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Abstract

DevBench is a telemetry-driven benchmark designed to evaluate Large Language
Models (LLMs) on realistic code completion tasks. It includes 1,800 evaluation
instances across six programming languages and six task categories derived from
real developer telemetry, such as API usage and code purpose understanding.
Unlike prior benchmarks, it emphasizes ecological validity, avoids training data
contamination, and enables detailed diagnostics. The evaluation combines func-
tional correctness, similarity-based metrics, and LLM-judge assessments focused
on usefulness and contextual relevance. 11 state-of-the-art models were assessed,
revealing differences in syntactic precision, semantic reasoning, and practical util-
ity. Our benchmark provides actionable insights to guide model selection and
improvement—detail that is often missing from other benchmarks but is essential
for both practical deployment and targeted model development.

1 Introduction

Large Language Models (LLMs) have transformed modern software development by enabling ad-
vanced code generation, powering tools like GitHub Copilot [GitHub, 2025] and Cursor [AnySphere,
2025]. As these systems are increasingly integrated into real-world workflows, realistic and rigorous
evaluation frameworks are essential to understanding their strengths and limitations.

Several types of benchmarks have been proposed to evaluate different aspects of LLM code genera-
tion. Problem solving benchmarks focus on writing solutions to coding problems, either manually
written [Chen et al., 2021, Liu et al., 2023, Austin et al., 2021] or collected from coding challenge
websites [Hendrycks et al., 2021]. Repository-based benchmarks target challenges in large open-
source projects, such as reasoning across multiple files and external APIs [Wu et al., 2024, Ding
et al., 2023, Li et al., 2024b, Zhuo et al., 2025]. Evolving benchmarks seek to address training data
contamination by updating and segmenting their evaluation instances based on repository updates [Li
et al., 2024a, Jain et al., 2024].

However, existing benchmarks rely on code samples scraped from open source repositories or coding
challenge websites and generate target completions based on static rules for filling in line, function,
or class implementations. This limits them in several ways: First, the target completions are not
based on real world usage patterns for code completion tools, and therefore do not focus on common
challenging completion scenarios that arise in real world usage. Second, the diagnostic value of
these benchmarks is limited because they report aggregate metrics, but cannot attribute differences in
performance to specific usage areas. Third, benchmarks collected from publicly available sources
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Table 1: Comparison of a collection of recent code generation benchmarks across size, language
coverage, focus, source, and unique features.

Benchmark # Tasks Languages Focus Source Unique Feature

RepoMasterEval 288 Python, Type-
Script

Real-world reposi-
tory completion

GitHub repos (>100
stars)

Mutation testing for test robust-
ness

CrossCodeEval ∼10k Python, Java,
TypeScript, C#

Cross-file dependen-
cies

GitHub repos (>3
stars)

Static analysis for dependen-
cies

CoderEval 460 Python, Java Cross-file pragmatic
generation

GitHub repos (popu-
lar tags)

Human-labeled docstrings

ClassEval 100 Python Class-level genera-
tion

Manually crafted Multiple interdependent meth-
ods

HumanEval 164 Python Basic programming
tasks

Manually crafted Simple interview-style prob-
lems

HumanEval+ 164 Python Enhanced testing
rigor

Manually crafted 80× more evaluation instances

LiveCodeBench 511 Python Contamination-free
evaluation

Competition plat-
forms

Time-based contamination
tracking

SWE-bench 2,294 Python Repository-level
bug fixing

GitHub issues and
PRs

Real-world issues from 12 pop-
ular repos

BigCodeBench 1,140 Python Diverse function
calls as tools

Human-LLM collab-
orative generation

723 function calls from 139 li-
braries across 7 domains

DevBench (this
work)

1,800 Python,
JavaScript,
TypeScript,
Java, C++, C#

Realistic developer-
informed scenarios

Synthetically gener-
ated, manually re-
viewed

Telemetry-guided, human-
validated

are prone to training data contamination, which has been observed in models overfitting to existing
benchmarks [Jain et al., 2024].

In this work, we introduce DevBench, a realistic and scalable benchmark grounded in observed
developer behavior. DevBench focuses on common yet challenging completion scenarios, identified
from internal telemetry and synthesized into 1,800 evaluation instances spanning six languages and
six task categories. Each instance is reviewed for quality and realism, ensuring that tasks reflect how
developers actually use code completion tools while remaining contamination-resistant.

As shown in Table 1, DevBench advances beyond existing benchmarks in both realism [Paul et al.,
2024] and scope. It offers four key advantages: (1) realism, with tasks rooted in observed developer
behavior; (2) contamination resistance, through synthetic but controlled instance generation; (3)
fine-grained evaluation, assessing semantic alignment and developer utility; and (4) cross-language
coverage, spanning Python (Py), JavaScript (JS), TypeScript (TS), Java, C++, and C#.

Together, these features provide ecological validity: DevBench reflects authentic developer chal-
lenges rather than hypothetical tasks, is validated through expert review and organizational dogfood-
ing, and captures diverse contexts across languages and developer skill levels. By enabling both
overall rankings and scenario-specific diagnostics, DevBench supports informed model selection and
optimization, and provides a contamination-resilient foundation for future research.

2 Benchmark Design

We introduce DevBench, a realistic benchmark grounded in large-scale developer telemetry. We
view code generation as a composite, puzzle-solving task in which models must combine distinct
capabilities, such as API usage, intent understanding, and syntax control. To evaluate these skills, we
define benchmark categories that isolate each capability while ensuring every instance is solvable from
the provided prefix/suffix, making evaluation both realistic and fair. Although individual instances
are synthesized, DevBench is telemetry-driven: its categories, task types, and scenarios are derived
from analysis of over one billion real developer interactions, with synthesis used only to instantiate
these empirically derived patterns in a privacy-preserving, contamination-resistant manner.

2.1 From User Telemetry to Categories

The benchmark categories are derived from an internal telemetry dataset containing over one billion
anonymized code completions, each recording the prefix, suffix, generated and golden completions,
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Table 2: Language-specific adaptations. Here, ML = Machine Learning, HOFs = Higher-Order
Functions, RAII = Resource Acquisition Is Initialization, and HW accel. = Hardware Acceleration.

Category Python C# C++ Java JavaScript TypeScript

API Usage ML libs, scientific
computing

.NET Core,
ASP.NET

Systems prog.,
graphics, HW
accel.

JDK, enterprise
frameworks

Browser APIs,
Node.js modules

Same as JS w/
types

Code Purpose Iterators/generators,
context mgrs

LINQ/collections,
async-await

Iterators/algorithms,
multithreading

Streams/collections,
lambdas

Closures, promis-
es/async

Same as JS w/ type
systems

Code2NL Docstrings XML docs Doxygen com-
ments

Javadoc JSDoc TSDoc w/ type an-
not.

Low Context Decorators, con-
text mgrs

Complex generics,
LINQ

Template
metaprog., RAII

Lambda expr.,
streams

Async patterns,
HOFs

Adv. type features

Pattern Match-
ing

Decorators, con-
text mgrs

Generic prog.,
memory mgmt

Template
metaprog., al-
gorithms

Streams, HOFs Async, event han-
dling

Type defs, generics

Syntax Com-
pletion

Decorator stack-
ing, nested
contexts

LINQ expr.,
generic con-
straints

Template
metaprog., RAII
patterns

Stream ops, try-
with-resources

Promise chaining,
generators

Interface defs, adv.
types

and user interactions (accept, reject, edit). This dataset spans diverse contexts over IDEs, geographical
locations, language distribution and developers range from students to senior engineers, across both
individual and enterprise environments.

To meet privacy and compliance requirements, we do not use raw user code. Instead, we construct
synthetic evaluation instances that replicate the structural complexity and usage patterns observed in
telemetry. Completions were sampled and annotated to identify common failure modes, bottlenecks,
and characteristic prompt structures. These findings were refined through iterative discussions with a
research group that included language specialists, ensuring that the resulting categories captured both
statistical prevalence and realistic, high-impact developer workflows.

We further incorporated feedback from internal dogfooding and public user reports to strengthen
ecological validity. Reviewed samples were checked for representativeness so that the resulting
benchmark categories capture common scenarios with clear evaluation criteria, edge cases, and
realistic challenge levels directly grounded in developer behavior.

2.2 Benchmark categories

We define six benchmark categories based on our analysis of user telemetry. Each category targets a
distinct type of developer intent and is consistently evaluated across languages, with adaptations to
reflect the idioms and ecosystems of each target language (see Table 2). The categories are described
in detail below (examples in Appendix A).

API Usage: This category tests a model’s ability to correctly apply specialized library functions.
Each evaluation instance consists of a prefix that sets the context, a golden completion illustrating
proper API usage, and a suffix for continuation.

Code Purpose Understanding: This category evaluates whether a model can generate code that
aligns with the underlying business logic and domain-specific conventions—not just syntactic correct-
ness. For instance, consider a BankAccount class where a withdraw method is already implemented.
We prompt the generative model to implement a new transfer method. Based on the existing
code, the model is expected to infer the intended functionality of the new method, reuse the existing
withdraw logic for consistency, and ensure that the amount is positive and sufficient funds are
available. This task goes beyond syntactic correctness, evaluating the model’s ability to reason about
object-oriented design and domain-specific financial logic.

Code2NL/NL2Code: This category evaluates a model’s ability to translate between code and natural
language (NL) in both directions. This reflects real-world developer workflows, where boundaries
between code and language are increasingly blurred. To align with practical use cases, our benchmark
covers a wide spectrum of scenarios including: (1) NL only in the prefix, (2) code only in the prefix,
(3) mixed NL and code in the prefix, (4) various NL forms including docstrings, inline comments,
block comments, and user-facing documentation, and (5) different documentation styles across
programming languages (e.g., Python docstrings, JavaDoc, JSDoc, XML docs, and Doxygen).
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Figure 1: This diagram presents the end-to-end DevBench pipeline, starting with developer telemetry
analysis to define six code completion categories. Evaluation instances are synthetically generated
and refined through human review. Final evaluation combines functional correctness, similarity-based
metrics, and LLM-based judgment to assess functional, semantic, and holistic model performance.

