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Abstract

While large machine learning models have achieved remarkable results, they still fall short
of the efficiency and adaptability characteristic of human perception. Inspired by infant
visual development, we explore developmental curriculum learning strategies for contrastive
learning, systematically isolating their effects under controlled conditions. Within a virtual
environment, we modulated four dynamic factors, namely image blur, lighting complexity,
avatar movement speed, and image complexity, to simulate developmental progression. How-
ever, none of these conditions improved downstream classification performance compared
with a stable train setting. We then repeated the experiments on the real-world SAYCam
dataset using dynamic movement speed and image complexity separately and obtained con-
sistent results. These findings suggest that performance gains attributed to developmental
learning do not arise directly from commonly assumed perceptual factors, which challenges
the assumption that developmental-like progression inherently benefits learning and high-
lights the need for more principled curriculum design mechanisms. Our results offer a new
perspective on curriculum design for self-supervised learning.

1 Introduction

Although large machine learning models have shown impressive performance and are increasingly integrated
into daily life (Brown et al., 2020; Kirillov et al., 2023; Rombach et al., 2022), they continue to fall short
of matching the efficiency and adaptability of human perception. Most contemporary models rely on vast
datasets and substantial computational resources to achieve high performance; yet, as dataset sizes increase,
their marginal performance gains diminish (Shetty & Siddiqa, 2019; Kaplan et al., 2020). Moreover, such
models often exhibit limited generalization and robustness to environmental variations, domains in which hu-
man cognition naturally excels. Infants, for instance, learn to recognize and encode complex stimuli through
a remarkably efficient and adaptive process that requires neither extensive data nor heavy computation (Saf-
fran et al., 1996; Kellman & Garrigan, 2009). This gap indicates fundamental limitations in current machine
learning methodologies and underscores the potential of leveraging human-inspired learning mechanisms.

Contrastive learning offers a promising framework for exploring such connections. By learning to identify
similarities and differences between unlabelled visual inputs, contrastive models acquire generalizable and
robust representations (He et al., 2020; Chen et al., 2020) through mechanisms that loosely resemble self-
organized infant learning.

Curriculum learning provides an additional developmental analogy. It traditionally structures training ex-
amples progressively from simple to hard. Recent work expanded this concept to encompass sequences of
dynamically changing training criteria (Wang et al., 2021). Notably, Sheybani et al. (2023) defined curricu-
lum progression in a way that aligns with the natural sequence of infant visual experiences, and showed that
models trained in a developmental sequence outperform those trained with random or reversed-order (i.e.,
anti-developmental) curricula. Moreover, a control analysis further demonstrates that the benefit diminishes
when the temporal sampling rate or the spatial complexity of visual information is fixed across the differ-
ent sampling epochs. These results suggest that the progression of visual experience, rather than its static
content, may play a functional role in learning.

1



Under review as submission to TMLR

Building on this insight, our work undertakes a more systematic investigation of several parameters that
may characterize a natural developmental curriculum encountered by young children, and reflect the physics
of sampling visual information from the world. Rather than presenting different image sets within each
epoch, we use the same base images in early and later phases of the learning curriculum, but modify them in
ways that mimic some aspects of naturally occurring changes in visual experience with age. We hypothesize
that such a curriculum can accelerate learning and enhance the generalization ability of contrastive learning
frameworks, even when applied to datasets that do not follow a developmental progression.

Infant visual perception matures alongside physiological and environmental changes, including increased
mobility (Thelen et al., 1996; Adolph & Joh, 2006), growing environmental complexity (Thelen & Smith, 1994;
Adolph & Berger, 2006), and improvements in visual clarity (Kellman & Arterberry, 2000). We therefore
propose that explicitly incorporating these parameters into a dynamic, structured curriculum during pretext
training may guide models along a developmental learning trajectory, promoting more effective representation
learning within a constrained computational budget.
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Figure 1: Overview of the contrastive learning framework with curriculum learning strategy. The four
parameters in double-bordered boxes are dynamically adjusted according to the curriculum schedule. The
contrastive approach calculates feature similarity between a key image and samples stored in the memory
bank, encouraging higher similarity for related samples and lower similarity for unrelated ones.

Fig. 1 summarizes our framework. We pretrained visual contrastive learning models on realistic ray-traced
images derived from an avatar traversing a virtual environment. Building on this framework, we system-
atically varied parameters of the image sampling process. We first controlled three dynamic parameters,
image blur, lighting complexity, and avatar movement speed, by applying Gaussian blur, increasing lighting
variability within the virtual environment, and adjusting the avatar’s temporal sampling rate, respectively.
The performance of the pretrained foundation model was assessed using image classification accuracy on the
ImageNet (Deng et al., 2009) and Toybox (Wang et al., 2017) datasets. We defined the learning sequence
that aligns with putative human developmental trajectories as the developmental mode, and its reverse as
the anti-developmental mode. Experimental results showed that although there were improvements based
on increasing the variability of lighting overall, introducing a developmental learning curriculum did not
enhance the quality of the learned representations. Generally, both developmental and anti-developmental
sequences yielded highly similar results, and curriculum learning showed minimal benefit relative to baseline
conditions.

