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ABSTRACT

Al models make mistakes when recognizing images—whether in-domain,
out-of-domain, or adversarial. Predicting these errors is critical for improving
system reliability, reducing costly mistakes, and enabling proactive corrections
in real-world applications such as healthcare, finance, and autonomous systems.
However, understanding what mistakes Al models make, why they occur, and
how to predict them remains an open challenge. Here, we conduct comprehensive
empirical evaluations using a "mentor" model —a deep neural network designed to
predict another model’s errors. Our findings show that the mentor model excels at
learning from a mentee’s mistakes on adversarial images with small perturbations
and generalizes effectively to predict in-domain and out-of-domain errors of the
mentee. Additionally, transformer-based mentor models excel at predicting errors
across various mentee architectures. Subsequently, we draw insights from these
observations and develop an "oracle" mentor model, dubbed SuperMentor, that
achieves 78% accuracy in predicting errors across different error types. Our
error prediction framework paves the way for future research on anticipating and
correcting Al model behaviours, ultimately increasing trust in Al systems. All
code, models, and data will be made publicly available.

1 INTRODUCTION

Al models are prone to making errors in image recognition tasks, whether dealing with in-domain,
out-of-domain (OOD), or adversarial examples. In-domain errors occur when models misclassify
familiar data within the training domain, while OOD errors arise when faced with unseen or
out-of-domain data. Adversarial errors are particularly concerning, as they result from carefully
crafted perturbations designed to mislead the model.

Accurately predicting these errors is critical to enhancing the overall robustness and reliability of Al
systems, especially in high-stakes real-world applications such as healthcare (Habehh & Gohel, [2021)),
finance (Mashrur et al., 2020), and autonomous driving (Huang et al., [2022). Proactively identifying
potential errors enables more efficient corrections, reducing costly mistakes and safeguarding against
catastrophic failures. By predicting when models are likely to err, we can implement strategies that
either mitigate or entirely avoid the risks associated with those errors, ultimately leading to more
trustworthy Al deployments.

Understanding the specific types of errors Al systems make, the reasons why they make these errors,
and most importantly, how to predict these errors remains an unresolved challenge. Existing literature
on error monitoring systems for Al models encompasses various approaches, including uncertainty
estimation (Nado et al.| 2021; [Lakshminarayanan et al.,|2017)), anomaly detection (Bogdoll et al.|
2022), outlier detection (Boukerche et al., 2020), and out-of-domain detection (Yang et al.,|2024).
While these methods are crucial for assessing model reliability, they mainly focus on determining
whether a given data point falls outside the scope of the model’s training. Thus, these approaches
misalign with our primary objective of predicting whether AI models will make mistakes, as models
can err on familiar data while behaving correctly on out-of-scope samples.

Subsequent research in out-of-domain detection has demonstrated that a model’s accuracy is often
correlated with how far the data deviates from in-domain samples (Hendrycks & Dietterich, [2019;
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Figure 1: AI models make mistakes and an "oracle' mentor model predicts when they will
happen. A "mentee" neural network (black) was trained for multi-class image recognition, but it can
still misclassify in-domain, out-of-domain, and adversarial images. For instance, it might mislabel an
in-domain dog image as a cat. The mentor model (blue), inputting the same images as the mentee,
predicts whether the mentee will make a mistake. For example, if the mentee incorrectly labels an
adversarial dog image, the mentor’s ground truth label is "wrong"; conversely, if the mentee correctly
labels an out-of-domain dog image, the mentor’s label is "correct". The mentee’s parameters are
frozen (snowflake), while the mentor’s are trainable (fire). During inference (orange), the mentor
predicts whether the mentee will make an error on test images that have never been seen by both the
mentee and the mentor.

Shankar et al., 2021} [Li et al.l 2017). These methods typically rely on predefined metrics, such
as model parameter distances (Yu et al., |2022), model disagreements (Jiang et al.| [2021; [Madani
et al., [2004) and confidence scores (Guillory et al., 2021)), which limits their ability to generalize
predictions across various data types, including errors arising from in-domain data or adversarial
attacks (Szegedy, 2013)). Another line of research improves the robustness of the Al models with
adversarial training approaches(llyas et al., 2019;|Gowal et al., [2020; Balunovi¢ & Vechev, [2020);
however, these approaches primarily focus on improving the model’s overall performance rather than
predicting when errors may occur in the models.

Different from all these previous works, we delve into the underlying principles of errors generated
by Al models in the task of image classification with another Al model. Specifically, we designate
the Al model that predicts errors as the mentor and the Al model being evaluated for performance as
the mentee. The mentor strives to predict whether the mentee makes a mistake for any given test
data. See Fig.|1|for the detailed illustration of the problem setup. Training the mentor on the error
patterns made by the mentee can potentially reveal the strengths and weaknesses of the mentee’s
learned representations across various visual contexts.

Specifically, we examine the effects of three distinct error types Al models often make: In-Domain
(ID) Errors, Out-of-Domain (OOD) Errors, and Adversarial Attack (AA) Errors on three increasingly
complex image datasets CIFAR-10 (Krizhevsky et al.,[2009), CIFAR-100 (Krizhevsky et al., 2009)
and ImageNet-1K (Deng et al.,[2009). We identify which of these error types has the most significant
impact on the mentor’s error prediction performances, and explore the reasons behind its prominence.
Additionally, we assess how different mentor architectures influence error prediction accuracy and
evaluate the mentor’s generalization performance across various mentee architectures. Finally, we
develop a SuperMentor model that successfully predicts errors of the mentee with 78% accuracy
across diverse error types. Our main contributions are highlighted below:

1. We conduct an in-depth analysis of how training mentors on each of three distinct error types
specified by the mentees—In-Domain (ID) Errors, Out-of-Domain (OOD) Errors, and Adversarial
Attack (AA) Errors—affect the performance of error predictions over three increasingly complex
image datasets. Our results reveal that training mentors with adversarial attack errors from the mentee
has the most significant impact on improving the mentor’s error prediction accuracy.