Low Context: This category evaluates a model’s ability to complete code using minimal context
(10–20 lines total), requiring it to recognize language-specific patterns and idioms. These tasks are
carefully designed to be solvable despite limited information, testing the model’s deep understanding
of programming conventions without relying on broader context.

Pattern Matching: This category tests a model’s ability to recognize and extend established code
patterns within realistic contexts. Each test includes 2–3 clear examples in the prefix, combining a
technical pattern (e.g., error handling) with a domain context (e.g., security), ensuring the model
must follow the intended structure rather than generating arbitrary code.

Syntax Completion: This category tests a model’s ability to generate complex, nested structures
while adhering to language-specific syntax rules. Evaluation instances span four categories: nested
control structures, complex features, multi-line patterns, and error handling. The model must correctly
manage indentation, close code blocks, and match braces or parentheses, demonstrating mastery of
each language’s unique syntactic constructs.

2.3 Benchmark construction

DevBench covers key scenarios observed in real developer interactions, including both prefix-only
completions and fill-in-the-middle (FIM) cases where a suffix is provided. Completions may begin
at arbitrary points within a sentence, reflecting practical usage patterns. Each evaluation instance
consists of four components: (1) a prefix providing the preceding code context, (2) a completion
as the expected model output, (3) a suffix representing subsequent code, and (4) assertions to
validate correctness. For Java, C#, and C++, assertions are embedded in the suffix, while for Python,
JavaScript, and TypeScript, they are placed in a separate section. This design supports evaluation of
both syntactic and semantic correctness in a manner consistent with real coding workflows.

Figure 1 summarizes the construction pipeline. Synthetic instances were generated with OpenAI’s
GPT-4o, chosen for its fluency, reasoning, and code generation capabilities [OpenAI et al., 2024].
Recent studies suggest GPT-4o introduces minimal stylistic bias [Maheshwari et al., 2024, Chen
et al., 2024], and our human validation further mitigates risks; notably, multiple non-GPT models
(e.g., Claude 3.5 Sonnet, DeepSeek-V3) outperform GPT-4o on DevBench (Section 4). Generation
used temperature 0.7 with a 4000-token limit.

Each synthetic instance was first screened via automatic syntax checks, then reviewed manually with
a custom annotation tool displaying prefix, completion, and suffix together. Annotators evaluated
three dimensions: (1) usefulness (does the completion satisfy a plausible developer need?), (2) realism
(does it fit real-world workflows?), and (3) category alignment (is it consistent with the intended task
type?). For example, API Usage cases were checked for correct library calls, while Low Context
cases were validated for minimal but sufficient context.

Rejected samples—typically due to low challenge or category mismatch—were regenerated and
re-verified. This hybrid process yielded 1,800 high-quality evaluation instances (50 per category per
language), each grounded in telemetry-derived patterns yet privacy-preserving and contamination-
resistant. All instances are executable with assertions, enabling assessment of both syntax and
functionality, though execution environments are fully implemented only for Python at present.
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Table 3: Complexity of the benchmarks

Metric DevBench
(ours)

CrossC
odeE

val

CoderE
val

-Py

CoderE
val

-Ja
va

APPS
Human

Eval

MBPP
Conco

de

CoNaL
A

DS-1000

Avg. LOC 61.8 71.1–
116.5

32.0 10.2 21.4 11.5 6.8 4.8 1.0 3.8

Cyclomatic
Complexity

4.9 – 4.7 3.1 – 3.6 – 1.4 – –

Table 4: DevBench language-specific statistics
Language Prefix LOC Completion LOC Total LOC Prefix Tokens Completion Tokens Cyclomatic
Python 19.5 4.2 40.4 92.5 21.8 2.2
C# 47.2 4.7 67.8 181.1 30.3 4.2
C++ 42.0 5.1 60.9 194.2 39.4 5.7
Java 34.7 4.9 55.3 153.7 36.1 4.6
JavaScript 40.1 5.9 69.9 217.9 43.1 6.2
TypeScript 49.6 6.9 76.6 282.6 52.4 6.5

Average 38.8 5.3 61.8 187.0 37.2 4.9

Complexity. To assess the complexity of DevBench, we report lines of code (LOC), token counts,
and cyclomatic complexity [Landman et al., 2016]. As shown in Table 3 and Table 4, DevBench
offers higher complexity and realism than prior benchmarks, with evaluation instances averaging
61.8 LOC and a cyclomatic complexity of 4.9. Importantly, DevBench maintains a balanced prefix-
to-completion ratio: completions average 5.3 LOC, with 187.0 tokens in the prefix and 37.2 in the
completion. In contrast, CrossCodeEval features long prompts (71–116 LOC) but extremely short
completions (1–2 LOC). This balance makes DevBench more reflective of practical code-completion
workflows, where both context and generated code contribute meaningfully to task complexity.

3 Evaluation methods

Given the challenges in evaluating LLMs, we employ a combination of methods: functionality
correctness; similarity-based metrics, which offer fast, scalable evaluation across languages; and
LLM-judge evaluations to assess output quality from a human-aligned perspective.

3.1 Functional correctness

For functionality correctness, we report Pass@1 (single-attempt success rate) [Chen et al., 2021].
Currently, execution-based evaluation is fully implemented for Python evaluation instances. For
the remaining five languages, we ensure golden completion reliability through automatic syntax
validation using language-specific compilers, expert review to verify assertion satisfaction, and
spot-check execution testing.

3.2 Similarity-Based evaluation

To capture complementary aspects of model performance, we use two widely adopted similarity
metrics: Average Cosine Similarity and Line 0 Exact Match Rate. Average Cosine Similarity assesses
semantic equivalence across the full completion, even when syntax differs, while Line 0 Exact Match
focuses on strict precision at the start of the completion.

Average Cosine Similarity: We use token-based cosine similarity [Zhou et al., 2023] to measure
semantic overlap between the model-generated and golden completions. Formally, we tokenize both
texts and compute:

CosineSimilarity(A,B) =
A ·B

||A|| · ||B||
(1)
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where A and B are token count vectors. When tokenization fails due to unusual code constructs, we
fall back to character n-grams (1-3) to ensure robust comparison across all samples.

Line 0 Exact Match Rate: We calculate the Exact Match Rate [Ding et al., 2023] between the first
lines of model-generated and golden completions. This strict metric measures the percentage of cases
where the model produces exactly the same first line as the reference solution:

Line0ExactMatch(A,B) =

{
1, if Aline0 = Bline0

0, otherwise
(2)

where Aline0 and Bline0 are the first lines of the model-generated and golden completions, respectively.

3.3 LLM-judge evaluation

For automated code quality evaluation, we designed an LLM-based judge that scores each completion
along two dimensions: relevance to the provided context and helpfulness in advancing the task.
These dimensions were chosen because they correlate strongly with developer telemetry signals
(accept/reject/edit) and reflect how practitioners evaluate code in practice. Each aspect is rated on a
0–5 scale, yielding a combined score from 0 to 10.

Bias Mitigation. We employ o3-mini as the judge model, selected for its favorable bias profile:
according to the OpenAI System Card, it shows the lowest measured bias among comparable models
on discrimination tasks [Tong and Zhang, 2024]. To align evaluation with real developer preferences,
we calibrated the judge prompt against acceptance signals in telemetry data, refining both phrasing
and rating granularity to emphasize practical utility over superficial similarity.

To further reduce evaluation bias, the judge is never informed of the identity or architecture of the
model producing the completion. Empirically, o3-mini does not display self-preference bias—other
models (e.g., Claude 3.5 Sonnet, DeepSeek-R1) achieve higher judged scores in our experiments
(Section 4)—indicating that rankings are driven by code quality rather than architectural affinity.

Confidence Interval. For each model, we compute average scores by programming language and
evaluation scenario. We then aggregate completions within each language to obtain an overall average
and a 95% confidence interval, estimated via 10,000 bootstrap resamples. Finally, we report the
overall average score across all languages and completions with its corresponding confidence interval.

4 Experiments

4.1 Experimental setup

We evaluated a diverse set of state-of-the-art language models to capture code generation performance
across varying training approaches and scales. Our selection includes multiple OpenAI models
(e.g., GPT-4o, GPT-4o mini [OpenAI et al., 2024], GPT-4.1 mini [OpenAI et al., 2025a], GPT-
4.1 nano [OpenAI et al., 2025a], and o3-mini [OpenAI et al., 2025b]), Anthropic’s Claude 3.5
[Anthropic, 2024] and 3.7 Sonnet [Anthropic, 2025], DeepSeek-R1 [DeepSeek-AI et al., 2025a]
and V3 [DeepSeek-AI et al., 2025b], GitHub’s GPT-4o Copilot (April 2025) [GitHub, 2025], and
Ministral-3B [Mistral, 2025] as a representative compact open model.

We designed our evaluation to mirror realistic usage scenarios. Following prior work [Jain et al.,
2024], we used a temperature of 0.2 for more deterministic completions and set a maximum output
length of 800 tokens to accommodate complex completions without excessive inference cost. All
models used temperature-controlled nucleus sampling with a top-p of 1.0, preserving the full token
distribution while modulating randomness via temperature. For LLM-judge evaluation we used
o3-mini as a strong reasoning model with default settings (temperature=1.0 and top-p=1.0).

Models were evaluated in a zero-shot setting, each prompted using a consistent, code-only template,
excluding explanations or comments. For models with format-specific outputs (e.g., Claude’s special
tags), we applied post-processing to extract functional code for fair comparison. See Appendix E.3
for more prompt details.

Our benchmark generation and evaluation workloads were distributed across cloud-based model APIs
and local computing resources. Model API calls were orchestrated from a standard laptop (11th Gen
Intel i7-1165G7 @ 2.80GHz with 16GB RAM) running Python 3.10. For benchmark generation,
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Table 5: Pass@1 rates across code completion categories. All results used a temperature of 0.2.

