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Abstract

Large language models (LLMs) have demon-001
strated striking reasoning capability. Recent002
works have shown the benefits to LLMs from003
fine-tuning golden-standard Chain-of-Thought004
(CoT) rationales or using them as correct ex-005
amples in few-shot prompting. While humans006
can indeed imitate correct examples, learning007
from our mistakes is another vital aspect of008
human cognition. Hence, a question naturally009
arises: can LLMs learn and benefit from their010
mistakes, especially for their reasoning? This011
study investigates this problem from both the012
prompting and model-tuning perspectives. We013
begin by introducing COTERRORSET, a new014
benchmark with 609,432 questions, each de-015
signed with both correct and error references,016
and demonstrating the types and reasons for017
making such mistakes. To explore the effective-018
ness of those mistakes, we design two methods:019
(1) Self-rethinking prompting guides LLMs to020
rethink whether they have made similar previ-021
ous mistakes; and (2) Mistake tuning involves022
finetuning models in both correct and incor-023
rect reasoning domains, rather than only tun-024
ing models to learn ground truth in traditional025
methodology. We conduct a series of experi-026
ments to prove LLMs can obtain benefits from027
mistakes in both directions. Our two meth-028
ods offer potentially cost-effective strategies by029
leveraging errors to enhance reasoning capabili-030
ties, which costs significantly less than creating031
meticulously hand-crafted golden references.032
We ultimately make a thorough analysis of the033
reasons behind LLMs’ errors, which provides034
directions that future research needs to over-035
come. COTERRORSET will be published soon036
on Anonymity Link.037

1 Introduction038

Large language models (LLMs) (Brown et al.,039

2020; Zhang et al., 2022; Anil et al., 2023; Tou-040

vron et al., 2023) have demonstrated strong capabil-041

ities across various tasks and applications (Liang042

Figure 1: The overview pipeline of our work includes
(1). Mistake collection and analysis (Section 3). (2)
Two novel methods to instruct LLMs to learn from mis-
takes(Section 4 and Section 5).

et al., 2022; Chang et al., 2023). To further un- 043

leash the reasoning abilities of LLMs and align 044

their thinking process with humans, many recent 045

studies explored Chain-of-Thought (CoT)-based 046

prompting (Wei et al., 2022; Wang et al., 2022; Li 047

et al., 2023a; Tong et al., 2023; Yao et al., 2023; 048

Besta et al., 2023) to instruct LLMs to solve the 049

given problem with human-like logic. Besides log- 050

ical step-by-step thinking, another critical learning 051

pattern of us humans is to rethink and learn from 052

our previous mistakes so that avoid repeating the 053

same mistakes in the future (Mercer, 2008; Reich 054

et al., 2023). However, few studies have focused 055

on systematically understanding what kinds of in- 056

termediate errors occur in making CoT procedures 057

and whether LLMs can learn from those mistakes. 058

To address these issues, we aim to explore the po- 059

tential of LLMs to effectively utilize their previous 060

mistakes to boost reasoning. 061

To enhance the scalability and efficiency of ana- 062

lyzing and learning from the mistakes of LLMs, we 063
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began by collecting a vast dataset of LLMs’ reason-064

