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ABSTRACT

Multivariate population data is ubiquitous across scientific and real-world do-
mains, arising in settings where the identity of a system is revealed through the
composition of its constituent samples. For example, a patient’s clinical state can
be inferred from the joint analysis of their blood cells, while the properties of a
galaxy can be characterized from the distribution of its stars and their spectra.
To our knowledge, attempts to learn representations of such data remain limited,
largely because its inductive structure is subtle, making feature extraction par-
ticularly challenging. Inspired by recent advances in joint embedding predictive
architectures, we challenge the prevailing assumption that population-level data
lacks sufficient signal for representation learning, and show that by leveraging
both the compositional structure of the data and the properties of individual sam-
ples, rich and expressive representations can indeed be learned. We demonstrate
our approach in the biomedical domain, addressing the long-standing challenge of
scaling machine learning to large single-cell transcriptomics datasets for patient
representation.

1 INTRODUCTION

Self-supervised learning (SSL) (Schmidhuber, 1990; Bengio et al., 2013; Hadsell et al., 2006; Grill
et al., 2020) leverages structural properties of data to learn meaningful and transferable representa-
tions without manual labels. Its most notable successes have been in computer vision (Grill et al.,
2020; Caron et al., 2021; Oquab et al., 2024; Chen et al., 2020), where the image domain is equipped
with a rich set of symmetries and local structure: semantic concepts are spatially grounded, and in-
variances such as translation and rotation can be directly exploited (Bronstein et al., 2021). These
structural properties provide strong inductive biases, making SSL objectives particularly effective.

1.1 REPRESENTATING MULTIVARIATE POPULATION DATA

Extending SSL beyond vision is more challenging, as many domains lack such explicit geometric
structure. This is especially true for unordered data, such as sets, where permutation invariance
and compositionality rather than spatial invariance is the primary structural property (Zaheer et al.,
2018). Yet sets and other data types built on them-appear frequently in practice. One important case
arises when each datapoint is itself a set of elements, and the identity of the datapoint is revealed
through the composition of those elements.

We refer to this setting as multivariate population data. It consists of a base collection of objects,
each characterized by a distribution over multivariate random variables. In other words, every object
is represented not by a single vector but by a population of vectors. Examples include users in
recommendation systems, defined by the set of their transactions, and patients in biomedical data,
who could be characterized by the collection of their cells molecular profiles (Kulkarni et al., 2019;
Ianevski et al., 2024). Such data is abundant and important, yet its subtle structure makes it a
particularly challenging domain for representation learning.

Though this data lacks local geometric properties, it is characterized by three key structural as-
pects: permutation invariance, compositionality, and the statistical regularities of the underlying
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distributions. We posit that the latter two provide sufficiently strong priors to support effective rep-
resentation learning. To harness them, we turn to joint embedding architectures, and in particular,
joint embedding predictive architectures (JEPA) (Assran et al., 2023; 2025; Huang et al., 2025).
Originally developed in vision, JEPA learns embeddings of a context that are predictive of withheld
content—for example, encoding part of an image so that it is informative about the representa-
tions of masked patches. Unlike generative methods, which aim to reconstruct masked tokens pixel
by pixel, JEPA predicts representations, encouraging the network to capture higher-level concepts
while discarding fine-grained details. We argue that this predictive objective can be naturally
adapted to multivariate population data, where the goal is to learn embeddings of subsets that
are informative about the rest of the population.

1.2 BIOMEDICAL PROOF OF CONCEPT: SC-JEPA

To put these ideas to the test, we develop SC-JEPA, a joint-embedding predictive architecture for
biomedical data. We focus on single-cell transcriptomics, which enables large-scale measurement of
gene expression in individual cells of the human body. In this setting, each patient is represented by
the distribution of their cells and molecular properties, and the task is to use this information to infer
a meaningful patient-level embedding. Our approach does so by partitioning each patient’s data into
a context subset and a feature subset, learning a representation of the context, and training the model
to predict the representation of the feature subset from it. This predictive objective encourages
the embedding to capture population-level structure that goes beyond simple aggregation, while
remaining robust to permutation and technical variation.

