Notably, the workflow evolution module is de- 480

signed to generate novel workflow structures, while 481

the agent evolution module focuses on creating ef- 482

fective prompts for each agent. In particular, we 483

compare: (1) workflows generated by the work- 484

flow evolution module versus those produced by 485

the backbone model, and (2) workflows generated 486

by the workflow evolution module versus those 487

that incorporate both workflow and agent evolu- 488

tions. As shown in Table 3, the task parsing and 489

code rewriting workflows produced by SEW con- 490

sistently outperform the GPT-4o mini backbone 491

model across three datasets. This initial improve- 492

5Details of these two workflows can be found in Ap-
pendix A.2.
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Figure 5: Performance comparison of Code Rewriting and Task Parsing Workflows under different agent evolution
strategies on the LCB dataset.

ment suggests that our workflow evolution module493

generates novel workflow topologies more effec-494

tively than relying solely on the LLM. Building on495

these novel workflows, the agent evolution mod-496

ule further enhances performance by generating497

high-quality prompts for each agent. Specifically,498

our agent evolution module improves the perfor-499

mance of the task parsing workflow by 20.3% on500

the LCB dataset. In summary, our results demon-501

strate that the workflow evolution module effec-502

tively produces novel workflow structures, and the503

agent evolution module further unlocks their poten-504

tial by injecting high-quality prompts.505

RQ 3: How do different agentic evolution
strategies affect the performance of work-
flows generated by SEW?

506

We have introduced the Direct Evolution (DE)507

and Hyper Evolution (HE) operators, where for508

each we proposed its corresponding lower-order509

and higher-order versions. To examine the effec-510

tiveness of different operators, we randomly sam-511

pled five different mutation prompts and used these512

randomly sampled mutation prompts to generate513

five different variants for both workflows men-514

tioned earlier for each operator. We use four box515

plots to illustrate the performance distribution of516

these two workflows on the LCB dataset.517

From Figure 5, we can observe that HE con-518

sistently demonstrates lower variance than DE by519

comparing the first row and second row of Figure 5.520

The variance of both workflows under the zero-521

order hyper evolution is especially small. This522

indicates that the HE operator, particularly zero-523

order HE, exhibit superior robustness compared524

to DE, as they are less sensitive to variations in525

mutation prompts across different tasks. In terms526

of best performance, DE, especially second-order527

DE, tends to achieve higher peak performance in528

certain metrics, such as pass@10 for Code Rewrit-529

ing Workflow, where it reaches up to 0.580. This530

suggests that DE can optimize for specific high- 531

performance outcomes. On the other hand, HE, 532

while slightly lower in peak performance, provides 533

a more balanced and reliable performance profile, 534

making it more suitable for consistency. 535

Therefore, the choice between DE and HE de- 536

pends on the requirements of the task: DE is prefer- 537

able for maximizing performance, while HE is bet- 538

ter suited for real-world applications where robust- 539

ness is more important. In addition, higher-order 540

evolutions (Second-order DE and First-order HE) 541

are better suited for tasks that require maximiz- 542

ing performance and can tolerate some variability, 543

while lower-order evolutions (First-order DE and 544

Zero-order HE) provide higher robustness. 545

6 Conclusion 546

In this paper, we introduce Self-Evolving Workflow 547

(SEW), a novel framework that enables LLM-based 548

multi-agent workflows to automatically adapt and 549

evolve for improved performance in automatic 550

code generation. Unlike conventional hand-crafted 551

workflows, SEW leverages self-evolving prompt- 552

ing to optimise both workflow structures and in- 553

dividual agent capabilities. Through extensive 554

experiments on three coding generation bench- 555

marks, we demonstrate that self-evolved work- 556

flows consistently outperform single-agent base- 557

lines, even when the latter are enhanced with im- 558

proved prompts. Moreover, our results show that 559

higher-order evolution strategies further improve 560

workflow effectiveness by refining task execution 561

dynamics. Among different workflow representa- 562

tion schemes, CoRE emerges as the most effec- 563

tive, offering a balance between logical correctness 564

and execution success. These findings suggest that 565

SEW provides a promising direction for agentic 566

workflow optimisation, reducing reliance on man- 567

ual workflow design and prompt engineering while 568

improving adaptability and efficiency. 569
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Limitations570

