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Abstract

Large Language Models (LLMs) have demon-
strated effectiveness in code generation tasks.
To enable LLMs to address more complex cod-
ing challenges, existing research has focused
on crafting multi-agent systems with agentic
workflows, where complex coding tasks are
decomposed into sub-tasks, assigned to special-
ized agents. Despite their effectiveness, cur-
rent approaches heavily rely on hand-crafted
agentic workflows, with both agent topologies
and prompts manually designed, which limits
their ability to automatically adapt to different
types of coding problems. To address these
limitations and enable automated workflow
design, we propose Self-Evolving Workflow
(SEW), a novel self-evolving framework that
automatically generates and optimises multi-
agent workflows. Extensive experiments on
three coding benchmark datasets, including
the challenging LiveCodeBench, demonstrate
that our SEW can automatically design agen-
tic workflows and optimise them through self-
evolution, bringing up to 33% improvement on
LiveCodeBench compared to using the back-
bone LLM only. Furthermore, by investigating
different representation schemes of workflow,
we provide insights into the optimal way to
encode workflow information with text.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in automatic code
generation, enabling developers to translate nat-
ural language descriptions into executable pro-
grams (Hong et al., 2023; Liu et al., 2024a). How-
ever, as coding tasks grow in complexity, relying
on a single LLM instance (single-agent) to handle
all aspects of code generation becomes increas-
ingly challenging. To address this, recent studies
have explored multi-agent systems (Huang et al.,
2023; Islam et al., 2024) where multiple LLM-
powered agents collaborate to solve intricate prob-
lems through structured workflows (Hong et al.,
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foriin range(1, n+1): # Correct
total += i**2
return total

return total

Figure 1: Illustration of agent and workflow evolution
in code generation. The initialized setup (left) includes
agents with naive prompts while the evolved setup
(right) is equipped with enhanced prompts generated by
SEW and a more sophisticated workflow structure.

2023). These multi-agent systems decompose com-
plex programming tasks into sub-tasks, assigning
them to specialized agents with tailored prompts,
enhancing execution and output quality.

Despite their effectiveness, current multi-agent
systems rely heavily on manually designed work-
flows, where both the workflow topology and
agents’ prompts are manually crafted, hindering
their adaptability to more complex coding task. For
instance, a workflow optimised for machine learn-
ing task (Chi et al., 2024) differs significantly from
one tailored for software development task (Qian
et al., 2023). Manually crafting workflows for each
task is inefficient and does not leverage LLM’s full
potential for autonomous adaptation.

To address these limitations, we propose Self-
Evolving Workflow (SEW), a novel framework
designed to automatically generate and optimise
multi-agent workflow. In particular, SEW achieves
this by leveraging a novel evolutionary scheme to
improve the workflow, i.e., the topology of work-
flows and the prompt of each agent. Figure 1 shows
the agent and workflow evolution in code genera-



tion. In addition, to effectively represent agentic
workflows in textual format, we explore and com-
pare five different representation schemes, namely
BPMN (White, 2004), CoRE (Xu et al., 2024b),
Python code (Zhang et al., 2024c), YAML (Zhang
et al., 2024b), and pseudo-code (Xiao et al., 2024).
We evaluate each scheme based on how well it can
be interpreted and optimised by our SEW frame-
work, aiming to identify the optimal scheme for
workflow representation and optimization.

Our contributions are: (1) We investigate dif-
ferent workflow representation schemes, such as
BPMN, Python, CoRE, YAML, and pseudo-code,
to determine the most effective format for LLM
interpretation; (2) Unlike prior work that builds
agents by assembling predefined operators, our
framework automatically constructs agentic work-
flows from scratch, conditioned solely on task de-
scriptions. (3) We introduce a self-evolving work-
flow design approach, SEW, where LLMs jointly
improve workflow structures and agent prompts
to optimise performance; (4) We conduct exten-
sive experiments on three benchmark datasets, in-
cluding MBPP, HumanEval, and LiveCodeBench,
demonstrating that SEW can consistently improve
workflow performance through self-evolution.

2 Related Work

2.1 Workflow Representations in Agents

In multi-agent systems, workflows establish
structured information flows and task execution
pipelines, enabling agents to solve complex prob-
lems (Hong et al., 2023; Gao et al., 2024). While
natural language can describe workflows, its in-
herent ambiguity often leads to inconsistent inter-
pretations, hindering precise task execution across
agents (Xu et al., 2024b). To address this challenge,
several studies have introduced specific representa-
tion schemes for SOPs. For example, Business Pro-
cess Model and Notation (BPMN) (White, 2004)
is a graphical modeling language designed to de-
pict workflows by specifying the execution order
of activities. Similarly, Code Representation and
Execution (CoRE) (Xu et al., 2024b) provides a
unified framework that integrates natural language
programming, pseudo-code, and flow-based pro-
gramming to improve workflow representation and
execution. Additionally, Python code (Zhang et al.,
2024c¢; Xu et al., 2024a), YAML (Qiao et al., 2023;
Zhang et al., 2024b), and pseudo-code (Xiao et al.,
2024; Li et al., 2025) are also commonly employed

to define and manage agentic workflows.

2.2 Self-Evolving Agents

Existing agentic methods often yield suboptimal
responses when prompts are poorly constructed. To
address this, prompt optimization techniques (Zhou
et al., 2022; Fernando et al., 2024; Agarwal et al.,
2024; Liu et al., 2024b) have moved beyond static,
manually crafted in-context prompts. For instance,
automatic prompt engineer (APE) (Zhou et al.,
2022) enhances prompts by searching through a
pool of candidates. Similarly, Promptbreeder (Fer-
nando et al., 2024) employs LLMs to mutate
and evolve a population of task-specific prompts.
MIPRO (Opsahl-Ong et al., 2024) is an optimizer
designed to enhance multi-stage language model
programs by refining both instructions and few-
shot examples for each module. In multi-agent
systems, recent studies have explored the evolu-
tion of agentic workflows and topologies (Zhang
et al., 2024a; Zhou et al., 2024, 2025; Zhang et al.,
2025). For example, MASS (Zhou et al., 2025)
exploits the optimization of both prompt and work-
flow over a configurable topology space. Simi-
larly, AFlow (Zhang et al., 2024a) employs a Monte
Carlo Tree Search to enhance workflow efficiency,
while EvoFlow (Zhang et al., 2025) introduces a
framework for the automated search of heteroge-
neous agentic workflows. EvoAgent (Yuan et al.,
2024) is designed to automatically extend expert
agents into multi-agent systems using evolution-
ary algorithms. In contrast, our SEW introduces
a self-evolving mechanism that leverages diverse
workflow representation schemes, jointly optimis-
ing prompts for both agents and their workflow.