2. We explore how various mentor model architectures affect error prediction performance. Our
experiments demonstrate that transformer-based mentor models outperform other architectures in
accurately predicting errors.

3. We investigate how varying levels of distortion in OOD and adversarial images affect the accuracy
of error predictions. The findings indicate that training mentors with images with small perturbations
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can improve error prediction accuracy. In addition, we show that a mentor trained to learn error
patterns from one mentee can successfully generalize its error predictions to another mentee.

4. Based on our findings from points 1 to 3, we present the SuperMentor model, which predicts errors
across diverse mentee architectures and error types. Experimental results show that SuperMentor
outperforms baseline mentors, demonstrating its superior error-predictive capabilities.

2 RELATED WORK

Error monitoring systems for AI models. With the growing deployment of Al models across
diverse fields, ensuring their reliability and understanding their limitations has become increasingly
crucial. This has led to numerous research in safe Al such as uncertainty estimation (Nado et al.,
2021; |Lakshminarayanan et al., |2017), anomaly detection (Bogdoll et al.,|2022), outlier detection
(Boukerche et al., [2020), and out-of-domain detection (Yang et al.,|2024). Unlike these areas, which
mainly aim to predict whether the input data falls outside the training domain, our focus is on
monitoring and predicting errors in Al models by determining whether the model’s output is correct,
irrespective of whether the data comes from the training domain.

Moreover, to detect whether the input data is out of scope, the prior approaches mainly rely on
softmax outputs (Granese et al., [2021; [Hendrycks & Gimpel, 2016; Dang et al.,[2024)) or activations
from network layers (Wang et al., 2020; |Cheng et al., 2019} |Ferreira et al.,|2023), in applications such
as object detection (Kang et al.||2018)) and trajectory prediction (Shao et al.,|2023;2024)). However,
these methods often depend on manually defined metrics to estimate the probability of a mentee
making a mistake. In contrast, our approach leverages another Al model to automatically learn and
approximate the mentee’s decision boundaries, predicting its errors in an end-to-end trainable manner.

Out-of-domain detection. Our research on predicting mentee errors is closely related to
out-of-domain detection in error monitoring systems, though it differs in several key aspects. As
highlighted by (Guérin et al.,2023), error prediction is distinct from OOD detection (Liu et al.;[2020a;}
Sun et al.| 2021} |Lee et al.| 2018} [Sun et al.,[2022) in their objectives. While OOD detection aims
to detect whether the given data comes from the same domain as the training set, the aim of error
prediction is to learn whether the mentee will make a mistake on the given data. In other words,
out-of-domain data may not necessarily cause the model to err, and model errors can also occur on
in-domain data.

Recent studies (Hendrycks & Dietterich} [2019; [Shankar et al.| 2021} |Li et al [2017)) have shown
that a model’s accuracy on a given dataset is often correlated with how far the data deviates from
in-domain samples. However, these studies typically rely on pre-defined metrics, such as model
parameter distances (Yu et al.|[2022), model disagreements (Jiang et al.,[2021; Madani et al., 2004),
confidence scores (Guillory et al.,|2021), domain-invariant representations (Chuang et al., 2020)), and
domain augmentation (Deng et al., [2021a)), limiting their ability to generalize error prediction for
in-domain data. In contrast, our mentor model is capable of predicting both OOD and in-domain
errors for a mentee. Additionally, our mentor is an Al model trained end-to-end, eliminating the need
for manually defined criteria.

Adversarial attack and defense. In addition to OOD error, (Szegedy, |[2013) discovered that deep
neural networks can be fooled using input perturbations of extremely low magnitude. Building upon
this finding, a substantial number of adversarial attacks have been proposed, including white-box
attacks (Goodfellow et al.,[2014; [Madry et al.| 2017; (Carlini & Wagner, [2017} Schwinn et al.| 2023},
Gao et al., [2020), black-box attacks (Uesato et al., [2018; [Rahmati et al., [2020; [Brendel et al., [2017;
Chen et al., [2020)), and backdoor attacks (Liu et al., 2020b; |Xie et al.l [2019; |Kolouri et al.,[2020). To
defend against these adversarial attacks, various defence mechanisms (Qin et al., [2019; Deng et al.|
2021b; |Liu et al., 2019) have been developed to withstand or detect adversarial inputs. Furthermore,
although the primary objective of adversarial attacks is to deceive Al models, there are instances
where adversarial perturbations are exploited to enhance the model performance — a technique known
as adversarial training (Ilyas et al.} 2019} |Gowal et al., [2020; |Balunovi¢ & Vechev, [2020). Unlike
adversarial training, which involves using adversarial samples to train the mentee, our approach
focuses on teaching mentors to learn the mentee’s error patterns revealed by these adversarial attack
samples.
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Figure 2: Overview of a mentor model. Given a fixed mentee model (snowflake), the mentor
model takes an input image and uses a pre-trained backbone on ImageNet-1K (Deng et al., [2009)
to extract features. The feature maps are then processed in two streams via multi-layer perceptrons
(MLP)s. The output logits z from one stream are compared with the mentee’s output logits z g using
a distillation loss L4. The other stream performs a binary prediction of whether the mentee makes
a mistake or not. The prediction is supervised by a logistic regression loss L,.. The parameters of
MLPs in the two streams are not shared.

3 EXPERIMENTAL SETUPS

We denote the mentor and mentee networks as fr(+) and fg(-) respectively. We also define X as the
domain-specific set containing all the test images for a mentee, and ) as their ground-truth object
class labels. Therefore, a mentor is expected to make perfect predictions about the correctness of the
mentee’s responses (1 for "correct” and O for "wrong") given any image z from X’:

0, otherwise

Vo€ X, fn(z) = { (1

where y € ) is the ground-truth object class label of the corresponding image .

