
On Sparse Canonical Correlation Analysis

Yongchun Li
University of Tennessee

ycli@utk.edu

Santanu S. Dey
Georgia Tech

santanu.dey@isye.gatech.edu

Weijun Xie
Georgia Tech

wxie@gatech.edu

Abstract

The classical Canonical Correlation Analysis (CCA) identifies the correlations be-
tween two sets of multivariate variables based on their covariance, which has been
widely applied in diverse fields such as computer vision, natural language process-
ing, and speech analysis. Despite its popularity, CCA can encounter challenges in
explaining correlations between two variable sets within high-dimensional data con-
texts. Thus, this paper studies Sparse Canonical Correlation Analysis (SCCA) that
enhances the interpretability of CCA. We first show that SCCA generalizes three
well-known sparse optimization problems, sparse PCA, sparse SVD, and sparse
regression, which are all classified as NP-hard problems. This result motivates us
to develop strong formulations and efficient algorithms. Our main contributions
include (i) the introduction of a combinatorial formulation that captures the essence
of SCCA and allows the development of approximation algorithms; (ii) the estab-
lishment of the complexity results for two low-rank special cases of SCCA; and
(iii) the derivation of an equivalent mixed-integer semidefinite programming model
that facilitates a specialized branch-and-cut algorithm with analytical cuts. The
effectiveness of our proposed formulations and algorithms is validated through
numerical experiments.

1 Introduction

The Canonical Correlation Analysis (CCA), proposed by H. Hotelling [23], aims to identify the
correlations between two sets of multivariate variables based on their covariance. Since then, CCA
has become a powerful statistical technique used for multivariate data analysis, with its applications
across diverse fields such as computer vision [24], natural language processing [38], and speech
analysis [21]. Despite its popularity, CCA can encounter challenges in explaining correlations
between two variable sets within high-dimensional data contexts, such as genomic datasets [36]. In
contrast, Sparse Canonical Correlation Analysis (SCCA), which seeks sparse linear combinations of
these variable sets, offers substantially enhanced interpretability [41, 42, 44].

Formally, this paper studies the SCCA problem:

v∗ := max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ∥x∥0 ≤ s1, ∥y∥0 ≤ s2

}
, (SCCA)

where s1 ≤ n, s2 ≤ m are positive integers and
(

B A
A⊤ C

)
denotes a covariance matrix of (n+m)

random variables. Specifically, B and C are the covariance matrices of the n and m random variables,
respectively, and A ∈ Rn×m is the cross-covariance matrix between n and m random variables.

Hence,
(

B A
A⊤ C

)
, B, C are positive semidefinite matrices of size (n+m), n, and m, respectively.

Here, matrices B, C can be singular, i.e., some random variables may be dependent on others. In fact,
the covariance matrices B,C are often low-rank, especially within the high-dimension low-sample
size data context (see, e.g., the gene expression data in [41]).
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The SCCA problem generalizes three widely-studied sparsity-constrained optimization problems as
special cases, which are sparse PCA [2, 13, 27], sparse SVD [28, 41], and sparse regression [22, 3].
To be specific, when n = m, s1 = s2, B,C are identity matrices, and A is a positive semidefinite
matrix, SCCA reduces to the classic sparse PCA problem; when B,C are identity matrices, SCCA
becomes the sparse SVD problem; and when A is rank-one, Section 3 shows that SCCA is equivalent
to two sparse linear regression subproblems.

1.1 Main contributions

SCCA is generally NP-hard, given that its special cases, sparse PCA, sparse SVD, and sparse
regression are all classified as NP-hard problems. We are motivated to develop efficient formulations
and algorithms for SCCA through a mixed-integer optimization lens. The main contributions, along
with the structure of the remainder of this paper, are the following:

(i) In Section 2, we present an exact semidefinite programming (SDP) reformulation and derive a
closed-form optimal value of classic CCA problem. We also develop an equivalent combinatorial
formulation of SCCA, which allows the development of approximation algorithms;

(ii) When the covariance matrix
(

B A
A⊤ C

)
is low-rank, Section 3 studies the complexity of two

special cases of SCCA. This motivates us to develop a polynomial-time exact algorithm of
complexity O(n3 +m3) for solving SCCA to global optimiality when the sparsity levels (i.e.,
s1 and s2) meet or exceed the ranks of B and C;

(iii) Section 4 derives an equivalent mixed-integer SDP (MISDP) reformulation for SCCA. When
applying the Benders decomposition approach, instead of solving the large-scale SDPs, we
design a customized branch-and-cut algorithm with closed-form cuts, which can successfully
solve SCCA to optimality; and

(iv) Section 5 numerically test the proposed formulations and algorithms. It is noted that our
polynomial-time exact algorithm can solve real-world instances with n = 19, 672 and m =
2, 149 variables in seconds, provided that both s1 and s2 are at least the ranks of B and C.

Our analyses and results can be extended to SCCA with multiple pairs of basis vectors (x,y),
allowing for a more flexible and comprehensive exploration of correlations among data sets. The
detailed formulations of multiple SCCA, along with the computational results, are provided in
Appendix F.

1.2 Relevant literature

SCCA. To the best of our knowledge, the work [36] was the first paper that introduced the concept
of SCCA to select only small subsets of variables to better explain the relationship between many
genetic loci and gene expression phenotypes. A handful subset of features enhances interpretability, a
desirable property, especially in complex data analysis, which has been successfully demonstrated in
Sparse PCA [25]. To obtain sparse canonical loadings (x,y), [39] first applied elastic net penalty
to the classical CCA via an iterative regression procedure. In a seminal work on SCCA [41], the
authors proposed a rigorous formulation by enforcing the ℓ1 constraints on variables (x,y) and
developed a penalized matrix decomposition method to solve the penalized CCA problem. Then,
extensive research has focused on various penalty norm functions to obtain sparse canonical loadings
(see, e.g., [20, 26, 39, 42, 10]). In particular, [10] penalized multiple canonical loadings by ℓ1 norm
and computed the sparse solution by the linearized Bregman method. It should be noted that under
the assumption that the leading canonical loadings are sparse, [7, 17, 18] established theoretical
guarantees of iterative approaches for estimating sparse solutions. Another research direction in
SCCA introduced penalty functions based on group structural information of input data and developed
group SCCA methods [29, 30]. For a comprehensive overview of CCA and SCCA methods, we
refer readers to the survey by [44] and the references therein. These approaches, however, do not
strictly enforce the exact sparsity requirement but only approximate the sparsity requirement (i.e.,
the ℓ0 norm) by a convex function. Another relevant work [40] introduced binary variables to recast
SCCA as a mixed-integer nonconvex program under the assumption of positive definite matrices
B,C, based on which they designed a branch-and-bound algorithm. Different from the literature,
our work does not require positive definiteness assumption of matrices B,C, and we are able to
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obtain mixed-integer conic and semidefinite programming reformulations, allowing for better exact
and approximation algorithms.

Connections to and differences with sparse PCA and sparse SVD. Analogous to SCCA, both sparse
PCA [13, 25] and sparse SVD [28] select small subsets of variables to improve the interpretability of
dimensionality reduction methods: PCA and SVD. Considerable investigation has been conducted on
solving sparse PCA and sparse SVD from three angles: convex relaxations [12–14], approximation
algorithms [6, 9, 28], and exact algorithms [2, 27, 28]. As mentioned before, in sparse PCA and
sparse SVD, the covariance matrices B,C are identity. Such a setting dramatically simplifies the
subset selection problems of sparse PCA and sparse SVD compared to that of SCCA, as in these
problems, it suffices to focus on the selection of a submatrix of the matrix A. Specifically, it is shown
in [11, 27, 35] that sparse PCA reduces to selecting a principal submatrix of A to maximize the
largest eigenvalue(s) and sparse SVD reduces to selecting a possibly non-symmetric submatrix of A
to maximize the largest singular value(s) [28]. Quite differently, the combinatorial reformulation (1)
of SCCA aims to simultaneously select a sized-(s1 × s1) principal submatrix of B, a sized-(s2 × s2)
principal submatrix of C, and a sized-(s1 × s2) submatrix of A. These fundamental differences in
the underlying formulations of sparse PCA and sparse SVD preclude the direct application of their
existing algorithms to the SCCA.

Notations: The following notation is used throughout the paper. We use bold lower-case letters (e.g.,
x) and bold upper-case letters (e.g., X) to denote vectors and matrices, respectively, and we use
corresponding non-bold letters (e.g., xi) to denote their components. We let Sn,Sn

+,Sn
++ denote the

set of all the n× n symmetric real matrices, the set of all the n× n symmetric positive semidefinite
matrices, and the set of all the n×n symmetric positive definite matrices, respectively. We let I denote
the identity matrix and let 0 denote the vector or matrix with all-zero entries. We let Rn

+ denote the
set of all n-dimensional nonnegative vectors. We let [n] = {1, 2, · · · , n}, [s, n] = {s, s+ 1, · · · , n}.
Given a matrix A ∈ Rn×m and two subsets S ⊆ [n], T ⊆ [m], we let A† denote the pseudo
inverse of matrix A, let AS,T denote a submatrix of A with rows and columns indexed by sets S, T ,
respectively, and let (AS,T )

† denote the pseudo inverse of submatrix AS,T . For a set S and an integer
k, we define the set S + k = {i+ k|i ∈ S}. Given a vector a ∈ Rn and a subset S ⊆ [n], we let aS

denote a subvector of a in the subset S. We define [λ]+ = max{λ, 0}. We let σmax(·) denote the
largest singular value function and let λmax(·) denote the largest eigenvalue value function.