While SEW proves effective for code generation, its571

generalization to other AI-driven tasks, such as rea-572

soning or planning, remains unknown. Another lim-573

itation lies in the workflow execution constraints,574

where some generated workflows, despite being575

logically sound, fail to produce executable outputs,576

suggesting a need for more robust validation mech-577

anisms. Furthermore, the effectiveness of SEW578

is dependent on the capabilities of the underlying579

LLM, meaning that future advancements in LLM580

architectures could significantly impact its perfor-581

mance. Addressing these limitations in future work582

will be crucial for extending SEW’s applicability583

and enhancing its adaptability for broader tasks.584
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A Appendix 731

A.1 Workflow Representation Schemes 732

In Section 4, we have introduced five different 733

representation schemes namely, Business Process 734

Model and Notation (BPMN) (White, 2004), Code 735

Representation and Execution (CoRE) (Xu et al., 736

2024b), python, YAML and pseudo-code, where we 737

used two scripts (Figure 4) to denote a workflow 738

represented by BPMN and CoRE, respectively. Be- 739

low, we will show the same workflow represented 740

by python, YAML and pseudo-code. 741

742
1 # python_workflow 743
2 steps = [ 744
3 {'name': 'task_parsing_agent ', 'args': 745

['task_description '], 'output ': 746
'parsed_task '}, 747

4 {'name': 'task_refinement_agent ', 'args': 748
['task_description ', 'parsed_task '], 749
'output ': 'refined_task '}, 750

5 {'name': 'code_generation_agent ', 'args': 751
['refined_task '], 'output ': 752
'generated_code '}, 753

6 {'name': 'code_reviewer_agent ', 'args': 754
['refined_task ', 'generated_code '], 755
'output ': 'review_comments '}, 756

7 {'name': 'code_refinement_agent ', 'args': 757
['refined_task ', 'review_comments '], 758
'output ': 'refined_code '}, 759

8 ] 760761

762
1 # pseudo_code_workflow 763
2 task_parsing_agent(task_description) -> 764

parsed_task 765
3 task_refinement_agent(task_description , 766

parsed_task) -> refined_task 767
4 code_generation_agent(refined_task) -> 768

generated_code 769
5 code_reviewer_agent(refined_task , 770

generated_code) -> review_comments 771
6 code_refinement_agent(refined_task , 772

review_comments) -> refined_code 773774

775
1 # YAML_workflow 776
2 - name: task_parsing_agent 777
3 args: 778
4 - task_description 779
5 output: parsed_task 780
6 781
7 - name: task_refinement_agent 782
8 args: 783
9 - task_description 784

10 - parsed_task 785
11 output: refined_task 786
12 787
13 - name: code_generation_agent 788
14 args: 789
15 - refined_task 790
16 output: generated_code 791
17 792
18 - name: code_reviewer_agent 793
19 args: 794
20 - refined_task 795
21 - generated_code 796
22 output: review_comments 797
23 798
24 - name: code_refinement_agent 799
25 args: 800
26 - refined_task 801
27 - review_comments 802
28 output: refined_code 803804
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A.2 Prompt Corpus805

In Section 3, we have introduced many textual806

variables including the task description, generation807

prompts and evolutionary prompts. In this section,808

we will detail the textual information.809

Task Description D for each dataset:
LiveCodeBench: The code generation
task in LiveCodeBench involves generating
correct and functional code from a natural
language problem description, where the
model is evaluated based on its ability to
pass a set of unseen test cases.