We next examined the role of image complexity as proposed in Sheybani et al. (2023). Unlike their approach,
which balanced image complexity across stages and eliminated curriculum-induced gains, we divided the
dataset into simple and complex subsets and trained the model sequentially. Unexpectedly, models trained
in a complex-to-simple order outperformed those trained in the simple-to-complex order on downstream tasks.
This trend was further validated using the real-world SAYCam dataset (Sullivan et al., 2021), where the
same pattern was observed.
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These findings challenge the assumption that human developmental progression, at least insofar as it relates
to the physics of visual experience, is inherently advantageous for representation learning. Our results instead
highlight the need to critically reassess the role of developmental analogies in machine learning and to design
curriculum mechanisms grounded in empirical evidence rather than presumed biological parallels.

2 Related Work on Developmentally Inspired Curriculum Learning

Curriculum learning has been shown to improve training efficiency when task difficulty is aligned with a mean-
ingful progression (Bengio et al., 2009). Building on this general principle, a series of studies has examined
curricula informed by developmental trajectories in human visual experience. Vogelsang et al. (2018) showed
a specific curriculum learning effect for a developmental gradient of blurriness using AlexNet (Krizhevsky
et al., 2012) trained on lower-resolution images, supporting curriculum learning benefits at least in some
training contexts. However, because their learning paradigm differs substantially from ours, the results are
not directly comparable.

Targeting naturalistic visual experience, Sheybani et al. (2023) using a dataset collected from head-mounted
cameras worn by infants aged 2 to 12 months demonstrated that the stimuli naturally experienced by children
at different ages provide a highly effective learning curriculum. However, the content of those stimuli evolves
substantially over the course of this developmental span, which obscures the cause of the benefit.

A recent preprint (Lu et al., 2025) reported that curriculum learning based on artificial manipulations of
blur, contrast, and color complexity within an image set increased the model’s shape bias and improved
classification accuracy following image degradation. However, it remains unclear if these effects translate
to improvements on general image classification tasks, and no comparison was made against a baseline
condition.

3 Preliminaries

3.1 Momentum Contrastive (MoCo) Learning

We adopt MoCo v2 (He et al., 2020) as one of our contrastive learning baselines. As shown in Fig. 1, a key
image i is randomly augmented into two views xi and x′

i. They are separately encoded by a query encoder
fθ and a momentum encoder fξ to get representations yi and y′

i, which are then projected into embedding
zi and z′

i through the corresponding MLP projection head gθ and gξ. z′
i is recorded in the memory bank.

Feature similarity is calculated using cosine similarity. The contrastive objective encourages a view xi to
align with its augmented positive counterpart x′

i relative to all negatives:

Li = − log exp(sim(zi, z′
i)/τ)∑

k∈M exp(sim(zi, z′
k)/τ) , (1)

where M represents the memory bank. sim(u,v) represents the consine similarity between two vectors, and
τ is the temperature parameter.

3.2 Temporal Contrastive Learning Model (Temp-MoCo)

Temp-MoCo extends MoCo by treating temporally adjacent frames as positive pairs. Following the imple-
mentation in (Orhan et al., 2020), for each key image, we randomly sample its immediate neighbors within a
±1-frame window (a 0.4-second temporal window at 5 fps). All other frames are treated as negatives. This
encourages models to exploit natural temporal continuity in visual experience.

3.3 Environmental Spatial Similarity (ESS) Contrastive Learning

In human visual perception, certain neurons exhibit selectivity for objects while maintaining invariance to
transformations such as changes in size, position, and rotation. Such invariances may emerge from the
natural temporal contiguity of visual experiences (Li & DiCarlo, 2008) or from gradual variations in input
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features over time (Wood & Wood, 2018). Building upon this principle, the Environmental Spatial Similarity
(ESS) approach (Zhu et al., 2022; 2024) extends contiguity-based learning to environment transformations
to learn invariances that mirror those developed through human perceptual experience.

ESS computed image similarity based on the spatial locations where images are captured within the envi-
ronment. The position distance between two samples, ∆Pi,j , is calculated using Euclidean distance. The
rotation angle was converted from quaternion representation to the yaw direction angle r, since the avatar
rotated only within the yaw plane during data collection. The rotation distance between image i and image
j is defined as:

∆Ri,j = min(|ri − rj |, 360 − |ri − rj |) . (2)
The loss function encouraged higher feature similarity between views sampled from spatially proximal loca-
tions in the environment. Two views were considered a positive pair if both their positional and rotational
differences fell within predefined thresholds. This was formalized using an indicator function:

FθP ,θR
(i, j) = I(∆Pi,j < θP and ∆Ri,j < θR) , (3)

which can be abbreviated as F (i, j). The position and rotation thresholds, θP and θR, were set to 0.8 meters
and 12 degrees, respectively. The loss function for image i was defined as the average loss across all positive
pairs:

Li = − 1
T

j∈M∑
j=0

F (i, j) log
exp(sim(zi, z′

p)/τ)∑
k∈M exp(sim(zi, z′

k)/τ) , (4)

where T =
∑

j∈M F (i, j) denotes the total number of positive pair.

4 Methods

4.1 Pipeline Overview

Our approach integrates curriculum learning into self-supervised contrastive representation learning. First,
images are processed under a curriculum schedule that progressively adjusts the visual properties of the
input data (see section 4.3). Then, the resulting images are passed through a contrastive learning framework
to learn representations. After pretext training, the encoder is frozen and a linear classifier is trained on top
of the learned representations fθ for downstream evaluation.