Model Overall ↓ API Usage Code Purpose Code2NL/NL2Code Low Context Pattern Matching Syntax

Claude 3.7 Sonnet 76.25% 80.00% 84.00% 66.00% 90.00% 68.00% 60.00%
Claude 3.5 Sonnet 75.31% 82.00% 84.00% 64.00% 90.00% 66.00% 62.00%
DeepSeek-V3 73.75% 78.00% 82.00% 62.00% 86.00% 62.00% 66.00%
GPT-4.1 mini 73.44% 76.00% 74.00% 64.00% 88.00% 60.00% 72.00%
GPT-4o 71.56% 74.00% 78.00% 62.00% 90.00% 54.00% 66.00%
o3-mini 70.62% 78.00% 76.00% 60.00% 80.00% 54.00% 70.00%
GPT-4o Copilot 69.69% 74.00% 74.00% 58.00% 88.00% 50.00% 68.00%
GPT-4o mini 68.12% 72.00% 70.00% 64.00% 86.00% 48.00% 66.00%
DeepSeek-R1 63.12% 74.00% 74.00% 54.00% 82.00% 42.00% 48.00%
GPT-4.1 nano 57.19% 58.00% 60.00% 50.00% 68.00% 42.00% 62.00%
Ministral 3B 41.25% 46.00% 44.00% 34.00% 56.00% 36.00% 24.00%

using the OpenAI API (GPT-4o) to create synthetic evaluation instances required approximately 2-5
hours of wall-clock time for all languages, depending on API latency and excluding human review
time. Each individual model evaluation on the complete benchmark required approximately 1.5-3
hours of wall-clock time, also dependent on the API latency. The Python execution component of
our evaluation pipeline, which verifies functional correctness, was executed on the same laptop and
required approximately 15 minutes per model (details in Appendix E.1).

4.2 Results and insights

4.2.1 Functional correctness (Pass@1)

Table 5 shows Pass@1 results, i.e., the percentage of completions that pass all assertions on the first
attempt across the Python cases, revealing several notable findings.

Top Performers: Claude 3.7 Sonnet (76.25%), Claude 3.5 Sonnet (75.31%), and DeepSeek-V3
(73.75%) achieved the highest overall performance.

Small-Size Models: Ministral-3B achieves a modest overall Pass@1 of 41.25%.

Syntax Completion: GPT-4.1 mini outperforms larger models in the Syntax Completion category
(72% vs GPT-4o 66%), similarly DeepSeek-V3 outperforms in the same category (66%) relative to
DeepSeek-R1 (48%). This suggests that syntactic completion capabilities may not strictly correlate
with model size or overall performance.

Pattern Matching: The Pattern Matching category shows wide variance: top models reach 66–68%,
whereas GPT-4.1 nano and Ministral-3B lag at 42% and 36%. This shows that the ability to identify
and extend established patterns in code is a differentiator between candidate models.

API Usage: Claude 3.5 Sonnet leads with 82%, followed by Claude 3.7 Sonnet at 80%, while small
models GPT-4.1 nano and Ministral-3B lag at 58% and 46%.

4.2.2 Similarity-Based evaluation

Table 6 reports similarity metrics across languages for all models evaluated in our benchmark. Due to
space constraints, Figure 2 focuses on four representative models that capture the breadth of the current
model landscape: o3-mini (OpenAI’s reasoning-focused model), Claude 3.7 Sonnet (Anthropic’s
foundation model), DeepSeek-V3 (a leading open-source model), and GPT-4o (OpenAI’s proprietary
model). The complete set of similarity results is available in Appendix E.4. Key observations from
Figure 2 and Table 6 are discussed below.

High Performers: Claude 3.7 Sonnet exhibits the lowest Average Cosine Similarity variance,
indicating strong cross-language consistency. Similarly, DeepSeek-R1 shows a generalist profile with
low Line 0 Exact Match Rate variance, suggesting stable performance across languages. GPT-4o and
GPT-4o Copilot perform particularly well in Java and C++.

Most and Least Challenging Categories: In line with the Pass@1 results, the Low Context category
consistently achieves the highest scores across models. Conversely, Code2NL/NL2Code remains the
most difficult category, reinforcing our earlier observation that bidirectional translation between NL
and code continues to pose a significant challenge for current models.
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Figure 2: Similarity metrics by task category for representative models (all languages).

Table 6: Similarity metrics across programming languages. All results used a temperature of 0.2.

Average Cosine Similarity Line 0 Exact Match Rate (%)

Model Py JS TS Java C++ C# Py JS TS Java C++ C#

Claude 3.7 Sonnet 0.65 0.60 0.50 0.70 0.68 0.66 44.67 44.67 34.33 55.0 54.33 47.67
Claude 3.5 Sonnet 0.70 0.59 0.54 0.77 0.76 0.69 49.33 42.0 37.33 60.0 60.33 49.0
DeepSeek-V3 0.70 0.62 0.58 0.76 0.75 0.68 49.0 43.67 39.67 61.33 59.0 44.67
GPT-4.1 mini 0.70 0.60 0.51 0.72 0.72 0.66 51.0 44.0 36.67 55.0 58.0 46.0
GPT-4o 0.69 0.63 0.56 0.76 0.75 0.69 48.67 47.67 37.67 62.33 61.67 51.0
o3-mini 0.62 0.53 0.45 0.64 0.69 0.59 43.67 35.0 26.0 48.67 54.67 36.33
GPT-4o Copilot 0.66 0.61 0.51 0.75 0.71 0.67 46.0 44.67 32.67 60.67 57.0 48.0
GPT-4o mini 0.64 0.58 0.50 0.70 0.70 0.66 43.33 40.0 30.33 54.33 56.33 42.67
DeepSeek-R1 0.68 0.60 0.55 0.68 0.73 0.65 44.33 40.67 34.0 52.67 54.33 43.0
GPT-4.1 nano 0.59 0.50 0.46 0.66 0.63 0.60 35.33 30.0 27.33 45.33 48.33 34.33
Ministral-3B 0.52 0.38 0.35 0.50 0.42 0.51 29.0 18.67 14.67 27.67 22.67 25.33

Metric Discrepancies: In Pattern Matching, Claude 3.7 Sonnet scores 68% on Pass@1 but only
50.0% on Line 0 Exact Match Rate and 0.69 in Average Cosine Similarity. In contrast, DeepSeek-V3
achieves higher similarity (56.67%, 0.74) but lower Pass@1 (62%). This discrepancy helps identify
areas where deeper analysis is needed to understand model behavior. For example, DeepSeek-V3
reliably replicates familiar code patterns but sometimes fails to maintain full functional correctness,
while Claude’s solutions, while functionally correct, frequently employ alternative implementation
approaches that diverge syntactically from the reference solutions which match patterns.

Challenging Language: TypeScript emerges as the most challenging language with an average
performance drop of 23.9% compared to the average scores. This consistent difficulty stems from its
complex type system and the need to maintain strict type consistency throughout the code.

Please see Appendix B and Appendix D for qualitative examples of the mentioned behaviors.

4.2.3 LLM-judge evaluation

Figure 3 presents the final LLM-judge scores with 95% confidence intervals and Appendix C
provides a detailed breakdown by category and language. Unlike functionality- and similarity-based
evaluations, the LLM-judge uses subjective, qualitative assessments, leading to rankings that may
differ from those of other methods.

High Performers: Claude 3.5 Sonnet ranks highest according to the LLM-judge, followed closely
by DeepSeek-R1 and o3-mini, revealing a ranking that differs from other evaluation methods.

Reasoning-Oriented Models: Compact, reasoning-focused models like o3-mini outperform larger,
non-reasoning-centric models such as GPT-4o and Claude 3.7 Sonnet. These models likely benefit
from chain-of-thought decomposition capabilities that enhance their ability to interpret and structure
code completions in a contextually relevant manner.

Smaller Models: Smaller models tend to show wider confidence intervals, indicating greater vari-
ability and reduced consistency—particularly on complex or edge-case prompts—even when their
average performance is competitive.
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Figure 3: Final model scores with 95% confidence intervals, based on LLM-judge evaluation.

4.3 Diagnostic Case Study: DeepSeek-V3

DevBench’s multi-metric framework enables fine-grained model diagnosis beyond aggregate rankings.
Consider DeepSeek-V3: while achieving competitive overall performance, our analysis reveals
specific improvement opportunities.

Syntax vs. Semantics: DeepSeek-V3 excels in Pattern Matching similarity in Table 8 (Average
Cosine 74% vs. Claude 3.7 Sonnet’s 69% and Line 0 Exact Match Rate 56.67% vs. 50%) but
underperforms in functional correctness in Table 5 (62% vs. 68% Pass@1). This pattern indicates
heavier reliance on pattern memorization than true semantic understanding. Manual review of failure
cases confirms that DeepSeek-V3 often produces code syntactically close to the golden solution but
functionally incorrect.

Category-Level Patterns: Based on Table 8, the model demonstrates strong performance in
Pattern Matching (0.74 vs 0.69) and Syntax Completion (0.67 vs. 0.61) but underperforms in
Code2NL/NL2Code tasks (0.53 vs. 0.58). This disparity reveals the model’s tendency to memorize
surface patterns rather than deeply understand and generate code in semantically rich tasks requiring
bidirectional translation between natural language and code.

Language-Specific Gaps: While DeepSeek-V3 performs strongly in Python, it underperforms in
C++ and Java, ranking 6th and 7th respectively (Table 7). Our cross-model analysis suggests potential
gains, as structurally similar languages like C++ and Java often benefit from shared improvements.

Preserving Strengths: DeepSeek-V3 already excels in Syntax Completion and Python development,
areas that should be maintained during future fine-tuning to avoid catastrophic forgetting.

These insights translate to actionable training priorities: (1) emphasize pattern extension and reasoning
during fine-tuning to reduce over-reliance on memorization, (2) increase Code2NL/NL2Code training
examples to improve semantic understanding, (3) include more Java and C++ samples in the training
mix to close performance gaps, and (4) maintain current strengths in Python and Syntax Completion.

