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ABSTRACT

Off-policy learning, referring to the procedure of policy optimization with access
only to logged feedback data, has shown importance in various real-world applica-
tions, such as search engines, recommender systems, etc. While the ground-truth
logging policy, which generates the logged data, is usually unknown, previous
work directly takes its estimated value in off-policy learning, resulting in a biased
estimator. This estimator has both high bias and variance on samples with small
and inaccurate estimated logging probabilities. In this work, we explicitly model
the uncertainty in the estimated logging policy and propose a novel Uncertainty-
aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets
demonstrate the advantageous sample efficiency of the proposed UIPS estimator.

1 INTRODUCTION

In many real-world applications, including search engines (Agarwal et al. (2019)), online advertise-
ments (Strehl et al. (2010)), recommender systems (Chen et al. (2019); Liu et al. (2022)), only logged
feedback data is available for subsequent policy optimization. For example, in recommender sys-
tems, various complex recommendation models (i.e., policies) (Zhou et al. (2018); Guo et al. (2017))
were optimized with logged user interactions (e.g., clicks or staytime) to items recommended by pre-
vious recommendation policies. However, such logged data is known to be biased, since one does
not know the feedback on items that previous policy (which is generally referred as the logging pol-
icy) did not take. This inevitably distorts the evaluation and optimization of a new policy when it
tends to select items that are not in the logged data.

Off-policy learning (Thrun & Littman (2000); Precup (2000)) emerges as a favorable way to learn
an improved policy only from the logged data by addressing the mismatch between the learning
policy and the logging policy. One of the most commonly used off-policy learning methods is
Inverse Propensity Scoring (IPS) (Chen et al. (2019); Munos et al. (2016)), which assigns per-sample
importance weight to the training objective on the logged data, so as to get an unbiased optimization
objective in expectation. The importance weight in IPS is the probability ratio between the learning
policy and the logging policy.

However, the ground-truth logging policy is unavailable to the learner, e.g., it is not recorded in the
data. One common treatment taken by previous work (Strehl et al. (2010); Liu et al. (2022); Chen
et al. (2019); Ma et al. (2020)) is to first employ a supervised learning method (e.g., logistic regres-
sion, neural networks, etc.) to estimate the logging policy, and then take the estimated logging policy
for off-policy learning. We theoretically show that such an approximation results in a biased estima-
tor which is sensitive to those inaccurate and small estimated logging probabilities. Worse still, the
small values of the estimated logging probabilities usually mean that there are fewer related samples
in the logged data, so its estimation usually has high uncertainties, i.e., inaccurate estimation with
high probability. Figure 1 shows a piece of empirical evidence from a large-scale recommendation
benchmark KuaiRec dataset (Gao et al. (2022)), where items with lower frequencies in the logged
dataset have lower estimated logging probabilities and higher uncertainties concurrently. The high
bias and variance caused by these samples greatly hinder the performance of off-policy learning.

In this work, we explicitly take the uncertainty of the estimated logging policy into consideration
and design a novel Ucertainty-aware Inverse Propensity Score estimator (UIPS) as the optimization
objective for policy learning. UIPS introduces an additional weight to approach the ground-truth
propensity from the estimated one, and learns an improved policy by alternating: (1) Find the opti-
mal weight that makes the estimator as accurate as possible, taking into consideration the uncertainty
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(a) Estimated Logging Probability
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(b) Uncertainty of Estimation
Figure 1: Estimated logging policy and its uncertainty under different item frequency on KuaiRec.

of the estimated logging policy; (2) Improve the policy by optimizing the resulting estimator. We
further find a closed-form solution for the optimal weight by deriving an upper bound on the mean
squared error (MSE) to the ground-truth policy value. The optimal weight adjusts sample weights
considering both the uncertainty of estimated logging probabilities and the propensity scores, rather
than simply boosting or penalizing samples with high uncertain logging probabilities. Experiment
results on the synthetic and three real-world recommendation datasets demonstrate the efficiency of
UIPS. All data and code can be found in supplementary materials for reproducibility.

To summarize, our contribution in this work is as follows:

• We point out that directly using the estimated logging policy leads to sub-optimal off-policy learn-
ing, since the resulting biased estimator is greatly distorted by samples with inaccurate and small
estimated logging probabilities.

• We take the uncertainty of the estimated logging policy into consideration and propose UIPS for
more accurate off-policy learning.

• Experiments on synthetic and three real-world recommendation datasets demonstrate UIPS’s
strong advantage over state-of-the-art methods.

2 PRELIMINARY: OFF-POLICY LEARNING

We focus on the standard contextual bandit setup to explain the key concepts. Following convention
(Joachims et al. (2018); Saito & Joachims (2022); Su et al. (2020)), let x ∈ X ⊆ Rd be a d-
dimensional context vector drawn from an unknown probability distribution p(x). Each context is
associated with a finite set of actions denoted by A, where |A| < ∞. Let π : A×X → [0, 1] denote
a stochastic policy, such that π(a|x) is the probability of selecting action a under context x and∑

a∈A π(a|x) = 1. Under a given context, reward rx,a is observed when action a is chosen. Take
news recommendation for example, x represents the state of a user, summarizing his/her interaction
history with the recommender system, each action a is a candidate news article, the policy is a
recommendation algorithm, and the reward rx,a denotes the user feedback on article a, e.g., whether
the user clicks the article. Let V (π) denote the expected reward or value of the policy π:

V (π) = Ex∼p(x),a∼π(a|x)[rx,a]. (1)

We look for a policy π(a|x) to maximize V (π). In the rest of the paper, we denote
Ex∼p(x),a∼π(a|x)[·] as Eπ[·] for simplicity.