3 SEW

Task Definition. We focus on the task of code
generation, a task that requires multi-agent col-
laboration (Hong et al., 2023), aiming to produce
executable code based on a textual coding prob-
lem. To tackle this task, we deploy an LLM-based
multi-agent system to generate code, where each
agent processes a textual prompt and produces a
corresponding textual output. We define the textual
prompt of an LLM agent a as 7 and a sequence of
LLM agents, i.e., a workflow as W.

Preliminary. Evolutionary prompts are central
to SEW. Rather than relying on training data,
SEW employs LLMs as mutation operators by con-
catenating the evolutionary prompts with the task
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Figure 2: The overall framework of SEW. The process begins with workflow generation, followed by workflow
evolution. Then each agent within the evolved workflow will be equipped with enhanced prompts generated by the
agent evolution module. Such an agent evolution module is driven by the Direct Evolution (DE) operator and Hyper
Evolution (HE) operator, leveraging LLMs, where we use a mutation prompt 7, or a hyper-mutation prompt

Thmut to enhance the prompt of an agent.

prompt to generate a more effective task prompt.
We define two evolutionary operators, namely the
Direct Evolution (DE) operator F(-) and the Hy-
per Evolution (HE) operator H(-), where F(-) and
H(-) take a workflow W or an agent a as the input
and output an enhanced workflow W’ or an agent
a’. Specifically, F(-) and #(-) operators lever-
age (1) mutation prompts Ty, (2) hyper-mutation
prompt, and (3) thinking-style prompts Tiink (Fer-
nando et al., 2024). Figure 3 shows examples
of these evolutionary prompts and how they are
evolved by both DE and HE.

Overview of SEW. Our SEW framework consists
of three main modules: (a) Workflow Generation,
(b) Workflow-Evolution, and (c) Agent-Evolution.
The overview of our SEW framework is illustrated
in Figure 2. As shown in Figure 2, our SEW first
generates an initial workflow based on the task de-
scription using one of the representation schemes
introduced in Section 4. Second, the workflow
evolution module of SEW will leverage our evolu-
tion method to reconstruct the initial workflow. Fi-
nally, inspired by PromptBreeder (Fernando et al.,
2024), our agent evolution module will apply ei-
ther the agentic DE or agentic HE method to equip
each agent with a more sophisticated prompt. The
pseudo-code of SEW is shown in Algorithm 1.

Workflow Generation. To generate workflows,
we use an LLM to generate default workflows

based on the given task description D ! and a tem-
plate workflow WP A template workflow can
be denoted with different workflow representation
schemes. In particular, our SEW explore five dif-
ferent schemes, namely Business Process Model
and Notation (BPMN) (White, 2004), Code Repre-
sentation and Execution (CoRE) (Xu et al., 2024b),
python, YAML and pseudo-code, with their detailed
description presented in Section 4. Figure 4 shows
two examples of the template workflow.

From the workflow generation process as shown

in Algorithm 1, we can obtain a set of default work-
flows W/ Later, we will present how to use
our workflow evolution module to rearrange and
modify the structure of W@/,
Workflow Evolution. To formalise the workflow
evolution process of SEW, first we define a work-
flow W represented with a certain representation
scheme rep, where all W in rep are in textual for-
mat. We use the DE operator F(-) to generate an
evolved workflow as follows:

W/ - ]:(Wdef”;nut)v (1)

where W is the self-evolved workflow, Ty is the
mutation prompt and F(-) representing the opera-
tion that an LLM takes W,y and Ty as input and
output W’ (see Figure 3 for more details).

' Appendix A.2 shows all of the task descriptions.
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Figure 3: Illustration of the Direct Evolution and Hyper Evolution of SEW. We use green, yellow and blue boxes to
indicate the evolutionary prompt, default agent prompt and textual output of evolutionary operators.

It should be noted that the mutation prompt 7+
cannot ensure that W’ is a valid workflow. For ex-
ample, W/ may not strictly follow the format of the
representation scheme. To measure the validity of
W', we define two rates, namely the Logical Suc-
cessful Rate (LSR) and Generation Successful Rate
(GSR). The LSR denotes the probability that gen-
erated W is valid, and the GSR denotes the prob-
ability that the output of W' is executable Python

. I pGisvalid(W)))
Specifically, LSR = 1 ud

code.

W' s ’
and GSR = 2i=1 H(ISPytT;;I,(lomwt(Wi))) . By mea-

suring LSR and GSR of a certain representation
scheme, we can determine which scheme is more
suitable for SEW.

Agent Evolution. After modifying the structure of
workflows using the workflow evolution module,
the next step is to modify each agent’s prompt. Sim-
ilar to the workflow evolution, the agent evolution
also relies on the mutation prompt. As mentioned
earlier we use Direct Evolution (DE) and Hyper
Evolution (HE) to improve an agent, where DE
aims to modify an agent’s prompt by directly ap-
plying a mutation prompt to it while HE first modi-
fies the mutation prompt then apply the modified
mutation prompt to an agent.

Agentic Direct Evolution. To enhance the perfor-
mance of an agent, SEW directly apply the muta-
tion prompt 7Ty, to an agent’s prompt using the
direct evolution operator as follows:

a' <+ F(a|Tmu)s (2)

where a is an agent and a’ is the agent with modi-
fied prompt, and we define the operation above as
the first-order direct evolution.

Algorithm 1: Self-Evolving Workflow

Input: Task Description D, Workflow Template
WtemP Mutation Prompt Tmut, Hyper
Mutation Prompt Thmu, Thinking-style
Prompt Tinink

Output: Optimized Workflow W’

1 Function SEW(EE,H ,778/)1]), 77m([7 nmuh 77/1[11/():
2 1. Workflow Generation;
3 Waes < GenerateWorkflows(Taes, Temp):
4 2. Workflow Evolution;
5 for each workflow Wycy do
6 | W' = F(Waes|Tow);
3. Agent Evolution;

8 for each agent a in W' do

3.1 Select Evolution Method;
10 if First-order DE then
1 L a’ <+ F(a|Tmuw);
12 else if Second-order DE then
13 | a” = F(F(a|Tou) | Tonue)s
14 else if Zero-order HE then
15 L a’ + H(a|H(Taes| Tinink) )
16 else if First-order HE then
17 | a” <« H(a|H(Tou| Tmu) )
18 | return W',

Based on the first-order direct evolution, we pro-
pose the second-order direct evolution:

a” F(F(aw;nut)w;nut) 3)

By applying second-order direct evolution, we aim
to further enhance the performance of an LLM
agent.