3.1 MENTORS

Model Architecture: We propose mentor models, as illustrated in Fig.[2] Given an input image,
the backbone of a mentor model extracts features from the input image. We adopt either of the two
backbones for the feature extractors of mentors: a 2D Convolutional Neural Network (2D-CNN)
ResNet50 (He et al., 2016)) and a transformer-based ViT (Dosovitskiy}, [2020). The extracted feature
maps are further processed in two streams implemented as multi-layer perceptrons (MLP)s. The
parameters of the MLPs in the two streams are not shared.

The first stream generates logits zr by predicting the probability distribution of a mentee over all the
object classes when the mentee classifies the given image. The mentee network is kept fixed while
training the mentor. Let us define the mentee’s output logit as zz. We introduce the distillation loss
proposed by (Hinton| 2015): Lq = Distill(zg, zg) to align zg with zg. We set the temperature
hyper-parameter in Ly as 1.0, which controls the smoothness of the soft probability distribution.
Higher temperatures make the distribution softer and more uniform across classes.

In the second stream, the mentor is prompted to predict whether the mentee will make a mistake on
the given image or not. We denote the predicted binary label as cr, where 1 indicates that the mentee
does not make a mistake and vice versa for 0. This prediction is supervised by L,, = LR(cr, cg)
where LR(-, -) is the logistic regression loss and ¢ is the ground truth correctness label of a mentee.
The overall lossis L = Ly + L,.

Training and Implementation Details: All mentors are trained on Nvidia RTX A5000 and A6000
GPUs, utilizing the AdamW optimizer (Loshchilov & Hutter,|2017) with a cosine annealing scheduler
(Loshchilov & Hutter, [2016), and an initial learning rate of 2 x 10~%. All mentors load the weights
of the feature extractor pre-trained on the ImageNet-1K dataset for 1000-way image classification
tasks (Deng et al.,[2009) and further fine-tune on the error prediction task. During training, images
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are resized and center-cropped to 224 x 224 pixels. All the mentor models are trained for 40 epochs
with a batch size of 512.

3.2 MENTEES AND THEIR DATASETS

We employ two architectures as the mentees’ backbones: ResNet50 (He et al., 2016), which is a
2D-Convolutional neural network (2D-CNN), and ViT (Dosovitskiyl 2020), which is a transformer
architecture based on self-attention mechanisms.

To train and test our mentees, we include three prominent image datasets of varying sizes and
follow their standard data splits: CIFAR-10 (C10, (Krizhevsky et al.,2009)) with 10 object classes,
CIFAR-100 with 100 object classes (C100, (Krizhevsky et al.l[2009)) and ImageNet-1K with 1000
object classes (IN, (Deng et al. 2009)). Their multi-class recognition accuracy on the standard
test sets of C10, C100 and IN datasets are 96.98%, 84.54%, 76.13% for the ResNet50 mentee and
97.45%, 86.51%, 81.07% for the ViT mentee respectively. The parameters of the mentees are frozen
throughout all the experiments conducted on mentors.

3.3 DATASETS FOR TRAINING AND TESTING MENTORS

The mentor’s objective is to predict whether the mentee will misclassify a given image, regardless of
its source. The mentor is trained on correctly and wrongly classified images by a mentee. Next, we
introduce how these images are curated and collected.

A mentee may encounter various types of errors when dealing with real-world data. To explore which
error types most effectively reveal the mentee’s learning patterns, we categorize errors into three
types: (1) errors from in-domain test images, (2) errors from out-of-domain images, and (3) errors
from adversarial images generated using adversarial attack methods. Next, we introduce these three
error types in detail.

In-Domain (ID) Errors. occur on data that come from the same domain as the mentee’s training
dataset. Specifically, errors on images from the standard validation set of ImageNet-1K or the test sets
of CIFAR-10 and CIFAR-100 are considered ID errors. Along with the correctly classified images
from these standard test sets, we create three datasets for a mentor: IN-ID, C10-ID, and C100-ID,
following the naming convention of [Dataset]-[Error Type].

Out-of-domain (OOD) Errors. refer to errors that arise when the mentee encounters data outside
the training domain. To obtain OOD samples of a dataset, we adopt four types of image corruptions
from (Hendrycks & Dietterich, |[2019): speckle noise (SpN) (noise category), Gaussian blur (GaB)
(blur category), spatter (Spat) (weather category), and saturate (Sat) (digital category). The noise
levels can vary and we select level 1 for image corruptions as specified in (Hendrycks & Dietterichl,
2019) by default. As noise levels increase, the distortions on OOD images become more pronounced,
leading to more mistakes of a mentee.

Following the naming conventions of [Dataset]-[Error Type]-[Error Source], we collect correctly and
wrongly classified OOD samples based on C10 images of a mentee and curate four datasets for a
mentor: C10-O0OD-SpN, C10-OOD-GaB, C10-OOD-Spat and C10-OOD-Sat. Without the loss
of generality, we can also curate four datasets each for a mentor based on C100 and IN images of a
mentee.

Adversarial Attack (AA) Errors. Errors from adversarial images are specifically generated by
adversarial attack methods to mislead or confuse the mentee. Given our assumption that the mentor
has full access to the student model’s parameters, we focus exclusively on white-box adversarial
attacks as they typically produce more subtle yet effective perturbations compared to their black-box
counterparts. To generate adversarial images, we employ four untargeted adversarial attack methods:
PGD (Madry et al., 2017) creates adversarial examples by repeatedly taking steps along the loss
gradient; CW (Carlini & Wagner, [2017) attempts to minimize the Lo norm of the perturbation while
ensuring misclassification. Jitter (Schwinn et al.,[2023) adds Gaussian noise to the output logits to
encourage a diverse set of target classes for the attack. PIFGSM (Gao et al.,|2020) crafts patch-wise
noise instead of pixel-wise noise. We set ¢ = 1.0 in the CW attack, and perturbation bound € = %
for other attacks by default. See their papers for these hyper-parameter definitions. Intuitively, the
attacks are stronger with higher hyper-parameter values; hence, the mentees make more mistakes.
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Mentee | Error Source CIFAR-10 CIFAR-100 ImageNet-1K
Ntrain Ntest Ntrmn Ntast Nf?'ain Ntest