4.2 Basic Pretext Datasets

Virtual datasets. The House100K and House100KLighting datasets (Zhu et al., 2024) are generated using
the ThreeDWorld (TDW) simulation platform (Gan et al., 2020) within the “Archviz House” environment,
enhanced with 48 additional objects. A human-controlled avatar navigates the environment through trans-
lations, small jumps, and yaw rotations, producing a 102,196-step trajectory. At each step, it captured a
224 × 224 egocentric image, along with position pi and orientation ri (as quaternions).

In subsequent runs, the same trajectory is replayed under different lighting conditions. In the House100K
dataset, all images are captured under the default lighting condition of TDW. The House100KLighting
dataset selects nine representative skyboxes from 95 candidates, each introducing variation in the direction-
ality and spectral characteristics of the light source, based on t-SNE (Hinton & Roweis, 2002) embeddings,
with one skybox chosen from each region of a notional 3 × 3 grid. This setup allows control evaluation of
models under systematic lighting variations while keeping all other visual factors constant.

Real-world dataset. The SAYCam dataset comprises real-world egocentric video data recorded using
head-mounted cameras worn by three infants in their natural environments (Sullivan et al., 2021). For
our work, only data from a single infant, referred to as S, are used, consisting of approximately two hours
of weekly video recordings collected between 6 and 30 months of age. Following the procedure described
in Orhan et al. (2020), video are sampled at 5 frames per second, resulting in approximately 2.9 million
images for the pretext task. Each frame is resized such that its shorter side measured 256 pixels, followed
by a 224 × 224 center crop. The resulting dataset is denoted as SAYCam-S.
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4.3 Curriculum Design in Contrastive Pretraining

To simulate human-like developmental learning in contrastive representation learning, we design curriculum
learning strategies that dynamically adjust four visual factors during pretext training: image blur, movement
speed, lighting conditions, and scene complexity. Each factor is modulated in either a developmental or anti-
developmental mode, corresponding respectively to progressions that mimic or invert the assumed trajectory
of typical infant perceptual development.

4.3.1 Image Blur

To simulate the developmental trajectory of visual clarity in infants, we progressively adjust radius parameter
R of Gaussian-kernel over pretext-training epochs. The schedule was:

R =
{

223 − 2⌊0.85 log1.04 (200 − i)⌋, if i < 170
0, if i ≥ 170

, (5)

where i denoted the effective epoch index: i equaled the current epoch in the developmental mode, and
i = 200 − epoch in anti-developmental mode. As shown in Fig. 2, image clarity increased with training in
the developmental mode and decreased in the anti-developmental mode. To minimize confounding variables,
we disabled random Gaussian-blur augmentation in all blur-related experiments.

Figure 2: Gaussian blur schedule and visual examples across training. Two curves show the relationship
between Gaussian blur radius and training epoch. The surrounding images illustrate how blur progressively
decreases in the developmental mode, with images (arranged counterclockwise from the top) corresponding
to epochs 0, 10, 20, 40, 80, 120, and 200.

4.3.2 Movement Speed

To simulate developmental changes in movement speed, we construct a series of datasets by manipulating the
sampling frequency of the original datasets, although this manipulation did not directly correspond to the
actual movement speed during recording. Conceptually, faster movement corresponds to a lower temporal
sampling density of visual input, whereas slower movement is associated with a higher sampling density.

For the virtual dataset House100K, each image represents a visual fixation at a specific location within the
house. We interpolate additional frames between fixations to simulate slower movement (House200K), and
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downsample frames to simulate faster movement (House50K and House25K) providing a total of four datasets
of different sizes. To ensure a consistent total training volume across datasets, the number of training epochs
was set to 100, 200, 400, and 800, respectively. Positional coordinates are linearly averaged, and rotations are
smoothed using quaternion-based spherical linear interpolation (Slerp) (Shoemake, 1985). For more details,
please refer to Appendix E.

SAYCam-S is initially sampled at 5 frames per second. To simulate faster movement, we create two additional
datasets with frames downsampled by factors of two and four, corresponding to progressively sparser temporal
sampling.

In the developmental mode, the dataset sizes used in the phases range from large to small to simulate faster
and faster movement speeds. In the anti-developmental mode, the same datasets are used, but in reverse
order.

4.3.3 Lighting Conditions

Lighting conditions are chosen to partially represent the complexity of the environment. Due to the charac-
teristics of the dataset, this setting was only conducted on the House100KLighting. The nine skyboxes are
roughly ranked by their similarity to the default lighting condition according to visual inspection of repre-
sentative images as shown in Fig. 3. This ordering provided a gradual progression of lighting complexity,
enabling controlled variation during training to investigate how lighting diversity influences model learning.

Blue_grotto

Mosaic_tunnelNinomaru_teien Royal_esplanade

Small_hangar_01

Venice_sunrise

Whipple_creek_

gazebo
Indoor_pool

Kiara_1_dawn

Default

Figure 3: Image samples captured at the same position and rotation under different lighting conditions.
The skyboxes are arranged as whipple_creek_gazebo, small_hangar_01, indoor_pool, blue_grotto, nino-
maru_teien, royal_esplanade, venice_sunrise, kiara_1_dawn and mosaic_tunnel, ordered from most to
least similar to the default lighting condition.

Pretraining was divided evenly into ten stages. In the developmental mode, training began with the default
skybox, and at each subsequent stage, an additional skybox was introduced following the predefined order,
resulting in a progressively expanding set of lighting conditions. For each image, the data loader randomly
assigned one lighting condition to each of the two augmented views, sampled from the current available set.
If only a single skybox was present at a given stage, both views were rendered under the same condition.
In the anti-developmental mode, training began with all ten lighting models, and one was removed at each
stage in reverse order.