Agentic Hyper Evolution. Different from Direct
Evolution, Hyper Evolution focuses on generating
more effective mutation prompts. In other words,
HE first modifies the mutation prompt 7, then
uses the new mutation prompt 7, to improve an



agent’s prompt. Formally, we define the zero-order
hyper evolution as below:

a’ <+ H(a|H(Tes| Tnink)) “4)

where Tinint are text descriptions of general cogni-
tive heuristics (Fernando et al., 2024).

For zero-order HE, we use the general cognitive
heuristics Tinink to generate useful prompts for
solving problems described by the task description
D. Similar to how we use the mutation prompt
Tmut to modify an agent’s prompt, we can use a
hyper-mutation prompt instead of T¢pinx to modify
Tt Which is defined as first-order HE.

From Eq 4, a new mutation prompt is gener-
ated from the task description and some cognitive
heuristics. In another way, we can use a hyper-
mutation prompt to directly generate new variants
from T;,.: as follows:

a” H(G|H(7:nut|’ﬁlmut)) 5)

Finally, by combining the workflow-evolution
and agent evolution, our SEW can generate more
effective variants of workflows for solving the code
generation task. In the next section, we will present
and compare those five different representation
schemes that can be leveraged by SEW.

4 Workflow Representation

To generate a workflow using LLLM, appropriate
workflow textual representation schemes are essen-
tial. In fact, while it is straightforward to execute
a workflow using code, representing it in natural
language is non-trivial. A well-designed represen-
tation scheme should capture the structural and
semantic components of a workflow and be easily
interpreted by LLMs for downstream modification.

As we discussed in the related work section,
we explored five different textual representation
schemes that can be used to denote workflows
namely, Business Process Model and Notation
(BPMN) (White, 2004), Code Representation and
Execution (CoRE) (Xu et al., 2024b), python,
YAML and pseudo-code, where each representa-
tion scheme can be used to denote a workflow by
text. The choice of these five schemes was driven
by their distinct advantages in facilitating the rep-
resentation and execution of agentic workflows,
particularly in the context of self-evolving agentic
workflows that our method, SEW, aims to optimise.

1# BPMN_workflow

2<definitions xmlns="http://www.omg.org/spec/BPMN/

3 20100524/MODEL">

4 <process id="software_dev_workflow"
isExecutable="true">

5 <startEvent id="start" />

6 <task id="parse_task” name="Parse Task" />

7

8

<sequenceFlow id="flow6"
sourceRef="refine_code” targetRef="end" />
9 </process>
10 </definitions>

1 # CoRE_workflow

2Step 1:::Process:::Parse Task:::next::Step 2
3Step 2:::Process:::Refine Task:::next::Step 3

4 Step 3:::Process:::Generate Code:::next::Step 4
5Step 4:::Process:::Review Code:::next::Step 5

6 Step 5:::Process:::Refine Code:::next::Step 6
7Step 6:::Terminal:::End of Workflow:::

Figure 4: A workflow represented by the BPMN and
the CoRE schemes, respectively.

BPMN: This graphical standard is well-established
in business process modeling and widely recog-
nized for its ability to clearly depict the order of
tasks and their dependencies.
CoRE: CoRE integrates natural language program-
ming, pseudo-code, and flow-based programming,
and is a strong candidate for agentic workflows.
It allows workflows to be directly executable and
interpretable by LLMs, offering advantages for our
self-evolving framework.
Python: As a widely adopted programming lan-
guage, Python is not only familiar to many prac-
titioners but also flexible in terms of representing
workflows through its readable syntax and exten-
sive ecosystem of libraries. For agentic workflows
requiring programmatic execution, Python allows
for easy integration and adaptation of agents into
working solutions.
YAML: YAML is a human-readable data seriali-
sation format widely used for configuration files
and workflow definitions due to its simplicity and
readability. YAML'’s flexibility in representing hi-
erarchical data structures makes it well-suited for
workflows that need to be configured or defined by
humans but executed by machines.
Pseudo-code: Pseudo-code is a high-level repre-
sentation that is often used for illustrating algo-
rithms and workflows in a way that is easy for both
humans and machines to understand. Pseudo-code
offers an abstraction that bridges natural language
and formal code, making it an excellent choice for
expressing workflows that need to be easily read
and modified.

To clearly illustrate the differences between
workflow representation schemes, we present an



example agentic workflow represented using both
the BPMN and CoRE schemes in Figure 4. In Fig-
ure 4, a software development pipeline, consisting
of sequential tasks such as parsing input, refining
content, generating code, reviewing, and iterating
improvements, is represented by BPMN and CoRE,
respectively. Each stage is represented as a task
node, while dependencies between tasks are cap-
tured as sequence flows, ensuring clear process
execution. Although denoted with different rep-
resentation schemes, they shall perform the same
function when executed?.

These five schemes were chosen for their di-
verse capabilities in representing workflows and
their practical utility in a self-evolving framework,
where agents and workflows are dynamically gen-
erated and optimised. Our exploration of these
schemes aims to identify the most suitable repre-
sentation for evolving agentic workflows in code
generation tasks, where LLMs are leveraged for
both understanding and executing the workflows.

5 Experiments

5.1 Dataset

To examine our proposed SEW framework, we
choose the LiveCodeBench (LCB) (Jain et al.,
2024) dataset, which is a comprehensive bench-
mark designed to evaluate the coding capabilities
of LLMs. We randomly sampled 100 samples from
the code generation subset of LCB? for validation
and the remaining 300 samples for testing. In ad-
dition, we also use the MBPP (Austin et al., 2021)
and HumanEval (Chen et al., 2021) datasets follow-
ing the data split in AFlow (Zhang et al., 2024a).

To evaluate performance on the code generation
task, each method is required to generate 10 candi-
date solutions per sample. We use pass@1, pass@S5,
and pass@ 10 as evaluation metrics.