5 Conclusion

We introduced DevBench, a synthetic benchmark grounded in developer telemetry, enabling fine-
grained, realistic code completion evaluation across six languages and task categories, resulting
in 1,800 evaluation instances, with a focus on ecological validity, contamination resistance, and
interpretability.

DevBench offers detailed insights into model behavior. Evaluating 11 state-of-the-art models,
we observed consistent strengths in low-context pattern recognition and persistent challenges in
bidirectional natural language–code translation and syntactic alignment. Our multi-pronged evalua-
tion—combining functional correctness, similarity metrics, and LLM-judge assessments—revealed
nuanced differences such as cross-language consistency and robustness across task types. By releas-
ing the benchmark and its generation infrastructure, we aim to support the research community in
advancing more accountable, targeted, and practical evaluation of code generation models.
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A Further category examples

A.1 API Usage

To illustrate this category, consider the following Python example that evaluates a model’s ability to
correctly implement asynchronous HTTP requests using the Tornado library:

Example 1: Python API Usage #1

import asyncio
from tornado.httpclient import AsyncHTTPClient

async def fetch_url(url):
client = AsyncHTTPClient ()
try:

Prefix

response = await client.fetch(url)

Golden Completion

finally:
client.close()

return response.body
...

Suffix

This example demonstrates several key aspects of our API Usage category. First, it tests knowledge of
proper asynchronous programming in Python using Tornado’s HTTP client. The model must correctly
implement the await keyword with the appropriate API method (client.fetch). The prefix
establishes the asynchronous context and resource acquisition, while the suffix ensures proper resource
cleanup via the finally block. This pattern of establishing context, implementing specialized API
calls, and ensuring proper resource management is representative of real-world coding scenarios that
developers encounter when working with external libraries.
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A.2 Code2NL/NL2Code

The following example demonstrates the Code2NL aspect of this category, where a model must
generate appropriate documentation for a C++ financial class:

Example 2: C++ Code2NL/NL2Code #4

#include <iostream >
#include <string >
#include <vector >
#include <cassert >

Prefix

/**
* @brief Represents a financial instrument in a portfolio.
* @param name The name of the instrument.
* @param price The price of the instrument.
* @param risk The risk factor of the instrument.
*/

Golden Completion

class FinancialInstrument {
public:

FinancialInstrument(std:: string name , double price , double risk) :
name_(name), price_(price), risk_(risk) {}

/// @brief Gets the name of the instrument.
/// @return The name of the instrument.
std:: string getName () const { return name_; }

/// @brief Gets the price of the instrument.
/// @return The price of the instrument.
double getPrice () const { return price_; }

/// @brief Gets the risk factor of the instrument.
/// @return The risk factor of the instrument.
double getRisk () const { return risk_; }

private:
std:: string name_;
double price_;
double risk_;

};

...

Suffix

In this example, the model must generate Doxygen-style documentation for a C++ class constructor
by inferring the class’s purpose and parameters from the subsequent implementation. The prefix
contains only standard C++ includes, providing minimal context, while the suffix shows the full
class implementation with member functions already documented. The model must understand both
the domain context (financial instruments in a portfolio) and the Doxygen documentation format,
including the appropriate use of @brief for the class description and @param tags for each constructor
parameter. This tests the model’s ability to extract semantic meaning from implementation details
and express it in standardized documentation format. The model must "reverse engineer” code
understanding into NL explanation, following language-specific documentation conventions that
would be expected in professional C++ codebases.
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A.3 Low Context

The following example demonstrates how this category tests programming pattern recognition with
minimal context in C#:

Example 3: C# Low Context #47

using System;
using System.Collections.Generic;
using System.Diagnostics;

public class CustomPaginator <T>
{

private readonly List <T> _items;
private readonly int _pageSize;

public CustomPaginator(List <T> items , int pageSize)
{

_items = items;
_pageSize = pageSize;

}

public IEnumerable <IEnumerable <T>> GetPages ()
{

Prefix

for (int i = 0; i < _items.Count; i += _pageSize)
{

yield return _items.GetRange(i, Math.Min(_pageSize , _items
.Count - i));

Golden Completion

}
}

}

...

Suffix

In this example, the model must implement a pagination iterator with minimal surrounding context.
With just the class structure, field definitions, and method signature, the model must infer that an
iterator pattern using C#’s yield return statement is the idiomatic approach for implementing a
paginator. The golden completion demonstrates key C# idioms: using a for loop for pagination
control, calculating page boundaries with Math.Min() to handle the last page case, and most
importantly, using the yield return pattern to create a lazy enumeration of pages. This pattern is
specific to C# and allows for deferred execution of the pagination logic. The model must recognize
from the return type IEnumerable<IEnumerable<T» that the method should return a sequence of
sequences without materializing the entire result set at once. This example highlights how even with
minimal context (less than 15 lines total), models must demonstrate deep understanding of language-
specific patterns and implement idiomatic solutions that align with the established programming
conventions for each language.

A.4 Syntax Completion

The following example demonstrates how this category tests understanding of Java’s modern func-
tional syntax features:

Example 4: Java Syntax Completion #5

13



import java.util.Optional;

public class User {
private String name;
private String email;

public User(String name , String email) {
this.name = name;
this.email = email;

}

public String getName () {
return name;

}

...
}

public class UserService {
...

public String getUserNameOrDefault(String email) {
Optional <User > userOpt = findUserByEmail(email);

Prefix

return userOpt.map(User:: getName).orElse("Unknown User");

Golden Completion

}

public static void main(String [] args) {
UserService userService = new UserService ();
String userName = userService.getUserNameOrDefault("

test@example.com");
assert userName.equals("Test User") : "Expected 'Test User ',

but got " + userName;
userName = userService.getUserNameOrDefault("unknown@example.

com");
assert userName.equals("Unknown User") : "Expected 'Unknown

User ', but got " + userName;
}

}

Suffix

In this example, the model must demonstrate understanding of Java’s Optional API and method
chaining syntax, which are modern Java features introduced to handle nullable values functionally.
The prefix establishes a scenario where a user might be found by email address, returning an
Optional<User> that could be empty. The golden completion showcases several Java-specific
syntax elements in a single line: the functional-style map operation with method reference syntax
(User::getName), followed by chained method invocation with the terminal operation orElse to
provide a default value. This completion requires precise syntax understanding as it involves multiple
Java-specific features: proper method chaining, correct use of method references, and appropriate
handling of the Optional container. The suffix validates the implementation with assertions testing
both the successful case and the default fallback. This example tests the model’s ability to produce
syntactically correct Java code that leverages modern language features, demonstrating mastery
beyond basic language syntax. The conciseness of the golden completion—accomplishing a common
nullable-handling pattern in a single expressive line—is representative of idiomatic modern Java
programming that models should be capable of generating.
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A.5 Pattern Matching

The following example illustrates how this category tests pattern recognition in a Java functional
programming context:

Example 5: Java Pattern Matching #29

import java.util.List;
import java.util.ArrayList;
import java.util.function.Function;

// This class demonstrates the use of higher -order functions to apply
different transformations to a list of integers

public class HigherOrderFunctionsDemo {

// Method to apply a transformation to a list of integers
public static List <Integer > transformList(List <Integer > list ,
Function <Integer , Integer > transformation) {

...
}

// Sample transformations
public static Function <Integer , Integer > square = x -> x * x;
public static Function <Integer , Integer > cube = x -> x * x * x;
public static Function <Integer , Integer > negate = x -> -x;

public static void main(String [] args) {
List <Integer > numbers = new ArrayList <>();
for (int i = 1; i <= 5; i++) {

numbers.add(i);
}

// Apply the square transformation
List <Integer > squaredNumbers = transformList(numbers , square);
System.out.println("Squared Numbers: " + squaredNumbers);

// Apply the cube transformation
List <Integer > cubedNumbers = transformList(numbers , cube);
System.out.println("Cubed Numbers: " + cubedNumbers);

Prefix

// Apply the negate transformation
List <Integer > negatedNumbers = transformList(numbers , negate);
System.out.println("Negated Numbers: " + negatedNumbers);

Golden Completion

// Assertions
assert squaredNumbers.equals(List.of(1, 4, 9, 16, 25)) : "

Squared numbers are incorrect";
assert cubedNumbers.equals(List.of(1, 8, 27, 64, 125)) : "

Cubed numbers are incorrect";
assert negatedNumbers.equals(List.of(-1, -2, -3, -4, -5)) : "

Negated numbers are incorrect";
}

}

Suffix

In this task, the model extends a functional programming pattern in Java, where higher-order functions
are applied to transform a list of integers. The prefix includes two examples (squaring and cubing)
using a consistent structure: defining a transformation, applying it via transformList, and printing
results with a descriptive message. The model must follow this structure and semantics to implement
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a third transformation (negate). This tests the model’s ability to recognize and continue idiomatic
Java patterns using higher-order functions in a well-defined context.

A.6 Code Purpose Understanding

The following example illustrates and example in the financial domain context:

Example 6: Python Code Purpose Understanding #5

class BankAccount:
def __init__(self , account_number , balance =0):

self.account_number = account_number
self.balance = balance

...

def withdraw(self , amount):
if amount > 0 and amount <= self.balance:

self.balance -= amount
return self.balance

else:
raise ValueError("Insufficient funds or invalid withdrawal

amount")

def transfer(self , target_account , amount):

Prefix

if amount > 0 and amount <= self.balance:
self.withdraw(amount)

else:
raise ValueError("Insufficient funds or invalid transfer

amount")

Golden Completion

target_account.deposit(amount)
return self.balance

...

Suffix

In this task, the model implements the transfer method in a BankAccount class, requiring it to
validate that the amount is positive and funds are sufficient. It must reuse the existing withdraw
method for consistency and raise a domain-specific error if validation fails. This goes beyond syntax,
testing the model’s ability to reason about object-oriented structure and financial business logic.