In the context of patient representation, we seek embedding spaces that satisfy three key desiderata.

(1) Integration across datasets. We want embeddings that bring together data from multiple
sources in a way that reflects biological rather than technical variation. This is particularly im-
portant because individual datasets typically include too few patients to support robust training. A
foundational model must therefore integrate across cohorts into a common space that is minimally
influenced by batch effects while preserving genuine biological distinctions.

(2) Patient stratification. We want embeddings that amplify inter-patient differences so that clin-
ically meaningful heterogeneity can be uncovered. This is crucial for precision medicine: many
treatment errors stem from an incomplete understanding of how immune responses vary across indi-
viduals. Embeddings that sharpen these differences enable stratification of patients into groups that
may respond differently to therapy.

(3) Predictive and transferable representations. Finally, we want embeddings that are predictive
of future or unseen conditions and transferable across contexts. To probe this, we analyze drug-
response data across cancer cell lines, asking whether embeddings trained on some lines can predict
the effect of a drug on a withheld line. Success here suggests that embeddings capture system-level
properties rather than dataset-specific patterns.

Taken together, these desiderata define the properties of a useful embedding space for patient-level
representation learning. Our results show that predictive objectives over subset representations can
satisfy these goals. In particular, our approach, SC-JEPA, enables robust dataset integration, more
precise patient stratification, and accurate prediction of counterfactuals, providing a foundation for
applications that span from personalized medicine to drug discovery.

2 RELATED WORK

2.1 MULTIVARIATE POPULATION DATA

We define multivariate population data as a data structure in which each datapoint corresponds not
to a single observation but to a set (or population) of multivariate samples. Formally, an object oi
is represented by a collection Si = {xi1, . . . , xin}, where each element xij ∈ Rd is drawn from
an underlying distribution associated with that object. Examples include patients described by their
sets of single-cell molecular profiles, users characterized by their transaction histories, or molecules
represented by collections of local descriptors.
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A natural connection arises to the field of multi-instance learning (MIL), originally introduced by
Dietterich et al. (1997) in the context of drug activity prediction. In MIL, the input is a “bag”
of instances with an associated label, and the objective is to classify bags rather than individual
instances. Since then, numerous MIL methods have been developed, including kernel-based ap-
proaches (Gärtner et al., 2002), attention mechanisms (Ilse et al., 2018), and graph formulations
(Zhou & Xu, 2007). However, MIL has largely remained a supervised classification paradigm, with
methods focused on mapping bags to task-specific labels. This framing does not directly address
the problem of unsupervised representation learning, where the goal is to capture population-level
structure in a transferable embedding space.

To ensure permutation invariance, most approaches for set-structured data employ pooling strategies
such as mean, sum, or max aggregation (Zaheer et al., 2018). Pooling is computationally efficient
and often strong in practice, explaining the competitiveness of simple baselines in domains. How-
ever, pooling has intrinsic limitations, as it tends to average out fine-grained structure and suppress
high-frequency variation that may carry important signal. This motivates the need for alternative
approaches that move beyond pooling to capture richer signals in multivariate population data.

2.2 JOINT EMBEDDING ARCHITECTURES

One of the central paradigms of self-supervised learning (SSL) is the joint embedding architecture
(JEA), where multiple views of an input are mapped into a shared space and trained to align. Promi-
nent methods such as SimCLR (Chen et al., 2020) , BYOL (Grill et al., 2020), and DINO (Caron
et al., 2021; Oquab et al., 2024) operate by matching representations of augmented views of the same
object—for example, a global view and a cropped or masked partial view. These approaches have
proven highly effective, particularly in vision, where carefully designed augmentations (cropping,
color jitter, patch masking) reliably preserve semantic content while altering superficial details.

However, their success depends critically on the quality of the augmentations. If the partial view
is too small or uninformative, the model may learn to ignore the broader context. This reliance on
carefully curated augmentations poses challenges for domains where natural augmentations are hard
to define, such as unordered set-structured data.