ID 151/9547 151/151 77317681 773/773 5967/32099 5967/5967

SpN 690/7930 690/690 1889/4333  1889/1889 | 9984/20048 9984/9984

o 8 GaB 149/9553 149/149 760/7720 760/760 8013/25963 8012/8012

kY o Spat 222/9336 221/221 990/7032 989/989 7042/28874 7042/7042

Z Sat 240/9282 239/239 1309/6072  1309/1309 | 8187/25439 8187/8187

2 Titter 338/8988 337/337 | 1054/6840 1053/1053 | 7591/27227 759177591

< PGD 447/8661 446/446 1180/6460  1180/1180 | 9009/22973 9009/9009

< Ccw 487/8539 4877487 1120/6642  1119/1119 | 8102/25694 8102/8102
PIFGSM | 1613/5161 1613/1613 | 2090/3732 2089/2089 | 11226/16322 11226/11226

ID 128/9618 127/127 675/7977 674/674 4733/35801 4733/4733

SpN 286/9144 285/285 1155/6535 1155/1155 | 6019/31945 6018/6018

8 GaB 130/9610 130/130 678/7966 678/678 6402/30794 6402/6402

= @] Spat 170/9490 170/170 809/7573 809/809 5351/33947 5351/5351

s Sat 227/9319 227/227 1219/6345 1218/1218 | 5883/32351 5883/5883
Jitter 552/8344 552/552 1232/6304 1232/1232 | 10325/19025 10325/10325
< PGD 649/8053 649/649 1410/5770  1410/1410 | 14960/11680 11680/11680

< Cw 446/8664 445/445 1136/6592  1136/1136 | 8614/24158 8614/8614
PIFGSM | 799/7605 798/798 1812/4564  1812/1812 | 15038/11654 11654/11654

Table 1: Dataset split for each error source used in mentor training. If the mentor is trained on the
mentee’s performance (ResNet50 or ViT) for a specific error source, the data in this error source will
be split according to this table. Nyy.qi, and Nyes; denote the number of training and testing samples,
respectively, formatted as [number of samples misclassified by the mentee] / [number of samples
correctly classified by the mentee].

Note that adversarial attacks are not always successful, and mentees can still correctly classify some
adversarial images. We collect both the correctly and incorrectly classified adversarial images by a
mentee based on C10 images, curating four datasets for the mentor: C10-AA-PGD, C10-AA-CW,
C10-AA-Jitter, C10-AA-PIFGSM. Without the loss of generality, we can also curate four datasets
each for a mentor based on C100 and IN images of a mentee.

Training and Test Splits. For any given dataset of a mentor, let N, and NN,, represent the sets
of n correctly and m incorrectly classified images by a mentee. The sizes of N, and N,, can vary
significantly, depending on the mentee’s classification performance. A mentee with high recognition
accuracy will have more correct classifications (big n) and fewer incorrect ones (small m). To create
a balanced test set for a mentor, we select equal numbers of correctly and incorrectly classified
samples. The remaining samples are used for training. The details of the dataset split are shown in
Tab.[I] To address the long-tail problem in the training set, during each training epoch for a mentor,
we randomly generate a batch of samples that includes an equal number of correctly and incorrectly
classified images by the mentee.

Evaluation Metric. To assess the performance of mentors, we report their error prediction accuracy
on the test set corresponding to each specified error source. For instance, a mentor trained on the
C10-ID training set is evaluated on the C10-OOD-SpN test set. The error prediction accuracy is
calculated by averaging the mentor’s accuracies on the samples that the mentee correctly classified
and those that the mentee incorrectly classified. However, since a mentee can make mistakes across
various real-world scenarios, a mentor must accurately predict errors across all error types. Therefore,
we compute the average accuracy of a mentor across all test sets, including one ID error, four OOD
errors, and four AA errors. For simplicity, we refer to this average accuracy across all nine error
sources as Accuracy. A mentor randomly guessing whether a mentee’s image classification is correct
or incorrect for a given image would achieve an accuracy of 50%.

4 RESULTS

4.1 TRAINING ON SPECIFIC ERRORS OF MENTEES IMPACTS THE PERFORMANCE OF MENTORS

A mentee’s mistakes can reveal their learning tendencies, behaviours, or traits. Here, we investigate
which types of errors offer the most insight into understanding a mentee’s decision boundaries during
image recognition tasks. We train mentors with identical architectures on datasets containing specific
error types made by the mentee across C10 (Fig. 3(a)), C100 (Fig. [3(b)), and IN (Fig. 3|(c)). For
instance, if a mentor trained on C10-OOD achieves higher accuracy in error prediction compared to
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Figure 3: Mentors trained on adversarial images of a mentee outperform mentors trained on
0OOD and ID images of the same mentee. Average accuracy of a mentor trained on one type of error
of a mentee for (a) CIFAR-10, (b) CIFAR-100 and (c) ImageNet-1K datasets is presented. Three
types of errors made by a mentee are categorized based on in-domain (ID, blue), out-of-domain
(OOD, orange), and images generated by adversarial attacks (AA, green). In each subplot, the labels
on the x-axis are interpreted as [mentee]-[mentor], where "V’ and 'R’ represent ViT and ResNet50
architectures for a mentee or a mentor respectively. Error bars indicate the standard deviation. The
dotted black line indicates the chance level. See Sec.[3.3|for error types and the evaluation metric.
The four sets of bars in each subfigure correspond to the heatmaps shown in subfigures (a), (b), (c),

and (d) of Fig.@-@

one trained on C10-IN, this suggests that in-domain errors provide less diagnostic information about
the mentee’s decision-making process than out-of-domain errors. Both mentors and mentees may
have the same or different backbones, such as ResNet50 (R) or ViT (V).