5.2 Baselines

We compare our proposed SEW against five base-
line prompting techniques across two different
backbone models (i.e. GPT-40 mini and Gemini-
1.5-pro-002) on three code generation tasks (i.e Hu-
manEval, MBPP, and LCB): (1) Backbone Models
(GPT-40 mini and Gemini-1.5-pro-002). (2) Chain-
of-Thought (CoT) (Wei et al., 2022) Uses reasoning

2Additional representation formats, such as Python,
pseudo-code and YAML, are provided in Appendix A.1

3We use the release_v1 version of the code generation
subset of LCB.

Method HumanEval MBPP LCB
GPT-40 mini

GPT-40 mini 80.2 63.4 38.0
CoT 87.2 68.3 40.1
PromptBreeder 90.9 83.2 459
ADAS 88.8 73.0 42.5
AFlow 91.6 83.9 -

SEW (GPT-40 mini) 92.1 84.1 50.9

Gemini-1.5-pro-002

Gemini-1.5-pro-002 79.8 61.0 36.7
CoT 86.7 68.3 39.8
PromptBreeder 88.6 71.7 44.8
ADAS 86.7 71.0 433
AFlow 89.3 70.0 -

SEW (Gemini-1.5-pro-002) 89.9 74.1 47.8

Table 1: Performance comparison (pass@ 1) between
our SEW and baselines. ‘-’ refers to out-of-time errors,
where the LLM executor has been trapped in executing
accidental scripts with infinite loops. We adopt two
LLMs, i.e., GPT-40 mini and Gemini-1.5-pro, as back-
bone models for all methods.

steps explicitly stated within the prompt. (3) Au-
tomated Design of Agentic Systems (ADAS) (Hu
et al., 2024): A methodology that leverages meta-
agent frameworks to automatically design and op-
timise agentic systems. (4) AFlow (Zhang et al.,
2024a): An automated framework that efficiently
explores and optimises agentic workflows using
Monte Carlo Tree Search. (5) PromptBreeder (Fer-
nando et al., 2024) is a gradient-free evolutionary
framework that improves agents by iteratively mu-
tating and selecting prompt variants.

5.3 Experimental Setup

We conduct an exhaustive search on self-evolved
workflows W, represented by the following meth-
ods, including BPMN, CoRE, python, YAML and
pseudo-code. We use all mutation prompts to
evolve workflows represented by 5 schemes. Al-
though various types of workflows are generated
during the self-evolution process, not all of them
are valid for code generation tasks. Among all
generated workflows, the task parsing workflow
and code rewriting workflow* are more effective
than the other counterparts. In particular, variants
based on these two workflows can largely outper-
form competitive baselines, hence, we choose the
best variant to represent our SEW..

5.4 Main Results

To compare the performance of SEW and other
baselines, we adopt two backbone models i.e., GPT-

*We also report the token cost of these two workflows in
the Appendix A .4



Rep method BPMN CoRE python YAML pseudo-code

LSR 873% 74.5% 87.3% 78.2% 52.7%
GSR 473% 727% 29.1% 47.3% 36.4%

Table 2: Logic Successful Rate (LSR) and Generation
Successful Rate (GSR) for Business Process Model and

Notation, Code Representation and Execution, python,
YAML and pseudo-code.

40 mini and Gemini-1.5-pro-002. From Table 1,
we find that (1) SEW can largely outperform those
two backbone models at both settings; (2) SEW
is more effective than CoT, a robust prompting
technique for enhancing LLM’s ability to solve
complex tasks by breaking them down into se-
quential thought processes; (3) when leveraging
the same backbone model, our SEW outperform
other state-of-the-art workflow designing methods
such as ADAS and AFlow. Therefore, we can con-
clude that our SEW framework is more effective
than different types of baselines under the same
setting in the code generation task. In addition,
we observe that across the three datasets, methods
using GPT-40 mini as the backbone generally out-
perform those using Gemini-1.5-pro-002. Hence,
to save space, we report only the analysis of SEW
(GPT-40 mini) in the following sections.

5.5 Analysis

RQ1: Which scheme is the most effective
for structuring agentic workflows?

To identify the most suitable workflow scheme
for LLMs among the five, we conducted an exhaus-
tive search using various mutation prompts. For a
given workflow W represented in Python, 100 dif-
ferent mutation prompts generated 100 variants. If
50 of these variants are parsable and 30 can gener-
ate executable codes, the LSR and GSR for Python
are 50% and 30%, respectively. Notably, LSR is al-
ways greater than or equal to GSR, as not all parsed
workflows can complete the task.

As shown in Table 2, BPMN and Python
achieved the highest LSR at 87.3%. However, their
GSR performance was suboptimal, whereas the re-
cently proposed CoRE method achieved the best
GSR. This suggests that while traditional BPMN
and Python representations are easier for LLMs to
parse, the CoRE method — which integrates natu-
ral language programming, pseudo-code program-
ming, and flow programming — is the most effective
for workflow representation. We therefore con-
clude that CoRE enables optimal comprehension

Method HumanEval MBPP LCB
GPT-40 mini 80.2 63.4 38.0
task parsing workflow
Only Workflow-Evolved 87.2 72.3 423
Workflow + Agent Co-Evolved 91.0 84.1 50.9
Joimprov. 435 16.3 20.3
code rewriting workflow
Only Workflow-Evolved 88.8 70.5 40.1
Workflow + Agent Co-Evolved 92.1 80.8 46.8
Joimprov. 3.71 14.6 16.7

Table 3: Performance comparison (pass@ 1) between
the default version of two representative workflows gen-
erated from workflow evolution and their improved vari-
ants using agent evolution. All workflows use GPT-40
mini as their backbone model.

and utilisation when denoting agentic workflows.

RQ 2: How do SEW’s workflow evolution
and agent evolution modules affect the per-
formance of coding generation?

To understand how our workflow evolution and
agent evolution modules affect the performance of
workflows generated by SEW, we select two rep-
resentative workflows generated by SEW, namely
task parsing workflow and code rewriting work-
flow. We chose these two workflows since most
of the variants built upon these two workflows can
bring large improvements. Specifically, the task
parsing workflow leverages an agent to first parse
the task and then send the parsed result to a cod-
ing agent to generate the code subsequently. In
comparison, a code rewriting workflow incorpo-
rates a code generation agent to generate the initial
outcome and then uses the code reviewing agent to
determine if this outcome can pass the test followed
by a code rewriting agent to rewrite the code based
on the feedback from the code reviewing agent.’