ing outputs and built COTERRORSET, which con-065

sists of 609,432 questions sourced from 1060 tasks066

across diverse domains. Each query in this set is067

meticulously structured, featuring both a manually068

curated correct reference and the incorrect ratio-069

nales collected from PaLM2 (Anil et al., 2023)’s070

responses. Furthermore, we prompt the LLMs with071

the correct reference and the incorrect responses in072

order to make it reflect why making such mistakes.073

The introspective responses are also collected and074

subsequently utilized in our work. We employ this075

data for cluster analysis to identify specific details076

of the errors.077

With our COTERRORSET, we introduce two in-078

novative paradigms, namely mistake tuning and079

self-rethinking, aimed at efficiently augmenting080

LLMs by leveraging their historical errors during081

both tuning and inference stages. Diverging from082

the conventional approach of only relying on cor-083

rect rationales in traditional supervised fine-tuning,084

our mistake tuning strategy incorporates combi-085

nations of both correct references and incorrect086

rationales. To facilitate the learning process for087

LLMs, we introduce the prefixes [CORRECT RA-088

TIONALE] and [INCORRECT RATIONALE] be-089

fore the corresponding rationales. Intuitively, this090

prompt tuning facilitates LLMs to distinguish be-091

tween correct and incorrect rationales while avoid-092

ing corruption from the incorrect ones with the two093

separated prefixes. For self-rethinking, inspired094

by contrastive in-context learning (Gao and Das,095

2024), we expose LLMs to both correct and in-096

correct rationales in demonstration samples. After097

obtaining the initial answer output by the LLM, we098

iteratively prompt it to rethink and rectify the result099

based on the historical mistakes. To manage com-100

putational resources and prevent potential loops,101

we implement a threshold, limiting the number of102

times the model can engage in self-rethinking and103

corrections. Figure 1 gives an overview pipeline of104

our work.105

To substantiate the efficacy of our proposed106

methodologies and to delve into the learning ca-107

pabilities of LLMs from their mistakes, we under-108

take experiments encompassing diverse reasoning109

tasks and LLMs of varying sizes. The application110

of our methods consistently yields performance111

enhancements across a spectrum of tasks, under-112

scoring the effectiveness and broad applicability113

of our approaches in leveraging LLMs’ mistakes114

during both the tuning and inference stages. Addi-115

tionally, we conduct thorough analyses of the error 116

types exhibited by LLMs, offering comprehensive 117

insights and guidance on mitigating the most preva- 118

lent errors in these models. 119

In general, our contributions are as follows: 120

• A large-scale error set, COTERRORSET, is 121

constructed for scalable analysis and learning 122

from the LLMs’ mistakes. 123

• We novelly designed two paradigms for LLMs 124

to utilize and learn from their previous mis- 125

takes at both fine-tuning and inference stages. 126

• With extensive experiments, we validate the 127

effectiveness of our proposed methods and 128

provide further hints based on analysis of 129

LLMs’ error types. 130

2 Related Work 131

Human-like Reasoning with LLMs. CoT (Wei 132

et al., 2022) demonstrate the great potential of 133

equipping LLMs with human-like reasoning ca- 134

pability. Following them, various logical and struc- 135

tural reasoning strategies (Wang et al., 2022; Zhou 136

et al., 2022; Creswell and Shanahan, 2022; Besta 137

et al., 2023; Li et al., 2023b; Lightman et al., 138

2023) are proposed to align LLMs’ thinking pro- 139

cesses with humans. These enhanced reasoning ap- 140

proaches have been adopted in different tasks and 141

areas, including commonsense reasoning (Geva 142

et al., 2021; Ahn et al., 2022), logical reason- 143

ing (Pan et al., 2023; Lei et al., 2023) and mathe- 144

matical reasoning (Cobbe et al., 2021; Hendrycks 145

et al., 2021) and achieved promising performance. 146

In this work, we aim to investigate whether LLMs 147

can benefit from rethinking and learning from pre- 148

vious mistakes, which is one of the most important 149

learning patterns of humans. 150

Refined Reasoning Errors. Several studies 151

focus on adjusting their reasoning pathways to ar- 152

rive at better solutions. Huang et al. (2022) in- 153

troduce self-improve that employs CoT plus self- 154

consistency to obtain high-confidence solutions 155

on a large set of unlabeled questions. The self- 156

generated content is then used for fine-tuning in 157

subsequent iterations, thereby further augmenting 158

its reasoning capabilities. Madaan et al. (2023) pro- 159

pose a self-refine technique that encourages LLMs 160

to autonomously correct their outputs without the 161

need for external data or feedback. However, it 162

has been argued by some researchers that LLMs 163

face challenges in self-correcting their responses in 164
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the absence of external feedback, and under certain165

conditions, such attempts might even deteriorate166

their performance (Huang et al., 2023). Based on167

that, An et al. (2023) suggest fine-tuning LLMs168

using pairs consisting of errors and their respective169

corrections generated by GPT-4 as a supervisory170

mechanism. Nevertheless, our work is pioneering171

in highlighting the impact of exposing mistake ex-172

amples on in-context learning. Furthermore, our173

experiments reveal that in the process of model174

tuning, learning from mistakes can inherently en-175

hance itself by merely being exposed to correct176

examples and errors, without depending on explicit177

corrections from teacher models.178

3 A Novel Dataset: COTERRORSET179

3.1 Dataset Construction180

In order to investigate whether incorrect ratio-181

nales can also contribute to LLMs’ reasoning182

performance, we introduce COTERRORSET, a183

novel benchmark based on the source of COT-184

COLLECTION (Kim et al., 2023), built upon var-185

ious domains, including multiple-choice QA, ex-186

tractive QA, closed-book QA, formal logic, natu-187

ral language inference, and arithmetic reasoning.188

Our dataset’s question and reference are obtained189

from the following datasets: QASC (Khot et al.,190

2020), AQuA (Ling et al., 2017), GSM8K (Cobbe191

et al., 2021), QED (Lamm et al., 2021), Strate-192

gyQA (Geva et al., 2021), SenseMaking (Wang193

et al., 2019), CREAK (Onoe et al., 2021), e-194

SNLI (Camburu et al., 2018) and ECQA (Aggar-195

wal et al., 2021). Each task within this collection196

is systematically organized to include a question197

and a correct reference, followed by an incorrect198

response and the demonstrations why making such199

mistakes. The errors and demonstrations are both200

generated from PaLM2.201

COTERRORSET diverges from traditional CoT202

datasets by employing PaLM2’s mistakes and the203

reasons behind them. We utilized PaLM2 to gen-204

erate rationales for each question in the dataset,205

focusing specifically on collecting incorrect ratio-206

nales. Then we provide PaLM2 with both correct207

references and its incorrect answers to demonstrate208

and reflect why it makes such mistakes. The steps209

of the construction process are shown in Figure 2.210

This systematic collection of incorrect rationales211

can make COTERRORSET a promising benchmark212

in providing future improvements from a different213

perspective. One example is shown in Table 7.214

Figure 2: The pipeline to construct COTERRORSET.
By providing PaLM2 with the correct reference and
the incorrect response generated by itself, we prompt
it to introspect and grasp the underlying reasons for its
errors.

3.2 Error Analysis with COTERRORSET 215

Figure 3: Our pipeline for clustering PaLM2’s mistakes.