As shown in Fig. [3) over C10, C100, and IN images, the high accuracy for mentors trained on
adversarial attack (AA) errors indicates that these errors offer deeper insights into the mentee’s
decision process compared to out-of-domain (OOD) and in-domain (ID) errors. In some cases,
mentors trained on OOD errors slightly outperformed those trained on ID errors, though both were
still inferior to those trained on AA errors.

Loss landscape analysis. A loss landscape of a mentee reflects how a mentee’s loss function
behaves across different parameter configurations. Mentors’ performance offers insights into the
structure of a mentee’s loss landscape. Consistent with 2019), the high accuracy of
mentors trained on AA errors suggests that adversarial images lie closer to the mentee’s decision
boundary, enabling more accurate prediction of the mentee’s mistakes and a deeper understanding of
the loss landscape. Similarly, OOD data aids mentors in learning decision boundaries by shifting
ID samples closer to the boundary. However, it does not explore the boundary as thoroughly as
adversarial images. ID data, with fewer samples near the boundary, provides more limited exploration
compared to adversarial examples.

4.2 MENTOR ARCHITECTURES MATTER IN ERROR PREDICTIONS

To computationally model the decision boundary of a mentee using a mentor, the mentor requires
more complex architectures with a larger number of parameters than the mentee. Indeed, from Fig. 3]
over all the datasets, we observed that utilizing ViT (V) as the mentor backbone consistently achieves
higher accuracy across all error types of ViT-based and ResNet-based mentees compared to the
mentor based on ResNet50 (R). One example of this performance disparity is observed in the context
of the adversarial attack error type for CIFAR-10. The ViT-based mentor attains an accuracy of
74.95%, substantially higher than the accuracy of 63.99% for the ResNet-based mentor.

Loss landscape analysis. The performance difference between mentors’ architectures is due to
ViT’s superior ability to identify features from error patterns. Its self-attention mechanism captures
complex relationships among data samples, providing a deeper understanding of the mentee’s loss
landscape, particularly in modelling irregular, rugged landscapes with sharp peaks and valleys.
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Figure 4: A mentor’s accuracy is heavily
influenced by the levels of image distortions
introduced by out-of-domain perturbations
and adversarial attacks. ViT mentor’s accuracy
is a function of varying image distortion levels
from PIFGSM (Gao et al., [2020) and Speckle
Noise (SpN) (Hendrycks & Dietterichl 2019) to
the C10 images of a ResNet50-based mentee.
The black dashed line indicates the chance level.
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Figure 5: Mentors can generalize their
error predictions across different mentee
architectures. Mentors trained on mentee A’s
predictions (x-axis) are evaluated against the
predictions from mentee B (y-axis). Each marker
is a generalization experiment of a mentor
trained on different error types (marker shapes)
in different image datasets (colours) of a mentee.
The black dash line indicates the diagonal.

4.3 'TRAINING ON IMAGES WITH SMALLER PERTURBATIONS HELPS ERROR PREDICTIONS

Although adversarial images have been demonstrated to aid in error prediction (Sec.[4.I), it remains
unclear whether adversarial images with varying degrees of image distortion exhibit the same effect.
A straightforward method to regulate the level of image distortion caused by adversarial attacks is to
set the perturbation bound e. We employ four corruption levels by setting € = % 555> 35 and %.
We use the adversarial attack PIFGSM as an example since the error patterns from PIFGSM are most
effective for the mentor’s prediction (see Fig.[ST}[S3). As shown in Fig.[d] the mentor’s accuracy
significantly decreases as the distortion level increases. In particular, for the C10-AA-PIFGSM, the
accuracy at level 1 is 78.0%, which is notably higher than 51.7% at level 4. Our findings suggest that
adversarial attacks employing smaller perturbations yield more benefits for mentor error prediction.
This phenomenon can be attributed to the fact that adversarial images with minimal perturbations
maintain closer proximity to the decision boundary of a mentee.

Building on the findings above, we investigate whether the mentor’s performance is influenced by
how far OOD images are from the ID data. Specifically, we aim to determine whether the degree
of deviation from the training domain impacts the mentor in a similar way to our observations on
adversarial images. To explore this, we analyze images corrupted with Speckle Noise (SpN) and
adjust the standard deviation o of SpN to 0.01, 0.06, 0.15, and 0.6, representing four distinct levels of
distortion. The outcomes are depicted in Fig.[d We observe that the mentor’s accuracy improves
as the distortion introduced by SpN decreases. For example, the mentor achieves an accuracy of
67.42% on level 1 of C10-OOD-SpN, while the accuracy drops significantly to 49.66% on level
4 of C100-OOD-SpN. This suggests that OOD error types with smaller perturbations enhance the
mentor’s performance. However, unlike adversarial attacks, caution is necessary because the mentor’s
accuracy can plateau with extremely small distortion levels, as shown by the minimal difference in
accuracy between levels 1 and 2 of SpN in Fig.[d]

4.4 MENTORS GENERALIZE ACROSS MENTEES

In Sec. d.1] mentors have demonstrated their ability to learn the error patterns of mentees. This
observation raises an important question: can the error patterns learned from one mentee (mentee
A) be generalized to another mentee (mentee B) when the two mentees employ different model
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Figure 6: Our SuperMentor outperforms other mentor baselines on the CIFAR-10 dataset. The
row index follows the format [mentee]-[mentor], where *V’ and 'R’ represent ViT and ResNet50
architectures for a mentee or a mentor respectively. The column index represents the error source
used for training the mentor. Results in each cell denote the average error prediction accuracy over
all error types with the standard deviation over 3 runs. Our SuperMentor’s accuracy is highlighted in
red boxes. The detailed performance of all mentors on specific error types is depicted in Fig. @