2 A combinatorial reformulation of SCCA

This section introduces an equivalent combinatorial optimization reformulation of SCCA. This
reformulation serves as the foundation for developing two effective approximation algorithms.

2.1 An exact semidefinite programming representation of CCA

To begin with, let us focus on the classic CCA problem, which refers to SCCA without zero-norm
constraints, as defined below:

max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1

}
. (CCA)

This formulation of CCA can be regarded as a quadratically constrained quadratic program concerning

the variables
(
x
y

)
∈ Rn×m. We next define three-block matrices of size (n+m) below that aid in

the presentation of our results.

Ã =

(
0 A/2

A⊤/2 0

)
, B̃ =

(
B 0
0 0

)
, C̃ =

(
0 0
0 C

)
.

By introducing a size-(n + m) matrix variable X =

(
x
y

)(
x
y

)⊤

and removing the rank-one

constraint on X , we can obtain an SDP relaxation of (CCA), as described below

max
X∈Sm+n

+

{
tr
(
ÃX

)
: tr
(
B̃X

)
≤ 1, tr

(
C̃X

)
≤ 1
}
. (SDP Relaxation)
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Next, let us present a key lemma regarding properties of block matrices being positive semidefinite,
fundamental for reformulating the SCCA.

Lemma 1 ([16]) For any symmetric matrix
(

B A
A⊤ C

)
∈ Sn+m, the followings are equivalent:

(i) The block matrix is positive semidefinite;

(ii) B ∈ Sn
+, (I −BB†)A = 0, C −A⊤B†A ∈ Sm

+ ; and

(iii) C ∈ Sm
+ , (I −CC†)A⊤ = 0, B −AC†A⊤ ∈ Sn

+.

Inspired by Lemma 1, we hereby establish the equivalence between CCA and its SDP Relaxation.
Remarkably, both of these problems achieve the same optimal value, namely σmax(

√
B†A

√
C†).

Proposition 1 For the CCA problem, we have the following results.

(i) Both CCA and its SDP Relaxation have an optimal value σmax(
√
B†A

√
C†);

(ii) A pair of optimal solutions (x∗,y∗) to CCA satisfies

x∗ =
√
B†q, y∗ =

√
C†p,

where q ∈ Rn,p ∈ Rm denote a pair of leading singular vectors of matrix
√
B†A

√
C†; and

(iii) An optimal solution X∗ to the SDP Relaxation is

X∗ =

(
x∗

y∗

)(
x∗

y∗

)⊤

.

Proof. See Appendix A.1. □

Proposition 1 motivates the following observation on the optimal values of CCA and SCCA.

Observation 1 The optimal value of CCA is upper bounded by 1, so is the optimal value of SCCA.

It is noteworthy that the results presented in Proposition 1 are established through a distinct method-
ology. This methodology leverages the positive semidefinite condition of block matrices, as shown in
Lemma 1, and incorporates duality theory. This approach differs from most prior research [31, 37, 44],
which proved Part (i) of Proposition 1 by relying on the singular value decomposition and assuming
that matrices B and C are positive definite (i.e., full rank). To the best of our knowledge, [10] showed
parts (i) and (ii) of Proposition 1 for a special low-rank CCA problem, where the authors assumed
that the covariance matrices are defined as A = UV ⊤, B = UU⊤, and C = V V ⊤. Remarkably,
Proposition 1 extends this result to a more general scenario where B and C are not constrained to
be strictly positive definite and A is not constrained to directly depend on B,C, allowing for rank
deficiencies and flexible data structure.

2.2 An equivalent formulation of SCCA

In this subsection, we transform SCCA into a combinatorial optimization problem, according to the
insights provided by Proposition 1.

Theorem 1 SCCA is equivalent to the following combinatorial optimization:

v∗ = max
S1⊆[m],|S1|≤s1,S2⊆[n],|S2|≤s2

{
σmax

(√
(BS1,S1

)
†
AS1,S2

√
(CS2,S2

)
†
)}

. (1)

Proof. See Appendix A.2. □

The combinatorial formulation (1) presents significant computational difficulties when attempting to
solve SCCA. The primary obstacles are two-fold: first, simultaneously selecting submatrices from
the matrices A,B,C requires a sophisticated optimization across multiple dimensions. Second,
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the selection criterion is particularly complex, as it involves optimizing the largest singular value
of the product of the selected submatrix of A and the square root of pseudo-inverse submatrices of
B and C. These complexities necessitate effective optimization solution procedures to address the
high-dimensional and non-convex nature of the problem.

Motivated by Theorem 1, we customize the greedy and local search algorithms for SCCA (1) that has
been widely used in the literature to solve special cases of SCCA, such as sparse PCA and sparse
SVD in literature (see, e.g., [27, 28]). The detailed implementations can be found in Appendix B.

3 Low-rank SCCA

In practice, it is common that the sample covariance matrix
(

B A
A⊤ C

)
exhibits low-rank characteris-

tics. This phenomenon is especially prominent when dealing with high-dimensional, low-sample size
data, e.g., the real gene expression data in [41]. In this section, we study two special cases of low-rank
SCCA and their computational complexities. Specifically, we develop a polynomial-time exact
algorithm of complexity O(n3 +m3) for solving SCCA to global optimiality when sparsity levels
(i.e., s1 and s2) exceed or equal the ranks of B and C. Besides, we recast SCCA into mixed-integer
convex quadratic programming when matrix A is rank-one.

3.1 Special Case I: SCCA with low-rank covariance matrices

In this section, we show that the computational complexity of SCCA is contingent upon the ranks of
the covariance matrices B and C. To be more precise, when the sparsity level s1 (or s2) is equal to
or greater than the rank r (or r̂) of the covariance matrix B (or C), the imposition of a zero-norm
constraint over x (or y) in SCCA becomes redundant. Consequently, lower ranks in the covariance
matrices correspond to better computational complexity in solving SCCA.

Theorem 2 Suppose r = rank(B) and r̂ = rank(C), then SCCA takes a complexity of
O(nr−1mr̂−1 + nr−1 +mr̂−1). The following results hold:

(i) When s1 ≥ r and s2 ≥ r̂, the SCCA problem is equivalent to CCA, i.e.,

v∗ = max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1

}
; (2)

(ii) When s1 ≥ r and s2 < r̂, the SCCA problem can be reduced to

v∗ = max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ∥y∥0 ≤ s2

}
; (3)

(iii) When s1 < r and s2 ≥ r̂, the SCCA problem can be reduced to

v∗ = max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ∥x∥0 ≤ s1

}
. (4)

Proof. See Appendix A.3. □

The results in Theorem 2 build on the covariance structure of the data matrix. Specifically, if B and C
are of rank r and r̂, respectively, there are only r and r̂ linearly independent vectors in the subspaces
corresponding to B and C. Thus, the cosine of the principal angle can always be represented by
these r and r̂ vectors. As a result, the canonical directions of CCA consist of only r and r̂ nonzero
elements. We further make the following remarks about Theorem 2:

(i) Theorem 2 implies the complexity of solving SCCA, as summarized in the corollary below.
(ii) Inspired by Part (i) of Theorem 2, we also develop a polynomial-time exact algorithm yielding

an optimal solution to SCCA (1) when s1 ≥ r and s2 ≥ r̂. The detailed implementation can be
found in Algorithm 1, which successfully solves some large instances with up to n = 19, 672
and m = 2, 149 variables in seconds in our numerical experiments; and

(iii) The proof of Theorem 2 implies that CCA always admits an optimal sparse solution (x∗,y∗)
satisfying ∥x∗∥0 ≤ r and ∥y∗∥0 ≤ r̂. We show in Proposition 1 that the SDP Relaxation of
CCA is exact. Therefore, as a side product, we provide the first-known sufficient condition
about (i.e., s1 ≥ r and s2 ≥ r̂) when the convex SDP Relaxation matches SCCA.
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Corollary 1 Suppose r = rank(B) and r̂ = rank(C). There exists an algorithm that can find an
optimal solution to SCCA in O(nr−1mr̂−1) time complexity.

Proposition 2 Suppose r = rank(B) and r̂ = rank(C). Then Algorithm 1 returns an optimal
solution to SCCA (1) in O(n3 +m3) time complexity when s1 ≥ r and s2 ≥ r̂.