After collecting the COTERRORSET dataset, we 216

observe that the error types in it are very intricate 217

and diverse. The intricacy poses obstacles to subse- 218

quent enhancement efforts. In order to tackle this 219

issue and gain a more overarching understanding 220

of LLMs’ error types, we utilize an LLM-based un- 221

supervised clustering approach shown in Figure 3 222

to match diverse error types into more general cate- 223

gories. 224

To be specific, we begin by extracting the spe- 225

cific error keywords from each error cause. Subse- 226

quently, we input all the extracted keywords into 227

the LLMs and prompt them to generate more gen- 228

eral categories that encompass the entire spectrum 229

of error names. Following this automated cluster- 230

ing process, we manually review each cluster, mak- 231

ing necessary adjustments to refine the matching 232

results. Finally, we distill the diverse error types 233

into several abstract categories, such as calculation 234

error, numeric error, and logical error in domains 235

of arithmetic reasoning and logical error, common- 236

sense error, linguistic error, and context error in 237

domains of commonsense reasoning. A detailed 238

definition of each error category is shown in Ap- 239

pendix D. We put results and analysis in Section 8. 240
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Step 1: CoT reasoning
– Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips

did Natalia sell altogether in April and May?
– Answer: Let’s think step by step.
– Response: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether in April and May.

Step 2: self-rethinking
– Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips

did Natalia sell altogether in April and May?
– Your output: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether in April and May.
– Do you make similar mistakes with the following examples: Error Type 1: Misapplication of Algebraic Identities: ...
– Response: Yes, I make a mistake.

Step 3: correction (if they think they make mistakes)
– So the correct answer is:
– Response: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April and May.

Table 1: One example of interactive prompting and responses for self-rethinking. Black texts are the prompting
while the red content serves as LLMs’ response example.

4 Our Methodology: Self-rethinking241

Self-rethinking offers an innovative approach to242

encourage LLMs to consider if they are repeating243

past errors. This method starts with an initial CoT244

reasoning. Following this, the model uses the pro-245

vided reasoning outputs and a random selection of246

examples from COTERRORSET. This step is de-247

signed to assess if the model’s most recent response248

includes similar inaccuracies. If errors are detected,249

it will formulate a new rationale and undergo the250

evaluation process again. This cycle continues un-251

til the model deems its latest answer to be correct252

or it reaches a set limit of evaluation rounds. The253

main goal is to empower the LLM to learn from its254

errors introspectively and minimize the recurrence255

of such mistakes. One example is shown in Table 1.256

The core of self-rethinking lies in the backward-257

checking stage. In this phase, the LLM reviews its258

reasoning chain, but with a specific focus on the259

error types it previously identified. This explicit260

demonstration of errors, coupled with the question,261

golden reference, and incorrect rationales, is instru-262

mental in enabling the LLM to recognize specific263

types of mistakes it tends to make. This targeted264

review helps the LLM to not just correct the ran-265

dom errors but to consciously avoid repeating the266

same types of mistakes it has made in the past. The267

process includes a loop for error correction and268

confirmation. If the LLM finds that it has repeated269

any of the previously identified mistakes, it revisits270

the reasoning process to correct them. Otherwise,271

the last response is adopted as the final result.272

Moreover, the iterative checking process should273

have a crucial repeating boundary, denoted as k274

iterations. If the LLM’s error-checking and correc- 275

tion cycles surpass this predefined threshold and 276

errors still persist, the process concludes under the 277

assumption that the issue at hand or the error de- 278

tection might exceed the LLM’s current capabili- 279

ties. This constraint prevents the LLM from being 280

caught in an endless loop of self-rethinking, ensur- 281

ing the efficiency and practicality of the reasoning 282

process. 283

5 Our Methodology: Mistake Tuning 284

In order to fully investigate the other potential uti- 285

lization of our principles, we introduce mistake tun- 286

ing, which demonstrates our motivation is a broad 287

and pioneering framework not only in the field of 288

in-context learning. This approach is designed to 289

finetune LLMs on the combinations of both cor- 290

rect rationales and incorrect mistakes. By simply 291

appending prefixes [CORRECT RATIONALE] and 292

[INCORRECT RATIONALE] before correspond- 293

ing rationales, mistake tuning can further improve 294

LLMs’ abilities to distinguish between correct and 295

incorrect rationale. 296

Mistake tuning is built upon the foundational mo- 297

tivations and conclusions of self-rethinking, where 298

LLMs can learn from the implicit reasons and types 299

of mistakes they made in CoT reasoning. This pro- 300

cess can be formulated as: 301

p = [Q⊕ S ⊕R], (1) 302

L = −
|p|∑
t=1

logP (pt|p<t), (2) 303
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Where Q, S and R represent the given question,304