B Illustrative model comparison

Example 7: Python Pattern Matching #18

class DataValidator:
def __init__(self , schema):

self.schema = schema

def validate(self , data):
errors = []
for field , rules in self.schema.items():

if field not in data:
errors.append(f'Missing field: {field}')

else:
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value = data[field]
for rule , expected in rules.items():

if rule == 'type' and not isinstance(value ,
expected):

errors.append(f'Field {field} should be of
type {expected.__name__}')

elif rule == 'min_length ' and len(value) <
expected:

errors.append(f'Field {field} should be at
least {expected} characters long')

Prefix

elif rule == 'max_length ' and len(value) >
expected:

errors.append(f'Field {field} should be at
most {expected} characters long')

Golden Completion

elif rule == 'max_length ' and len(value) >
expected:

errors.append(f'Field {field} should be at
most {expected} characters long')

elif rule == 'required ' and not value:
errors.append(f'Field {field} is required ')

Model Completion (DeepSeek-V3)

elif rule == 'max_length ' and len(value) >
expected:

errors.append(f'Field {field} should be at
most {expected} characters long')

elif rule == 'min_value ' and value < expected:
errors.append(f'Field {field} should be at

least {expected}')
elif rule == 'max_value ' and value > expected:

errors.append(f'Field {field} should be at
most {expected}')

Model Completion (Claude 3.7 Sonnet)

return errors

schema = {
'name': {'type': str , 'min_length ': 3},
'age': {'type': int}

}

validator = DataValidator(schema)
data_valid = {'name': 'Alice', 'age': 30}
data_invalid = {'name': 'Al', 'age': 'thirty '}

errors_valid = validator.validate(data_valid)
errors_invalid = validator.validate(data_invalid)

assert errors_valid == []
assert errors_invalid == ['Field name should be at least 3 characters

long', 'Field age should be of type int']

print('All assertions passed!')

Suffix
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schema = {
'name': {'type': str , 'min_length ': 3, 'max_length ': 10},
'age': {'type': int}

}

validator = DataValidator(schema)
data_valid = {'name': 'Alice', 'age': 30}
data_invalid_length = {'name': 'Aliceeeeeeee ', 'age': 30}
data_invalid_type = {'name': 'Alice', 'age': 'thirty '}

errors_valid = validator.validate(data_valid)
errors_invalid_length = validator.validate(data_invalid_length)
errors_invalid_type = validator.validate(data_invalid_type)

assert errors_valid == []
assert errors_invalid_length == ['Field name should be at most 10

characters long']
assert errors_invalid_type == ['Field age should be of type int']

Assertions

The prefix code presents a DataValidator class that implements a validation framework for check-
ing data against a schema. The class has been partially implemented with methods to initialize
the validator and validate data, including checks for missing fields, type validation, and minimum
length validation. The established pattern is evident in the validation logic structure, where each
rule check follows a consistent "if/elif" pattern with appropriate error messages. This demonstrates
a real-world scenario where consistent validation rules are essential for maintaining data integrity.
The golden completion adds a single rule check for max_length that follows the established pattern
exactly, validating that field values do not exceed a maximum length and generating an appropriate
error message that matches the style of previous validation checks. This completion perfectly ex-
tends the pattern established in the prefix and is required to satisfy the assertions. DeepSeek-V3’s
completion correctly implements the required max_length validation rule, matching the golden
completion exactly, and then adds only one additional validation rule for the required property. While
this additional check is unnecessary for passing the assertions, DeepSeek-V3’s completion remains
relatively close to the golden standard by limiting its extension to a single additional validation rule
that follows the established pattern. Claude 3.7 Sonnet’s completion also correctly implements the
required max_length validation, but then extends the pattern with two unnecessary additional rules
for min_value and max_value validation. These additional rules, while following the established
pattern and potentially useful in a real validation system, represent a more significant deviation
from the golden completion compared to DeepSeek-V3’s response. The inclusion of these two extra
validation rules makes Claude 3.7 Sonnet’s completion less similar to the golden standard. The suffix
code and assertions validate the functionality, confirming that the required max_length validation
is essential for passing the tests. The example illustrates why DeepSeek-V3 demonstrates stronger
Average Cosine Similarity in Pattern Matching compared to Claude 3.7 Sonnet: it more closely
adheres to the minimal required pattern extension by adding fewer unnecessary validation rules.

C Detailed LLM-judge experimental results

The heat-map in Figure 4 shows the breakdown of LLM-judge scores by category and languages.

To better understand the relative performance of different models across programming languages,
Table 7 presents the LLM-judge scores with 95% confidence intervals for each model-language pair.

D Qualitative examples

We start with an example of a Python model completion that did not successfully execute and did not
closely resemble the golden completion from the benchmark.

Example 8: Python Pattern Matching #43

18



Figure 4: Breakdown of LLM-judge scores across models.
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Table 7: Programming language LLM-judge scores of different LLMs with 95% confidence intervals.

Model C++ C# Java JavaScript Python TypeScript

Claude 3.7 Sonnet 8.96 (8.71-9.19) 8.80 (8.51-9.07) 9.01 (8.75-9.25) 8.60 (8.28-8.90) 9.18 (8.96-9.39) 8.53 (8.23-8.83)
Claude 3.5 Sonnet 9.11 (8.89-9.33) 9.04 (8.81-9.27) 9.19 (8.96-9.42) 8.73 (8.44-8.99) 9.24 (9.03-9.43) 8.64 (8.35-8.92)
GPT-4o 8.98 (8.73-9.23) 8.99 (8.74-9.22) 9.20 (8.99-9.41) 8.71 (8.44-8.95) 8.90 (8.65-9.14) 8.11 (7.79-8.41)
DeepSeek-V3 8.92 (8.64-9.18) 9.13 (8.89-9.36) 9.00 (8.73-9.25) 8.53 (8.22-8.82) 9.16 (8.94-9.36) 8.42 (8.11-8.70)
GPT-4.1 mini 8.71 (8.42-8.99) 9.16 (8.93-9.37) 9.12 (8.87-9.35) 8.84 (8.58-9.08) 8.96 (8.72-9.20) 8.09 (7.75-8.43)
o3-mini 9.17 (8.92-9.39) 9.29 (9.06-9.50) 9.48 (9.30-9.65) 8.73 (8.43-9.01) 8.43 (8.08-8.73) 8.60 (8.29-8.90)
GPT-4o Copilot 8.47 (8.15-8.78) 8.37 (8.07-8.67) 8.41 (8.07-8.73) 7.60 (7.24-7.95) 8.37 (8.06-8.68) 7.38 (7.03-7.73)
GPT-4o mini 8.42 (8.10-8.72) 8.15 (7.83-8.47) 8.33 (7.98-8.65) 7.91 (7.60-8.22) 8.36 (8.06-8.66) 7.54 (7.21-7.87)
DeepSeek-R1 9.10 (8.87-9.32) 9.17 (8.95-9.36) 9.23 (9.01-9.43) 8.66 (8.38-8.95) 8.98 (8.73-9.20) 8.61 (8.32-8.88)
GPT-4.1 nano 7.58 (7.21-7.94) 8.02 (7.67-8.35) 8.41 (8.10-8.71) 7.71 (7.37-8.05) 8.15 (7.82-8.46) 7.59 (7.24-7.92)
Ministral-3B 7.88 (7.56-8.19) 7.81 (7.45-8.15) 7.99 (7.64-8.32) 7.71 (7.36-8.05) 7.74 (7.41-8.05) 7.70 (7.35-8.03)

import matplotlib.pyplot as plt
import numpy as np

class AnalyticsReport:
def __init__(self , data):

self.data = data

def generate_histogram(self , column):
plt.hist(self.data[column], bins=10, alpha =0.75)
plt.title(f'Histogram of {column}')
plt.xlabel(column)
plt.ylabel('Frequency ')
plt.grid(True)

def generate_line_chart(self , x_column , y_column):
plt.plot(self.data[x_column], self.data[y_column], marker='o',

linestyle='-')
plt.title(f'Line Chart of {y_column} vs {x_column}')
plt.xlabel(x_column)
plt.ylabel(y_column)
plt.grid(True)

Prefix

def generate_bar_chart(self , x_column , y_column):
plt.bar(self.data[x_column], self.data[y_column], alpha =0.75)
plt.title(f'Bar Chart of {y_column} vs {x_column}')
plt.xlabel(x_column)
plt.ylabel(y_column)
plt.grid(True)

Golden Completion

def generate_scatter_plot(self , x_column , y_column):
plt.scatter(self.data[x_column], self.data[y_column], alpha

=0.75)
plt.title(f'Scatter Plot of {y_column} vs {x_column}')
plt.xlabel(x_column)
plt.ylabel(y_column)
plt.grid(True)

Model Completion (Claude 3.7 Sonnet)

def generate_scatter_plot(self , x_column , y_column):
plt.scatter(self.data[x_column], self.data[y_column], alpha

=0.75)
plt.title(f'Scatter Plot of {y_column} vs {x_column}')
plt.xlabel(x_column)
plt.ylabel(y_column)
plt.grid(True)
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# Example usage
if __name__ == '__main__ ':

data = {
'age': np.random.randint (20, 50, size =100),
'height ': np.random.randint (150, 200, size =100),
'weight ': np.random.randint (50, 100, size =100)

}
report = AnalyticsReport(data)
report.generate_histogram('age')
report.generate_line_chart('height ', 'weight ')
plt.show()

Suffix

data = {
'age': np.random.randint (20, 50, size =100),
'height ': np.random.randint (150, 200, size =100),
'weight ': np.random.randint (50, 100, size =100)

}
report = AnalyticsReport(data)
report.generate_bar_chart('age', 'weight ')
assert hasattr(report , 'generate_bar_chart ')
assert callable(getattr(report , 'generate_bar_chart '))
assert plt.gcf().get_axes ()[-1]. get_title () == 'Bar Chart of weight vs

age'
plt.close('all')

Assertions

The prefix code shows an AnalyticsReport class with two visualization methods: a histogram and
a line chart generator. Both methods follow a consistent pattern of creating a plot, adding a title,
labels, and grid. The golden completion provides a generate_bar_chart method that follows
the same pattern established in the prefix code. This implementation is crucial for the assertions
that test functionality later in the code. The golden completion correctly maintains the structural
pattern of the other visualization methods, ensuring consistency in the codebase. Claude 3.7 Sonnet,
however, generated a generate_scatter_plot method, which already exists in the suffix, instead
of the expected bar chart. This implementation not only deviates from the task of creating a bar
chart, but also fails to pass the assertions that specifically test for the presence and functionality of
a generate_bar_chart method. While the scatter plot follows the general pattern of the other
visualization methods, it represents an incorrect solution to the task. The suffix code shows that the
expected implementation should have been a bar chart function, not a scatter plot. This discrepancy
reveals the model’s failure to properly understand the context and requirements of the task.