Proof. Following the proof of Theorem 2, we can show that the output solution of Algorithm 1 is
optimal to SCCA (1). In addition, the Step 2 of Algorithm 1 needs computing the eigendecomposition
of matrix B ∈ Sn

+, which takes a time of O(n3). Given a matrix Q ∈ Rn×(n−r), it also takes a time
of O(n3) to find its (n− r) linearly independent rows at Step 3 through the QR decomposition [19].
Hence, Algorithm 1 takes a complexity of O(n3 +m3). □

Algorithm 1 An exact algorithm for SCCA (1) when s1 ≥ r and s2 ≥ r̂

1: Input: Matrices A ∈ Rm×n, B ∈ Sm
+ , C ∈ Sm

+ and integers s1 ∈ [r, n], s2 ∈ [r̂,m]

2: Compute the eigenvectors Q ∈ Rn×(n−r) of B that correspond to its (n− r) zero eigenvalues,
3: Find (n− r) linearly independent rows in Q, and collect their indices into a subset T ∗

1 ⊆ [n]
4: Perform the same procedure on matrix C to obtain the subset T ∗

2 ⊆ [m]
5: Define the subsets S∗

1 = [n] \ T ∗
1 and S∗

2 = [m] \ T ∗
2 , and compute

v∗ = σmax

(√(
BS∗

1 ,S
∗
1

)†
AS∗

1 ,S
∗
2

√(
CS∗

2 ,S
∗
2

)†)
6: Output: An optimal solution (S∗

1 , S
∗
2 ) and optimal value v∗

3.2 Special Case II: SCCA with a rank-one cross-covariance matrix

In this subsection, we study the other interesting low-rank special case of SCCA where the cross-
covariance matrix A is rank-one. For this special case, we prove its NP-hardness with reduction to
the sparse regression problem. We further demonstrate that rank-one SCCA can be simplified to
solving two Mixed-Integer Convex Quadratic Programs (MICQPs), which can be more scalable than
directly solving SCCA. Our numerical findings confirm this improved scalability.

We observe that SCCA can be separable over variables x and y for the rank-one A. In fact, suppose
that A = ab⊤, then SCCA is equivalent to

v∗ = max
x∈Rn,y∈Rm

{
x⊤ab⊤y : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ∥x∥0 ≤ s1, ∥y∥0 ≤ s2

}
(5)

which can be equivalently the product of the optimal values of the following two subproblems:

vx = max
x∈Rn

{a⊤x : x⊤Bx ≤ 1, ∥x∥0 ≤ s1},

vy = max
y∈Rm

{b⊤y : y⊤Cy ≤ 1, ∥y∥0 ≤ s2}.
(6)

That is, the identity v∗ = vxvy holds. Next, we show that each subproblem in (6) can be reduced to
the classic sparse regression problem [1, 33] and is thus NP-hard as shown below.

Theorem 3 When matrix A = a⊤b is rank-one, each maximization problem in (6) is NP-hard.

Proof. See Appendix A.4. □

Theorem 3 links the maximization problem (6) and the well-known sparse regression problem,
implying that even solving the rank-one SCCA problem (5) is NP-hard. However, it also motivates us
to adapt existing mixed-integer optimization techniques from sparse regression (see, e.g., [1, 4, 43])
to tackle each subproblem in (6). By introducing binary variables to model the zero-norm constraint,
we derive equivalent MICQP formulations for subproblems (6) in Appendix C. There are two types
of formulations depending on whether matrices B and C are positive definite, which build on the
Big-M and perspective techniques, respectively.
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4 Reformulating SCCA as a mixed-integer semidefinite program (MISDP)

While the combinatorial formulation (1) is elegant in its structure, it poses significant challenges
when attempting to solve it to optimality using branch-and-bound based methods. To fill this gap, in
this section, we derive an equivalent MISDP formulation for SCCA, amenable for developing exact
methods.

First, it is noted that an optimal solution (x∗,y∗) to SCCA is always bounded that satisfies ∥x∗∥22 ≤
M1 and ∥y∗∥22 ≤ M2, where we specify the construction of the coefficients M1 and M2 in Appendix
C.1. Such bounds are essential to the derivation of the MISDP. It is convenient to introduce the
following notation about {Mii}i∈[n+m]:

Mii = M1,∀i ∈ [n], Mii = M2,∀i ∈ [n+ 1, n+m].

Theorem 4 The SCCA is equivalent to the following MISDP:

v= max
X∈Sn+m

+ ,z∈Z
{tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1, Xii ≤ Miizi,∀i ∈ [n+m]}. (7)

where the feasible set is defined as Z = {z ∈ {0, 1}n+m :
∑

i∈[n] zi ≤ s1,
∑

i∈[n+1,n+m] zi ≤ s2}.

Proof. See Appendix A.5. □

Note that the proposed MISDP formulation (7) is of size (n+m)× (n+m) since our matrix variable

X replaces
(
x
y

)(
x
y

)⊤

in SCCA.

We have formulated SCCA as a mixed-integer convex optimization problem in Theorem 4. Unfor-
tunately, no commercial solvers can efficiently solve MISDP problems. We derive an equivalent
mixed-integer linear program of SCCA with exponentially many linear constraints and an efficient
separation oracle based on the approach introduced by [15], which allows us to develop a tailored
branch-and-cut algorithm. First, by separating the binary variables z, we rewrite the MISDP (7) as

v∗ = max
z∈Z,v

{v : v ≤ f(z)}, (8)

where the function f(z) is defined as

f(z) = max
X∈Sn+m

+

{
tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1, Xii ≤ Miizi,∀i ∈ [n+m]

}
. (9)

For any feasible solution ẑ ∈ Z of the problem (8), by leveraging the concavity of function f(·), the
linear inequality

v ≤ f(ẑ) + ∂f(ẑ)⊤(z − ẑ)

cuts off the solution ẑ unless it happened to be optimal in (8), which paves the way for a delayed
cut-generation procedure within a branch-and-bound framework. As the linear inequality of the
above type needs to be added dynamically given different solutions ẑ at each iteration, it calls for an
efficient evaluation of function f(ẑ) and its subgradient. To speed up the computation, we derive the
closed-form expression for both of them. The detailed derivations can be found in Appendix D.

Strategies to improve computational speed in practice: First, we provide a variable-fixing method
that can identify some binary variables of the MISDP (7) being one at optimality. Removing these
pre-selected variables from the feasible set reduces the problem size of SCCA. Second, we enhance
the branch-and-cut algorithm with a high-quality warm start solution obtained from the local search
algorithm. Third, by relaxing the binary variables in the MISDP (7) to be continuous or computing
CCA, we can obtain an upper bound of SCCA, and the gap between this bound and the local search
output gives an initial gap at the root node. Finally, at each iteration, the branching node is selected
based on its potential to decrease the current upper bound instead of random branching.

5 Numerical results

This section tests the numerical performance of our formulations and algorithms on synthetic and
real data. All the experiments are conducted in Python 3.6 with calls to Gurobi 9.5.2 and MOSEK
10.0.29 on a PC with 10-core CPU, 16-core GPU, and 16GB of memory. The codes and data used in
our experiments are available at https://github.com/yongchunli-13/SCCA.git.
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5.1 Experimental setup

Synthetic data generation: Before we present the empirical results, we first describe the properties
of the synthetic data which shall be used throughout this section. By following [32], given parameters
(n,m, s1, s2), we first synthetically generate positive definite matrices B∗ ∈ Sn

++ and C∗ ∈ Sn
++ by

B∗ = B̂B̂⊤ + I and C∗ = ĈĈ⊤ + I , respectively, where B̂ and Ĉ consist of elements generated
from a normal distribution N (0, 1). Then, we let A∗ ∈ Rn×m = λB∗uv⊤C∗, where we generate λ
uniformly from (0, 1), and vectors u,v are generated from a normal distribution N (0, 1) that satisfy
∥u∥0 = s1, ∥v∥0 = s2, u⊤B∗u = 1 and v⊤C∗v = 1. Next, we sample N = 5, 000 data samples

from a normal distribution N
(
0,

(
B∗ A∗

(A∗)⊤ C∗

))
and compute their sample covariance matrix to

obtain the testing data
(

B A
A⊤ C

)
.

Real data: To obtain a comprehensive understanding of the overall performance of our algorithms,
we further conduct experiments on six UCI datasets [5] with sizes ranging from 34 to 385 variables.
The dataset is split into the first n variables and the remaining m variables to construct the sample
covariance matrices A,B,C. Besides, we examine the performance of the proposed algorithms on
the real breast cancer dataset [8] that contain n = 19, 672 and m = 2, 149 variables. The information
on each dataset is summarized in Appendix E.

Throughout, the computational time is in seconds, the time limit is one hour, and the dashed line “-"
denotes the unsolved case within the time limit. Note that we let LB denote the lower bound obtained
from the approximation algorithm, and we let UB denote the upper bound obtained from convex
relaxations of SCCA. Besides, we define gap(%)= 100× (UB − v∗)/v∗ to be the optimality gap,
and we replace v∗ with the best lower bound when v∗ is not available. We define MIPGap(%) to be
the gap of exact algorithms at termination. Notably, the complexity analysis of the SCCA problems in
Section 3 indicates that its solution process depends on the ranks of the data matrices. Therefore, we
present the numerical results under both full-rank and low-rank cases for a comprehensive evaluation.

5.2 Illustration of the impact sparsity levels on SCCA

In this subsection, we apply the local search algorithm to evaluating the performance of SCCA
against different sparsity levels s1 and s2. Specifically, for a given dataset, we compute the ratio of
correlations between SCCA and CCA for various s1, s2 parameters. We test the real UCI data and
synthetic data, and the results are displayed in Figure 1 and Figure 2. This visualization provides
insights for the maximum sparsity SCCA can achieve while maintaining the correlation of full data.
For the real UCI data, SCCA almost recovers the correlation of CCA when s1 ≈ n/2 and s2 ≈ m/2.