An alternative is the joint embedding predictive architecture (JEPA) (Assran et al., 2023), which
trains context embeddings to predict the representations of withheld subsets rather than directly
aligning paired views. This formulation relaxes the dependence on augmentations, since subsets can
be generated by natural partitioning of the data. Moreover, the predictor of JEPA readily accommo-
dates auxiliary information into the input of the predictor module, which can be clinical metadata,
and typically enjoys faster training. These advantages motivate our investigation of JEPA in the
setting of multivariate population data.

3 METHODOLOGY

To test our assumptions about how to train self-supervised models on multivariate population data,
we implemented SC-JEPA, a joint embedding predictive architecture applied to single-cell tran-
scriptomics. While we focus on the biomedical domain, most components of the architecture are
general and can be applied to any dataset where each datapoint is represented as a set of multivariate
samples.

JEPA objective. The central idea behind JEPA is to learn representations of data that are informa-
tive about its subsets. Given an object oi represented by a set of samples Si = {xi1, . . . , xin}, we
partition it into two disjoint subsets: a context Ci and a target Ti. An encoder maps each subset to
a summary representation:

sC = encoder(Ci), sT = encoder(Ti).

A predictor then takes the context representation together with pointer tokens πT identifying the
target subset, and outputs a predicted target summary:

ŝT = predictor(sC , πT ).
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The model is trained so that the predicted target matches the the true target embedding, using an L1

loss:
LJEPA =

∥∥ŝT − sg(sT )
∥∥
1
,

where sg(·) denotes the stop-gradient operator.

Context and target subsets. To create context and target subsets, at each training iteration we
sample a minibatch of elements from Si and randomly split them in a 20:80 ratio into target (Ti)
and context (Ci) subsets. Both subsets are passed through architecturally identical encoders, which
map each element through a two-layer MLP followed by an eight-layer Transformer. The encoder
outputs a set of token embeddings as well as a pooled summary representation. To stabilize training,
we adopt a teacher-student setup: the context encoder is updated via gradient descent, while the
target encoder is updated as an exponential moving average (EMA) of the context encoder’s weights,
and its outputs are treated as stop-gradient targets.

Predictor. The predictor network conditions on both the context and the special pointer tokens.
We concatenate the context tokens with the pointer tokens and feed them into a four-layer Trans-
former, which outputs a prediction of the target embedding. At this stage we do not apply any
pooling operators on the context or target embeddings; thus, they preserve the same cardinality as in
the original split.

An additional advantage of this architecture is that it naturally accommodates auxiliary sources of
information, such as metadata. We leverage this property by introducing dedicated dataset tokens,
which are added to the context embeddings. The role of these tokens is to absorb dataset-specific
variation, thereby freeing the context embeddings to represent the underlying biological signal.

Pointer tokens. Unlike images, sets lack spatial coordinates, so we cannot “point” to a masked
region with positional encodings. To address this, we create pointer tokens πT that softly identify
the target subset Ti without revealing its full content. These tokens are constructed through the
following procedure recently suggested by (Bizeul et al., 2025) for vision:

1. Fit PCA within the minibatch;
2. Zero out principal components until 70% of the variance is removed for elements in Ti;
3. Project the data back into the original feature space;
4. Pass the result through an MLP to obtain pointer embeddings πT .

This process retains general information about the identity of Ti which is enough to specify, which
subset the predictor should target, while discarding most fine-grained content, preventing trivial
copying. By construction, the pointer tokens are permutation-invariant and serve as an index for the
predictor.

We note that alternative augmentation strategies could also be applied. For example, in single-cell
expression data one could use binomial subsampling or dropout-style zeroing of features. However,
the PCA-based strategy proposed here is more general.

Variance regularization. In addition to the JEPA loss, we apply variance regularization follow-
ing the VICReg framework (Bardes et al., 2022). This term enforces that the dimensions of the
learned embeddings maintain non-trivial variance across the batch, thereby preventing collapse to a
degenerate representation. Concretely, in our implementation, given a batch of embeddings {zk},
the variance penalty is defined as

Lvar =
1

d

d∑
j=1

max
(
0, γ − Var(z:,j)

)
,

where d is the embedding dimension, z:,j denotes the j-th dimension across the batch, and γ > 0 is
a variance target. Our final objective combines the JEPA prediction loss and this variance term.