special prefix and corresponding rationale respec-305

tively. ⊕ represents the operation of concatenation.306

Mistake tuning presents a cost-effective, straight-307

forward, and efficient alternative. Previous work308

has proven pretraining with some controlled sig-309

nals based on human feedback can result in LLMs’310

better ability to generate more satisfactory con-311

tents (Korbak et al., 2023; Keskar et al., 2019).312

Hence, incorporating fixed prefixes in finetuning313

LLMs in the field of reasoning can also help models314

differentiate information from golden references315

and mistakes. Our results also demonstrate its ef-316

fectiveness for promoting LLMs’ reasoning abili-317

ties without additional costs similar to annotating318

golden reasoning references.319

6 Experiments320

In this section, we conducted a series of exper-321

iments to compare the proposed self-rethinking322

methods with the existing approach on both arith-323

metic and commonsense reasoning benchmarks.324

6.1 Experiment Setup325

We conduct comparisons between self-rethinking326

and several other baselines on multiple bench-327

marks.328

Baselines: We select the following reason-329

ing baselines to evaluate our framework, self-330

rethinking’s performance.331

• Standard prompting (Brown et al., 2020): the332

basic reasoning promptings with prefixes as333

question and answer.334

• Chain-of-Thought (CoT) (Madaan et al.,335

2023): a technique that enhances large lan-336

guage models’ ability to perform complex and337

multi-step reasoning by guiding them through338

a problem-solving process step by step, signif-339

icantly improving their performance on tasks340

that require deeper cognitive processing.341

• Self-refine (Madaan et al., 2023): an approach342

that enables LLMs to iteratively improve their343

initial outputs by providing feedback to them-344

selves and refining their responses.345

• Self-consistency (Wang et al., 2022): a decod-346

ing strategy that enhances CoT prompting in347

LLMs by sampling multiple reasoning paths348

and selecting the most consistent answer.349

Benchmarks: We consider the following ex-350

isting math problems benchmarks designed with351

human rationale reference.352

• GSM8K benchmark of math word prob- 353

lems (Cobbe et al., 2021). 354

• AQuA dataset of algebraic math prob- 355

lems (Ling et al., 2017). 356

• MathQA benchmark of multiple-choice math 357

problems (Amini et al., 2019). 358

• Openbook benchmark modeled after open 359

book exams for assessing human understand- 360

ing of a subject (Mihaylov et al., 2018). 361

• LogiQA dataset sourced from expert-written 362

questions for testing human logical reason- 363

ing (Liu et al., 2020). 364

• Critical Reasoning in MARB benchmark of 365

several graduate admission tests, highlighting 366

the reasoning to assumptions, conclusions and 367

paradoxes in arguments (Tong et al., 2023). 368

Models: In order to evaluate self-rethinking’s 369

effects, we choose PaLM2 (Anil et al., 2023) 370

and GPT4 (OpenAI, 2023) as the baseline model. 371

PaLM2 is a dense left-to-right, decoder-only lan- 372

guage model. It is pre-trained on a high-quality 373

corpus of 780 billion tokens with filtered webpages, 374

books, Wikipedia, news articles, source code, and 375

social media conversations. GPT4 is a large-scale 376

multi-modal state-of-the-art model that exhibits 377

human-level performance on various tasks. We 378

use PaLM2’s TEXT-BISON-001 and GPT4’s GPT-4 379

models provided in their APIs. 380

For mistake tuning, we choose two different- 381

sized Flan T5 (Chung et al., 2022), which are 382

specifically designed for instruction tuning strate- 383

gies. This model excels in understanding and gen- 384

erating human-like text, demonstrating remarkable 385

performance across a wide range of natural lan- 386

guage processing tasks. 387

Training Details: All of the following experi- 388

ments were designed with a common setting, em- 389

ploying a random seed of 42, learning rate=1e-4. 390

Considering the vast number of data in AQuA, we 391

only randomly select 10,000 of them to represent 392

the differences in tuning on two different domains. 393

6.2 Self-rethinking Results 394

Table 2 presents PaLM2’s evaluation results on 395

chosen benchmarks. In this experiment, we set 396

our method, self-rethinking’s k equal to 1 to trade 397

between the accuracy and computing resources. 398

In order to align the commuting budget with our 399

methods, we set the times of inference in self- 400

consistency to 3. Our approach involves an initial 401
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Methods GSM8K AQuA MathQA OpenbookQA LogiQA CR
Standard Prompting (Brown et al., 2020) 17.06 22.40 27.57 80.92 41.21 24.45

CoT (Madaan et al., 2023) 56.29 32.11 30.89 82.66 41.05 51.98
Self-refine (Madaan et al., 2023) 34.74 39.92 54.01 28.75 35.99 12.28

Self-consistency (Wang et al., 2022) 58.38 42.80 41.37 87.61 42.88 22.58
Self-rethinking (Ours) 65.13 44.72 43.95 87.71 49.12 54.53

Table 2: PaLM2’s accuracy on the existing baselines and our methods, self-rethinking prompting. Self-rethinking
shows consistent improvements but uses less inference time compared with self-consistency.

Methods GSM8K AQuA MathQA LogiQA
8-shot CoT 64.56 30.65 36.21 29.57

8-shot self-rethinking 70.15 34.80 40.56 33.64

Table 3: PaLM2’s accuracy results on few-shot Chain-
of-Thought(CoT) and our methods, self-rethinking. We
select 8-shot examples from the corresponding trainset.
Then we collect PaLM2’s incorrect rationales of those
8 examples. The part of the original correct reference
is CoT’s demonstrations. Those generated incorrect
rationales serve as demonstrations for the rethink stage.

Methods GSM8K AQuA OpenbookQA CR
CoT 97.93 88.98 93.21 78.92

Self-rethinking 98.02 91.03 95.07 81.37

Table 4: GPT4’ results on zero-shot Chain-of-Thought
(CoT) and our methods, self-rethinking.