HumanEval: The HumanEval dataset,
developed by OpenAI, comprises 164
handcrafted programming problems, each
including a function signature, docstring,
body, and multiple unit tests, designed to
evaluate the code generation capabilities of
large language models by assessing their
ability to generate functionally correct code
from docstrings.

MBPP: The MBPP (Mostly Basic Python
Problems) dataset comprises approximately
1,000 crowd-sourced Python programming
problems, each including a task descrip-
tion, code solution, and three automated test
cases, designed to be solvable by entry-level
programmers and covering programming
fundamentals and standard library function-
ality.

810

We use W temp to denote a template workflow,811

which is used to guide LLMs to generate default812

workflows. In particular, we use the example work-813

flows listed in Appendix A.1 as our templates.814

Default agent generation prompt:
You are an AI prompt engineer. Your task is
to create specific prompts for each agent in
the provided workflow. Please follow these
steps:

1. Understand the Workflow: Here is
the detailed workflow: [Detailed work-
flow]

2. Identify Agent Roles: Based on the
workflow, determine the distinct roles
and responsibilities of each agent in-
volved.

3. Generate Agent-Specific Prompts: For
each identified agent, craft a clear and
concise prompt that includes:

• Agent Role: A brief description
of the agent’s function within the
workflow.

• Objectives: The specific goals the
agent is expected to achieve.

• Inputs: The information or data
the agent will receive.

• Outputs: The expected results or
actions the agent should produce.

Default workflow generation prompt:
You are an AI workflow designer. Your
task is to create a detailed Agent Workflow
tailored to the provided workflow template
and dataset description. Please follow these
steps:

1. Review the Workflow Template: [De-
tailed workflow template]

2. Analyze the Dataset Description:
[Dataset description]

3. Design the Agent Workflow: Based
on the above information, develop a
comprehensive Agent Workflow that in-
cludes:

• Inputs and Outputs: Define the
types of input data and the ex-
pected output results.

• Steps and Sequence: Outline each
step of the workflow and specify
the order of execution.

• Agent Roles and Responsibilities:
Describe the role and duties of the
agent at each step.

815
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Our used evolutionary prompts, including the816

mutation prompt, hyper-mutation prompt and817

thinking-style prompt, can be found in the appendix818

of PromptBreeder (Fernando et al., 2024).819

In Table 3, we have presented two workflows820

obtained from SEW namely the Task Parsing Work-821

flow and Code Rewriting Workflow. In the follow-822

ing, we will show the name of each agent and its823

corresponding prompt in those workflows. In par-824

ticular, we will first show the version that has not825

been improved by the agent evolution module, fol-826

lowed by the version that has been improved by the827

agent evolution module.828

A.2.1 Workflows without agent evolution829

module830

Task Parsing Workflow:
1. Task Parsing Agent: "You are a task pars-
ing agent. Comprehensively summarize the
given programming task for the subsequent
code generation. You will NOT return any-
thing except for the task summary. { TASK
PROMPT}
2. Code Generation Agent: "You are a
proficient Python programmer. Your task is
to write Python code according to the sum-
mary parsed by your colleague. You will be
given the problem description followed by
the summary. You will NOT return anything
except for the program." ⊕ { Output from
Task Parsing Agent}
Code Rewriting Workflow:
1. Code Generation Agent: "You are a pro-
ficient Python programmer. Your task is to
write Python code according to the summary
parsed by your colleague. You will be given
the problem description followed by the sum-
mary. You will NOT return anything except
for the program." ⊕ { TASK PROMPT}
2. Code Reviewer Agent: "You are a criti-
cal python code reviewer. You are tasked to
label generated codes with 1 or 0, where 1
indicates that this code satisfies the require-
ments and can pass the sample test, while 0
indicates that this code doesn’t satisfies the
requirements and will fail the sample test.
You will be given the Problem Description
followed by the corresponding Generated

831

5Notably, workflows may contain loops, for example, a
loop of Code Reviewer Agent and Code Rewriting Agent.
However, we will not repeat the prompt for the same agent
repetitively.