Notably, the workflow evolution module is de-
signed to generate novel workflow structures, while
the agent evolution module focuses on creating ef-
fective prompts for each agent. In particular, we
compare: (1) workflows generated by the work-
flow evolution module versus those produced by
the backbone model, and (2) workflows generated
by the workflow evolution module versus those
that incorporate both workflow and agent evolu-
tions. As shown in Table 3, the task parsing and
code rewriting workflows produced by SEW con-
sistently outperform the GPT-40 mini backbone
model across three datasets. This initial improve-

Details of these two workflows can be found in Ap-
pendix A.2.
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Figure 5: Performance comparison of Code Rewriting and Task Parsing Workflows under different agent evolution

strategies on the LCB dataset.

ment suggests that our workflow evolution module
generates novel workflow topologies more effec-
tively than relying solely on the LLM. Building on
these novel workflows, the agent evolution mod-
ule further enhances performance by generating
high-quality prompts for each agent. Specifically,
our agent evolution module improves the perfor-
mance of the task parsing workflow by 20.3% on
the LCB dataset. In summary, our results demon-
strate that the workflow evolution module effec-
tively produces novel workflow structures, and the
agent evolution module further unlocks their poten-
tial by injecting high-quality prompts.

RQ 3: How do different agentic evolution
strategies affect the performance of work-
flows generated by SEW?

We have introduced the Direct Evolution (DE)
and Hyper Evolution (HE) operators, where for
each we proposed its corresponding lower-order
and higher-order versions. To examine the effec-
tiveness of different operators, we randomly sam-
pled five different mutation prompts and used these
randomly sampled mutation prompts to generate
five different variants for both workflows men-
tioned earlier for each operator. We use four box
plots to illustrate the performance distribution of
these two workflows on the LCB dataset.

From Figure 5, we can observe that HE con-
sistently demonstrates lower variance than DE by
comparing the first row and second row of Figure 5.
The variance of both workflows under the zero-
order hyper evolution is especially small. This
indicates that the HE operator, particularly zero-
order HE, exhibit superior robustness compared
to DE, as they are less sensitive to variations in
mutation prompts across different tasks. In terms
of best performance, DE, especially second-order
DE, tends to achieve higher peak performance in
certain metrics, such as pass@ 10 for Code Rewrit-
ing Workflow, where it reaches up to 0.580. This

suggests that DE can optimize for specific high-
performance outcomes. On the other hand, HE,
while slightly lower in peak performance, provides
a more balanced and reliable performance profile,
making it more suitable for consistency.

Therefore, the choice between DE and HE de-
pends on the requirements of the task: DE is prefer-
able for maximizing performance, while HE is bet-
ter suited for real-world applications where robust-
ness is more important. In addition, higher-order
evolutions (Second-order DE and First-order HE)
are better suited for tasks that require maximiz-
ing performance and can tolerate some variability,
while lower-order evolutions (First-order DE and
Zero-order HE) provide higher robustness.

6 Conclusion

In this paper, we introduce Self-Evolving Workflow
(SEW), a novel framework that enables LLM-based
multi-agent workflows to automatically adapt and
evolve for improved performance in automatic
code generation. Unlike conventional hand-crafted
workflows, SEW leverages self-evolving prompt-
ing to optimise both workflow structures and in-
dividual agent capabilities. Through extensive
experiments on three coding generation bench-
marks, we demonstrate that self-evolved work-
flows consistently outperform single-agent base-
lines, even when the latter are enhanced with im-
proved prompts. Moreover, our results show that
higher-order evolution strategies further improve
workflow effectiveness by refining task execution
dynamics. Among different workflow representa-
tion schemes, CoRE emerges as the most effec-
tive, offering a balance between logical correctness
and execution success. These findings suggest that
SEW provides a promising direction for agentic
workflow optimisation, reducing reliance on man-
ual workflow design and prompt engineering while
improving adaptability and efficiency.



Limitations

While SEW proves effective for code generation, its
generalization to other Al-driven tasks, such as rea-
soning or planning, remains unknown. Another lim-
itation lies in the workflow execution constraints,
where some generated workflows, despite being
logically sound, fail to produce executable outputs,
suggesting a need for more robust validation mech-
anisms. Furthermore, the effectiveness of SEW
is dependent on the capabilities of the underlying
LLM, meaning that future advancements in LLM
architectures could significantly impact its perfor-
mance. Addressing these limitations in future work
will be crucial for extending SEW’s applicability
and enhancing its adaptability for broader tasks.
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A Appendix

A.1 Workflow Representation Schemes

In Section 4, we have introduced five different
representation schemes namely, Business Process
Model and Notation (BPMN) (White, 2004), Code
Representation and Execution (CoRE) (Xu et al.,
2024b), python, YAML and pseudo-code, where we
used two scripts (Figure 4) to denote a workflow
represented by BPMN and CoRE, respectively. Be-
low, we will show the same workflow represented
by python, YAML and pseudo-code.

1 # python_workflow

2 steps = [

3 {'name': 'task_parsing_agent', 'args':
['task_description'], 'output':
'parsed_task '},

4 {'name': 'task_refinement_agent', 'args':

['task_description', 'parsed_task'],

'output': 'refined_task'},

5 {'name': 'code_generation_agent', 'args':
['refined_task'], 'output':
'generated_code '},

6 {'name': 'code_reviewer_agent', 'args':
['refined_task', 'generated_code'],
'output': 'review_comments'},

7 {'name': 'code_refinement_agent', 'args':
['refined_task', 'review_comments'],
'output': 'refined_code'},

81

1 # pseudo_code_workflow

2 task_parsing_agent (task_description) ->
parsed_task

3 task_refinement_agent (task_description,
parsed_task) -> refined_task

4 code_generation_agent(refined_task) ->
generated_code

5 code_reviewer_agent(refined_task,
generated_code) -> review_comments

6 code_refinement_agent(refined_task,
review_comments) -> refined_code

YAML _workflow
2 - name: task_parsing_agent
args:

- task_description
5 output: parsed_task
name: task_refinement_agent
args:

- task_description

- parsed_task
output: refined_task

name :
args:
- refined_task

code_generation_agent

16 output: generated_code

17

18 - name: code_reviewer_agent
19 args:

- refined_task
- generated_code
output: review_comments

name :
25  args:
26 - refined_task

27 - review_comments
output: refined_code

code_refinement_agent




A.2 Prompt Corpus

In Section 3, we have introduced many textual
variables including the task description, generation
prompts and evolutionary prompts. In this section,
we will detail the textual information.