4.3.4 Scene Complexity

To assess the effect of image complexity on representation learning, we follow the method proposed in Shey-
bani et al. (2023), which quantifies complexity as the proportion of edge pixels detected by the Canny edge
detector (Canny, 1986) relative to the total number of pixels in an image. We apply the Canny detector with
a lower threshold of 100, an upper threshold of 200, and a Sobel kernel size of 3. Under these settings, we
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process all images in the House100K and SAYCam-S datasets and compute the distribution of edge ratios,
as shown in Fig. 4. Based on the median of the corresponding distribution, each dataset is evenly divided
into two subsets: simple scenes (low edge ratio) and complex scenes (high edge ratio).

For curriculum learning, we divided the pretext training epochs into two equal phases. In the developmental
mode, the model was trained sequentially on the simple subset followed by the complex subset, emulating
an assumed increase in perceptual complexity during early development. In the anti-developmental mode,
this order was reversed.

(a) (b)

(c)

0.1677 0.1312

0.0361 0.0426

(d)
(e)

(f)

0.1403 0.2573

0.0389 0.0132

Figure 4: Edge-based image complexity in the House100K and SAYCam-S datasets. (a) Distribution of edge
ratios in House100K, computed using Canny edge detection. The vertical dashed line indicates the median
value used to divide the dataset into simple and complex subsets. (b,c) Representative samples from the high-
complexity (complex) and low-complexity (simple) groups in House100K with detected edges highlighted in
green. The number below each image indicates its edge ratio (complexity index). (d) Distribution of edge
ratios in SAYCam-S. (e,f) Canny edge detection results for representative samples from the complex and
simple groups in SAYCam-S.

5 Experiment and Results

5.1 Pretrain Settings

We used MoCo and ESS as the base models for the virtual dataset, and Temp-MoCo for the real-world
dataset. We dynamically adjusted parameters analogous to key variables in human developmental progres-
sion. When these parameters evolved according to the presumed trajectory observed in human learning, we
defined the configuration as the developmental mode; when altered in the opposite direction, it was termed
the anti-developmental mode. For comparison, the early- and late-stage baseline models were trained using
the parameter settings corresponding to the beginning and end of the developmental sequences, respectively.

7



Under review as submission to TMLR

Unless otherwise specified, each configuration was trained for 200 epochs on the virtual dataset and repeated
three times. The results were averaged. Detailed training configurations are provided in Appendix A.

5.2 Downstream Task Settings

We evaluated model performance on the ImageNet (Deng et al., 2009) and Toybox (Wang et al., 2017)
classification tasks. The Toybox dataset contains 12 toy object categories, each with 30 individual instances.
For each instance, video sequences were provided under multiple transformations, including object present,
absent, hodgepodge, and various translations and rotations. We followed the data sampling procedures of
Orhan et al.. All videos were recorded at 30 frames per second. We used the first 27 instances from each
category for training and the remaining 3 for evaluation. From each video, excluding absent sequences that
contain no objects, we sampled one frame every 5 frames to construct the image dataset. The model was
trained to classify each input image into one of the 12 object categories, with input images randomly shuffled
across categories during training.

5.3 Blur Curriculum in Virtual Environment

As shown in Fig. 5, there was no curricular benefit of blurring for either ESS or MoCo training when compared
against training on an unblurred dataset. While the developmental training mode for blur with the ESS
model achieved higher classification accuracy in the developmental mode than in the anti-developmental
mode, with improvements of 8.71% on ImageNet and 7.45% on Toybox, the developmental sequence did
not improve accuracy relative to the training set late, which used exclusively unblurred images. The MoCo
model results were similar. Thus, there was no evident advantage for training either model with a blur to
clear gradient in image quality.

Table 1: Training arrangement for developmental and anti-developmental mode of movement speed.
Dev. epoch [0,25) [25,75) [75,175) [175,375)
Dataset size 200K 100K 50K 25K
Ant. epoch [0,200) [200,300) [300,350) [350,375)
Dataset size 25K 50K 100K 200K

5.4 Movement Speed Curriculum in Virtual Environment

For the simulation of changes in movement speed again we see no benefit of a learning curriculum, cor-
responding to a reduction in the data set sizes from House 200k to House 25K. First, we measured how
accuracy changes with the size of the data set, as shown in Fig. 6 and observed that classification accuracy
decreases slightly as dataset size decreases, but overall performance remains comparable across conditions.

We next applied curriculum learning strategies by sequentially presenting datasets of varying simulated
movement speeds during pretext training as shown in Table 1. Fig. 5 shows that the developmental cur-
riculum achieved slightly higher average accuracies than the anti-developmental counterpart for both ESS
and MoCo models across two downstream tasks. However, these differences were not statistically significant,
suggesting that both curriculum strategies yield comparable performance. Moreover, both curriculum-based
results were on par with those obtained using the most detailed dataset, House200K, indicating that the
introduction of a curriculum did not confer additional benefits under this setup.