Code. You will NOT return anything except
for the numerical label." ⊕ { Output from
Code Generation Agent}
3. Code Rewriting Agent: "You are a profi-
cient Python programmer tasked with coding
solutions based on given problem specifica-
tions. You just generated some codes that
cannot pass the sample test. You role is to
regenerate python code that strictly adheres
to the specifications, ensuring it reads input
from standard input (stdin) and writes out-
put to standard output (stdout). You will be
given the Problem Description followed by
the Comments and Reasons why your previ-
ous code fails. You will NOT return anything
except for the program." ⊕ { Output from
Code Reviewer Agent}

832

A.2.2 Workflows improved by agent evolution 833

module 834

Task Parsing Workflow:
1. Task Parsing Agent: "
**Genre: Science Fiction**
**Setting/Condition: A Floating City Above
a Dying Earth**
**Creative Writing Prompt:** In the year
2145, humanity has retreated to a sprawling
floating city known as Aetheris, suspended
high above the ravaged surface of a dying
Earth. The city is powered by advanced tech-
nology that harnesses the energy of storms
and the sun, but resources are dwindling,
and the inhabitants are beginning to feel the
strain of isolation.
As a member of the Council of Innovators,
you are tasked with solving the city’s most
pressing problem: how to sustain life in
Aetheris while finding a way to restore the
Earth below. One day, you discover an an-
cient artifact buried in the archives of the
city\u2014 a mysterious device that seems
to pulse with energy and contains cryptic
symbols.
Write a story exploring your character’s jour-
ney as they decipher the artifact’s secrets,
navigate the political tensions within the
council, and confront the ethical dilemmas
of using the device. Will it lead to salvation
for both the floating city and the Earth, or
will it unleash unforeseen consequences?
Consider the implications of technology, the
nature of survival, and the relationship be-

835
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tween humanity and the environment as you
craft your narrative." ⊕ { TASK PROMPT}
2. Code Generation Agent: "When faced
with a mutation question like the one you’ve
provided, individuals who excel in creative
thinking typically approach it in several
ways:
1). Understanding the Problem: They start
by thoroughly understanding the existing
code and its purpose. In this case, the code
reads a number of test cases and computes
the square of each number.
2). Identifying Opportunities for Improve-
ment: They look for ways to enhance the
functionality or efficiency of the code. For
instance, they might consider:

• Adding error handling for invalid in-
puts.

• Allowing for different mathematical op-
erations (not just squaring).

• Implementing a more flexible input
method (e.g., reading from a file or al-
lowing for different data types).

3). Exploring Alternative Solutions: Cre-
ative thinkers often brainstorm alternative
approaches to solve the same problem. They
might consider:

• Using a list comprehension for more
concise code.

• Implementing a function to handle dif-
ferent operations based on user input.

4). Testing and Validation: They would think
about how to validate the outputs and ensure
the code behaves as expected under various
conditions.
5). Refactoring for Clarity: They might
refactor the code to improve readability and
maintainability, such as by breaking it into
smaller functions or adding comments.
6). Considering Edge Cases: They would
think about edge cases, such as what hap-
pens if the input is zero, negative numbers,
or non-integer values.
Here’s an example of how the original code
could be modified to incorporate some of
these creative thinking strategies:

836

1 def square_number(number):
2 """ Returns the square of the given

number ."""
3 return number ** 2
4
5 def main():
6 import sys
7 input = sys.stdin.read
8 data = input().strip().splitlines ()
9 try:

10 t = int(data [0])
11 except ValueError:
12 print("The first line must be an

integer representing the number of
test cases .")

13 return
14 results = []
15 for i in range(1, t + 1):
16 try:
17 number = int(data[i])
18

results.append(square_number(number))
19 except ValueError:
20 print(f"Invalid input at line

{i + 1}: '{data[i]}'. Please enter an
integer .")