Task Description D for each dataset:
LiveCodeBench: The code generation
task in LiveCodeBench involves generating
correct and functional code from a natural
language problem description, where the
model is evaluated based on its ability to
pass a set of unseen test cases.

HumanEval: The HumanEval dataset,
developed by OpenAl, comprises 164
handcrafted programming problems, each
including a function signature, docstring,
body, and multiple unit tests, designed to
evaluate the code generation capabilities of
large language models by assessing their
ability to generate functionally correct code
from docstrings.

MBPP: The MBPP (Mostly Basic Python
Problems) dataset comprises approximately
1,000 crowd-sourced Python programming
problems, each including a task descrip-
tion, code solution, and three automated test
cases, designed to be solvable by entry-level
programmers and covering programming
fundamentals and standard library function-
ality.

We use W to denote a template workflow,
which is used to guide LLMs to generate default
workflows. In particular, we use the example work-
flows listed in Appendix A.1 as our templates.

Default agent generation prompt:

You are an Al prompt engineer. Your task is
to create specific prompts for each agent in
the provided workflow. Please follow these
steps:

1. Understand the Workflow: Here is
the detailed workflow: [Detailed work-
flow]

2. Identify Agent Roles: Based on the
workflow, determine the distinct roles
and responsibilities of each agent in-
volved.

3. Generate Agent-Specific Prompts: For
each identified agent, craft a clear and
concise prompt that includes:

* Agent Role: A brief description
of the agent’s function within the
workflow.

* Objectives: The specific goals the
agent is expected to achieve.

* Inputs: The information or data
the agent will receive.

* Outputs: The expected results or
actions the agent should produce.

Default workflow generation prompt:

You are an Al workflow designer. Your
task is to create a detailed Agent Workflow
tailored to the provided workflow template
and dataset description. Please follow these
steps:

1. Review the Workflow Template: [De-
tailed workflow template]

2. Analyze the Dataset Description:
[Dataset description]

3. Design the Agent Workflow: Based
on the above information, develop a
comprehensive Agent Workflow that in-
cludes:

* Inputs and Outputs: Define the
types of input data and the ex-
pected output results.

* Steps and Sequence: Outline each
step of the workflow and specify
the order of execution.

» Agent Roles and Responsibilities:
Describe the role and duties of the
agent at each step.



Our used evolutionary prompts, including the
mutation prompt, hyper-mutation prompt and
thinking-style prompt, can be found in the appendix
of PromptBreeder (Fernando et al., 2024).

In Table 3, we have presented two workflows
obtained from SEW namely the Task Parsing Work-
flow and Code Rewriting Workflow. In the follow-
ing, we will show the name of each agent and its
corresponding prompt in those workflows. In par-
ticular, we will first show the version that has not
been improved by the agent evolution module, fol-
lowed by the version that has been improved by the
agent evolution module.

A.2.1 Workflows without agent evolution
module

Task Parsing Workflow:

1. Task Parsing Agent: "You are a task pars-
ing agent. Comprehensively summarize the
given programming task for the subsequent
code generation. You will NOT return any-
thing except for the task summary. { TASK
PROMPT}

2. Code Generation Agent: "You are a
proficient Python programmer. Your task is
to write Python code according to the sum-
mary parsed by your colleague. You will be
given the problem description followed by
the summary. You will NOT return anything
except for the program.” & { Output from
Task Parsing Agent}

Code Rewriting Workflow:

1. Code Generation Agent: "You are a pro-
ficient Python programmer. Your task is to
write Python code according to the summary
parsed by your colleague. You will be given
the problem description followed by the sum-
mary. You will NOT return anything except
for the program." @ { TASK PROMPT}

2. Code Reviewer Agent: "You are a criti-
cal python code reviewer. You are tasked to
label generated codes with 1 or 0, where 1
indicates that this code satisfies the require-
ments and can pass the sample test, while 0
indicates that this code doesn’t satisfies the
requirements and will fail the sample test.
You will be given the Problem Description
followed by the corresponding Generated

>Notably, workflows may contain loops, for example, a
loop of Code Reviewer Agent and Code Rewriting Agent.
However, we will not repeat the prompt for the same agent
repetitively.
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Code. You will NOT return anything except
for the numerical label." & { Output from
Code Generation Agent}

3. Code Rewriting Agent: "You are a profi-
cient Python programmer tasked with coding
solutions based on given problem specifica-
tions. You just generated some codes that
cannot pass the sample test. You role is to
regenerate python code that strictly adheres
to the specifications, ensuring it reads input
from standard input (stdin) and writes out-
put to standard output (stdout). You will be
given the Problem Description followed by
the Comments and Reasons why your previ-
ous code fails. You will NOT return anything
except for the program." & { Output from
Code Reviewer Agent}

A.2.2 Workflows improved by agent evolution

module
Task Parsing Workflow:
1. Task Parsing Agent: "
**Genre: Science Fiction**
**Setting/Condition: A Floating City Above
a Dying Earth**
**Creative Writing Prompt:** In the year
2145, humanity has retreated to a sprawling
floating city known as Aetheris, suspended
high above the ravaged surface of a dying
Earth. The city is powered by advanced tech-
nology that harnesses the energy of storms
and the sun, but resources are dwindling,
and the inhabitants are beginning to feel the
strain of isolation.
As a member of the Council of Innovators,
you are tasked with solving the city’s most
pressing problem: how to sustain life in
Aetheris while finding a way to restore the
Earth below. One day, you discover an an-
cient artifact buried in the archives of the
city\u2014 a mysterious device that seems
to pulse with energy and contains cryptic
symbols.
Write a story exploring your character’s jour-
ney as they decipher the artifact’s secrets,
navigate the political tensions within the
council, and confront the ethical dilemmas
of using the device. Will it lead to salvation
for both the floating city and the Earth, or
will it unleash unforeseen consequences?
Consider the implications of technology, the
nature of survival, and the relationship be-



tween humanity and the environment as you
craft your narrative." @ { TASK PROMPT}
2. Code Generation Agent: "When faced
with a mutation question like the one you’ve
provided, individuals who excel in creative
thinking typically approach it in several
ways:

1). Understanding the Problem: They start
by thoroughly understanding the existing
code and its purpose. In this case, the code
reads a number of test cases and computes
the square of each number.