5.5 Lighting Conditions Curriculum in Virtual Environment

As children age, they experience an increasingly diverse range of visual environments, which was simulated
here by varying the lighting conditions used to generate images. We first trained models with a cosine learning
rate schedule on datasets rendered under the default lighting condition from the simulation platform and
under each of nine additional skyboxes, separately. As shown in Fig. 6, performance on the ImageNet
classification task for each of the nine skyboxes closely matched that obtained under the default lighting,
ranging from 95.09% to 100.83% of default accuracy.
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(b)(a)

(d)(c)

(f)(e)

Figure 5: Comparison of downstream accuracy under different curriculum learning conditions. The left
column shows results on ImageNet, and the right column shows results on Toybox. (a,b) ESS trained on
House100K. (c,d) MoCo trained on House100K. (e,f) MoCo trained on SAYCam-S. Bars indicate mean
accuracy; error bars show standard deviation across trials. Detailed numerical results are provided in the
Appendix B.

(a) (b)

Figure 6: Downstream ImageNet accuracy of ESS under various movement speed and lighting conditions as
curriculum learning baselines. (a) ESS trained on House200K, House100K, House50K, and House25K, with
decreasing dataset size reflecting increasing avatar movement speed. (b) ESS trained on datasets incorpo-
rating nine additional skyboxes to vary lighting complexity. The gray dashed line indicates performance on
House100K with the default lighting environment.
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To simulate developmental and anti-developmental curricula, we sequentially added or removed one skybox
every 20 epochs according to their manually defined similarity to the default lighting. The dataset with only
the default lighting and the dataset containing all ten lighting conditions (default plus nine skyboxes) served
as the early- and late-stage baselines, respectively. As shown in Fig. 5, the effect of lighting complexity
paralleled those observed for movement speed, with no clear difference between the developmental or anti-
developmental conditions for either ESS or MoCo training. Moreover, both curriculum strategies achieve
comparable performance to the model trained for 200 epochs across all ten lighting conditions.

5.6 Image Complexity Curriculum in Virtual Environment

We examined whether visual scene complexity influences the effectiveness of curriculum learning, motivated
by the findings by Sheybani et al. (2023) which showed that selecting a complexity-matched subset from the
original dataset across developmental stages removes the advantage of age-ordered input sequences. To this
end , the data were split into simple and complex subsets according to Canny edge image complexity. In
the developmental mode, the model was trained first on the simple subset and then on the complex subset,
whereas in the anti-developmental mode, the order was reversed.

As shown in Fig. 5, the ESS model trained with the developmental curriculum yielded the lowest downstream
classification accuracy on both ImageNet and Toybox, performing 1.36% and 2.05% worse, respectively, than
the anti-developmental mode. Models trained exclusively on either the simple or complex subsets, which are
non-curriculum baselines, resulted in performance comparable to the anti-developmental curriculum, with
differences that were not statistically significant. A similar trend was observed for the MoCo model. These
results suggest that, under our operational definition of visual complexity, curriculum learning along the
complexity dimension may even impair representation quality rather than enhance it.

5.7 Movement and Complexity Curricula in Realistic Environment

In Sheybani et al. (2023), the superiority of visual inputs from younger age groups was attributed to the
slowness and simplicity of their early visual experience. This aligns with our baseline findings: under the
same training budget, training on the slow movement condition (House200k) outperformed fast condition
(House25k), and training on simple images yielded better results than training on complex ones. However,
unlike (Sheybani et al., 2023), our curriculum learning experiments did not exhibit such superiority.

To further investigate this discrepancy, we replicated the experiments on a real-world dataset, SAYCam-S,
using Temp-MoCo as the pretext learning framework. The model was trained for 12 epochs on SAYCam-S as
the baseline budget and we evaluated models on the same downstream tasks, with minor adjustments to the
experimental settings. This additional evaluation was designed to test whether curriculum learning under
dynamic conditions would yield any benefits when trained on more diverse and naturalistic visual inputs.

Movement. SAYCam-S was used as the baseline pretext dataset representing slow movement, with training
conducted for 12 epochs. A fast movement baseline was created by selecting every fourth frame from
SAYCam-S and training for 48 epochs, thereby maintaining an equivalent total training budget. Under the
same pretext training budget, the developmental mode used frame sampling at every frame, every second
frame, and every fourth frame for 4, 8, and 16 epochs, respectively. The anti-developmental mode used
the same configuration in reverse order. The complexity-based curriculum followed the same method as
described earlier. As shown in Fig. 5, model performance across the fast, slow, and developmental modes
was highly similar. The anti-developmental schedule produced slightly higher accuracies than the other three
modes, although these differences were not statistically significant.

Complexity. We quantified image complexity of SAYCam-S using the Canny edge detection method. To
examined whether complexity varied with developmental stages, we visualized the distributions of image
complexity across three age stages (6–14 months, 15–21 months, and 22–30 months) in Fig. 7. The distribu-
tions revealed no clear progression from simple to complex scenes over time. We then divided SAYCam-S into
simple and complex subsets based on the median complexity threshold, as shown in Fig. 4, and conducted
curriculum learning experiments using these subsets.
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Figure 7: Complexity distributions of SAMCam-S across three phases.

Overall, SAYCam-S exhibited lower complexity than House100K, and the image density remained nearly
constant in the low-complexity region. In the downstream tasks, as shown in Fig. 5, models trained on the
complex subset achieved markedly better performance, followed by those trained in the anti-developmental
mode, whereas the developmental mode and on the simple set of images performed worse. These results
suggest that the models preferentially benefited from the more complex visual inputs in SAYCam-S, contrary
to the assumption that developmental progression from simple to complex enhances learning.