zero-shot CoT inference, then rethinking whether402

this rationale has made similar errors. This leads to403

the final answer if no errors are found. If inaccura-404

cies are detected, it combines a demonstration and405

the previously suspected erroneous answer for a406

third inference to arrive at the final answer. Hence,407

the overall inference times in our methods are be-408

tween 2 and 3 times per question, which is still409

lower than self-consistency here.410

With the considered computational settings,411

the self-rethinking method shows superior perfor-412

mance with significant improvements, especially in413

GSM8K, AQuA, MathQA, and LogiQA, clearly414

outperforming self-consistency under a similar415

computing cost. However, while our method sur-416

passes CoT in performance on the MathQA dataset,417

it falls short of achieving self-refine results. It’s418

important to note that this dataset is specifically419

tailored towards operation-based arithmetic prob-420

lems rather than general questions, aiming to gauge421

the models’ proficiency in tackling complex is-422

sues (Amini et al., 2019). This suggests that the423

nature of the MathQA dataset may inherently be424

more suitable for self-refine. In contrast to our ap-425

proach, which aims to amend responses by identify-426

ing and addressing typical errors. Table 4 compares427

GPT4’s performance of CoT and self-rethinking.428

The results demonstrate a notable improvement 429

when using our self-rethinking method over CoT. 430

These findings suggest that self-rethinking is a 431

more effective approach for enhancing GPT-4’s 432

performance. 433

Table 3 presents the 8-shot examples of CoT 434

and self-rethinking, using the PaLM2 model across 435

four different tasks: GSM8K, AQuA, MathQA, 436

and LogiQA. A key part of the process involved 437

collecting PaLM2’s incorrect rationales for these 438

examples, which were then used as learning demon- 439

strations to rethink. The results show a clear advan- 440

tage of the self-rethinking method over the standard 441

8-shot CoT approach. These results highlight the 442

efficacy of the self-rethinking method in improving 443

accuracy in few-shot learning scenarios for com- 444

plex problem-solving tasks. 445

Notably, self-refine shares our basic motivations 446

about self-refining or self-correcting their answers 447

but without utilizing any mistake samples. The 448

result shows that our self-rethinking outperformed 449

self-refine by a considerable margin across most of 450

the datasets. This indicates the importance of our 451

proposal for utilizing previous mistake examples. 452

While self-refine demonstrates improvements in 453

three arithmetic reasoning datasets, it concurrently 454

exhibits substantial performance drops in common- 455

sense reasoning datasets. By contrast, our self- 456

rethinking consistently outperforms the standard 457

method in various domains. This further implies 458

the introduction of previous mistakes can stabilize 459

the refinement and rethinking process. 460

In conclusion, our self-rethinking method 461

achieved remarkable accuracy improvements in 462

most tests, particularly in scenarios that demand 463

high logical rigor and offer the opportunity to learn 464

from errors by identifying fixed logical patterns, 465

especially in arithmetic reasoning tasks. It indi- 466

cates self-rethinking effectiveness in tasks requir- 467

ing strong logic and prone to minor errors. Addi- 468

tionally, the self-rethinking method proves partic- 469

ularly beneficial in assisting LLMs in identifying 470

and rectifying low-level mistakes or misunderstand- 471
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ings that are within the model’s capabilities but472

have been previously overlooked. This capability473

indicates that self-rethinking can serve as a valu-474

able tool in refining the accuracy and reliability of475

responses in LLMs, especially in complex problem-476

solving contexts.477

Models Methods GSM8K MathQA AQuA
Flan-T5-large Standard finetuning 14.28 42.79 13.10

(780M) Mistake tuning 18.36 48.95 18.07
Flan-T5-xl Standard finetuning 23.81 47.24 17.81

(3B) Mistake tuning 24.29 52.22 20.99

Table 5: Accuracy of Standard finetuning models (with
only correct rationales) vs. our methods, mistake tuning
(combined correct and incorrect rationales). Mistake
tuning shows consistent and superior performance com-
pared with only fine-tuned correct rationales.

6.3 Mistake Tuning Results478

Table 5 showcases the performance of the Flan-T5479

models in the context of mistake tuning, highlight-480

ing the impact of combining correct and incorrect481

rationales. The data presented in Table 5 reveals482

significant insights into the performance of Flan-483

T5 models under mistake tuning, which involves484

integrating both correct and incorrect rationales.485

This approach is evident across different model486

scales, whether it’s the smaller 780M version or487

the larger 3B variant. Notably, in the MathQA do-488

main, Flan-T5-large(780M) tuned by our methods489

demonstrates superior performance compared to490

PaLM2, achieving an accuracy of 48.95% versus491

41.37%. This phenomenon suggests that LLMs492

can benefit from engaging with incorrect reason-493

ing, thereby enhancing their problem-solving and494

reasoning capabilities. It extends beyond merely495

bolstering the model’s grasp of correct CoT, to also496

encompassing the ability to identify and learn from497

incorrect rationales.498

Furthermore, the expense of obtaining ground499

truth or hand-crafted references is significantly500

higher compared to generating and collecting in-501

correct rationales. This cost disparity underscores502

the practical value of our approach, offering a more503

cost-effective solution without compromising the504

quality of training data for machine learning mod-505

els. All mentioned provides a direction for further506

work of reasoning, which involves not only en-507

hancing the model’s understanding and learning508

of correct CoT but also the ability to identify and509

learn from incorrect rationales.510

Figure 4: Accuracy of different re-thinking iterations(k).
As the value of k increases, the overall prediction accu-
racy improves.