Population embedding At inference time, we compute a single embedding for each population
by mean-aggregating the token embeddings produced by the context encoder. This population em-
bedding serves as the final representation of the object (e.g., a patient).
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4 EXPERIMENTS

We systematically evaluated the properties of the embeddings learned with SC-JEPA across several
single-cell datasets. Our primary focus was to compare predictive architectures such as JEPA against
both non-predictive joint embedding architectures (JEA) and simple aggregation-based baselines.

As a representative JEA, we implemented a DINOv2-style approach (Oquab et al., 2024) adapted to
this benchmark. This model consists of teacher and student encoders with the same architecture as
the SC-JEPA context encoder. Training uses two student views—a global view (80% of the cells)
and a local view (20% of the cells)—mirroring the 20:80 splits used in SC-JEPA.

For aggregation-based baselines, we considered (i) vectors of cell-type proportions (aggregation of
curated features), (ii) the mean of the top 50 PCA components per sample, and (iii) the mean of VAE
embeddings (scVI (Lopez et al., 2018)) per sample. These baselines capture standard strategies for
summarizing populations via cell type summarization or averaging of principal components or VAE
embeddings.

Batch integration Biological conservation

Method Silhouette ↓ ARI (r=0.1) ↓ COVID–19 Recall ↑ COVID–19 Prec. ↑ SLE Recall ↑ SLE Prec. ↑ CT MSE ↓ CT R2 ↑

JEPA 0.031 0.389 0.914 0.890 0.936 1.000 1.388 0.699
DINOv2-like 0.094 0.497 0.934 0.940 0.968 0.909 1.277 0.723
Pooled-PCA 0.156 0.609 0.874 0.917 0.903 0.966 1.421 0.692
Pooled-VAE (scVI) 0.033 0.416 0.854 0.860 0.839 0.867 3.082 0.332
Cell-type proportions 0.053 0.692 0.934 0.825 0.968 0.682 – –

Table 1: Comparison of embedding methods across two embedding properties. Batch integration
is assessed using the silhouette score and ARI (lower is better). Biological conservation is assessed
via (i) disease classification performance (recall and precision for COVID-19 and SLE), and (ii)
cell-type proportion prediction (mean squared error, lower is better; R2, higher is better).

4.1 EMBEDDING DIVERSE BLOOD DATASETS USING SC-JEPA

We first evaluated how well SC-JEPA embeds patient-level PBMC samples into a shared represen-
tation space. Such embeddings must satisfy two requirements: (i) technical integration—minimal
dependence on dataset-specific technical variation; and (ii) biological conservation—retention of
meaningful patient-level biological signal. To construct a comprehensive benchmark, we aggre-
gated all PBMC datasets from the cellxgene census (CZI Cell Science Program et al., 2025) together
with the Sound Life cohort from the Allen Institute atlas (Gong et al., 2024).

Technical integration. We quantified batch mixing using two standard metrics: the silhouette
score computed on dataset labels (lower is better), and the adjusted Rand index (ARI) between
patient clusters (Leiden resolution r=0.1) and dataset labels (lower is better). As shown in Table 1,
SC-JEPA achieves the strongest overall integration, closely followed by VAE (scVI) embeddings,
while PCA performs worst. Representative embedding spaces for SC-JEPA, DINOv2-like, and PCA
are shown in Fig. 1, illustrating that SC-JEPA produces well-mixed technical batches.

Biological conservation. Because aggressive batch correction can suppress genuine biological
signal, we next tested whether embeddings support discrimination between disease and healthy
states. We focused on COVID-19 and systemic lupus erythematosus (SLE), training linear SVMs on
patient embeddings and reporting precision/recall. For COVID-19, the DINOv2-like JEA baseline
achieved the highest scores, with SC-JEPA and PCA close behind. For SLE, however, SC-JEPA
performed best, with PCA ranking second. These results highlight the inherent trade-off between
integration and conservation, and show that predictive self-supervision retains disease-relevant in-
formation while reducing batch effects more effectively than simple aggregation.