6 Discussion

6.1 Ineffectiveness of Developmental Curriculum Learning

We investigated whether introducing developmental visual input that mimic aspects of human perceptual
maturation can improve contrastive learning, as measured by downstream classification performance. Across
the four parameters we evaluated, blur, movement speed, and lighting, although the developmental cur-
riculum yields marginally higher accuracies than the anti-developmental mode in some experiments, these
differences were not statistically reliable and remained comparable to baseline models, indicating no addi-
tional benefit from curriculum learning. Notably, for the complexity-based curriculum, the developmental
mode consistently underperformed relative to the anti-developmental mode, indicating that increasing scene
complexity, defined here by edge density, may have hindered, rather than facilitated, representation learning.

These findings imply that while certain features of human developmental trajectories can inspire curriculum
design, their effects are difficult to capture through a limited set of controllable variables on universal datasets.

6.2 Factors Contributing to Ineffectiveness of Curriculum Learning

Several factors may account for the limited or even detrimental effects observed in our experiments. First, the
optimal sequencing of training samples remains a subject of debate (Wang et al., 2021). Curriculum learning
is classically defined as presenting samples from easy to difficult, with difficulty typically determined by
human-designed metrics such as complexity (Wei et al., 2016) or diversity (Bengio et al., 2009). In contrast,
hard example mining (Shrivastava et al., 2016) adopts the opposite approach, deliberately prioritizing the
most challenging samples early in training. This raises a fundamental question: is an easy-to-hard or hard-
to-easy progression more advantageous? Different strategies may foster different learning dynamics.

With this context, defining “difficulty” in curriculum learning, when modeled after human visual develop-
ment, remains ambiguous for pretext training. A natural intuition is to use pretext loss as a proxy for
difficulty, with higher loss corresponding to harder samples and lower loss to easier ones. Under this defi-
nition, blurred images would be easier than sharp ones, and samples involving slower movements would be
easier than those with faster dynamics (see Appendix B). However, this ordering does not align with the

11



Under review as submission to TMLR

trajectory of human perceptual development. Only variations in lighting conditions, progressing from few
to many, can be plausibly interpreted as following an easy-to-difficult continuum under this definition.

In addition, in contrastive learning, difficult negatives (i.e., samples that are close in the feature space
but do not constitute positive pairs) are known to enhance discriminability and improve representation
quality (Robinson et al., 2020), even though they increase the loss value. This further demonstrates that
pretext loss is not a reliable indicator of sample difficulty. More broadly, the difficulty landscape of pretext
tasks may not correspond directly to the objectives of downstream tasks, creating a potential mismatch
between curriculum design and generalization performance.

Another possibility is that the benefits of curriculum learning may not manifest primarily in standard
evaluation metrics such as object classification accuracy. Prior work has suggested that developmental
curricula can promote shape-based rather than texture-based representations (Lu et al., 2025). To compare
with these results, we evaluated the shape bias of our pretrained models (see Appendix C), but found no
consistent enhancement or systematic shift attributable to curriculum structure. Whether this discrepancy
arises from differences in pretraining datasets, model architectures, or curriculum progression remains an
open question.

6.3 Limitations and Future Work

Beyond these explanatory factors, the present work has several methodological limitations that point to
clear opportunities for future improvement. First, more cognitively and physically grounded definitions
of curriculum variables should be explored. For example, slower movement speed in our simulations was
modeled through positional interpolation, which increased the number of images sampled within a given
region but did not capture the true motion of objects in a physical environment. Similarly, visual complexity
was estimated using Canny edge detection, which provides only a coarse approximation of scene complexity
(see Appendix D). Future work could incorporate more realistic object motion and richer scene attributes
such as object count, spatial density, or texture density.

Second, curriculum schedules could be designed adaptively rather than manually. Adaptive curriculum
methods, such as self-paced learning (Jiang et al., 2015), which selects samples based on model performance,
and reinforcement learning teacher (Matiisen et al., 2019), which dynamically adjust data scheduling, offer
a more responsive mechanism for aligning training progression with the model’s evolving learning capacity.

Third, broader and more naturalistic datasets should be employed. Pretraining on datasets that capture a
wider range of real-world scenes, lighting conditions, and egocentric dynamics, such as Ego4D (Grauman
et al., 2022), may provide a more ecologically valid setting in which curriculum strategies can reveal their
potential benefits.

Finally, future studies could examine alternative self-supervised learning objectives beyond contrastive frame-
works. Methods such as BYOL (Grill et al., 2020) or MAE (He et al., 2022), which do not explicitly rely on
negative sampling, may interact differently with curriculum-based input structuring and merit systematic
exploration.

7 Conclusion

We systematically evaluated developmentally inspired curricula for contrastive visual representation learning
across multiple controlled visual factors, including blur, lighting, movement speed, and scene complexity. The
results show no consistent benefit of developmental schedules over stable training, and complexity-ordered
curricula even underperform anti-developmental mode. These findings suggest limitations on intuitive map-
pings from infant visual development to effective training curricula in self-supervised learning.
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A Implementation Details

A.1 Settings of virtual dataset training

All models were trained on three NVIDIA RTX A6000 GPUs using a ResNet-50 backbone encoder. The
pretext task was trained for 200 epochs with a batch size of 192. Due to the relatively small dataset size,
the memory bank was limited to 4096 entries. Each configuration was trained three times, and results were
averaged, except for the single lighting condition experiments, where each skybox setting was trained once
without repetition.