Now, we proceed with an example of a Python model completion that successfully executed but did
not closely resemble the golden completion from the benchmark.

Example 9: Python Code2NL/NL2Code #15

import requests

def fetch_data_from_api(url):
"""
Fetches data from the given API URL.

Parameters:
url (str): The API endpoint to fetch data from.

Returns:
dict: The JSON response from the API parsed into a dictionary.

Raises:
ValueError: If the response status code is not 200.
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"""
response = requests.get(url)
if response.status_code != 200:

raise ValueError("API request failed with status code {}".
format(response.status_code))
return response.json()

# Example usage:
# data = fetch_data_from_api('https :// api.example.com/data ')
# print(data)

Prefix

# Call the fetch_data_from_api function with a sample URL and handle
the response

Golden Completion

def main():
try:

data = fetch_data_from_api('https :// jsonplaceholder.typicode.
com/todos /1')

assert isinstance(data , dict), 'The fetched data should be a
dictionary '

print("Data fetched successfully.")
except ValueError as ve:

print("Error fetching data:", ve)

# Additional logic can be placed here

if __name__ == "__main__":
main()

Model Completion (Claude 3.7 Sonnet)

def main():
try:

data = fetch_data_from_api('https :// jsonplaceholder.typicode.
com/todos /1')

assert isinstance(data , dict), 'The fetched data should be a
dictionary '

print("Data fetched successfully.")
except ValueError as ve:

print("Error fetching data:", ve)

# Additional logic can be placed here

if __name__ == "__main__":
main()

Suffix

assert 'fetches data from the given api url' in fetch_data_from_api.
__doc__.lower()

assert 'parameters:' in fetch_data_from_api.__doc__.lower()
assert 'returns:' in fetch_data_from_api.__doc__.lower()
assert 'raises:' in fetch_data_from_api.__doc__.lower()
assert 'url (str)' in fetch_data_from_api.__doc__.lower()
assert 'dict: the json response from the api' in fetch_data_from_api.

__doc__.lower()
assert 'valueerror: if the response status code is not 200' in

fetch_data_from_api.__doc__.lower ()
try:

data = fetch_data_from_api('https :// jsonplaceholder.typicode.com/
nonexistent ')
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assert isinstance(data , dict), 'The fetched data should be a
dictionary '

except ValueError as ve:
assert str(ve) == 'API request failed with status code 404'

Assertions

The prefix code presents a fetch_data_from_api function that retrieves data from a given API
URL, with comprehensive documentation including parameters, return values, and potential excep-
tions. The code also includes commented examples of how to use the function, suggesting a pattern
for implementation. The golden completion adds a clear comment that describes what follows: a call
to the function with error handling. This simple, descriptive comment serves as NL guidance for the
subsequent code block, following good documentation practices. The comment effectively bridges
the gap between the function definition and its implementation, making the code more readable and
maintainable. This approach aligns with common user behavior observed in telemetry data. Claude
3.7 Sonnet, however, completely duplicated the main() function that already exists in the suffix code.
While this implementation technically works and passes the assertions, it demonstrates a failure to
recognize that the completion should complement rather than duplicate the suffix code. The model
has essentially copied the exact content of the suffix rather than providing a meaningful transition
between the prefix and suffix.

Now, we proceed with an example of a Python model completion that did not successfully execute
but closely resembles the golden completion from the benchmark.

Example 10: Python Pattern Matching #4

class DataValidator:
def __init__(self , schema):

self.schema = schema

def validate(self , data):
""" Validate data against the schema."""
errors = []
for field , field_type in self.schema.items ():

if field not in data:
errors.append(f"Missing field: {field}")

elif not isinstance(data[field], field_type):
errors.append(f"Incorrect type for field: {field}")

Prefix

else:
if isinstance(data[field], str) and not data[field].

strip():
errors.append(f"Empty field: {field}")

Golden Completion

elif not isinstance(data[field], field_type):
errors.append(f"Incorrect type for field: {field}")

Model Completion (DeepSeek-V3)

return errors

schema = {
"name": str ,
"age": int ,
"email": str

}

validator = DataValidator(schema)
data = {
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"name": "John Doe",
"age": 30,
"email": "john.doe@example.com"

}

errors = validator.validate(data)
assert errors == [], f"Unexpected errors: {errors}"

invalid_data = {
"name": "John Doe",
"age": "thirty",
"email": "john.doe@example.com"

}

errors = validator.validate(invalid_data)
assert "Incorrect type for field: age" in errors , f"Expected type

error for age , got: {errors}"
assert len(errors) == 1, f"Expected one error , got: {len(errors)}"

invalid_data = {
"age": 30,
"email": "john.doe@example.com"

}

errors = validator.validate(invalid_data)
assert "Missing field: name" in errors , f"Expected missing field error

for name , got: {errors}"
assert len(errors) == 1, f"Expected one error , got: {len(errors)}"

Suffix

schema = {
"name": str ,
"age": int ,
"email": str

}

validator = DataValidator(schema)
data = {

"name": "",
"age": 30,
"email": "john.doe@example.com"

}

errors = validator.validate(data)
assert "Empty field: name" in errors , f"Expected empty field error for

name , got: {errors}"
assert len(errors) == 1, f"Expected one error , got: {len(errors)}"

Assertions

The prefix code presents a DataValidator class that checks data against a schema, validating
both field presence and type matching. The validation method accumulates errors in a list and
handles two specific validation cases: missing fields and incorrect data types. The golden completion
extends the validation logic by adding a third check specifically for string fields, ensuring they
aren’t empty after stripping whitespace. The golden completion correctly introduces this check
as an else branch after the type validation, maintaining the logical flow of the validation process.
DeepSeek-V3, however, duplicated the existing type validation check rather than adding the new
empty string validation logic. This duplication creates a logical error, as the same condition (elif
not isinstance(data[field], field_type)) appears twice in sequence. While DeepSeek-
V3’s completion structurally resembles the golden completion in that it maintains the pattern of
adding conditions related to data[field] with appropriate error messages, it fails to introduce the
new validation logic needed to pass the assertions in the test suite. The assertion tests specifically
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verify the ability to detect empty string fields, which the model’s completion does not implement.
This example demonstrates how a model’s completion can closely resemble the golden solution in
structure while still containing critical logical errors that prevent proper execution.

E Additional benchmark and experimental details

E.1 Python execution

Our Python evaluation instance evaluation methodology implements a robust, secure, and reproducible
execution environment. Each evaluation instance consists of four components: a context prefix, a
golden completion (or model-generated completion during evaluation), a context suffix, and assertion
statements that verify correctness. The execution pipeline first combines these components into
a complete Python program with additional safeguards. We automatically insert a matplotlib
non-interactive backend configuration to prevent plt.show() calls from blocking execution, and we
handle environment variables securely to provide necessary API access while maintaining isolation.
Test execution occurs in a controlled subprocess with a 30-second timeout to prevent infinite loops,
and we implement comprehensive error handling for execution failures. When dependency-related
errors occur, our system automatically attempts to install the missing packages using pip before
retrying execution. Each evaluation instance runs in its own isolated environment to prevent cross-
contamination between tests, with proper cleanup of temporary files after execution. This approach
allows us to comprehensively evaluate models on executable code with real-world dependencies,
providing a high-fidelity measure of code completion performance that aligns with actual developer
workflows. The entire evaluation pipeline includes detailed logging and reporting functionality,
generating both human-readable reports and structured JSON output for further analysis.

E.2 Benchmark generation prompts

To create DevBench’s diverse and realistic evaluation instances, we developed specialized generation
prompts that captured the nuances of each programming language and code completion category.
These structured prompts guided the GPT-4o model to create evaluation instances that accurately
reflect real-world coding scenarios identified in our telemetry analysis. Each prompt was meticulously
crafted with specific instructions detailing the characteristic patterns, expected structures, and quality
requirements for generating valid evaluation instances. The prompts ensured consistent formatting
while maintaining language-specific idioms and patterns, balancing standardization with authentic
coding styles. In this section, we present the template prompts used for each language-category
pair, demonstrating how we systematically encoded the insights from our telemetry analysis into
generative instructions that produced high-quality synthetic evaluation instances while maintaining
evaluation instance realism. Due to space constraints, we only include one C++ prompt here; the
complete collection of prompts for all languages and categories is available in our code repository.

C++: API Usage Prompts

API_USAGE_SYSTEM_PROMPT = """
You are an expert C++ developer tasked with creating benchmark

examples for testing rare API usage and uncommon library function
capabilities in large language models.

Your role is to generate high -quality , realistic coding scenarios that
effectively test an LLM's ability to recognize and continue

established patterns in code involving uncommon APIs and library
functions.

Your output should be a single JSON object formatted as a JSONL entry.
The code must be fully executable C++ that passes all assertions.