Cell type prediction. To further assess biological conservation, we asked whether embeddings
preserve fine-grained compositional structure. We performed a linear probing task in which embed-
dings were used to predict CLR-transformed cell type proportions for each patient (Aitchison, 1986;
Van Den Boogaart & Tolosana-Delgado, 2013). Performance was evaluated using mean squared
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Figure 1: Patient-specific cytokine responses in the SC-JEPA space.

error (MSE; lower is better) and R2 (higher is better). As shown in Table 1, the DINOv2-like ap-
proach achieved the strongest results, closely followed by SC-JEPA and PCA, while pooled VAE
embeddings lagged significantly.

Across PBMC datasets, both JEA and SC-JEPA deliver the most balanced performance: they
achieve top-tier batch integration while maintaining strong disease-level separability, and consis-
tently surpass aggregation-based baselines. Between the two, SC-JEPA provides markedly stronger
batch integration, while the DINOv2-like JEA shows a slight advantage on some biological readouts.

4.2 PATIENT STRATIFICATION INFORMED BY SC-JEPA EMBEDDINGS

We next applied SC-JEPA to a large-scale dataset of peripheral blood mononuclear cells (PBMCs)
from the 10 Million Human PBMCs collection provided by Parse Biosciences (Parse Biosciences).
This dataset comprises blood samples from 12 patients, each exposed to a panel of cytokine stim-
ulations. Such datasets are particularly important for personalized medicine, as they capture how
individuals differ in their immune responses to specific activating molecules. These individualized
response profiles have direct implications for suggesting effective treatments and for understanding
the mechanisms that underlie immune-mediated disease.

Developing embedding methods that faithfully capture such patient-specific variation is therefore a
critical step. If embeddings can reflect these individualized properties, they provide a foundation
for stratifying patients according to their immune responses, ultimately supporting both treatment
personalization and mechanistic discovery in biomedicine.

Method Batch integration Biological conservation Patient stratification

Silhouette ↓ ARI (r=0.1) ↓ CT MSE ↓ CT R2 ↑ CV Mean ↑ CV Max ↑ AUC–Sil ↑

JEPA −0.015 0.336 0.101 0.805 0.886 1.933 7.057± 0.319

DINOv2-like 0.306 0.688 0.095 0.810 0.408 0.915 2.529± 0.133

Pooled-PCA 0.314 0.598 0.090 0.821 0.447 0.912 2.971± 0.107

Pooled-VAE (scVI) 0.300 0.539 0.188 0.622 0.457 1.047 3.550± 0.129

Cell-type proportions 0.531 0.978 – – 0.499 1.199 3.932± 0.165

Table 2: Comparison of embedding methods across three representation properties. Batch integra-
tion is assessed using the silhouette score and ARI at r=0.1 (lower is better). Biological conserva-
tion is assessed via cell-type proportion regression (mean squared error, lower is better; R2, higher
is better). Patient stratification is assessed using the coefficient of variation (CV) of perturbation
distances across donors (higher is better) and the AUC of silhouette scores from k-means clustering
(higher is better).

Batch integration and biological conservation. As a first step, we analyzed the 10 Million Hu-
man PBMCs dataset using the same evaluation strategy as in the previous section. Specifically, we
measured batch integration with the silhouette score and ARI on donor labels, and assessed biolog-
ical conservation through disease-state discrimination and cell type prediction. This allowed us to
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directly compare the performance of SC-JEPA against JEA and aggregation baselines on a dataset
with distinct sources of variation arising from cytokine stimulation.

The results showed that SC-JEPA performed substantially better than all other methods in terms of
batch integration, achieving a near-zero silhouette score and an ARI more than 1.5 times smaller
than the next best method. In terms of biological conservation, SC-JEPA trailed slightly behind
PCA and DINOv2-like, with an R2 of 0.805 compared to 0.821 for the best-performing baseline.
Overall, these findings indicate that SC-JEPA delivers a marked improvement in batch integra-
tion—effectively removing dataset-specific variation from the latent space—while still preserving
the majority of biologically relevant signal.