Figure 1: On UCI data with n,m = 28, 29 Figure 2: On synthetic data with n,m = 80, 80

5.3 Solving SCCA with full-rank matrices

The numerical results on synthetic and real data are presented in Table 1 and Table 2, respectively,
which include multiple instances with various parameters (n,m, s1, s2). First, we observe that the
greedy and local search algorithms are scalable, and their outputs match the optimal values for most
solved testing cases. That is, they achieve zero optimality gaps on these cases. In the “Convex
relaxation" column, we compute an upper bound by solving either the continuous relaxation of
MISDP (7) or CCA, and we use CCA for n ≥ 40 and m ≥ 40 cases for efficiency. It is seen that
the upper bound maintains an optimality gap at most 2.78%. Then, we apply the branch-and-cut
algorithm to solve SCCA to optimality, which can handle the case up to a size of n = m = 120 in
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Table 1. The unsolved case in Table 1 may be because the initial gap is weak at the root node, implying
that the branch-and-cut algorithm explores a considerable amount of nodes before termination (see,
e.g., n = m = 80 and s1 = s2 = 10). Hence, the branch-and-cut algorithm may struggle with
large-scale instances with weak initial gaps.

Table 1: Evaluation of algorithms on synthetic data

Greedy Local search Convex relaxation Branch-and-cut
n m s1 s2 LB time LB time UB gap(%) time v∗ MIPGap(%) time
20 20 5 5 0.244 0.01 0.244 0.02 0.256 1.23 1 0.244 0.00 9
20 20 10 10 0.275 0.02 0.275 0.04 0.278 1.23 1 0.275 0.00 4
40 40 5 5 0.695 0.03 0.695 0.05 0.701 0.83 1 0.695 0.00 1
40 40 10 10 0.705 0.06 0.705 0.12 0.708 0.45 1 0.705 0.00 7
60 60 5 5 0.885 0.04 0.885 0.09 0.887 0.28 1 0.885 0.00 1
60 60 10 10 0.884 0.09 0.884 0.19 0.887 0.28 1 0.884 0.00 8
80 80 5 5 0.633 0.06 0.633 0.12 0.650 2.78 1 0.633 0.00 1705
80 80 10 10 0.631 0.13 0.631 0.26 0.644 2.02 1 0.643 1.85 -

100 100 5 5 0.942 0.09 0.942 0.16 0.944 0.23 1 0.942 0.00 4
100 100 10 10 0.940 0.17 0.940 0.34 0.942 0.23 1 0.940 0.00 15
120 120 5 5 0.845 0.11 0.845 0.27 0.853 0.97 1 0.845 0.00 924
120 120 10 10 0.848 0.21 0.848 0.43 0.856 0.85 1 0.855 0.80 -

Table 2: Evaluation of algorithms on six UCI datasets

Greedy Local search Convex relaxation Branch-and-cut
n m s1 s2 LB time LB time v̂ gap(%) time v∗ MIPGap(%) time
17 17 5 5 0.970 0.01 0.971 0.04 0.984 1.35 1 0.980 0.00 1
17 17 10 10 0.981 0.02 0.983 0.14 0.984 0.09 1 0.983 0.00 1
28 29 5 5 0.761 0.02 0.761 0.05 0.769 1.11 1 0.761 0.00 6
28 29 10 10 0.766 0.04 0.766 0.07 0.769 0.45 1 0.766 0.00 22
32 32 5 5 0.991 0.02 0.991 0.04 0.993 0.17 1 0.991 0.00 1
32 32 10 10 0.992 0.04 0.992 0.12 0.993 0.05 1 0.992 0.00 1
38 39 5 5 1 0.02 0.02 0.06 0.16 0.00 0.01 1 0.00 2
38 39 10 10 1 0.04 0.05 0.07 0.47 0.00 0.01 1 0.00 2
64 64 5 5 0.998 0.05 0.998 0.39 0.999 0.07 1 0.998 0.00 1
64 64 10 10 0.999 0.09 0.999 0.59 0.999 0.02 1 0.999 0.00 2

192 193 5 5 1 0.21 1 0.46 1 0.00 1 1 0.00 36
192 193 10 10 1 0.36 1 0.68 1 0.00 1 1 0.00 37

5.4 Solving SCCA with low-rank matrices

Despite the high dimensions of the breast cancer dataset [8], the resulting sample covariance matrices
B and C have a rank of 89, i.e., r = r̂ = 89. When s1 ≥ r and s2 ≥ r̂, we apply Algorithm 1 to
solving SCCA that returns optimal solutions and values in one second, as shown in Table 3. If s1 < r
and s2 < r̂, Algorithm 1 cannot applied and the proposed branch-and-cut algorithm is hard to scale
to this dataset. Hence, we only consider using approximation algorithms to solve SCCA for small
s1 and s2 cases in Table 4. To be specific, we randomly sample n and m variables from the breast
cancer data to construct testing cases. As displayed in Table 4, the greedy and local search algorithms
run fast, and the local search algorithm slightly outperforms the greedy output.
Table 3: Solving SCCA by Algorithm 1 on
breast cancer data when s1 ≥ r and s2 ≥ r̂

Algorithm 1
n m s1 s2 v∗ MIPGap(%) time

19,672 2,149

100 100 1 0.00 1
150 150 1 0.00 1
200 200 1 0.00 1
250 250 1 0.00 1

Table 4: Approximation algorithms on breast
cancer data when s1 ≤ r and s2 ≤ r̂

Greedy Local search
n m s1 s2 LB time LB time

100 100 10 10 0.983 0.17 0.985 0.63
500 500 10 10 0.991 1 0.993 6
800 800 10 10 0.993 5 0.993 37

1000 1000 20 20 1 12 1 146

The SCCA (5) problem with a rank-one matrix A can be more tractable, as we can equivalently
decompose it into two MICQPs (see Appendix C). By approximating A with a rank-one matrix
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including leading singular value and vectors, Table 5 presents the numerical results for solving
rank-one SCCA (5). The continuous relaxation of the MICQPs also provides an upper bound and
is denoted by the Perspective relaxation in Table 5. We see that the perspective relaxation is
computationally efficient and yields small optimality gaps. Besides, we can directly solve two
MICQPs below via Gurobi to find the optimal value of rank-one SCCA (5), i.e., v∗ = vxvy, where
the performance can be found in the last column of Table 5. We can address the rank-one SCCA (5)
problem up to size 200× 200 within one hour, improving the problem-solving capacity compared to
the size-120× 120 full-rank SCCA (5) in Table 1. However, it should be pointed out that the SCCA
may not be mixed-integer convex quadratic representable in general.

Table 5: Solving SCCA on synthetic data with a rank-one matrix A

Greedy Local Search Perspective relaxation SCCA (5)
n m s1 s2 LB time LB time UB gap(%) time v∗ MIPGap(%) time
50 50 5 5 0.753 0.04 0.753 0.07 0.757 0.57 1 0.753 0.00 1
50 50 10 10 0.753 0.07 0.753 0.15 0.757 0.46 1 0.753 0.00 9

100 100 5 5 0.975 0.09 0.975 0.16 0.977 0.21 1 0.975 0.00 2
100 100 10 10 0.966 0.17 0.966 0.33 0.969 0.35 1 0.966 0.00 25
150 150 5 5 0.850 0.15 0.850 0.26 0.859 1.08 1 0.850 0.00 9
150 150 10 10 0.857 0.27 0.857 0.53 0.867 1.13 1 0.857 0.00 167
200 200 5 5 0.810 0.23 0.810 0.37 0.828 2.19 2 0.810 0.00 55
200 200 10 10 0.816 0.39 0.816 0.74 0.833 2.11 2 0.816 0.00 1692

5.5 Experimental comparison of SCCA algorithms

This section compares the proposed local search algorithm with the SCCA methods of [10, 37, 41]
in correlation (Corr) value, the zero norm of x (denoted by S.x), the zero norm of y (denoted by
S.y), and running time. The computational results on synthetic, UCI, and breast cancer data are
presented in Table 6, where we highlight the best correlation and sparsity results in bold. Unlike the
local search algorithm, these existing methods do not strictly enforce the exact sparsity requirement,
i.e., the zero-norm constraints on variables x,y. Consequently, the local search algorithm achieves
the best sparsity for nearly all testing cases. More importantly, the local search algorithm yields a
larger correlation value than these existing methods in 16 out of 22 testing cases. Finally, the running
time of the local search algorithm dominates that of [10, 37].