21 continue
22 for result in results:
23 print(result)
24
25 if __name__ == "__main__ ":
26 main()

Key Changes Made:

• Function Extraction: The squaring
logic is moved to a separate function
for clarity.

• Error Handling: Added error handling
for both the number of test cases and
individual inputs.

• User Feedback: Provided feedback for
invalid inputs to guide the user. This
approach not only maintains the origi-
nal functionality but also enhances the
robustness and user-friendliness of the
code.

" ⊕ { Output from Task Parsing Agent}
Code Rewriting Workflow:
1. Code Generation Agent: "Certainly!
Here’s a mutator prompt designed to inspire
creativity and innovation:
—
**Mutator Prompt: T̈he Elemental Fusion*̈*
Imagine a world where the four classi-
cal elements2̆014Earth, Water, Air, and
Fire2̆014can be combined in unconventional
ways to create new entities, phenomena, or
experiences. Your task is to explore the fu-
sion of these elements and generate innova-
tive concepts that transcend their traditional
boundaries.
**Instructions:** 837
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1. **Elemental Combinations:** Choose
two or more elements from Earth, Water,
Air, and Fire. Describe how they interact
and what new properties or entities emerge
from their fusion.
2. **Conceptual Expansion:** For each
combination, think about how these new enti-
ties could influence the environment, society,
or technology. What challenges or benefits
do they bring?
3. **Unconventional Applications:** Con-
sider how these fusions could be applied
in real-world scenarios. This could include
art, architecture, environmental solutions, or
even new forms of entertainment.
4. **Visual Representation:** If possible,
sketch or describe a visual representation of
your fused element or concept. How does it
look? What colors, shapes, or movements
define it?
5. **Narrative Element:** Create a short
story or scenario that features your new en-
tity in action. How does it interact with the
world around it? What conflicts or resolu-
tions arise from its presence?
—
**Example:**

• **Combination:** Fire + Water

• **New Entity:** Steam Elementals

• **Description:** These beings are com-
posed of swirling steam, capable of ma-
nipulating temperature and humidity.
They can create fog to obscure vision
or unleash scalding vapor as a defense
mechanism.

• **Impact:** They could help regulate
climate in urban areas, but their unpre-
dictable nature might lead to sudden
weather changes.

• **Application:** Used in art installa-
tions to create immersive environments
that change with audience interaction.

• **Visual Representation:** Imagine a
swirling mass of steam with glowing
embers, shifting in color from blue to
orange.

838

• **Narrative Element:** In a city
plagued by drought, the Steam Elemen-
tals emerge to restore balance, but their
presence stirs fear among the inhab-
itants who misunderstand their inten-
tions.

—
Feel free to explore this prompt and let
your imagination run wild! What new pos-
sibilities will you uncover?" ⊕ { TASK
PROMPT}
2. Code Reviewer Agent:"
1) Problem Description: In a world where
creativity knows no bounds, we seek to de-
velop a mutator prompt that inspires individ-
uals to break free from conventional think-
ing and explore innovative mutations in their
ideas, projects, or artistic expressions. The
goal is to create a prompt that encourages
users to think divergently, combining unre-
lated concepts, altering existing frameworks,
and generating novel solutions or artistic ex-
pressions. This prompt should serve as a
catalyst for imagination, pushing the bound-
aries of what is considered possible.
2) Generated Code:

1 ```python
2 import random
3
4 def generate_mutator_prompt ():
5 # Lists of unconventional concepts ,

actions , and mediums
6 concepts = [
7 \"time travel\",

\" bioluminescence \", \" quantum
entanglement \",

8 \" dreamscapes \", \" mythical
creatures\", \"urban legends\",

9 \"chaos theory\",
\" synesthesia \", \" artificial
intelligence \",

10 \" ancient civilizations \",
\" futuristic technology \", \" empathy \"