7 Further Studies 511

7.1 Hyperparameter Analysis of Rethinking 512

Iteration Times 513

In this section, we conduct experiments to assess 514

the impact of different rethinking iterations, de- 515

noted as k, on the performance of our framework. 516

We evaluate it on two mainstream benchmarks in 517

the field of mathematics and commonsense rea- 518

soning, GSM8K and LogiQA. Figure 4 represents 519

the detailed trend under varying re-thinking times. 520

Notably, as k increases from 1 to 24, GSM8K rep- 521

resents a growth of 8.11% and 12.37% in LogiQA. 522

It is evident as k increases, both LLMs’ arithmetic 523

and commonsense reasoning accuracy exhibit an 524

upward trend. This trend suggests a positive corre- 525

lation between the number of rethinking iterations 526

and the overall reasoning abilities. These observa- 527

tions indicate self-thinking’s potential benefits with 528

more inference time. 529

CAT. DEM. COR. INC. GSM8K LogiQA
✓ 64.30 50.21
✓ ✓ 62.70 48.57
✓ ✓ ✓ 65.70 51.01
✓ ✓ ✓ ✓ 65.13 49.21

Table 6: Impact of Component Combinations. CAT.
stands for the previous mistakes’ type name, DEM. are
the reasons for making such mistakes, and COR. and
INC. mean corresponding correct and incorrect rationale
examples. All components here are generated by LLM
itself before reasoning.

7.2 Ablation Study on Rethinking Process 530

In this ablation study, we examined the impact of 531

various component combinations in promptings to 532

guide LLMs to self-rethinking . Table 6 shows the 533

performance of different components. The results 534
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Figure 5: PaLM2’s error type distribution in the com-
monsense and arithmetic reasoning task.

indicate that the inclusion or exclusion of differ-535

ent components has varying effects on PaLM2’s536

accuracy in domains of GSM8K and LogiQA. How-537

ever, the overall performance across various com-538

ponents is relatively similar. It performs similarly539

well regardless of the specific combination of com-540

ponents, indicating good generalizability of the541

method. This study suggests our method’s flexibil-542

ity and stability in future usage.543

8 Unveiling LLM’s Reasoning Errors544

In this section, we delve into the detailed types and545

underlying reasons that lead to mistakes in LLMs’s546

inference process. We sample mistake examples547

from GSM8K and LogiQA to conduct an in-depth548

analysis of both arithmetic and commonsense rea-549

soning. We put some examples in Appendix C.550

For commonsense reasoning, we find errors551

like the misinterpretation of facts or concepts usu-552

ally arise due to the model’s limitations in under-553

standing and applying context accurately. This554

reveals current LLMs may still fall short of consis-555

tently recalling precise factual knowledge within556

a given context. Consequently, this underscores557

the imperative to advance toward the develop-558

ment of Retrieval-Augmented Generation(RAG)559

systems (Guu et al., 2020; Mallen et al., 2022),560

as they hold the promise of yielding more faithful561

and contextually aligned results. Additionally, er-562

rors stemming from logical fallacies or incorrect563

inferences reveal LLMs’ reliance on pattern recog-564

nition over logical reasoning, sometimes leading565

them to make logically inconsistent or unsupported566

connections by the given facts.567

As shown in Figure 5, the most errors made by568

LLMs in arithmetic reasoning are about calculation.569

This can be attributed to the different nature of570

LLMs compared to other tools like calculators. To571

address this issue, Chen et al. (2022)’s suggestion572

using Program-of-Thought (PoT) is a promising573

approach to instruct LLMs to generate a segment 574

of code to solve the given problem, resulting in 575

more accurate calculation results. Furthermore, 576

it’s important to note that logical error is also a 577

type of error that LLMs always suffer from. Com- 578

pared with calculation errors and numeric errors, 579

the causes of logical errors are more complicated 580

and nuanced. For instance, errors like misinterpret- 581

ing given data or misapplying arithmetic operations 582

reveal a lack of depth in understanding mathemati- 583

cal relationships. This can result from the model’s 584

limitations in comprehending the nuances of math- 585

ematical concepts or its inability to correctly infer 586

the needed function from the context of the ques- 587

tion. In the future, more fine-grained analysis and 588

methods are needed to address such complex logi- 589

cal errors in arithmetic reasoning. 590

9 Conclusions and Future Work 591

In this work, we explore whether LLMs can learn 592

from their mistakes. In order to investigate LLMs’ 593

abilities to differentiate and learn from mistakes, 594

we introduce COTERRORSET, a novel benchmark 595

collecting both correct and incorrect CoT rationales 596

across various domains and designed with demon- 597

strations for making errors. We propose two possi- 598

ble solutions to expose the effects of mistakes from 599

different perspectives: self-rethinking and mistake 600

tuning. Both of them have achieved consistent and 601

significant improvements, which demonstrates the 602

potential benefits of learning from reasoning er- 603

rors. In the last, we conduct a comprehensive and 604

detailed analysis of LLMs’ common mistakes in 605

both arithmetic and commonsense reasoning. The 606

findings will provide a clear direction for future 607

improvements. 608

For future work, we envision proposing corre- 609

sponding algorithms or loss functions to learn im- 610

plicit information from mistakes. The primary in- 611

tent of this work is to provide a new paradigm 612

so there are still a lot of improvements that can 613

be down following this work. For example, in- 614

corporating contrastive learning to differentiate 615

correct references and errors is intuitive to make 616

more improvements. Also, some memorization and 617

retrieval-augmented skills can help models benefit 618

from mistakes similar to each question. 619

Limitations 620

In addition to the noted challenge of fine-tuning 621

commercial LLMs, we recognize several other 622
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specific limitations in our study that require at-623

tention. Primarily, our self-rethinking methodol-624

ogy may not be entirely suitable for tasks where625

a distinct, objective label is not readily available,626

such as in machine translation or dialogue gener-627

ation. These areas pose a unique challenge as the628

correctness of outputs can often be subjective or629

context-dependent, making it difficult to apply our630

approach effectively. Moreover, our utilization of631

the COTERRORSET collection for mistake tuning632

necessitates a ground truth label for each sample,633

posing a potential impediment to the applicability634

of our method in low-resource scenarios. In the635

future, we will continually improve our method636

and bring the concept of learning from mistakes637

to wider scenarios and applications. Thanks again638

for your thoughtful insights and informative com-639

ments.640
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A An example in COTERRORSET870