Table 6: Comparison of SCCA algorithms in Correlation, sparsity, and time

Local search [41] [37] [10]
n m s1 s2 Corr S.x S.y time Corr S.x S.y time Corr S.x S.y time Corr S.x S.y time
20 20 5 5 0.244 5 5 0.04 0.200 9 11 0.01 0.239 13 14 2 0.256 18 16 15
20 20 10 10 0.275 10 10 0.06 0.212 7 8 0.01 0.259 19 14 2 0.278 18 18 12
40 40 5 5 0.695 5 5 0.08 0.594 23 30 0.03 0.659 26 19 2 0.696 17 18 13
40 40 10 10 0.705 10 10 0.17 0.597 17 15 0.01 0.660 19 22 2 0.704 16 20 15
60 60 5 5 0.885 5 5 0.13 0.794 37 45 0.01 0.865 27 25 3 0.880 10 8 23
60 60 10 10 0.884 10 10 0.27 0.777 33 36 0.01 0.847 31 31 3 0.879 12 15 23
80 80 5 5 0.633 5 5 0.17 0.534 55 43 0.03 0.606 36 32 3 0.634 33 23 34
80 80 10 10 0.631 10 10 0.37 0.528 53 38 0.02 0.603 29 41 3 0.632 36 41 32

100 100 5 5 0.942 5 5 0.22 0.813 58 63 0.02 0.902 46 33 4 0.941 5 5 38
100 100 10 10 0.940 10 10 0.49 0.768 54 55 0.02 0.884 47 37 4 0.938 10 10 37
120 120 5 5 0.845 5 5 0.42 0.681 83 74 0.02 0.804 37 43 4 0.833 10 8 47
120 120 10 10 0.848 10 10 0.59 0.720 71 76 0.02 0.821 39 36 4 0.840 13 12 47
17 17 5 5 0.971 5 5 0.04 0.794 6 9 0.01 0.742 10 8 2 0.970 14 16 15
28 29 5 5 0.761 5 5 0.05 0.704 23 29 0.01 0.667 3 7 2 0.744 24 19 15
32 32 5 5 0.991 5 5 0.04 0.730 31 23 0.01 0.904 15 10 2 0.906 18 15 43
38 39 5 5 1 5 5 0.15 0.994 8 9 0.43 0.997 38 23 3 1 24 32 29
64 64 5 5 0.998 5 5 0.38 0.897 64 64 0.01 0.990 7 6 2 0.997 33 31 19

192 193 5 5 1 5 5 0.45 0.103 82 50 0.21 0.856 13 12 10 1 11 6 45
100 100 10 10 0.985 10 10 0.63 0.936 18 41 0.01 0.686 42 43 4 0.952 75 76 36
500 500 10 10 0.993 10 10 6 0.977 78 200 0.78 0.871 173 371 31 0.935 74 44 50
800 800 10 10 0.993 10 10 37 0.974 133 316 1.94 0.879 280 526 50 0.990 84 63 57

1000 1000 10 10 0.995 10 10 11 0.980 166 401 7.30 0.848 401 558 58 0.985 80 59 60
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Appendices

A Proofs of technical results

A.1 Proof of Proposition 1

Proof. The proof includes three parts.

Part (i). To prove the equivalence between CCA and its SDP Relaxation, let us introduce the
Lagrangian multiplies θ1 ≥ 0, θ2 ≥ 0 corresponding to two constraints in SDP Relaxation, which
leads to the following Lagrangian dual problem

min
θ1≥0,θ2≥0

{
θ1 + θ2 : θ1B̃ + θ2C̃ ⪰ Ã

}
= min

θ1≥0,θ2≥0

{
θ1 + θ2 :

(
θ1B

A
−2

A⊤

−2 θ2C

)
⪰ 0

}
(10)

where the equation results from the definition of block matrices Ã, B̃, and C̃. Given the nonzero
matrices A ̸= 0,B ̸= 0,C ̸= 0 and positive semidefinite matrices B ⪰ 0,C ⪰ 0, following
Lemma 1, we must have θ2C −A⊤(θ1B)†A/4 ⪰ 0 and θ1B−A(θ2C)†A⊤/4 ⪰ 0, implying that
either θ1 = 0 or θ2 = 0 is infeasible to the minimization problem above. That is, θ1 > 0 and θ2 > 0
must hold.

According to Lemma 1, the block matrix
(

B A
A⊤ C

)
is positive semidefinite, implying that (I −

CC†)A⊤ = 0, (I −BB†)A = 0. Then, it is easy to show(
I − θ2C(θ2C)†

) A⊤

2
= 0,∀θ2 > 0.

Given θ1, θ2 > 0 and using Lemma 1, the result above allows us to further simplify the right-hand
side minimization problem in (10) to

min
θ1≥0,θ2≥0

{
θ1 + θ2 : 4θ1θ2B ⪰ AC†A⊤}

= min
θ1≥0,θ2≥0

{
θ1 + θ2 : 4θ1θ2 ≥ σ2

max

(√
B†A

√
C†
)}

= σmax

(√
B†A

√
C†
)
,

where the first equation is because

4θ1θ2B ⪰ AC†A⊤ ⇐⇒ 4θ1θ2I ⪰
√
Λ−1Q⊤AC†A⊤Q

√
Λ−1

⇐⇒ 4θ1θ2 ≥ λmax

(√
Λ−1Q⊤AC†A⊤Q

√
Λ−1

)
⇐⇒ 4θ1θ2 ≥ λmax

(√
C†A⊤B†A

√
C†
)
⇐⇒ 4θ1θ2 ≥ σ2

max

(√
B†A

√
C†
)
,

where we let B = QΛQ⊤ denote the eigendecomposition of matrix B with Λ containing all the
positive eigenvalues.

As a result, the dual problem of SDP Relaxation admits an optimal value of σmax

(√
B†A

√
C†
)

,
which gives an upper bound of the CCA and its SDP Relaxation. Next, we construct their optimal
solutions, which exactly attain this upper bound. Thus, this upper bound is achievable and equals
their optimal values.

Part (ii). For the CCA, let us consider a part of optimal solutions (x∗,y∗) below

x∗ =
√
B†q, y∗ =

√
C†p,

with q ∈ Rn,p ∈ Rm denoting a pair of leading singular vectors of matrix
√
B†A

√
C†.

First, (x∗,y∗) is feasible to the CCA as

(x∗)⊤Bx∗ = q⊤
√
B†B

√
B†q ≤ q⊤q = 1, (y∗)⊤Cy∗ = p⊤

√
C†C

√
C†p ≤ p⊤p = 1,

where the inequalities stem from the facts that I ⪰
√
B†B

√
B† and I ⪰

√
C†C

√
C†.
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On the other hand, according to the definitions of q,p, we can show that (x∗,y∗) is optimal to the
CCA, i.e.,

(x∗)⊤Ay∗ = q⊤
√
B†A

√
C†p = σmax

(√
B†A

√
C†
)
.

Part (iii). In a similar vein, we can show that X∗ =

(
x∗

y∗

)(
x∗

y∗

)⊤

is optimal to SDP Relaxation

with the optimal value σmax

(√
B†A

√
C†
)

. □

A.2 Proof of Theorem 1

Proof. By introducing the subsets (S1, S2) to denote the supports of variables (x,y) in SCCA, then
we can remove the zero-norm constraints on (x,y) and reformulate SCCA as

v∗ = max
S1⊆[m],|S1|≤s1,
S2⊆[n],|S2|≤s2

max
x∈R|S1|,

y∈R|S2|

{
x⊤AS1,S2

y : x⊤BS1,S1
x ≤ 1,y⊤CS2,S2

y ≤ 1
}
. (11)

Following from the Part (i) in Proposition 1, we can show that for any subsets S1 ⊆ [n], S2 ⊆ [m],
the following identity holds.

max
x∈R|S1|,y∈R|S2|

{
x⊤AS1,S2

y : x⊤BS1,S1
x ≤ 1,y⊤CS2,S2

y ≤ 1
}

= σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
.

Plugging the result above into the inner maximization problem in (11), we complete the proof. □

A.3 Proof of Theorem 2

Proof. The proof is split into three parts.

Part (i). It suffices to prove that CCA admits an optimal solution (x∗,y∗) satisfying ∥x∗∥0 ≤ r and
∥y∗∥0 ≤ r̂. Then, (x∗,y∗) is also feasible and optimal to SCCA, which implies the equivalence
between SCCA and CCA.

First, according to Part (ii) in Proposition 1, we can obtain a closed-form optimal solution (x̂, ŷ) for
the CCA. By adjusting (x̂, ŷ), we will construct a new optimal sparse solution (x∗,y∗) satisfying
∥x∗∥0 ≤ r and ∥y∗∥0 ≤ r̂.

For matrix B ∈ Sn
+, we let {qi}i∈[n−r] ∈ Rn denote the eigenvectors corresponding to (n− r) zero

eigenvalues of B. Thus, {qi}i∈[n−r] are orthonormal. There exists a size-(n − r) subset S ⊆ [n]
such that the subvectors {(qi)S}i∈[n−r] are linearly independent, where (qi)S denotes the subvector
of qi indexed by S for each i ∈ [n− r]. As a result, there exist a vector (γ1, · · · , γn−r)

⊤ such that

x̂S =
∑
i∈[n]

γi(qi)S . (12)

Let us now construct solution x∗

x∗ = x̂−
∑

i∈[n−r]

γiqi,

where x∗
i = 0 for all i ∈ S based on the equation (12) and |S| = n − r, implying ∥x∗∥0 ≤ r. In

addition, we show that the new solution x∗ is still optimal to CCA. First, x∗ is feasible since

(x∗)⊤B(x∗) = x̂⊤Bx̂ ≤ 1,

where the equation is due to Bqi = 0 for all i ∈ [n− r].