Patient stratification. We next turned to the central goal of this experiment: assessing how well
the embeddings capture differences in donor-specific perturbation responses. For each donor, we
computed a matrix of pairwise distances between embeddings of cytokine perturbations. We then
quantified how variable these distances are across donors using the coefficient of variation (CV),
reporting both the mean and the maximum CV across cytokine pairs. To assess whether these dif-
ferences reflect systematic immune response patterns, we further applied k-means clustering (with
k = 2–20) to each donor’s embeddings and evaluated cluster quality using the silhouette score. We
summarized discriminability by computing the AUC of silhouette scores across cluster numbers.

This analysis revealed that SC-JEPA achieved substantially higher CV values than competing meth-
ods, as well as higher silhouette AUC, demonstrating that its embeddings more effectively capture
donor-specific differences in cytokine response. In other words, SC-JEPA produces a latent space
that is not only well-integrated across donors but also finely resolves individualized response pat-
terns.

Figure 2 illustrates this effect by showing donor-to-donor variability in cytokine co-variation within
the learned space. We highlight four representative stimuli (IL-2, BAFF, M-CSF, GM-CSF; a sub-
set of the 92 assayed), computing their pairwise distances for two donors. In Donor A, (M-CSF,
GM-CSF) cluster with BAFF, suggesting association between macrophage and B cell-stimulation
responses. In Donor B, the same cytokines instead cluster with IL-2, suggesting a macrophage–T
cell axis. Clinically, this implies that in some patients macrophage activation is coordinated with B
cell stimulation, while in others it is coordinated with T cell stimulation. Similar patterns can also
be observed with embeddings based on cell-type proportions, though with greater noise and weaker
clustering (Supplementary Fig. S1).

Figure 2: Patient-specific cytokine responses in the SC-JEPA space.
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4.3 PREDICTING DRUG RESPONSE OF UNSEEN CELL LINES IN THE SC-JEPA EMBEDDING
SPACE

Finally, we asked whether the latent space learned by SC-JEPA can support predictive
tasks—specifically, whether it can be used to forecast the future state of a system under perturba-
tion. To test this, we turned to the Tahoe collection (Zhang et al., 2025), a large-scale compendium
of over 100 million single-cell profiles spanning 50 cancer cell lines subjected to 380 perturbations,
each measured at three concentrations.

We designed a leave-one-cell-line-out experiment: one cell line was withheld during training, and
the model was trained on the remaining lines. For the held-out line, we then trained a lightweight
MLP to predict the embedding of a perturbed state from the embedding of its unperturbed baseline.
This setup probes whether the embedding space contains enough transferable structure to generalize
drug responses to unseen cellular contexts.

Figure 3: Prediction of drug responses in unseen cell lines. Cosine distance between predicted and
true embeddings is reported for SC-JEPA and a DINOv2-like approach.

To assess the role of dataset scale, we trained models with progressively larger subsets of the avail-
able cell lines, ranging from 5 up to 30. Results ( Fig. 3) show that SC-JEPA produces embeddings
that enable more accurate prediction of drug responses than the non-predictive JEA approach, as
measured by cosine distance between predicted and true embeddings. Moreover, performance im-
proved consistently as more training cell lines were included, highlighting that both SC-JEPA and
JEA benefit from scale in both data diversity and predictive accuracy.

5 DISCUSSION

In this work we introduced SC-JEPA, a joint-embedding predictive architecture for learning repre-
sentations of multivariate population data, with a focus on single-cell transcriptomics. Our central
hypothesis was that permutation invariance, compositionality and feature distribution provide a suf-
ficient inductive structure to enable predictive self-supervision.

Across diverse benchmarks, our results support this claim: SC-JEPA learns an embedding space that
preserves biologically meaningful variation while being minimally influenced by technical artifacts.
Strong integration is particularly critical for the decentralized future of biomedicine (Lähnemann
et al., 2020; The Tabula Sapiens Consortium, 2022), where data will be generated worldwide and
models must operate robustly across heterogeneous sources (McMahan et al., 2023).