2). Identifying Opportunities for Improve-
ment: They look for ways to enhance the
functionality or efficiency of the code. For
instance, they might consider:

* Adding error handling for invalid in-
puts.

* Allowing for different mathematical op-
erations (not just squaring).

* Implementing a more flexible input
method (e.g., reading from a file or al-
lowing for different data types).

3). Exploring Alternative Solutions: Cre-
ative thinkers often brainstorm alternative
approaches to solve the same problem. They
might consider:

» Using a list comprehension for more
concise code.

* Implementing a function to handle dif-
ferent operations based on user input.

4). Testing and Validation: They would think
about how to validate the outputs and ensure
the code behaves as expected under various
conditions.

5). Refactoring for Clarity: They might
refactor the code to improve readability and
maintainability, such as by breaking it into
smaller functions or adding comments.

6). Considering Edge Cases: They would
think about edge cases, such as what hap-
pens if the input is zero, negative numbers,
or non-integer values.

Here’s an example of how the original code
could be modified to incorporate some of
these creative thinking strategies:
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1 def square_number (number):

2 """Returns the square of the given
number . """

3 return number ** 2

5def main():

6 import sys

7 input = sys.stdin.read

8 data = input().strip().splitlines()

9 try:

10 t = int(datal0@])

11 except ValueError:

12 print(”"The first line must be an
integer representing the number of
test cases.”)

13 return

14 results = []

15 for i in range(1, t + 1):

16 try:

17 number = int(datalil)

results.append(square_number (number))
19 except ValueError:
20 print(f"Invalid input at line

{i + 1}: '{datalil}'. Please enter an
integer.")

21 continue

22 for result in results:

23 print(result)

24

25if __name__ == "__main__":

26 main ()

Key Changes Made:

* Function Extraction: The squaring
logic is moved to a separate function
for clarity.

* Error Handling: Added error handling
for both the number of test cases and
individual inputs.

» User Feedback: Provided feedback for
invalid inputs to guide the user. This
approach not only maintains the origi-
nal functionality but also enhances the
robustness and user-friendliness of the
code.

" @ { Output from Task Parsing Agent}
Code Rewriting Workflow:

1. Code Generation Agent: "Certainly!
Here’s a mutator prompt designed to inspire
creativity and innovation:

**Mutator Prompt: The Elemental Fusion®*
Imagine a world where the four classi-
cal elementsiOMEarth, Water, Air, and
Fire2014can be combined in unconventional
ways to create new entities, phenomena, or
experiences. Your task is to explore the fu-
sion of these elements and generate innova-
tive concepts that transcend their traditional
boundaries.

**[nstructions: **



1. **Elemental Combinations:** Choose
two or more elements from Earth, Water,
Air, and Fire. Describe how they interact
and what new properties or entities emerge
from their fusion.

2. **Conceptual Expansion:** For each
combination, think about how these new enti-
ties could influence the environment, society,
or technology. What challenges or benefits
do they bring?

3. **Unconventional Applications:** Con-
sider how these fusions could be applied
in real-world scenarios. This could include
art, architecture, environmental solutions, or
even new forms of entertainment.

4. **Visual Representation:** If possible,
sketch or describe a visual representation of
your fused element or concept. How does it
look? What colors, shapes, or movements
define it?

5. **Narrative Element:** Create a short
story or scenario that features your new en-
tity in action. How does it interact with the
world around it? What conflicts or resolu-
tions arise from its presence?

**Example:**
* *#*Combination:** Fire + Water
* **New Entity:** Steam Elementals

» **Description:** These beings are com-
posed of swirling steam, capable of ma-
nipulating temperature and humidity.
They can create fog to obscure vision
or unleash scalding vapor as a defense
mechanism.

o **Impact:** They could help regulate
climate in urban areas, but their unpre-
dictable nature might lead to sudden
weather changes.

 *#*Application:** Used in art installa-
tions to create immersive environments
that change with audience interaction.

* **Visual Representation:** Imagine a
swirling mass of steam with glowing
embers, shifting in color from blue to
orange.
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* **Narrative Element:** In a city
plagued by drought, the Steam Elemen-
tals emerge to restore balance, but their
presence stirs fear among the inhab-
itants who misunderstand their inten-
tions.

Feel free to explore this prompt and let
your imagination run wild! What new pos-
sibilities will you uncover?" @& { TASK
PROMPT}

2. Code Reviewer Agent:"

1) Problem Description: In a world where
creativity knows no bounds, we seek to de-
velop a mutator prompt that inspires individ-
uals to break free from conventional think-
ing and explore innovative mutations in their
ideas, projects, or artistic expressions. The
goal is to create a prompt that encourages
users to think divergently, combining unre-
lated concepts, altering existing frameworks,
and generating novel solutions or artistic ex-
pressions. This prompt should serve as a
catalyst for imagination, pushing the bound-
aries of what is considered possible.

2) Generated Code:

1 " python
2 import random

4 def generate_mutator_prompt():

5 # Lists of unconventional concepts,
actions, and mediums

6 concepts = [

7 \"time travell\"”,

\"bioluminescence\”, \"quantum
entanglement\”,

8 \"dreamscapes\"”, \"mythical
creatures\”, \"urban legends\”,
9 \"chaos theory\",

\"synesthesia\", \"artificial
intelligence\”,
10 \"ancient civilizations\",
\"futuristic technology\”, \"empathy\"
11 ]

12

13 actions = [

14 \"merge\"”, \"transform\”,
\"deconstruct\”", \"reimagine\”,

15 \"collaborate with\",

\"disrupt\”, \"amplify\"”,
\"diminish\",

16 \"animate\"”, \"synthesize\",
\"repurpose\”, \"revolutionize\”

17 ]

18

19 mediums = [

20 \"digital art\", \"poetry\",
\"interactive installations\”,

21 \"performance art\", \"short
stories\”, \"music compositions\”,

22 \"sculptures\”, \"video games\”,

\"fashion design\", \"cooking\"”
23 ]

25 # Randomly select elements from each
list
26 concept = random.choice(concepts)



27 action = random.choice(actions)

28 medium = random.choice(mediums)

29

30 # Construct the mutator prompt

31 prompt = f\"Imagine a world where you
can {action} {concept} through
{medium}. \" \\

32 f\"What new realities,
stories, or experiences can you
create?\”

33

34 return prompt

36 # Example usage
371f __name__ == \"__main__\":
38 for _ in range(5):

39 print(generate_mutator_prompt())

3) Explanation of the Code:

1. **Concepts, Actions, and Mediums**:
The code defines three lists containing un-
conventional concepts, actions, and artistic
mediums. These lists are designed to inspire
creativity by combining elements that are
typically not associated with each other.

ii. **Random Selection**: The ‘ran-
dom.choice()‘ function is used to select
one item from each list, ensuring that
each prompt generated is unique and unpre-
dictable.

iii. **Prompt Construction**: The selected
elements are then combined into a coherent
prompt that encourages the user to think cre-
atively about how to merge the chosen con-
cept with the selected action and medium.
iv. **Example Usage**: The code includes
a loop that generates and prints five different
mutator prompts, showcasing the variety of
creative possibilities that can arise from this
approach.