Given the positive semidefinite block matrix
(

B A
A⊤ C

)
, using Part (ii) of Lemma 1, the identity

(I −BB†)A = 0 is equivalent to
∑

i∈[n−r] qiq
⊤
i A = 0. Then, for each i ∈ [n− r], multiplying
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q⊤
i on both sides of this equation leads to

q⊤
i

( ∑
j∈[n−r]

qjq
⊤
j A

)
A = q⊤

i 0 =⇒ q⊤
i A = 0,

where the result follows from q⊤
i qj = 0 for any i ̸= j. Then, we can show the optimality of the new

solution x∗:
(x∗)⊤Aŷ = x̂⊤Aŷ +

∑
i∈[n−r]

βiq
⊤
i Aŷ = x̂⊤Aŷ.

Similarly, we can also construct an optimal sparse solution y∗ by leveraging ŷ and eigenvectors of
zero eigenvalues of C such that ∥y∗∥0 ≤ s2.

Therefore, there exists an optimal solution (x∗,y∗) to the CCA whose zero norms are bounded from
above by r, r̂, respectively. Adding the constraints ∥x∥0 ≤ r, ∥y∥0 ≤ r̂ to the CCA does not affect
the optimality, which gives an equivalent formulation (2) of CCA.

Part (ii). Suppose that (x̃, ỹ) denotes an optimal solution to problem (3). When s1 ≥ r, following
the proof of Part (I), x̃, we can construct another optimal solution x∗ whose zero norm is bounded by
r and (x∗, ỹ) is feasible and optimal to SCCA.

Part (iii). Similarly, we can reduce SCCA to problem (4). We thus complete the proof. □

A.4 Proof of Theorem 3

Proof. Let us first consider the maximization problem over x in (6), i.e.,
vx = max

x∈Rn
{a⊤x : x⊤Bx ≤ 1, ∥x∥0 ≤ s1}. (13)

Then, we derive a combinatorial optimization reformulation of problem (13) based on the result
below.

Claim 1 For any subset S ⊆ [n], maxx∈R|S|{a⊤
Sx : x⊤BS,Sx ≤ 1} =

√
a⊤
S (BS,S)†aS .

Proof. Given A = ab⊤, since the matrix
(

B ab⊤

b⊤a C

)
is positive semidefinite, using Lemma 1,

the identity (I − BS,SB
†
S,S)aSb

⊤ = 0 must hold for any subset S. As a result, we have aS −
BS,SB

†
S,SaS = 0 as vector b is nonzero.

Next, the Lagrangian dual of the problem maxx∈R|S|{a⊤
Sx : x⊤BS,Sx ≤ 1} can be written as

max
x∈R|S|

{a⊤
Sx : x⊤BS,Sx ≤ 1} = min

µ≥0
max
x∈R|S|

a⊤
Sx+ µ− µx⊤BS,Sx

= min
µ≥0

µ+
a⊤
SB

†
S,SaS

4µ
=
√

a⊤
S (BS,S)†aS ,

where the second equation builds on the identity aS − BS,SB
†
S,SaS = 0 and optimal solution

x∗ =
B†

S,SaS√
a⊤

S (BS,S)†aS

. ⋄

Suppose that an optimal solution to problem (13) admits the support S∗. According to Claim 1, we
have

vx = max
S⊆[n],|S|≤s

√
a⊤
S (BS,S)†aS =

√
a⊤
S∗(BS∗,S∗)†aS∗ .

On the other hand, the Lagrangian dual of problem (13) can be written as
vx ≤ min

λ∈R+

max
x∈Rn

{a⊤x+ λ− λx⊤Bx : ∥x∥0 ≤ s1}

= min
λ∈R+

max
S⊆[n],|S|≤s

λ+
a⊤
S (BS,S)

†aS

4λ

≤ max
S⊆[n],|S|≤s

λ∗ +
a⊤
S (BS,S)

†aS

4λ∗ =
√
a⊤
S∗(BS∗,S∗)†aS∗ ≤ vx,
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where the first equation is due to Claim 1, the second inequality is by plugging the feasible solution

λ∗ =

√
a⊤

S∗ (BS∗,S∗ )†aS∗

2 into minimization problem, and the last equation is from the optimality of
subset S∗. Since both left-hand and right-hand sides above equal vx, the strong duality of problem
(13) holds, and all the inequalities above must attain the equalities. That is, problem (13) is equivalent
to

vx = min
λ∈R+

max
x∈Rn

{a⊤x+ λ− λx⊤Bx : ∥x∥0 ≤ s1}.

Since the outer minimization is a one-dimensional convex program that can be solved efficiently, as a
result, for any given λ > 0, the inner maximization is equivalent to solving

max
x∈Rn

{a⊤x− λx⊤Bx : ∥x∥0 ≤ s1}. (14)

Next, let us consider the NP-hard sparse regression problem (see, e.g., [34]), which admits

min
β∈Rn

{
∥v −Ux∥22 : ∥x∥0 ≤ s

}
⇐⇒ max

x∈Rn

{
2v⊤Ux− x⊤U⊤Uβ : ∥x∥0 ≤ s

}
, (15)

where data matrix U consists of observations of n variables and vector v denotes the corresponding
response variables.

Suppose that in the problem (14), let us define λB = U⊤U and a = 2U⊤v. Then using the singular
value decomposition of matrix U , we see that the following equation still holds.

aS −BS,SB
†
S,SaS = 0,∀S ⊆ [n].

Thus, for any given λ > 0, the maximization problem (14) is equivalent to the sparse regression
problem (15). This shows that problem (13) is NP-hard.

Similarly, the maximization problem over y in (6) can also be reduced to the sparse regression
problem. □

A.5 Proof of Theorem 4

Proof. For the SCCA (11), according to Proposition 1, the inner maximization problem admits
an exact semidefinite programming formulation. Using the variables z ∈ Z to describe the set
constraints in SCCA (11), we can reformulate it as

v∗ = max
z∈Z

max
X∈Sn+m

+

{
tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1,

Xii(1− zi) = 0,∀i ∈ [m+ n]
}
.

(16)

Proposition 3 shows that there is an optimal solution (x∗,y∗) to SCCA that satisfies ∥x∗∥22 ≤ M1

and ∥y∗∥22 ≤ M2. Based on this, we can construct an optimal solution (z∗,X∗) for SCCA (16) by
letting

X∗ =

(
x∗

y∗

)(
x∗

y∗

)⊤

, zi =

{
1 if x∗

i ̸= 0

0 if x∗
i = 0

,∀i ∈ [n], zi+n =

{
1 if y∗i ̸= 0

0 if y∗i = 0
,∀i ∈ [m],

where the optimal solution X∗ satisfies the following inequalities

X∗
ii = (x∗

i )
2 ≤ M1zi,∀i ∈ [n], X∗

(i+n)(i+n) = (y∗i )
2 ≤ M2zi+n,∀i ∈ [m].

This allows us to recast the SCCA (16) into an MISDP formulation (7). □

B Implementations of greedy and local search algorithms

This section presents the detailed implementations of greedy and local search algorithms based on
the combinatorial formulation (1) of SCCA.

C Mixed-integer convex quadratic programming reformulations

This section shows that each subproblem in (6) can be equivalently formulated by a MICQP. Therefore,
SCCA (5) is mixed-integer convex quadratic representable when matrix A is rank-one.
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Algorithm 2 Greedy algorithm for SCCA (1)
1: Input: Matrices A ∈ Rm×n, B ∈ Sm

+ , C ∈ Sm
+ and integers s1 ∈ [n], s2 ∈ [m]

2: Compute (i∗, j∗) ∈ argmaxi∈[m],j∈[n]

√
(Bii)†Aij

√
(Cjj)†

3: Define subsets Ŝ1 = {i∗} and Ŝ2 = {j∗}
4: for ℓ = 2, · · · ,max{s1, s2} do
5: if ℓ ≤ min{s1, s2} then
6: i∗ ∈ argmaxi∈[n]\Ŝ1

σmax

(√
(BŜ1∪{i},Ŝ1∪{i})

†AŜ1∪{i},Ŝ2

√
(CŜ2,Ŝ2

)†
)

7: Update Ŝ1 = Ŝ1 ∪ {i∗}
8: j∗ ∈ argmaxj∈[m]\Ŝ2

σmax

(√
(BŜ1,Ŝ1

)†AŜ1,Ŝ2∪{j}

√
(CŜ2∪{j},Ŝ2∪{j})

†
)

9: else if s1 ≤ s2 then
10: j∗ ∈ argmaxj∈[m]\Ŝ2

σmax

(√
(BŜ1,Ŝ1

)†AŜ1,Ŝ2∪{j}

√
(CŜ2∪{j},Ŝ2∪{j})

†
)

11: Update Ŝ2 = Ŝ2 ∪ {j∗}
12: else
13: i∗ ∈ argmaxi∈[n]\Ŝ1

σmax

(√
(BŜ1∪{i},Ŝ1∪{i})