Key Responsibilities:
1. Generate diverse examples from these API categories (rotate through

them , don't focus only on file operations or network protocols):
- Text and font processing (HarfBuzz , FreeType , ICU)
- Graphics and math libraries (DirectXMath , Eigen , GLM , OpenGL)
- Security/cryptography APIs (OpenSSL , Botan , Crypto++, wolfSSL)
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- System -level APIs (Windows SDK , POSIX , Linux Kernel , BSD , Mach)
- Standard libraries (C Standard Library , C++ Standard Library ,
GNU C Library)
- Web API integration (libcurl , Boost.Beast , cpp -httplib ,
cpprestsdk)
- Machine learning libraries (OpenCV , TensorFlow C++, PyTorch C++,
ONNX)
- Cloud services (AWS SDK for C++, Azure SDK for C++, gRPC)
- Database interfaces (SQLite , MySQL Connector C++, MongoDB C++
Driver , Redis)
- File formats and parsing (RapidJSON , nlohmann/json , tinyxml2 ,
yaml -cpp)
- Web frameworks (Drogon , Crow , oatpp , Pistache)
- Network protocols (Boost.Asio , ZeroMQ , nanomsg)
- Scientific computing (Eigen , Armadillo , Intel MKL , BLAS , LAPACK)
- GUI frameworks (Qt, wxWidgets , ImGui , GTK , FLTK)
- Multimedia (SDL , FFmpeg , OpenAL , libsndfile)
- Compression (zlib , bzip2 , LZMA , LZ4 , Zstandard)
- Cross -platform development (Boost , Qt, wxWidgets)
- Mobile development (Android NDK , iOS SDK , Core Foundation)
- Testing frameworks (Google Test , Catch2 , Boost.Test)
- Hardware acceleration (Intel Intrinsics , ARM NEON , CUDA , OpenCL)
- Legacy/deprecated APIs

2. Ensure patterns are clear and identifiable even with uncommon or
deprecated APIs

3. Create ground truth completions that represent best practices while
handling API versioning

4. Write assertions that meaningfully test both API correctness and
parameter ordering

5. Provide clear justification for why the example makes a good test
case

6. Ensure code quality:
- All code must be fully executable C++
- All assertions must pass when code is run
- Include necessary includes and namespaces
- Handle cleanup of resources
- Use proper exception handling
- Include minimal working examples
- Mock external dependencies where needed

7. Write robust assertions that:
- Verify actual API behavior
- Test parameter ordering
- Check error conditions
- Validate return values
- Mock external resources

When generating examples:
1. Focus on less common library functions and domain -specific APIs
2. Test the model 's handling of deprecated but valid API patterns
3. Ensure patterns include correct parameter ordering and naming

conventions
4. Include edge cases in API usage where relevant
5. Keep code focused on demonstrating rare but valid API interactions
"""

API_USAGE_USER_PROMPT = """
You are helping create a benchmark for rare API usage capabilities.

Your task is to generate a coding scenario that tests an LLM's
ability to recognize and

complete patterns in C++ code involving uncommon or deprecated APIs.

Generate a single JSONL entry testing rare API usage capabilities.
Choose from one of these categories (rotate through them , don't
focus only on file operations or network protocols):
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- Text and font processing (HarfBuzz , FreeType , ICU)
- Graphics and math libraries (DirectXMath , Eigen , GLM , OpenGL)
- Security/cryptography APIs (OpenSSL , Botan , Crypto++, wolfSSL)
- System -level APIs (Windows SDK , POSIX , Linux Kernel , BSD , Mach)
- Standard libraries (C Standard Library , C++ Standard Library ,
GNU C Library)
- Web API integration (libcurl , Boost.Beast , cpp -httplib ,
cpprestsdk)
- Machine learning libraries (OpenCV , TensorFlow C++, PyTorch C++,
ONNX)
- Cloud services (AWS SDK for C++, Azure SDK for C++, gRPC)
- Database interfaces (SQLite , MySQL Connector C++, MongoDB C++
Driver , Redis)
- File formats and parsing (RapidJSON , nlohmann/json , tinyxml2 ,
yaml -cpp)
- Web frameworks (Drogon , Crow , oatpp , Pistache)
- Network protocols (Boost.Asio , ZeroMQ , nanomsg)
- Scientific computing (Eigen , Armadillo , Intel MKL , BLAS , LAPACK)
- GUI frameworks (Qt, wxWidgets , ImGui , GTK , FLTK)
- Multimedia (SDL , FFmpeg , OpenAL , libsndfile)
- Compression (zlib , bzip2 , LZMA , LZ4 , Zstandard)
- Cross -platform development (Boost , Qt, wxWidgets)
- Mobile development (Android NDK , iOS SDK , Core Foundation)
- Testing frameworks (Google Test , Catch2 , Boost.Test)
- Hardware acceleration (Intel Intrinsics , ARM NEON , CUDA , OpenCL)
- Legacy/deprecated APIs

CRITICAL JSON FORMATTING REQUIREMENTS:
1. Your response MUST be a syntactically valid JSON object
2. PROPERLY ESCAPE all special characters in strings:

- Use \\" for double quotes inside strings
- Use \\n for newlines
- Use \\t for tabs
- Use \\\\ for backslashes

3. The entire JSON object must be on a SINGLE LINE
4. Do NOT include formatting or indentation outside the JSON structure
5. DO NOT use markdown code blocks (```) in your response
6. Test your JSON structure before completing your response

Required JSON fields:
- id: A unique numeric identifier
- testsource: Use "synthbench -api -usage"
- language: "cpp"
- prefix: The code that comes before the completion (may or may not

establish the API pattern)
- suffix: The code that follows the completion (may or may not

establish the API pattern) - should be DIFFERENT from the golden
completion AND should include necessary assertions

- golden_completion: The correct API implementation that maintains
consistency with prefix/suffix and will pass all assertions

- LLM_justification: Explain why this is a good test case and the
context behind it

- assertions: Leave this field as an empty string - all assertions
should be integrated into the suffix code

CRITICAL JSON FIELD REQUIREMENTS:
1. ALWAYS include ALL required JSON fields listed above , even if empty
2. The "assertions" field MUST be present with an empty string value:

"assertions": ""
3. Do NOT omit any fields from your JSON object
4. Format example showing required empty assertions field:

{"id": "42", ..., "assertions": ""}
5. INCORRECT: {"id": "42", ...} - missing assertions field

CRITICAL CHANGE - NEW SUFFIX REQUIREMENTS:
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1. The suffix must contain both execution code AND assertion code
2. Include assert () statements DIRECTLY IN THE SUFFIX at the

appropriate places
3. All assertions must be placed in the same function/class as the

code being tested
4. DO NOT create separate assertion functions or classes
5. Place assertions immediately after the code that should be tested
6. Never duplicate any golden_completion code in the suffix
7. The assertions must pass when the combined prefix +

golden_completion + suffix is run

Critical Requirements for Avoiding Duplication:
1. The golden_completion field should ONLY contain the solution code

that fills in the gap
2. The suffix must contain DIFFERENT code that follows after the

completion
3. Do NOT repeat any golden_completion code in the suffix
4. The suffix field should NEVER duplicate the golden_completion code
5. There should be a clear DISTINCTION between what goes in

golden_completion vs suffix
6. Ensure clear SEPARATION between completion and suffix content

Include Requirements:
1. Do NOT include headers unless they are ACTUALLY USED in at least

one of:
- prefix
- suffix (including assertions)
- golden_completion

2. Every included header must serve a clear purpose
3. Do not include "just in case" headers that aren't used
4. All required includes must appear in the prefix section
5. If an include is only needed for the golden_completion , it must

still appear in the prefix
6. Make sure to include <cassert > header for assert () statements

PREFIX LENGTH REQUIREMENTS - CRITICAL:
1. The PREFIX section MUST be SUBSTANTIALLY LONGER than other sections
2. The prefix MUST be AT LEAST 50-60 lines of code - this is an

absolute requirement
3. Provide extensive context and setup code in the prefix
4. Include helper functions , utility classes , and related code

structures
5. Add detailed comments and explanations within the prefix
6. The prefix should demonstrate a comprehensive but incomplete

implementation
7. Add relevant constants , configuration objects , and data structure

initialization

Indentation requirements:
1. All code sections must maintain consistent indentation
2. If code is inside a function/class:
- The prefix should establish the correct indentation level
- The golden_completion must match the prefix 's indentation
- The suffix must maintain the same indentation context
- Assertions should be at the appropriate scope level
3. Ensure proper dedenting when exiting blocks
4. All code blocks must be properly closed

The API pattern can be established either in the prefix or suffix code
.

The golden completion should demonstrate understanding and correct
usage of the API pattern regardless of where it is established.

Code requirements:
1. Must be fully executable C++ code

28



2. All assertions must pass when run
3. Include all necessary headers and namespaces
4. Mock external dependencies
5. Clean up resources properly
6. Handle errors appropriately
7. Assertions must be placed BEFORE cleanup code
8. Resource cleanup must be in the suffix AFTER all assertions
9. All assertions must complete before any cleanup occurs

CRITICAL CODE STRUCTURE REQUIREMENTS:
1. NEVER place code outside of functions or classes
2. ALL code must be contained within proper C++ scope boundaries
3. DO NOT place assertions or standalone code statements at the global

/namespace level
4. ALL assertions must be contained within functions (such as main()

or other functions)
5. ALWAYS ensure code is properly nested within appropriate class and

function structures
6. NEVER generate code that would compile as a partial class
7. NEVER duplicate class definitions - each class must be defined only

once
8. Verify that the beginning and end of classes and functions are

properly matched with braces {}
9. DO NOT leave any code statements outside of function bodies
10. Place all assertions within appropriate functions (main(), test(),

etc.)

CRITICAL ASSERTION PLACEMENT:
1. All assert () statements must be placed DIRECTLY IN THE SUFFIX code
2. Assertions should be placed immediately after the code that needs

to be verified
3. Assertions must be within the same function as the code being

tested
4. Assertions must be executed BEFORE any cleanup code
5. Assertions must be properly indented to match the surrounding code

structure
6. Use assert(condition) format for all assertions
7. Make sure <cassert > is included for assert () statements

Requirements:
1. The scenario should demonstrate a clear pattern recognizable with

the given context
2. The completion section should focus on rare library functions
3. The pattern should follow correct API conventions across different

versions
4. Ground truth should demonstrate proper parameter ordering
5. Assertions should verify API behavior and parameter correctness
6. Include comments indicating API version compatibility and parameter

requirements

Format your response as a single line JSON object with newlines
escaped appropriately.