11 ]
12
13 actions = [
14 \"merge\", \" transform\",

\" deconstruct \", \" reimagine\",
15 \" collaborate with\",

\" disrupt\", \" amplify\",
\" diminish\",

16 \" animate\", \" synthesize \",
\" repurpose\", \" revolutionize \"

17 ]
18
19 mediums = [
20 \" digital art\", \" poetry\",

\" interactive installations \",
21 \" performance art\", \"short

stories\", \"music compositions \",
22 \" sculptures\", \"video games\",

\" fashion design\", \" cooking \"
23 ]
24
25 # Randomly select elements from each

list
26 concept = random.choice(concepts)

839
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27 action = random.choice(actions)
28 medium = random.choice(mediums)
29
30 # Construct the mutator prompt
31 prompt = f\" Imagine a world where you

can {action} {concept} through
{medium }. \" \\

32 f\"What new realities ,
stories , or experiences can you
create ?\"

33
34 return prompt
35
36 # Example usage
37 if __name__ == \" __main__ \":
38 for _ in range (5):
39 print(generate_mutator_prompt ())
40 ```

3) Explanation of the Code:
i. **Concepts, Actions, and Mediums**:
The code defines three lists containing un-
conventional concepts, actions, and artistic
mediums. These lists are designed to inspire
creativity by combining elements that are
typically not associated with each other.
ii. **Random Selection**: The ‘ran-
dom.choice()‘ function is used to select
one item from each list, ensuring that
each prompt generated is unique and unpre-
dictable.
iii. **Prompt Construction**: The selected
elements are then combined into a coherent
prompt that encourages the user to think cre-
atively about how to merge the chosen con-
cept with the selected action and medium.
iv. **Example Usage**: The code includes
a loop that generates and prints five different
mutator prompts, showcasing the variety of
creative possibilities that can arise from this
approach.
This mutator prompt serves as a powerful
tool for artists, writers, and innovators, invit-
ing them to explore new dimensions of cre-
ativity and push the boundaries of their imag-
ination.
" ⊕ { Output from Code Generation Agent}
3. Code Rewriting Agent:"
**Mutator Prompt: T̈he Infinite Canvas*̈*
**Problem Description:** Imagine a world
where the laws of physics and logic are mere
suggestions, and creativity reigns supreme.
Your task is to create a Python program
that generates a unique piece of art or a
story based on a set of unconventional in-
puts. These inputs can be anything from
random words, emotions, colors, or even ab-
stract concepts. The program should utilize

840

these inputs to produce an output that defies
traditional boundaries, encouraging users to
explore new dimensions of creativity.
**Comments on Previous Code:**
1. **Input Handling:** Ensure that the
program can accept a diverse range of in-
puts, including strings, lists, and even user-
generated content. This flexibility will allow
for a broader spectrum of creative outputs.
2. **Randomization:** Incorporate ele-
ments of randomness to ensure that each ex-
ecution of the program yields a different re-
sult. This could involve using random selec-
tions from lists of words, colors, or themes.
3. **Artistic Generation:** Depending on
the chosen output type (art or story), utilize
libraries such as ‘matplotlib‘ for visual art or
‘nltk‘ for text generation. The goal is to cre-
ate something that feels alive and dynamic.
4. **User Interaction:** Consider adding
an interactive component where users can
tweak parameters or provide additional in-
puts mid-execution, allowing them to steer
the creative process.
5. **Output Presentation:** Design the out-
put to be visually appealing or narratively
engaging. For art, this could mean creating a
colorful canvas; for stories, it could involve
formatting the text in a captivating way.
6. **Documentation:** Ensure that the
code is well-commented and documented,
explaining the purpose of each function and
how users can modify inputs to explore dif-
ferent creative avenues.
—
**Example Python Code:**
Here’s a simple example to get you started
with the concept:

1
2 ```python
3 import random
4 import matplotlib.pyplot as plt
5 import numpy as np
6
7 def generate_random_words(num_words):
8 words = [\" dream\", \" whisper\",