†AŜ1∪{i},Ŝ2

√
(CŜ2,Ŝ2

)†
)

14: Update Ŝ1 = Ŝ1 ∪ {i∗}
15: end if
16: end for
17: Output: Ŝ1, Ŝ2

Algorithm 3 Local search algorithm for SSVD (1)
1: Input: Matrices A ∈ Rm×n, B ∈ Sm

+ , C ∈ Sm
+ and integers s1 ∈ [n], s2 ∈ [m]

2: Initialize (Ŝ1, Ŝ2) as the output of greedy Algorithm 2
3: do
4: for each pair (i1, j1) ∈ Ŝ1 × ([n] \ Ŝ1) do
5: if σmax

(√
(BŜ1∪{j1}\{i1},Ŝ1∪{j1}\{i1})

†AŜ1∪{j1}\{i1},Ŝ2

√
(CŜ2,Ŝ2

)†
)

>

σmax

(√
(BŜ1,Ŝ1

)†AŜ1,Ŝ2

√
(CŜ2,Ŝ2

)†
)

then

6: Update Ŝ1 = Ŝ1 ∪ {j1} \ {i1}
7: end if
8: end for
9: for each pair (i2, j2) ∈ Ŝ2 × ([m] \ Ŝ2) do

10: if σmax

(√
(BŜ1∪{j1}\{i1},Ŝ1∪{j1}\{i1})

†AŜ1∪{j1}\{i1},Ŝ2

√
(CŜ2,Ŝ2

)†
)

>

σmax

(√
(BŜ1,Ŝ1

)†AŜ1,Ŝ2

√
(CŜ2,Ŝ2

)†
)

then

11: Update Ŝ2 = Ŝ2 ∪ {j2} \ {i2}
12: end if
13: end for
14: while there is still an improvement
15: Output: Ŝ1, Ŝ2

C.1 Valid inequalities for SCCA

Before deriving the formulations, we first prove that there exists a bounded optimal solution (x∗,y∗)
of the SCCA. To be specific, we show that there exists an optimal solution (x∗,y∗) of the SCCA
satisfying the constraints ∥x∗∥22 ≤ M1 and ∥y∗∥22 ≤ M2, where M1 and M2 are finite-valued
parameters.

Proposition 3 The SCCA admits an optimal solution (x∗,y∗) satisfying ∥x∗∥22 ≤ M1 and ∥y∗∥22 ≤
M2, where M1 = 1/λr(B) + 1/(λr(B)smin(B)) and M2 = 1/λr̂(C) + 1/(λr̂(C)smin(C)) with
λr(B), λr̂(C) being the smallest nonzero eigenvalues of matrices B,C and smin(R) being the
smallest nonzero singular value of all the submatrices of the zero eigenvectors of matrix R.
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Proof. Let (x∗,y∗) denote an optimal solution to SCCA. We bound ∥x∗∥2 first and the same
technique can be also straightforwardly applied to bound ∥y∗∥2.

For matrix B ∈ Sn
+ of rank r, we let {qi}i∈[n] ∈ Rn denote the eigenvectors corresponding to

n eigenvalues λ of B such that λ1 ≥ . . . ≥ λr > λr+1 = . . . = λn = 0. Thus, {qi}i∈[n] are
orthonormal and span the space of Rn. Hence, there exists α ∈ Rn such that x∗ =

∑
i∈[n] αiqi.

Given that (x∗)⊤Bx∗ ≤ 1, we have ∑
i∈[r]

α2
iλi ≤ 1.

Hence, the values of {αi}i∈[r] are bounded. On the other hand, let us define a subset S ⊆ [n] of
size at most s1 such that x∗

i ̸= 0 for each i ∈ S and x∗
j = 0 for each j ∈ [n] \ S. Then for each

j ∈ [n] \ S, we arrive at the following linear system:∑
j∈[r+1,n]

αj q̂j = −
∑
i∈[r]

αiq̂i, (17)

where q̂i denote a subvector of qi with indices [n] \ S for each i ∈ [n]. For a fixed {αi}i∈[r], since
the linear system (17) is nonempty, we let Q̄ᾱ = q̄ denote its minimal linear subsystem such that a
submatrix Q̄ is non-singular and the index set Ŝ of ᾱ is a subset of [n] \ S. Thus, we can construct
an alternative solution α̂ such that

α̂i =


αi, if i ∈ [r],

(Q̄−1q̄)i, if i ∈ Ŝ,

0, otherwise,

and x̂ =
∑

i∈[n] α̂iqi. According to Lemma 1, we have

x̂⊤Bx̂ ≤ 1, x̂⊤Ay∗ = (x∗)⊤Ay∗,

i.e., (x̂,y∗) is also optimal to SCCA. Hence,

∥x̂∥2 ≤
√

∥Q̄−1q̄∥22 +
∑
i∈[r]

α2
i

Note that
∑

i∈[r] α
2
i ≤ 1/λr and

∥Q̄−1q̄∥22 ≤ ∥Q̄−1∥22∥q̄∥22 ≤ 1

smin(B)

1

λr

where smin(B) denotes the smallest nonzero singular values of all the submatrices of [qr+1, . . . , qn].
In summary, we have

∥x̂∥2 ≤
√
1/λr + 1/(λrsmin(B)).

This completes the proof. □

The proof of Proposition 3 is straightforward in the case when B and C are of full rank as in this case
the feasible region is a bounded set. In order to prove the result in the case when B is not full-rank,
one has to show that it is possible to construct sparse solutions that are not “too far" away.

In fact, the bounds M1,M2 in Proposition 3 also hold for any given feasible subsets (S1, S2) of
SCCA (1).

Corollary 2 For any given feasible subsets (S1, S2) of SCCA 1, there exists a SCCA feasible solution
(x,y) such that the supports of x,y are S1, S2, respectively and we have that ∥x∥22 ≤ M1 and
∥y∥22 ≤ M2, where M1,M2 are defined in Proposition 3.

C.2 Equivalent mixed-integer convex quadratic program of rank-one SCCA

When matrix A is rank-one, let us focus on analyzing the subproblem over x in (6), i.e.,

vx = max
x∈Rn

{a⊤x : x⊤Bx ≤ 1, ∥x∥0 ≤ s1}. (18)
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Then the second subproblem over y in (6) simply follows.

According to Corollary 2, introducing the binary variables z1 ∈ {0, 1}n can reformulate the problem
(18) as

vx = max
x∈Rn,z1∈{0,1}n

{
a⊤x : x⊤Bx ≤ 1, xi ≤

√
M1z

1
i ,∀i ∈ [n],

∑
i∈[n]

z1i ≤ s1

}
.

When matrix B is positive definite, there is a positive vector b ∈ Rn
++ and a positive semidefinite

matrix B̂ such that B = B̂+Diag(b). Given this equation, by leveraging the perspective techniques
(see, e.g., [1, 43]), we can derive another equivalent MICQP formulation of the problem (18):

vx = max
x∈Rn,z1∈{0,1}n,µ∈Rn

+

{
a⊤x : x⊤B̂x+

∑
i∈[n]

µi ≤ 1, x2
i ≤ µiz

1
i ,∀i ∈ [n],

∑
i∈[n]

z1i ≤ s1

}
.

which is often stronger than the above formulation.

D A branch-and-cut algorithm with closed-form cuts

By dualizing the inner maximization problem over X in the MISDP (7), in this subsection, we
derive an equivalent mixed-integer linear program for SCCA, which motivates us to develop a
branch-and-cut algorithm.

By introducing the Lagrangian multipliers (θ1, θ2,λ), the Lagrangian dual of the maximization
problem (9) can be written as

f(z) = min
θ1≥0,θ2≥0,

λ∈Rn+m
+

max
X∈Sn+m

+

tr(ÃX)− θ1 tr(B̃X)− θ2 tr(C̃X) + θ1 + θ2,

−
∑

i∈[n+m]

λiXii +
∑

i∈[n+m]

λiMiizi

= min
θ1≥0,θ2≥0,

λ∈Rn+m
+

{
θ1 + θ2 +

∑
i∈[n+m]

λiMiizi :

(
θ1B −A/2

−A⊤/2 θ2C

)
⪰ −Diag(λ)

}
,

(19)

where the strong duality holds due to the function f(z) being concave, bounded, and thus continuous
in the set Ẑ and Slater condition holds for any interior point z in the set Ẑ .

Below, we derive the closed-form expression of the function f(z) with the given binary variable
z ∈ Z . This allows us to reformulate SCCA (8) as a mixed-integer linear program with exponentially
many linear constraints and an efficient separation oracle.