B ALgorithm for self-rethinking871

C Reasoning Mistake Examples872

D More Details about LLM-based873

Clustering Approach874

Questions: Combine facts and answer this: Which
meridian extends across Europe, the Mediterranean Sea,
Africa, Asia, the Pacific Ocean, North America, and the
Atlantic Ocean?
Target: The Cimarron meridian
Reference: The Cimarron meridian extends across Eu-
rope, the Mediterranean Sea, Africa, Asia, the Pacific
Ocean, North America and the Atlantic Ocean.
Incorrect Rationale: The 180th meridian extends
across Europe, the Mediterranean Sea, Africa, Asia, the
Pacific Ocean, North America and the Atlantic Ocean.
Error Causes: Making mistakes in incorrect rationales,
such as claiming the 180th meridian extends across
various continents and oceans, can lead to significant
misinformation and confusion. This particular error
demonstrates a fundamental misunderstanding of ge-
ography, as the 180th meridian primarily runs through
the Pacific Ocean and does not cross the regions listed.
Such inaccuracies underscore the importance of fact-
checking in educational content to prevent the spread of
misconceptions. Correcting these mistakes not only clar-
ifies the factual information but also serves as a valuable
learning opportunity, emphasizing the need for accuracy
and critical evaluation of information.

Table 7: An example in COTERRORSET. The content
of Incorrect Rationale and Error Causes are generated
by PaLM2 as indicated in Figure 2.
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Error name: Misinterpretation of Given Data
Error type: Logical

– Example: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips
did Natalia sell altogether in April and May?

– Correct Answer: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April and May.
– Incorrect Rationale: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether in April and May.
– Demonstration: Mistaking multiplication for division led to a significant overestimate of the total clips sold.

Error type: Overlooking Details
Error type: Logical

– Example: Mark has a garden with flowers. He planted plants of three different colors in it. Ten of them are yellow, and
there are 80% more of those in purple. There are only 25% as many green flowers as there are yellow and purple flowers.
How many flowers does Mark have in his garden?

– Correct Answer: There are 80/100 * 10 = 8 more purple flowers than yellow flowers. So in Mark’s garden, there are 10 +
8 = 18 purple flowers. Purple and yellow flowers sum up to 10 + 18 = 28 flowers. That means in Mark’s garden there are
25/100 * 28 = 7 green flowers. So in total Mark has 28 + 7 = 35 plants in his garden.

– Incorrect Rationale: There are 80/100 * 10 = 8 more purple flowers than yellow flowers. So in Mark’s garden, there are
10 + 8 = 18 purple flowers. That means in Mark’s garden there are 25/100 * 18 = 4.5 green flowers. So in total Mark has
10 + 18 + 4.5 = 32.5 plants in his garden.

– Demonstration: Neglecting to consider both yellow and purple flowers in the green flower calculation led to a significant
underestimation of the total number of flowers in Mark’s garden.

Error name: Misapplication of Arithmetic Operation
Error type: Calculation

– Example: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she
earn?

– Correct Answer: Weng earns 12/60 = $0.2 per minute. Working 50 minutes, she earned 0.2 x 50 = $10.
– Incorrect Rationale: Weng earns 12/60 = $2 per minute. Working 50 minutes, she earned 2 x 50 = $100.
– Demonstration: Confusing the rate per hour with the rate per minute led to a substantial overestimation of earnings.

Error name: Numerical
Error type: Numeric

– Example: The chicken crossed the road to get to the other side twice for the thrill of it. The first time, it had to dodge
23 speeding cars. The second time, a person tried to catch it and accidentally pulled out twice as many feathers as the
number of cars the chicken had dodged. The chicken had 5263 feathers before its thrill-seeking road crossings. How
many feathers did it have afterward?

– Correct Answer: The chicken lost 23 * 2 = «23*2=46»46 feathers on its second road crossing., it had 5263 - 46 =
«5263-46=5217»5217 feathers after crossing the road twice.

– Incorrect Rationale: The chicken lost 23 * 2 = «23*2=46»46 feathers on its second road crossing., it had 5263 - 46 =
«5263-52=5211»5211 feathers after crossing the road twice.

– Demonstration: 1. The correct answer is 5217, while your answer is 5211. 2. Your answer is wrong because you
subtracted 52 instead of 46. 3. The type name of the incorrect answer is numerical.

Table 8: Examples of Error Types in Arithmetic Reasoning. All contents are generated by PaLM2 itself.
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Error name: Logical Fallacy or Incorrect Inference
Error type: Logical

– Example: "When standing miles away from Mount Rushmore"
– Correct Rationale: Objects appear smaller when viewed from a greater distance.
– Incorrect Rationale: "The mountains do not look smaller when standing miles away from Mount Rushmore. They look

larger." (Logical fallacy)
– Demonstration: 1. The correct rationale is that objects appear smaller when viewed from a greater distance, whereas the

incorrect rationale states the opposite. 2. This is a logical fallacy as it contradicts a basic principle of perception. 3. The
type name of the incorrect rationale is logical.