Beyond integration, we showed that SC-JEPA captures donor-specific immune differences, a prereq-
uisite for advancing personalized medicine. By resolving individual variation in cytokine response,
the model highlights clinically relevant couplings between immune pathways, suggesting a path
toward embeddings that reflect the personalized state of a patient’s immune system.

Finally, we demonstrated that the learned embedding space supports predictive tasks, including
drug-response generalization to unseen cell lines. This opens the door to rethinking drug develop-
ment in terms of optimal control theory (Kirk, 1970) in representation space: rather than training
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senerative models to simulate molecular profiles, one could instead identify drug combinations that
steer patient embeddings toward target regions associated with desired outcomes.

LLM USAGE DISCLOSURE

Large language models (LLMs) were used in the preparation of this manuscript. Specifically, LLM
assistance (OpenAI ChatGPT, GPT-5, 2025 (OpenAI, 2025)) was employed for (i) editing and pol-
ishing text for clarity and readability, (ii) suggesting alternative phrasings to improve flow, and (iii)
helping restructure sections for coherence. All technical content, experimental design, implementa-
tion, analyses, and conclusions were conceived and carried out by the authors. The authors take full
responsibility for the correctness and originality of the work.

REFERENCES

John Aitchison. The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986.
ISBN 978-94-009-4109-0. doi: 10.1007/978-94-009-4109-0.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rab-
bat, Yann LeCun, and Nicolas Ballas. Self-Supervised Learning from Images with a Joint-
Embedding Predictive Architecture, April 2023. URL http://arxiv.org/abs/2301.
08243. arXiv:2301.08243 [cs].

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba, Komeili,
Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud,
Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khali-
dov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong
Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, and Nicolas Ballas. V-JEPA
2: Self-Supervised Video Models Enable Understanding, Prediction and Planning, June 2025.
URL http://arxiv.org/abs/2506.09985. arXiv:2506.09985 [cs].

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-Invariance-Covariance Regular-
ization for Self-Supervised Learning, January 2022. URL http://arxiv.org/abs/2105.
04906. arXiv:2105.04906 [cs].

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and New
Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828,
August 2013. ISSN 1939-3539. doi: 10.1109/TPAMI.2013.50. URL https://ieeexplore.
ieee.org/document/6472238.

Alice Bizeul, Thomas Sutter, Alain Ryser, Bernhard Schölkopf, Julius von Kügelgen, and Julia E.
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mand Joulin, and Piotr Bojanowski. DINOv2: Learning Robust Visual Features without Super-
vision, February 2024. URL http://arxiv.org/abs/2304.07193. arXiv:2304.07193
[cs].

Parse Biosciences. 10 million human pbmcs in a single exper-
iment. https://www.parsebiosciences.com/datasets/
10-million-human-pbmcs-in-a-single-experiment/. Accessed: 2025-09-
25.

J. Schmidhuber. Making the world differentiable: on using self supervised fully re-
current neural networks for dynamic reinforcement learning and planning in non-
stationary environments. Forschungsberichte, TU Munich, 1990. URL https:
//www.semanticscholar.org/paper/Making-the-world-differentiable%
3A-on-using-self-for-Schmidhuber/f3606fbcf8b99aba4006f4ef16a1d59fe064004d.