\"ocean\", \"fire\", \"light\",
\" shadow\", \"dance\", \"echo \"]

9 return random.sample(words , num_words)
10
11 def create_art(words):
12 plt.figure(figsize =(10, 10))
13 for word in words:
14 x = np.random.rand (10)
15 y = np.random.rand (10)
16 plt.scatter(x, y, label=word ,

alpha =0.5)
17 plt.title (\"Art Inspired by Words \")
18 plt.legend ()
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19 plt.show()
20
21 def main():
22 num_words = int(input (\"How many

random words would you like to
generate? \"))

23 random_words =
generate_random_words(num_words)

24 print (\" Generated Words:\",
random_words)

25 create_art(random_words)
26
27 if __name__ == \" __main__ \":
28 main()
29 ```

This code generates a set of random words
and uses them to create a scatter plot, illus-
trating the concept of transforming abstract
ideas into visual art. Feel free to expand
upon this foundation, adding more complex-
ity and creativity to the outputs!"⊕ { Output
from Code Reviewer Agent}

842

A.3 Examples of Failed Python Workflows843

Reason: The ending agent of the workflow below844

is a code reviewer agent instead of a coding agent;845

hence, the final output cannot solve the coding846

task.847

848
1 steps = [849
2 {'name': 'task_parsing_agent ', 'args':850

['task_description '], 'output ':851
'parsed_task '},852

3 {'name': 'task_refinement_agent ', 'args':853
['task_description ', 'parsed_task '],854
'output ': 'refined_task '},855

4 {'name': 'code_generation_agent ', 'args':856
['refined_task '], 'output ':857
'generated_code '},858

5 {'name': 'code_reviewer_agent ', 'args':859
['refined_task ', 'generated_code '],860
'output ': 'review_comments '}861

6 ]862863

Reason: The input of the fortune telling agent864

does not match the output of the code generation865

agent; hence the fortune telling agent cannot fetch866

its input.867

868
1 steps = [869
2 {'name': 'task_parsing_agent ', 'args':870

['task_description '], 'output ':871
'parsed_task '},872

3 {'name': 'task_refinement_agent ', 'args':873
['task_description ', 'parsed_task '],874
'output ': 'refined_task '},875

4 {'name': 'code_generation_agent ', 'args':876
['refined_task '], 'output ':877
'generated_code '},878

5 {'name': 'fortune_telling_agent ',879
'args':['refined_code '], 'output ':880
'fortune_prediction '},881

6 {'name': 'code_reviewer_agent ', 'args':882
['refined_task ', 'generated_code '],883
'output ': 'review_comments '},884

7 {'name': 'code_refinement_agent ', 'args':885
['refined_task ', 'review_comments '],886
'output ': 'refined_code '},887

8 ]888889

Total Tokens HumanEval MBPP LCB

GPT-4o mini 295,200 721,336 1,208,023
Task Parsing Workflow 575,395 989,457 1,937,632
Code Rewriting Workflow 889,467 1,459,457 2,445,023

Table 4: The total tokens of the backbone model GPT-
4o mini and SEW generated workflows across three
datasets. The total tokens include the input/output to-
kens on both the validation and testing sets.

A.4 Token costs 890

In this section, we report the token costs of the 891

single agent (only use the backbone model), the 892

Task Parsing Workflow and the Code Rewriting 893

Workflow generated by SEW (see Table 4). From 894

this table, we can learn that LiveCodeBench is a 895

much more challenges benchmark than HumanEval 896

and MBPP because the tokens cost per instance 897

for LCB is much larger than that of MBPP and 898

HumanEval. In addition, the tokens cost for both 899

workflows is larger than that for GPT-4o mini since 900

workflows involve multiple agents taking input and 901

output concurrently, where the Code Rewriting 902

Workflow costs especially more tokens because 903

it may take multiple rounds for the generator agent 904

to produce codes passing the reviewer agent. 905
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