This mutator prompt serves as a powerful
tool for artists, writers, and innovators, invit-
ing them to explore new dimensions of cre-
ativity and push the boundaries of their imag-
ination.

" @ { Output from Code Generation Agent}
3. Code Rewriting Agent:"

**Mutator Prompt: The Infinite Canvas**
**Problem Description:** Imagine a world
where the laws of physics and logic are mere
suggestions, and creativity reigns supreme.
Your task is to create a Python program
that generates a unique piece of art or a
story based on a set of unconventional in-
puts. These inputs can be anything from
random words, emotions, colors, or even ab-
stract concepts. The program should utilize
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these inputs to produce an output that defies
traditional boundaries, encouraging users to
explore new dimensions of creativity.
**Comments on Previous Code:**

1. **Input Handling:** Ensure that the
program can accept a diverse range of in-
puts, including strings, lists, and even user-
generated content. This flexibility will allow
for a broader spectrum of creative outputs.
2. **Randomization:** Incorporate ele-
ments of randomness to ensure that each ex-
ecution of the program yields a different re-
sult. This could involve using random selec-
tions from lists of words, colors, or themes.
3. **Artistic Generation:** Depending on
the chosen output type (art or story), utilize
libraries such as ‘matplotlib‘ for visual art or
‘nltk* for text generation. The goal is to cre-
ate something that feels alive and dynamic.
4. **User Interaction:** Consider adding
an interactive component where users can
tweak parameters or provide additional in-
puts mid-execution, allowing them to steer
the creative process.

5. **Output Presentation:** Design the out-
put to be visually appealing or narratively
engaging. For art, this could mean creating a
colorful canvas; for stories, it could involve
formatting the text in a captivating way.

6. **Documentation:** Ensure that the
code is well-commented and documented,
explaining the purpose of each function and
how users can modify inputs to explore dif-
ferent creative avenues.

**Example Python Code:**

Here’s a simple example to get you started
with the concept:

1

2 " python

3 import random

4 import matplotlib.pyplot as plt

5 import numpy as np

6

7 def generate_random_words (num_words):

8 words = [\"dream\”, \"whisper\”,
\"ocean\"”, \"fire\"”, \"light\",
\"shadow\"”, \"dance\”, \"echo\"]

9 return random.sample (words, num_words)

11 def create_art(words):

12 plt.figure(figsize=(10, 10))

13 for word in words:

14 X = np.random.rand(10)

15 y = np.random.rand(10)

16 plt.scatter(x, y, label=word,
alpha=0.5)

17 plt.title(\"Art Inspired by Words\")

18 plt.legend()



plt.show()

main():
num_words = int(input (\"How many
random words would you like to
generate? \"))

23 random_words =
generate_random_words (num_words)
print (\"Generated Words:\",
random_words)
create_art(random_words)

27 if ==

__nhame__ \"__main__\":

main ()

This code generates a set of random words
and uses them to create a scatter plot, illus-
trating the concept of transforming abstract
ideas into visual art. Feel free to expand
upon this foundation, adding more complex-
ity and creativity to the outputs!" & { Output
from Code Reviewer Agent}

A.3 Examples of Failed Python Workflows

Reason: The ending agent of the workflow below
is a code reviewer agent instead of a coding agent;
hence, the final output cannot solve the coding
task.

I steps = [

2 {'name': 'task_parsing_agent', 'args':
['task_description'], 'output':
'parsed_task'},

{'name': 'task_refinement_agent', 'args':

['task_description', 'parsed_task'],

'output': 'refined_task'},

{'name': 'code_generation_agent', 'args':
['refined_task'], 'output':
'generated_code '},

5 {'name': 'code_reviewer_agent',6 ‘'args':
['refined_task', 'generated_code'],
'‘output': 'review_comments'}

6 ]

Reason: The input of the fortune telling agent
does not match the output of the code generation
agent; hence the fortune telling agent cannot fetch
its input.

I steps = [

2 {'name': 'task_parsing_agent', 'args':
['task_description'], 'output':
'parsed_task'},

3 {'name': 'task_refinement_agent', 'args':

['task_description', 'parsed_task'],
‘output': 'refined_task'},

4 {'name': 'code_generation_agent',
['refined_task'], 'output':
'generated_code '},

5 {'name': 'fortune_telling_agent',
‘args':['refined_code'], 'output':
'fortune_prediction'},

6 {'name': 'code_reviewer_agent',
['refined_task',
'‘output': 'review_comments'},

{'name': 'code_refinement_agent', 'args':
['refined_task', 'review_comments'],
'output': 'refined_code'},

‘args':

‘args':
'generated_code '],
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Total Tokens HumanEval MBPP LCB

GPT-40 mini 295,200 721,336 1,208,023
Task Parsing Workflow 575,395 989,457 1,937,632
Code Rewriting Workflow 889,467 1,459,457 2,445,023

Table 4: The total tokens of the backbone model GPT-
40 mini and SEW generated workflows across three
datasets. The total tokens include the input/output to-
kens on both the validation and testing sets.

A.4 Token costs

In this section, we report the token costs of the
single agent (only use the backbone model), the
Task Parsing Workflow and the Code Rewriting
Workflow generated by SEW (see Table 4). From
this table, we can learn that LiveCodeBench is a
much more challenges benchmark than HumanEval
and MBPP because the tokens cost per instance
for LCB is much larger than that of MBPP and
HumanEval. In addition, the tokens cost for both
workflows is larger than that for GPT-40 mini since
workflows involve multiple agents taking input and
output concurrently, where the Code Rewriting
Workflow costs especially more tokens because
it may take multiple rounds for the generator agent
to produce codes passing the reviewer agent.
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