00D AA

La Lo | D ooN—GaB Spat  Sat | PGD CW  Jitter PIFGSM | “Verage
X X |575|610 561 586 543 | 586 59.1 585  59.6 58.2
clo | X VvV |8.0]|737 792 779 743|805 765 797 712 77.0
ours | 809 | 732 805 794 756 | 814 782 807 719 78.0
X X 568595 566 578 537|577 5713 513 57.1 57.1
ci0 | X vV | 750|709 748 741 681 | 781 752 762 66.5 732
ours | 754 | 71.1 754 745 684 | 783 756 766 669 73.6
X X |730]701 696 728 685 ]| 758 725 736 70.7 71.9
IN | X V |787]731 736 780 732 83.0 784 799 722 76.7
ours | 789 | 73.6 746 783 73.6| 830 784 799 723 77.0

Table 2: Ablation study of loss components in SuperMentor. L; denotes the distillation loss (see
Sec.[3.1) and L, represents the alignment loss between the mentor’s and mentee’s predicted object
class labels. SuperMentor is evaluated on the mistakes of a ResNet50-based mentee. Each result is
the average of three independent runs. The performance of SuperMentor is coloured in grey. The full
results with standard deviations are shown in Tab. @

architectures? To explore this, we evaluate all 324 mentors, whose performances are depicted in
Fig.[S1} [S3] on the alternate mentee. Specifically, mentors trained on the errors of the ResNet50
mentee are tested on the predictions of the ViT mentee, and vice versa. The outcomes of these
evaluations are illustrated in Fig.|S| Surprisingly, most points lie near the dashed diagonal line,
implying that the mentors’ performance does not significantly deteriorate when evaluated on the
predictions of different mentee architectures. This finding indicates that ResNet50 and ViT mentees
tend to produce similar error patterns when trained on the same dataset.

4.5 OUR PROPOSED SUPERMENTOR MODEL OUTPERFORMS OTHER BASELINES

By drawing insights from observations in the subsections above, we propose an "oracle" mentor
model, dubbed SuperMentor. We introduce the technical novelties of our SuperMentor below. First, as
demonstrated in Sec.d.T)and Sec.[d.3] mentors trained on adversarial images with small perturbations
of a mentee outperform those trained on OOD and ID images; thus, our SuperMentor adopts the
training data from the PIFGSM error source of mentees with € = % Second, since ViT has been
proven to be a more effective architecture for mentors than ResNet50 (Sec. [4.2), SuperMentor adopts
ViT as the backbone architecture.

Fig. 6| shows that SuperMentor outperforms other baseline mentors in the CIFAR-10 dataset. The
detailed performance of the SuperMentor, along with other baseline mentors on various error sources
from the CIFAR-10, CIFAR-100 and ImageNet-1K datasets, is presented in Fig. ST} [S3]
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Figure 7: 3D visualization of the embeddings extracted from our SuperMentor Model for the
classification of: a) C10-ID samples, b) C10-OOD-GaB samples and c) C10-AA-Jitter samples.
We use t-SNE (Van der Maaten & Hinton| 2008) to perform clusterings on the representations of
our SuperMentor model for classifications of different error sources on the C-10 dataset. Red points
indicate samples that the mentee fails to classify correctly, whereas blue points represent samples that
the mentee successfully classifies. 200 red points and 200 blue points are randomly selected from
the test sets and presented here. The visualized features are the embeddings computed based on the
MLP in the second stream of the SuperMentor. Specifically, they are extracted before the final binary
classification layer on whether the mentee makes a mistake.

We also present the visualization of the SuperMentor’s embeddings on three types of error sources
of a mentee in Fig.[7} It is evident that SuperMentor can effectively segregate samples correctly
classified by the mentee from those that are misclassified, forming two distinct clusters.

Next, we examine the effect of the distillation loss Ly (Fig. [Z) on the SuperMentor performance. The
results are presented in Tab.[2] It is clear that excluding L, results in a decrease in SuperMentor’s
accuracy across all datasets. For example, in the C10 dataset, the average accuracy of SuperMentor
decreases from 78.0% to 58.2%. This suggests that L; encourages SuperMentor to learn the
fine-grained decision boundaries among different object classes of a mentee.

Alternatively, instead of utilizing the mentee’s logits, SuperMentor can incorporate an additional
cross-entropy loss to align the mentor’s predicted object class labels with those of the mentee, denoted
as L,. From Tab.[2] we observe that replacing Lq with L, leads to a slight decrease in accuracy. This
is due to the fact that the mentee’s logits contain more information than the mentee’s class labels.

5 CONCLUSION

In our work, we tackle the challenge of predicting errors in Al models through extensive empirical
evaluations using an end-to-end trainable "mentor" model. This mentor model is designed to assess
the correctness of a mentee model’s predictions across three distinct error types: in-domain errors,
out-of-domain errors, and adversarial attack errors. Our results show that the mentor model excels at
learning from a mentee’s errors on adversarial images with minimal perturbations and, surprisingly,
generalizes well to both in-domain and out-of-domain predictions of the same mentee. Additionally,
we highlight the effectiveness of transformer-based mentor architectures compared to 2D-CNN-based
ones, demonstrating their superior generalization capabilities across mentees with diverse backbones.
Lastly, we introduce the SuperMentor, which significantly outperforms all existing mentor baselines.

Our work paves the way for several promising research directions in the field of safe and trustworthy
Al First, while our current research focuses on image classification, there is potential to extend
this approach to other vision and language tasks, such as object detection and machine translation.
Second, future research could explore mutual learning between mentors and mentees, where mentors
not only learn from the mentee’s error patterns but also provide valuable feedback to help refine
the mentee. Third, we can establish more rigorous evaluation criteria for mentors, broadening their
predictive capabilities. For example, beyond predicting whether a mentee is likely to make errors,
mentors could also forecast the specific types of errors a mentee may encounter. Fourth, this concept
can be applied to investigate recognition errors in humans and primates, drawing parallels with Al
models. Such analysis could provide insights into error pattern alignment between biological and
artificial intelligent systems. Overall, our work lays the foundation for developing systems capable of
anticipating the errors of others, offering practical value in high-stakes real-world applications.
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S1 DETAILED PERFORMANCE OF MENTORS ACROSS VARIOUS ERROR
SOURCES