Example format:
{"id": "1", "testsource": "synthbench -api -usage", "language": "cpp", "

prefix": "...", "suffix": "...", "golden_completion": "...", "
LLM_justification": "...", "assertions": "..."}

VALIDATION CHECKLIST BEFORE SUBMITTING:
1. Have you properly escaped ALL special characters?
2. Is your entire response a single , valid JSON object?
3. Are all string values properly quoted and terminated?
4. Have you verified there are no unescaped newlines in your strings?
5. Have you checked for balanced quotes and braces?
6. Is your prefix at least 50-60 lines of code?
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7. Have you used clear distinctions between golden_completion and
suffix?

8. Have you included all assertions DIRECTLY IN THE SUFFIX code?
9. Have you verified that assertions will pass when the code is

executed?
10. Is the assertions field included with an empty string value ("

assertions": "")?
11. Have you verified that ALL required fields are present in your

JSON?
12. Have you verified your example is NOT one of the prohibited

trivial examples?
13. Does your example meet ALL the complexity validation criteria?
14. Does your example demonstrate genuinely advanced C++ features?

Important:
- Never place cleanup code before assertions
- Keep all verification code before any cleanup
- Ensure resources exist when assertions run
- Use proper try/finally blocks if needed
- Maintain correct execution order
- ALL ASSERTIONS SHOULD BE IN THE SUFFIX , not in a separate assertions

field

Ensure the example is self -contained and can be evaluated
independently. All assertions must pass when run.

Use proper escaping for newlines/quotes and maintain indentation in
the escaped strings.

"""

E.3 Evaluation prompt

For our model evaluation process, we implemented a carefully designed prompt template focused on
precise code completion tasks. After initial experimentation revealed that different prompt formats
could significantly impact model performance, including Claude 3.7 Sonnet, due to formatting issues,
we selected a structured instruction-based approach that addresses common failure modes. Our code
repository contains the full evaluation prompt.

The selected prompt format provides clear examples demonstrating proper replacement behavior in
various scenarios, explicitly instructing models to maintain correct indentation and avoid duplicating
existing code structures. By standardizing the input format with clear #TODO: You Code Here
markers and providing explicit instructions against common mistakes, we created a more level
evaluation environment that better isolates models’ code understanding capabilities from prompt
interpretation abilities.

This evaluation prompt design aligns with real-world code completion scenarios where maintaining
contextual formatting is essential for functional correctness, ensuring our benchmark more accurately
reflects models’ practical utility in development environments. Performance differences observed
between models using this standardized prompt more reliably indicate their intrinsic code completion
capabilities rather than their ability to navigate ambiguous or unstructured prompting patterns.

E.4 Full similarity metrics by category

While the main paper presented similarity metrics for four representative foundation models to
maintain clarity and focus on key trends, we provide the complete results across all evaluated models
in Table 8. This expanded view offers a more comprehensive comparison of model performance
across different categories and similarity dimensions.

F Limitations and future directions

While DevBench represents a significant advancement in code generation evaluation, we identify
several opportunities for future enhancement and extension.
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Table 8: Similarity metrics across task categories. All reported results used a temperature of 0.2.

Average Cosine Similarity Line 0 Exact Match Rate (%)

Model API Code2NL Purpose Low Pattern Syntax API Code2NL Purpose Low Pattern Syntax
Usage NL2Code Underst. Context Matching Compl. Usage NL2Code Underst. Context Matching Compl.

Claude 3.7 Sonnet 0.51 0.58 0.65 0.75 0.69 0.61 30.0 49.67 49.0 59.33 50.0 42.67
Claude 3.5 Sonnet 0.60 0.56 0.73 0.77 0.73 0.67 35.67 48.33 54.33 58.33 54.0 47.33
GPT-4o 0.68 0.50 0.72 0.82 0.71 0.65 43.33 43.67 56.67 65.0 55.0 45.33
DeepSeek-V3 0.62 0.53 0.73 0.79 0.74 0.67 37.0 45.0 54.33 59.0 56.67 45.33
GPT-4.1 mini 0.62 0.50 0.72 0.78 0.67 0.62 37.33 42.0 54.67 61.67 50.67 44.33
o3-mini 0.58 0.43 0.67 0.74 0.55 0.56 34.33 34.67 47.33 55.67 38.0 34.33
GPT-4o Copilot 0.61 0.52 0.71 0.77 0.66 0.63 40.67 44.67 54.33 56.67 50.33 42.33
GPT-4o mini 0.62 0.46 0.70 0.78 0.64 0.59 37.67 36.67 51.0 57.0 46.67 38.0
DeepSeek-R1 0.63 0.47 0.70 0.77 0.68 0.64 35.0 38.0 50.67 54.0 48.67 42.67
GPT-4.1 nano 0.57 0.39 0.64 0.73 0.58 0.54 30.0 29.0 42.33 49.0 38.33 32.0
Ministral-3B 0.45 0.32 0.51 0.50 0.46 0.43 18.67 22.0 28.0 26.33 23.67 19.33

F.1 Expanding benchmark generation diversity

Our synthetic, telemetry-driven generation approach effectively prevents data contamination and
limits bias by leveraging GPT-4o as the generation model. To further enhance diversity, future
iterations could incorporate multiple foundation models with varied training backgrounds. This
approach will maintain our telemetry-driven, human-validated methodology while expanding stylistic
diversity.

The derivation of test categories from real-world telemetry data grounds our benchmark in authentic
developer experiences. Building on this foundation, future research could explore federated learning
approaches that enable even closer alignment with real developer interactions while maintaining
privacy safeguards.

F.2 Enhancing evaluation frameworks

The complementary evaluation metrics we employ (Pass@1, similarity-based metrics, and LLM-
judge assessments) provide multidimensional insights into model performance. The occasional
divergence between these metrics—such as cases where higher syntactic similarity does not correlate
with functional correctness—highlights an opportunity to develop composite metrics that better
capture the full spectrum of code quality dimensions relevant to developers.

Our LLM-judge uses o3-mini as the scoring model, selected for its favorable bias profile as doc-
umented in the OpenAI System Card showing lowest bias on discrimination tasks [OpenAI et al.,
2025b]. Future work could explore ensemble judging approaches, human-in-the-loop calibration, or
contrastive evaluation techniques that specifically control for stylistic biases, allowing for even more
robust evaluation.

Execution-based functional correctness evaluation is currently fully implemented only for Python
(300 instances). For the remaining five languages, we have implemented multiple safeguards to ensure
golden completion reliability: automatic syntax validation using language-specific compilers and
parsers for all test cases, expert review process where experienced developers verify that all golden
completions satisfy embedded assertions, spot-check execution testing performed manually across
samples from all five non-Python languages, and prompting safeguards that enforce syntactically
correct outputs with assertions, achieving 100% correctness in Python and high reliability in validated
non-Python samples.

Extending execution-based evaluation to all languages is our highest priority. We are developing
containerized execution environments for non-Python languages, leveraging language-specific testing
frameworks and dependency management systems. This infrastructure development is already
underway.

F.3 Broadening coverage scope

DevBench currently provides strong coverage of code completion scenarios while offering opportuni-
ties to expand into additional development activities. Future extensions could apply our methodology
to generate synthetic evaluation instances for code refactoring, debugging, multi-file architecture
design, and system-level programming challenges—further enriching the evaluation landscape.
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Our language coverage, which already includes six major programming languages (Python, JavaScript,
TypeScript, Java, C++, and C#), provides a foundation for expansion. Future iterations could
incorporate emerging languages such as Rust, Go, Ruby, and Swift, as well as develop more complex,
multi-stage evaluation instances that reflect the challenges of professional software engineering.

F.4 Optimizing resource efficiency

The benchmark generation process, while relatively affordable using current API pricing (approxi-
mately $5.00/1M input tokens and $20.00/1M output tokens for GPT-4o [OpenAI, 2025]), presents
opportunities for further efficiency improvements. Future work could provide streamlined tools
and templates for benchmark extension, reducing the expertise required to create custom evaluation
instances while maintaining quality standards.

Response latency represents another dimension deserving further exploration, as it can impact
developer workflow and productivity. Incorporating systematic latency evaluation alongside quality
metrics would provide a more holistic view of the practical trade-offs involved in model selection.

F.5 Advancing fairness and inclusivity

The telemetry data that informs our benchmark categories derives from diverse developer interac-
tions, offering an opportunity to explicitly analyze potential implicit biases in programming styles,
paradigms, or practices. Future research could conduct systematic analyses of representation across
different programming communities and traditions, ensuring the benchmark remains equitable and
inclusive.

Performance disparities across programming languages present another avenue for methodolog-
ical refinement. Future extensions could develop language-specific normalization techniques or
targeted improvements for underrepresented languages, ensuring fairness across diverse developer
communities and technical ecosystems.

G Broader impacts

Our DevBench benchmark has several potential positive societal impacts. By enabling more accurate
evaluation of code completion models, our work can lead to improved developer productivity tools
that reduce repetitive coding tasks, decrease the time required to implement software solutions, and
potentially lower barriers to entry in programming by assisting novice developers. More accurate
code completion could also improve software quality by suggesting well-tested patterns and reducing
common programming errors, potentially leading to more reliable and secure software systems.

However, we also acknowledge several potential negative impacts. First, there are fairness considera-
tions related to programming language representation; our benchmark’s coverage of six languages,
while broader than many existing benchmarks, still represents a limited subset of the programming
ecosystem. This may lead to uneven improvements across programming languages, potentially disad-
vantaging developers who work primarily with languages not included in our benchmark. Second,
there are potential job market implications if increasingly capable code completion systems begin
to automate significant portions of software development tasks, potentially affecting employment
opportunities for certain types of programming roles.

Additionally, we recognize that improvements in code generation capabilities could have security
implications. While our benchmark focuses on code completion rather than full program generation,
advances in code synthesis could potentially be misused to generate malicious code more efficiently
or to exploit vulnerabilities in existing systems. To mitigate these concerns, we have designed our
benchmark to emphasize proper API usage, security patterns, and code quality metrics rather than
merely measuring functional correctness.

To address these concerns, we have made our benchmark and methodology publicly available to
enable community scrutiny, external validation, and continuous improvement. We encourage future
research to extend language coverage, develop more diverse evaluation metrics, and carefully monitor
potential misuses of increasingly capable code generation systems.
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