Unless otherwise specified, a fixed learning rate of 0.3 was used across all models to maintain a consistent
update rate regardless of variations in input samples at different curriculum stages. A cosine learning rate
schedule (initialized at 0.3), was used only in the single lighting condition experiments.

Data augmentation included random resized cropping to 224 × 224 with a scale range of (0.2, 1.0), color
jittering applied with an 80% probability, random grayscale conversion with a 20% probability, and Gaussian
blur and horizontal flipping both applied with a 50% probability. For experiments using blur level as the
curriculum variable, random Gaussian blur was omitted from the set of image augmentations to avoid
confounding effects. All other hyperparameters, such as the temperature parameter, and the momentum
and the weight decay values for the SGD optimizer, followed the original MoCo V2 implementation unless
otherwise noted.

For downstream evaluation, only the final linear layer was trained for 50 epochs. Training was conducted on
either three NVIDIA RTX A6000 GPUs with batch size 192 or four NVIDIA V100 GPUs with batch size
256. SGD was used with momentum 0.9. The learning rate was initialized at 30, reduced to 3 at epoch 30,
and further decreased to 0.3 at epoch 40. Evaluation on the test set was performed every 5 epochs.
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A.2 Settings of real-world training

For pretext training, We used a ResNext-50 (Xie et al., 2017) encoder as the backbone network, initialized
with random weights. The output dimension of the projection head was set to 128, and the memory bank
size was 65,536. The model was trained for 12 epochs using SGD with a fixed learning rate of 0.015. All
experiments were conducted with a batch size of 192 on three NVIDIA RTX A6000 GPUs.

In the downstream tasks, the settings for the two classification experiments followed those described earlier.
We fine-tuned a linear classifier on frozen features extracted by the trained encoder, following the protocol
in Orhan et al. (2020). The classifier was trained for 25 epochs using the Adam optimizer with a learning
rate of 0.0005, which was decayed by a factor of 0.2 at epochs 23 and 24. We conducted training on three
NVIDIA RTX A6000 GPUs or four NVIDIA V100 GPUs.

B Detailed Quantitative Results

This section presents detailed quantitative results corresponding to the experiments on House100K (Table 2,
and Table 3) and SAYCam-S (Table 4) in the main text.

Table 2: Curriculum learning results across three factors on House100K. ES and LS denote the early-stage
and late-stage baselines, respectively. Dev. represents the developmental mode. ADev. represents the anti-
developmental mode. “Acc.” indicates the classification accuracy on the corresponding downstream task at
the end of 50 epochs. Values following “±” represent the standard error of the mean.

Condition Model Mode Pretrain Downstream Test acc.(%)
Training loss ↓ ImageNet Toybox

Blur

ESS

ES (blur) 4.25 ± 0.002 16.12 ± 0.32 42.82 ± 0.77
LS (clear) 4.21 ± 0.006 21.21 ± 0.45 45.20 ± 0.81
Dev. 4.21 ± 0.004 21.46 ± 0.43 47.16 ± 1.81
ADev. 4.30 ± 0.003 12.75 ± 0.38 39.70 ± 0.39

MoCo

ES (blur) 4.02 ± 0.002 15.63 ± 0.75 42.27 ± 0.49
LS (clear) 3.94 ± 0.002 21.96 ± 0.08 44.91 ± 0.33
Dev. 3.95 ± 0.005 21.64 ± 0.10 46.83 ± 0.56
ADev. 4.03 ± 0.002 14.45 ± 0.84 42.99 ± 1.17

Movement

ESS

ES (slow) 4.24 ± 0.006 21.44 ± 0.31 47.84 ± 0.45
LS (fast) 4.22 ± 0.003 20.64 ± 0.15 46.41 ± 0.90
Dev. 4.22 ± 0.011 21.63 ± 0.36 47.57 ± 0.77
Adev. 4.24 ± 0.004 21.43 ± 0.56 47.29 ± 0.71

MoCo

ES (slow) 3.98 ± 0.006 22.16 ± 0.41 47.45 ± 0.75
LS (fast) 3.95 ± 0.002 21.32 ± 0.07 46.54 ± 0.24
Dev. 3.96 ± 0.002 21.69 ± 0.27 47.20 ± 0.80
Adev. 3.98 ± 0.003 21.62 ± 0.27 45.84 ± 0.34

Lighting

ESS

ES (default) 4.22 ± 0.007 20.58 ± 0.16 46.32 ± 0.49
LS (10 lightings) 4.32 ± 0.005 23.63 ± 0.22 48.28 ± 0.40
Dev. 4.30 ± 0.001 23.99 ± 0.06 48.65 ± 0.52
Adev. 4.24 ± 0.005 23.22 ± 0.28 48.33 ± 0.40

MoCo

ES (default) 3.97 ± 0.003 20.19 ± 0.48 45.35 ± 0.26
LS (10 lightings) 4.09 ± 0.003 24.42 ± 0.30 46.91 ± 0.50
Dev. 4.08 ± 0.006 23.93 ± 0.32 47.25 ± 0.75
ADev. 4.00 ± 0.002 23.37 ± 0.31 47.12 ± 0.85
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Table 3: Curriculum learning results across image complexity on House100K.