As mentioned in Sec. .1} the detailed results of mentors across various error sources for the CIFAR-10,
CIFAR-100, ImageNet-1K datasets are shown in Fig.[S1] Fig.[S2]and Fig. [S3|respectively.
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Figure S1: Heatmaps showing the average performance of mentor models across various
error sources for the CIFAR-10 dataset, presented in the format [mentee]-[mentor]: a)
ResNet50-ResNet50, b) ViT-ResNet50, ¢) ResNet50-ViT, and d) ViT-ViT. The heatmaps’ row
labels indicate the training error source for the mentor, while the column labels denote the testing error
sources for the mentor. Results in each cell denote the average accuracy with the standard deviation
over 3 runs. The pink-highlighted column displays the row-wise mean and standard deviation.
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849 Figure S2: Heatmaps showing the average performance of mentor models across various
850 error sources for the CIFAR-100 dataset, presented in the format [mentee]-[mentor]: a)
ResNet50-ResNet50, b) ViT-ResNet50, ¢) ResNet50-ViT, and d) ViT-ViT. The heatmaps’ row
labels indicate the training error source for the mentor, while the column labels denote the testing error
sources for the mentor. Results in each cell denote the average accuracy with the standard deviation
over 3 runs. The pink-highlighted column displays the row-wise mean and standard deviation.
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Figure S3: Heatmaps showing the average performance of mentor models across various
error sources for the ImageNet-1K dataset, presented in the format [mentee]-[mentor]: a)
ResNet50-ResNet50, b) ViT-ResNet50, ¢) ResNet50-ViT, and d) ViT-ViT. The heatmaps’ row
labels indicate the training error source for the mentor, while the column labels denote the testing error
sources for the mentor. Results in each cell denote the average accuracy with the standard deviation
over 3 runs. The pink-highlighted column displays the row-wise mean and standard deviation.
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S2 DETAILED PERFORMANCE OF MENTORS ACROSS MENTEE
ARCHITECTURES

In Fig.[5] we show the generalization performance of mentors averaged over all three error types of
mentees with various architectures. Here, we expand the results in the form of tables listing out all
the individual accuracy for all the error sources on CIFAR-10, CIFAR-100 and ImageNet-1K datasets
in Tab. [ST] Tab.[S2] and Tab.[S3|respectively.

Mentor ResNet50 ViT

Mentee ResNet50— ViT ViT— ResNet50 ResNet50— ViT ViT— ResNet50
D 59.34+2.8— 59.6+2.0 | 56.7+£3.6— 54.54+2.4 | 65.7+3.3— 65.6+3.4 | 63.7+3.8— 62.5+£3.0
SpN 59.143.1— 58.4+3.3 | 57.54£2.8— 57.442.1 | 67.944.4— 66.1+£5.0 | 64.5+3.5— 62.9+2.7
00D GaB 58.14+2.2— 58.24+2.0 | 59.1+1.6— 57.3+1.8 | 62.743.1— 62.4+2.8 | 63.843.2— 62.6+2.8
Spat 59.442.1— 58.4+2.1 | 58.0+3.4— 57.44+3.0 | 66.64+2.8— 66.1+£3.7 | 66.84+4.5— 65.2+3.8
Sat 57.1£1.9— 57.7+1.3 | 58.7+1.2— 56.7£1.8 | 65.9+4.3— 66.4+3.2 | 68.84+4.3— 67.7+4.3
PGD 60.5+2.2— 58.4+1.5 | 64.942.7— 62.3+1.7 | 71.4+5.5— 69.0+4.5 | 77.0+2.6— 72.3+4.1
AA CwW 61.6+2.7— 59.2+2.2 | 64.143.0— 60.3£2.0 | 69.5+4.6— 67.7+4.0 | 71.44+2.6— 67.6+3.1
Jitter 60.14+2.6— 59.3+1.8 | 62.9+3.8— 60.1+3.3 | 71.7+4.2— 70.4+3.5 | 74.44+2.4— 70.4+3.8
PIFGSM | 67.5+4.1— 65.3+3.4 | 64.04+3.0— 62.1+2.3 | 78.0+3.5— 75.44+3.4 | 77.0+2.6— 72.5+3.9
Average 60.3+3.9— 59.4+3.2 | 60.7+4.2— 58.7£3.4 | 68.8+5.9— 67.7+5.1 | 69.7£6.2— 67.1£5.2

Table S1: Detailed generalization performance of mentors across various mentee architectures
on error sources from the CIFAR-10 dataset. The mentee rows are formatted as [mentee A]—
[mentee B], as explained in Fig.[5] Results in each cell denote the average accuracy with the standard
deviation over 3 runs.

Mentor ResNet50 ViT

Mentee ResNet50— ViT ViT— ResNet50 ResNet50— ViT ViT— ResNet50
ID 589+1.9— 58.4+1.8 | 61.242.7— 60.1£2.1 | 61.8£2.8— 61.4+2.9 | 65.6+3.4— 63.8+2.0
SpN 64.0+2.0— 61.8+3.5 | 57.5+2.3— 579429 | 68.7+£1.9— 65.1+ 3.2 | 65.44+3.2— 64.6+2.6
00D GaB 59.3+2.6— 58.6+2.0 | 61.742.9— 61.0£1.9 | 65.0£2.2— 63.8+2.5 | 66.5+3.5— 64.6+1.9
Spat 58.7+£1.6— 57.7£1.9 | 60.04+2.2— 59.542.0 | 66.4+2.8— 64.9+2.7 | 66.1+£3.3— 64.0+2.0
Sat 59.6+3.5— 58.8+3.4 | 57.4+1.9— 57.44+2.6 | 65.84+2.1— 64.4+3.0 | 58.94+4.4— 58.4+4.4
PGD 60.7+1.3— 59.4+1.1 | 62.0+2.3— 60.6+1.3 | 67.5+2.6— 65.5+2.0 | 71.0+4.0— 67.2+2.1
AA CwW 60.54+2.6— 59.2+1.8 | 60.8+2.9— 58.94+2.1 | 66.4+3.6— 64.5+2.1 | 66.34+3.8— 63.6+1.8
Jitter 58.64+2.4— 57.842.0 | 62.4+3.7— 60.5+2.4 | 67.24+3.4— 65.2+£2.2 | 67.44+3.7— 65.1£1.9
PIFGSM | 67.3+4.6— 64.6+2.5 | 66.24+4.1— 64.3+2.2 | 73.6+3.7— 69.1+1.7 | 72.1+4.4— 68.54+2.3
Average 60.84+3.9— 59.6+3.2 | 61.0+3.8— 60.0+2.9 | 66.9+4.1— 64.9+3.2 | 66.6+5.2— 64.4+3.6