Proposition 4 The SCCA (8) is equivalent to

v∗ = max
z∈Z,v

{
v : v ≤ σmax

(√
(BS1,S1)

†AS1,S2

√
(CS2,S2)

†
)
+∑

i∈S1∪(S2+n)

λ∗Miizi : ∀S1 ⊆ [n], |S1| ≤ s1, S2 ⊆ [m], |S2| ≤ s2

}
,

(20)

where for a pair of subsets (S1, S2), the scalar λ∗ is defined as the largest positive eigenvalue of
matrix D⊤

2 D
−1
1 D2 −D3 with

D1 =

(
θ∗1BS1,S1

−AS1,S2
/2

−A⊤
S1,S2

/2 θ∗2CS2,S2

)
, D2 =

(
θ∗1BS1,[n]\S1

−AS1,[m]\S2
/2

−A⊤
S2,[n]\S1

/2 θ∗2CS2,[m]\S2

)
,

and

D3 =

(
θ∗1B[n]\S1,[n]\S1

−A[n]\S1,[m]\S2
/2

−A⊤
[n]\S1,[m]\S2

/2 θ∗2C[m]\S2,[m]\S2

)
,

where θ∗1 = θ∗2 = σmax

(√
(BS1,S1)

†AS1,S2

√
(CS2,S2)

†
)
/2.
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Proof. First, for any binary variable z ∈ Z , suppose S1 = {i : zi = 1,∀i ∈ [n]}, S2 = {i − n :
zi = 1,∀i ∈ [n + 1, n + m]}, and T ⊆ [n + m] denotes the support of z. Then following the

proof of Proposition 1, we can construct a rank-one optimal solution X∗ =

(
x∗

y∗

)(
x∗

y∗

)⊤

to the

maximization problem below that admits the optimal value σmax

(√
(BS1,S1)

†AS1,S2

√
(CS2,S2)

†
)

,
i.e.,

max
X∈Sn+m

+

{tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1, Xii = 0,∀i ∈ [n+m] \ T}

= σmax

(√
(BS1,S1)

†AS1,S2

√
(CS2,S2)

†
)

≥ f(z),

where the inequality is because the maximization problem above relaxes the valid constraints Xii ≤
Mii for all i ∈ T in maximization problem (9). The result in Corollary 2 suggests that x∗,y∗ can
be bounded and their two norms must not exceed M1,M2, which means that the optimal solution
X∗ satisfies the Xii ≤ Mii for all i ∈ T . Therefore, X∗ is feasible and optimal to maximization
problem (9) and we have that

f(z) = σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
.

According to strong duality, the minimization problem (19) admits an optimal value
σmax

(√
(BS1,S1)

†AS1,S2

√
(CS2,S2)

†
)

. Next, we construct its optimal solution (θ∗1 , θ
∗
2 ,λ

∗).

For any given ϵ > 0, we let θ∗1 = f(z)/2, θ∗2 = f(z)/2, λ̂i(ϵ) = ϵ
Mii|T | for all i ∈ T , and

λ̂i(ϵ) = λ∗(ϵ) for all i ∈ [n] \ T , where

λ∗(ϵ) =

[
λmax

(
D⊤

2

(
D1 +Diag

(
λ̂T (ϵ)

))−1

D2 −D3

)]
+

.

It is easy to compute that θ∗1 + θ∗2 +
∑

i∈[n+m] λ̂i(ϵ)Miizi = f(z) + ϵ. Thus, for any ϵ > 0, if

(θ∗1 , θ
∗
2 , λ̂(ϵ)) were feasible, then it is an ϵ-optimal solution to the minimization problem (19). It

remains to verify the feasibility of the solution (θ∗1 , θ
∗
2 , λ̂(ϵ)), i.e., checking the constraint below(

θ∗1B −A/2
−A⊤/2 θ∗2C

)
+Diag

(
λ̂(ϵ)

)
⪰ 0.

By performing the permutation of the rows and columns of the above matrix, it is sufficient to show
that the new block matrix (

D1 +Diag
(
λ̂T (ϵ)

)
D2

D⊤
2 D3 + λ∗(ϵ)I

)
⪰ 0, (21)

is positive semidefinite.

Since
(

BS1,S1
−AS1,S2

/2
−A⊤

S1,S2
/2 CS2,S2

)
is a principal submatrix of a positive semidefinite matrix(

B −A/2
−A⊤/2 C

)
, it is also positive semidefinite. According to Lemma 1 and the fact that

θ∗1 = θ∗2 = σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
/2, the matrix D1 is also positive semidefinite.

As ϵ > 0, the matrix D1 +Diag
(
λ̂T (ϵ)

)
must be positive definite, which means that(

I −
(
D1 +Diag

(
λ̂T (ϵ)

))(
D1 +Diag

(
λ̂T (ϵ)

))−1
)
D2 = 0.

Besides, according to the definition of λ∗(ϵ), we obtain

D3 + λ∗(ϵ)I −D⊤
2

(
D1 +Diag

(
λ̂T (ϵ)

))−1

D2 ⪰ 0.
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Taking these results together, according to Lemma 1, the constraint in (21) must hold for a given
solution (θ∗1 , θ

∗
2 , λ̂(ϵ)). Since the objective value corresponding to (θ∗1 , θ

∗
2 , λ̂(ϵ)) is at most ϵ larger

than the optimal value of problem (19), letting ϵ → 0 and using the closedness of the feasible set in
problem (19), we can confirm the optimality of (θ∗1 , θ

∗
2 ,λ

∗) with λ∗
i = 0 for all i ∈ T and λ∗

i = λ∗

for all i ∈ [n] \ T .

Given the closed-form optimal solution to problem (19), the rest of the proof follows from [28,
theorem 7]. □

We note that SCCA (20) can be implemented via a delayed cut-generation procedure. That is, at
each feasible branch-and-bound node with a binary solution ẑ, let S1 = {i : ẑi = 1,∀i ∈ [n]} and
S2 = {i− n : ẑi = 1,∀i ∈ [n+ 1, n+m]}. Then we can compute the corresponding scalar λ∗ and
generate the following valid inequality based on (20):

v ≤ σmax

(√
(BS1,S1)

†AS1,S2

√
(CS2,S2)

†
)
+

∑
i∈S1∪(S2+n)

λ∗Miizi.

E Data description

Table 7: Description of UCI and breast cancer datasets used

Dataset # of variables # of samples n m rank r rank r̂

dermatology 34 366 17 17 17 17
spambase 57 4601 28 29 28 29

digits 64 1797 32 32 32 32
buzz 77 583250 38 39 38 39
gas 128 2565 64 64 64 64
slice 385 53500 192 193 192 193

breast cancer 21821 89 19,672 2,149 89 89

F Multiple Sparse Canonical Correlation Analysis

The multiple CCA problem can be formulated as follows:

max
x∈Rn×k,y∈Rm×k

{
tr(x⊤Ay) : x⊤Bx = Ik,y

⊤Cy = Ik
}
,

where k denotes the number of pairs of basis vectors and Ik denotes the identity matrix of size k.

As x,y can be matrices, we propose adding row sparse constraints to extend SCCA for multiple
vectors, which is defined as:

max
x∈Rn×k,y∈Rm×k

{
tr(x⊤Ay) : x⊤Bx = Ik,y

⊤Cy = Ik, ∥x∥0 ≤ s1, ∥y∥0 ≤ s2
}
,

where we let ∥x∥0 and ∥y∥0 denote the number of nonzero rows of x and y, respectively.

This multiple SCCA model can (i) compute the multiple weight vectors (x,y) simultaneously and (ii)
enforce the sparsity and orthogonality strictly. To be specific, the constraints x⊤Bx = Ik,y

⊤Cy =
Ik ensure the orthogonal left- and right-canonical loading vectors in multiple SCCA. By the definition
of row sparsity, the resultant multiple left- and right-basis vectors, i.e., the columns of x and y, share
the same nonzero rows, respectively.

More importantly, the row-sparsity enables us to readily extend the proposed algorithms to solve
multiple SCCA. We have tested them on UCI data, and the computational results are presented in
Table 8. As k increases, it takes branch-and-cut a longer time to return an optimal solution.
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Table 8: Evaluation of our algorithms for solving multiple SCCA on UCI datasets

Greedy Local search Convex relaxation Branch-and-cut
n m s1 s2 k LB time LB time UB gap(%) time v∗ MIPGap(%) time
17 17 5 5 2 1.907 0.01 1.935 0.06 1.957 1.14 0.01 1.935 0.00 2
17 17 10 10 3 2.879 0.02 2.884 0.09 2.898 0.45 0.01 2.884 0.00 6
28 29 5 5 2 1.182 0.02 1.233 0.09 1.358 10.19 0.01 1.233 0.00 234
28 29 10 10 3 1.579 0.04 1.586 0.14 1.685 6.23 0.01 1.587 5.33 –
32 32 5 5 2 1.906 0.02 1.906 0.04 1.935 1.55 0.01 1.916 0.00 14
32 32 10 10 3 2.736 0.04 2.741 0.19 2.770 1.05 0.01 2.742 0.00 3093
38 39 5 5 2 2 0.03 2 0.25 2 0.00 0.01 2 0.00 8
38 39 10 10 3 3 0.05 3 0.59 3 0.00 0.01 3 0.00 10
64 64 5 5 2 1.947 0.05 1.991 0.34 1.997 0.29 0.01 1.993 0.15 –
64 64 10 10 3 2.983 0.09 2.989 0.71 2.993 0.14 0.02 2.989 0.14 –
192 193 5 5 2 1.911 0.21 1.991 2.36 1.995 0.22 0.04 1.991 0.21 –
192 193 10 10 3 2.907 0.38 2.951 5.78 2.977 0.90 0.04 2.954 0.78 –
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