Condition Model Mode Pretrain Downstream Test acc.(%)
Training loss ↓ ImageNet Toybox

Complexity

ESS

ES (simple) 4.35 ± 0.005 20.28 ± 0.28 45.05 ± 0.47
LS (complex) 4.28 ± 0.006 20.25 ± 0.21 46.26 ± 0.95
Dev. 4.27 ± 0.003 19.06 ± 0.58 44.68 ± 0.81
Adev. 4.36 ± 0.002 20.42 ± 0.01 46.73 ± 0.45

MoCo

ES (simple) 4.08 ± 0.002 20.93 ± 0.52 44.67 ± 0.63
LS (complex) 4.05 ± 0.004 20.51 ± 0.19 45.38 ± 1.05
Dev. 4.05 ± 0.003 20.40 ± 0.30 45.80 ± 0.54
Adev. 4.07 ± 0.002 21.20 ± 0.09 46.40 ± 1.02

Table 4: Curriculum learning results across movement speed and complexity on SAYCam-S.

Condition Mode Pretrain Downstream Test acc.(%)
Training loss ↓ ImageNet Toybox

Movement

ES (slow) 7.12 ± 0.001 31.64 ± 0.03 47.31 ± 0.43
LS (fast) 7.27 ± 0.002 31.74 ± 0.17 47.26 ± 0.36
Dev. 7.30 ± 0.003 31.58 ± 0.14 47.57 ± 0.41
Adev. 7.09 ± 0.003 32.15 ± 0.10 49.44 ± 0.85

Complexity

ES (simple) 7.28 ± 0.009 29.59 ± 0.17 46.29 ± 0.40
LS (complex) 6.89 ± 0.003 32.06 ± 0.06 49.18 ± 0.33
Dev. 7.00 ± 0.001 30.98 ± 0.11 46.59 ± 0.33
Adev. 7.24 ± 0.003 31.72 ± 0.10 47.37 ± 0.68

C Shape Bias Results

The cue-conflict dataset consists of images that combine the shape of one object with the texture of another
across 16 categories. It was designed to study human and neural network preferences for shape versus
texture cues in visual recognition (Geirhos et al., 2018). We mapped the outputs of models trained on the
downstream ImageNet classification task from 1,000 classes to the 16 cue-conflict categories and then froze
the models. The total number of images correctly classified to the shape Nshape and texture Ntexture were
counted. Following the methodology in Geirhos et al. (2018); Lu et al. (2025), we computed shape bias as:

Bshape = Nshape

Nshape + Ntexture
. (6)

This metric quantifies the tendency of a visual recognition system to rely more on object shape or texture
during classification. As illustrated in Fig. 8, the shape bias of models trained under the developmental
and anti-developmental modes generally fell between those of the early- and late-stage baselines, indicating
that curriculum learning along dimensions such as blur level, movement speed, lighting conditions, or scene
complexity did not improve shape bias.

D Definition of Complexity

The definition of image complexity remains contested. Rigau et al. framed it from an information-theoretic
perspective, either as the number of partitions needed to capture a target information ratio or as com-
positional complexity via Jensen-Shannon divergence. Mahon & Lukasiewicz instead applied hierarchical
clustering of image patches with the minimum description length (MDL) principle to separate “meaningful
complexity” from noise.
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Figure 8: Comparison of shape bias under different curriculum learning conditions.
(a) ESS backbone model. (b) MoCo backbone model.

0.1676 0.1040

a b

Figure 9: Limitations of edge-based complexity measures. Images with high edge density may primarily
capture texture rather than perceptual complexity, highlighting that visual complexity cannot be reduced
to a single low-level feature.

As shown in Fig. 9, high edge density may reflect surface texture rather than genuine perceptual complexity.
This highlights the inherent difficulty of defining complexity, which cannot be attributed to any single visual
property but instead emerges from the interaction of multiple factors, including object density, structural
organization, lighting variation, and semantic content. Consequently, visual complexity remains an elusive
construct that resists precise quantification.

E Trajectory Smoothness and Interpolation Rationale

For interpolation, positional coordinates are linearly averaged, and quaternion-based spherical linear inter-
polation (Slerp) is used to smooth rotations and avoid gimbal lock. The typical distance between adjacent
fixations ranged from 0 to 0.2 meters, and yaw rotation differences were generally below 5 degrees, making
linear interpolation appropriate.

The trajectory of House100K dataset includes 102, 196 steps. To ensure the validity of interpolation for
both position and rotation, we verify that the step-to-step differences are sufficiently small throughout the
dataset. The dataset is recorded as a continuous egocentric sequence while an avatar travels through the
environment. An exception occurs only at step 21,951, where the avatar was stuck between two flower pots
and then returned to the initial point at step 21,952. The positional displacement between these two steps
is 7.42 meters, while all other positional distances fall within a heavy-tailed distribution between 0 and 0.3
meters (Fig. 10 a), indicating that the avatar typically moves in small, smooth increments even though its
trajectory is not strictly linear.
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The distribution of rotational differences is more varied. The rotational force is applied manually. The
resulting yaw changes occasionally accumulate to as much as 49.40 degrees. However, the vast majority
of rotations are concentrated between 0 and 4 degrees, with a small number of larger peaks (Fig. 10 b).
The peaks are likely related to the participants’ movement habits. The large rotation differences are not
dominant in the trajectory (Fig. 10 c). Since converting quaternions to Euler angles for interpolation can
introduce gimbal lock, we apply Slerp to interpolate rotations directly in quaternion space.

Figure 10: The distribution of position distance and rotation distance of House100K dataset.
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