Table S2: Detailed generalization performance of mentors across various mentee architectures
on error sources from the CIFAR-100 dataset. The mentee rows are formatted as [menteeA]—
[menteeB], as explained in Fig.[5] Results in each cell denote the average accuracy with the standard
deviation over 3 runs.

Mentor ResNet50 ViT

Mentee ResNet50— ViT V— ResNet50 ResNet50— ViT ViT— ResNet50
1D 65.1+£3.3— 63.9+2.7 | 62.24+1.3— 62.5£1.6 | 73.3+2.3— 71.0£2.4 | 71.2+1.8— 71.5£1.4
SpN 62.34+2.4— 62.0+3.7 | 58.8+1.6— 58.4+2.2 | 73.9+1.4— 71.14+2.2 | 71.4+2.3— 71.2+1.3
00D GaB 62.74+2.8— 62.9+3.8 | 60.7+2.3— 60.5+2.7 | 73.94+2.2— 71.843.0 | 72.0+2.9— 71.5+1.7
Spat 61.8+1.5— 61.1£1.7 | 61.9+1.5— 61.7t1.4 | 73.44+2.0— 71.4+£2.3 | 71.842.4— 71.7£1.4
Sat 64.3+2.8— 63.9+3.5 | 62.3+3.0— 62.1+2.7 | 73.2+1.9— 71.24+2.6 | 70.6+2.4— 70.3+1.2
PGD 69.3+5.0— 66.8+2.6 | 69.0+4.9— 67.1£2.7 | 76.6+3.8— 72.64+2.0 | 71.3+3.2— 70.3+1.6
AA CwW 66.0+5.5— 64.3+3.5 | 67.44+4.2— 65.842.3 | 74.04+3.6— 71.1£1.9 | 73.242.9— 71.7£1.4
Jitter 66.9+4.1— 65.3£2.5 | 68.0+4.5— 66.1£2.6 | 74.943.0— 72.242.0 | 73.3+3.1— 71.3+1.3
PIFGSM | 72.3+4.5— 69.3+2.2 | 69.4+4.7— 68.0+2.9 | 77.04+3.4— 72.9+1.7 | 73.3+2.7— 72.1£1.4
Average 65.6+5.0— 64.4+3.8 | 64.4+5.1— 63.6+3.9 74.4+3.0— 71.7+2.4 | 72.0+2.8— 71.3£1.5

Table S3: Detailed generalization performance of mentors across various mentee architectures
on error sources from the ImageNet-1K dataset. The mentee rows are formatted as [menteeA]—
[menteeB], as explained in Fig.[5| Results in each cell denote the average accuracy with the standard
deviation over 3 runs.
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S3 DETAILED RESULTS OF THE ABLATION STUDY ON THE LOSS COMPONENTS
IN SUPERMENTOR

Extending the results shown in Tab. 2] we now include their standard deviations after 3 runs as
presented in Tab. [S4]

00D AA
SpN GaB Spat Sat PGD CW Jitter PIFGSM

575412 | 61.0£08 56.1+1.1 58.6+0.6 54.3+1.5 | 58.6+05 59.1x1.2 585+1.0 59.6£0.6 | 58.2+2.0

80.0+ 1.8 | 73.7£0.6 79.2£2.0 77.9+0.8 74319 | 80.5£0.8 76.5+0.8 79.7£0.7 71.2+04 | 77.0+3.2
80.9+1.6 | 73.2+0.7 80.5+1.4 794+13 756+1.0 81.4+09 782+09 80.7+1.2 719+0.1 | 78.0+3.5

56.8+1.2 | 59.5+£0.8 56.6+1.1 578+12 53.7+13 | 57.7+19 573£19 57317 57.1£0.5 | 57.1£1.8

75.0£0.7 | 709+ 0.3 74.8+0.7 74.1£0.3 68.1+0.8 | 78.1£0.6 752+0.6 76.2+0.5 66.5+1.0 | 73.2£3.7
754+0.7 | 71.1£0.1 754+0.6 745+0.8 684+1.1 783+04 756+04 76.6£02 669+04 | 73.6+3.7

73.0+£4.2 | 70.1£2.8 69.6£3.1 72.8+3.7 68.5+34 | 758+52 725+42 73.6+46 70.7£0.5 | 71.9+3.8

78.7£0.1 | 73.1£0.2 73.6£0.5 78.0+0.1 73.2+0.3 | 83.0+0.1 78.4+0.1 79.9+0.1 722+£0.2 | 76.7£3.6
ours 78.9£0.0 | 73.6+0.1 74.6+02 783+£0.1 73.6£0.2 83.0+0.1 784+0.1 79.9+0.0 723£0.1 | 77.0+3.4
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C10
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C100
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g
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Table S4: Detailed results of the ablation study on the loss components in SuperMentor. L
denotes the distillation loss (see Sec.[3.1)) and L, represents the alignment loss between the mentor’s
and mentee’s predicted class labels. SuperMentor is evaluated on a ResNet50 mentee. Results in
each cell denote the average accuracy with the standard deviation over 3 runs. The performance of
SuperMentor is highlighted in grey.
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