Error name: Incorrect Assumptions or Generalizations
Error type: Logical

– Example: "Poison causes harm to which of the following?"
– Correct Rationale: Poison affects living organisms.
– Incorrect Rationale: "Robots do not get hurt by poison." (Incorrect generalization about the effects of poison)
– Demonstration: 1. The correct rationale is that poison affects living organisms, but the incorrect rationale generalizes

that robots are immune to poison. 2. This is an incorrect generalization because robots, being non-living entities, are not
subject to biological effects. 3. The type name of the incorrect rationale is logical.

Error name: Misunderstanding Literal vs. Metaphorical Language
Error type: Linguistics

– Example: "When food is reduced in the stomach"
– Correct Rationale: Digestion involves the breakdown of food by stomach acid.
– Incorrect Rationale: "Choice D is incorrect because it is not a fact." (Misunderstanding metaphorical language)
– Demonstration: 1. The correct rationale is about the literal process of digestion, whereas the incorrect rationale

misinterprets the metaphorical language. 2. This demonstrates a misunderstanding of metaphorical language. 3. The type
name of the incorrect rationale is linguistics.

Error name: Factual Inaccuracy
Error type: Commonsense

– Example: "You can make a telescope with a"
– Correct Rationale: A telescope requires specific optical elements to function.
– Incorrect Rationale: "A telescope needs a lens and a magnifying glass is a lens, so glass is a good choice." (Factually

inaccurate about how telescopes are made)
– Demonstration: 1. The correct rationale is that a telescope requires specific optical elements, whereas the incorrect

rationale assumes any lens, like a magnifying glass, can make a telescope. 2. This shows a factual inaccuracy in
understanding how telescopes are constructed. 3. The type name of the incorrect rationale is commonsense.

Error type: Misunderstanding Context or Relevance
Error type: Context

– Example: "an inherited characteristic found on all mammals is"
– Correct Rationale: Inherited characteristics in mammals include features like fur.
– Incorrect Rationale: "Shoes are not found on all mammals" (Misunderstanding the context of biological characteristics)
– Demonstration: 1. The correct rationale focuses on relevant inherited physical traits like fur. 2. This error illustrates a

clear lack of understanding of the context. 3. The type name of the incorrect rationale should be context.

Table 9: Examples of Error Types in Commonsense Reasoning. All contents are generated by PaLM2 itself.
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Algorithm 1 self-rethinking
Mistakes = {...}
Correct & Incorrect Examples = {...}
ErrorCounter← 0
Prompt: Why you made the mistakes?
Mistakes← Error Type, Demonstrations, Examples.
Stage1 Prompt: Let’s think step by step.
Stage2 Prompt: Do you make the same mistakes in Mistakes?
while ErrorCounter < k do

if Yes then
go to Step2
ErrorCounter← ErrorCounter + 1

else if No then
get the answer
break

end if
end while
if ErrorCounter == k then

Assume: Problem or error detection exceeds the model’s capabilities.
end if
Prompt: So the final answer is:

Input

Please generate several keywords to cover all the following error types, and
assign each keyword to an error type category. Output in the following format:
[Specific Error Category1]: [keyword1], [keyword2]
[Specific Error Category2]: [keyword3], [keyword4]
Keywords: {keywords}

Output

Mathematical: {keywords cluster1}
Numerical: {keywords cluster2}
Arithmetic: {keywords cluster3}
Calculation: {keywords cluster4}

Table 10: Detailed input and output of our LLM-based clustering method.
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Error Type Definition
Calculation Mistakes or inaccuracies that occur during the process of performing math-

ematical calculations. These errors can arise from various sources and can
occur at any stage of a mathematical problem-solving process.

Numeric Numeric errors in the context of mathematical reasoning refer to inaccura-
cies that arise from the representation and manipulation of numerical values.
These errors can occur at various stages of mathematical computations and
can result from limitations in the precision of the representation of real
numbers or mistakes in handling numerical data.

Logical Logical errors involve mistakes in the overall reasoning or strategy used to
solve a mathematical problem. This type of error may not be immediately
apparent during the calculation process but can lead to incorrect final results.
It could include using an incorrect formula or assumptions, misunderstand-
ing the problem statement, or applying the wrong concept.

Linguistics Errors in linguistics involve inaccuracies or mistakes in the use of language.
These can include grammatical errors, misuse of vocabulary, incorrect syn-
tax, or problems in semantics. Linguistic errors may arise from a lack of
understanding of the rules of a language, misinterpretation of meaning, or
the inability to effectively convey a message in a given language. Such
errors can affect the clarity, coherence, and overall effectiveness of commu-
nication.

Commonsense Commonsense errors refer to mistakes or inaccuracies that occur in the
application of general world knowledge or everyday reasoning. These errors
can arise from misconceptions, flawed logic, or misunderstandings of basic
principles that are widely accepted as common knowledge. Commonsense
errors often lead to conclusions or decisions that, upon closer examination,
are illogical or inconsistent with general understanding of the world.

Context Errors of misunderstanding context or relevance occur when there is a
failure to correctly interpret or apply the relevant information in a given
scenario. This type of error typically involves overlooking key aspects of
a context, making inappropriate generalizations, or failing to distinguish
between literal and metaphorical language. These errors can significantly
alter the intended meaning or relevance of a response in reasoning tasks.

Table 11: PaLM2’s Understanding and Definitions for Error Types. All contents are generated by itself after
providing its mistakes and corresponding golden-standard references.
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