11

https://www.nature.com/articles/s41467-024-52980-5
https://www.semanticscholar.org/paper/Attention-based-Deep-Multiple-Instance-Learning-Ilse-Tomczak/57fbd1841a7cf8582682da399d2811655f020c0a
https://www.semanticscholar.org/paper/Attention-based-Deep-Multiple-Instance-Learning-Ilse-Tomczak/57fbd1841a7cf8582682da399d2811655f020c0a
https://www.semanticscholar.org/paper/Attention-based-Deep-Multiple-Instance-Learning-Ilse-Tomczak/57fbd1841a7cf8582682da399d2811655f020c0a
https://www.semanticscholar.org/paper/Optimal-control-theory-%3A-an-introduction-Kirk/b46d7175e9df07dcd5df64f622721338781d9012
https://www.semanticscholar.org/paper/Optimal-control-theory-%3A-an-introduction-Kirk/b46d7175e9df07dcd5df64f622721338781d9012
https://www.semanticscholar.org/paper/Optimal-control-theory-%3A-an-introduction-Kirk/b46d7175e9df07dcd5df64f622721338781d9012
https://www.sciencedirect.com/science/article/pii/S0958166918302386
https://www.sciencedirect.com/science/article/pii/S0958166918302386
https://www.nature.com/articles/s41592-018-0229-2
https://www.nature.com/articles/s41592-018-0229-2
https://doi.org/10.1186/s13059-020-1926-6
http://arxiv.org/abs/1602.05629
https://openai.com/research/gpt-5-system-card
https://openai.com/research/gpt-5-system-card
http://arxiv.org/abs/2304.07193
https://www.parsebiosciences.com/datasets/10-million-human-pbmcs-in-a-single-experiment/
https://www.parsebiosciences.com/datasets/10-million-human-pbmcs-in-a-single-experiment/
https://www.semanticscholar.org/paper/Making-the-world-differentiable%3A-on-using-self-for-Schmidhuber/f3606fbcf8b99aba4006f4ef16a1d59fe064004d
https://www.semanticscholar.org/paper/Making-the-world-differentiable%3A-on-using-self-for-Schmidhuber/f3606fbcf8b99aba4006f4ef16a1d59fe064004d
https://www.semanticscholar.org/paper/Making-the-world-differentiable%3A-on-using-self-for-Schmidhuber/f3606fbcf8b99aba4006f4ef16a1d59fe064004d


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic
atlas of humans. Science, 376(6594):eabl4896, May 2022. doi: 10.1126/science.abl4896. URL
https://www.science.org/doi/10.1126/science.abl4896. Publisher: Ameri-
can Association for the Advancement of Science.

K. Gerald Van Den Boogaart and Raimon Tolosana-Delgado. Analyzing Compositional Data with
R. Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-36808-0 978-3-642-
36809-7. doi: 10.1007/978-3-642-36809-7. URL https://link.springer.com/10.
1007/978-3-642-36809-7.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep Sets, April 2018. URL http://arxiv.org/abs/1703.06114.
arXiv:1703.06114 [cs].

Jesse Zhang, Airol A. Ubas, Richard de Borja, Valentine Svensson, Nicole Thomas, Neha Thakar,
Ian Lai, Aidan Winters, Umair Khan, Matthew G. Jones, Vuong Tran, Joseph Pangallo, Efthymia
Papalexi, Ajay Sapre, Hoai Nguyen, Oliver Sanderson, Maria Nigos, Olivia Kaplan, Sarah
Schroeder, Bryan Hariadi, Simone Marrujo, Crina Curca Alec Salvino, Guillermo Gallareta Oli-
vares, Ryan Koehler, Gary Geiss, Alexander Rosenberg, Charles Roco, Daniele Merico, Nima
Alidoust, Hani Goodarzi, and Johnny Yu. Tahoe-100M: A Giga-Scale Single-Cell Perturba-
tion Atlas for Context-Dependent Gene Function and Cellular Modeling, February 2025. URL
https://www.biorxiv.org/content/10.1101/2025.02.20.639398v1. Pages:
2025.02.20.639398 Section: New Results.

Zhi-Hua Zhou and Jun-Ming Xu. On the relation between multi-instance learning and semi-
supervised learning. In Proceedings of the 24th international conference on Machine learning, pp.
1167–1174, Corvalis Oregon USA, June 2007. ACM. ISBN 978-1-59593-793-3. doi: 10.1145/
1273496.1273643. URL https://dl.acm.org/doi/10.1145/1273496.1273643.

12

https://www.science.org/doi/10.1126/science.abl4896
https://link.springer.com/10.1007/978-3-642-36809-7
https://link.springer.com/10.1007/978-3-642-36809-7
http://arxiv.org/abs/1703.06114
https://www.biorxiv.org/content/10.1101/2025.02.20.639398v1
https://dl.acm.org/doi/10.1145/1273496.1273643


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A SUPPLEMENTARY

Figure S1: Patient-specific cytokine responses based on differences in cell type proportions.
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