In contrast to performing online updates by following the learning policy π(a|x), in off-policy
learning we can only access a set of logged feedback data denoted by D := {(xn, an, rxn,an

)|n ∈
[N ]}, where [N ] := {1, . . . , N}. Given xn, the action an was generated by a stochastic logging
policy β∗, i.e., the probability action an was selected is β∗(an|xn). The actions {a1, . . . , aN} and
their corresponding rewards {rx1,a1

, . . . , rxN ,aN
} are generated independently given β∗. Due to the

nature of policy optimization, the learning policy π(a|x) is expected to be different from β∗(a|x),
unless β∗(a|x) is already optimal. Moreover, in practice the situation could be further complicated.
Again, consider the news recommendation scenario. Due to the scalability requirement, industrial
recommender systems usually adopt a two-stage framework (Ma et al. (2020)), where one or several
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candidate generation models first produce a candidate set and a separate ranking model reranks
candidate items to present top-K item to users. While β∗(a|x) depicts the whole two-stage process,
the learning policy π(a|x) is usually employed in one particular stage (e.g., the reranking stage),
implying drastic differences between the logging and learning policies. The main challenge of off-
policy learning is then to address the distribution discrepancy between β∗(a|x) and π(a|x), and
learn a policy π(a|x) to maximize V (π) with access only to the logged dataset D.

One of most widely used methods to address the distribution shift between π(a|x) and β∗(a|x) is
the Inverse Propensity Score (IPS) (Chen et al. (2019); Munos et al. (2016)). One can easily get that:

V (π) = Eβ∗

[
π(a|x)
β∗(a|x)rx,a

]
,

yielding the following empirical estimator of V (π):

V̂IPS(π) =
1
N

∑N
n=1

π(an|xn)
β∗(an|xn)

rxn,an
, (2)

where π(an|xn)/β
∗(an|xn) is referred to as the propensity score. In the rest of paper, without

further specification, we use the empirical estimation of expectation in our practical calculation.
Various algorithms can be readily used for policy optimization under V̂IPS(π), including value-
based methods (Silver et al. (2016)), policy-based methods (Levine & Koltun (2013); Schulman
et al. (2015); Williams (1992)). In this work, we adopt a well-known policy gradient algorithm,
REINFORCE (Williams (1992)). Assume the policy π(a|x) is parameterized by ϑ, via the “log-
trick”, the gradient of V̂IPS(πϑ) with respect to ϑ can be readily derived as follows:

∇ϑV̂IPS(πϑ) =
1
N

∑N
n=1

π(an|xn)
β∗(an|xn)

rxn,an
∇ϑ log(πϑ(an|xn)). (3)

Approximation with unknown logging policy. In many real-world applications, the ground-truth
logging policy, i.e., the β∗(a|x) of each observation (x, a), is unknown. One reason is the legacy
issue, i.e., the probabilities were not logged when collecting data. Another reason is that the exact
value of β∗(a|x) is intrinsically unavailable such as in the two-stage recommender systems. As
the solution, previous work employs various supervised learning methods (e.g., logistic regression
(Schnabel et al. (2016)), nerural networks (Chen et al. (2019), etc.) to estimate the logging pol-
icy, and replaces β∗(a|x) with its estimated value β̂(a|x) to get the following estimator for policy
learning:

V̂BIPS(πϑ) =
1
N

∑N
n=1

πϑ(an|xn)

β̂(an|xn)
rxn,an

. (4)

However, as shown in the following proposition, inaccurate β̂(a|x) leads to high bias and variance
of V̂BIPS(πϑ). Worse still, smaller inaccurate β̂(a|x) further enlarges this bias and variance.

Proposition 1. The bias and variance of V̂BIPS(πϑ) can be derived as follows:

Bias
(
V̂BIPS(πϑ)

)
= ED

[
V̂BIPS(πϑ)− V (πϑ)

]
= Eπϑ

[
rx,a

(
β∗(a|x)
β̂(a|x)

− 1
)]

N ·VarD
(
V̂BIPS(πϑ)

)
= Varπϑ

(
β∗(a|x)
β̂(a|x)

rx,a

)
+ Eπϑ

[(
πϑ(a|x)
β∗(a|x) − 1

)
· β∗(a|x)2

β̂(a|x)2
r2x,a

]
Smaller β̂(a|x) usually implies fewer related training samples in the logged data, and thus β̂(a|x)
will be inaccurate with a higher probability. To make it more explicit, we take KuaiRec dataset (Gao
et al. (2022)) as an example and estimate the logging policy following (Chen et al. (2019)). Figure
1 shows the estimated β̂(a|x) and its corresponding uncertainties in items of different observation
frequencies in the logged dataset. As uncertainty measures how large the confidence interval is
about the current estimation, higher uncertainty implies that the true value may be away from the
empirical mean estimate with a high probability. We defer the discussion about our detailed uncer-
tainty calculation in Section 3. We can observe from Figure 1 that as item frequency decreases, the
estimated logging probability also decreases, but the estimation uncertainty increases. This implies
that smaller β̂(a|x) is usually 1) more inaccurate and 2) associated with high uncertainty.

As a result, with high bias and variance caused by inaccurate β̂(a|x), it is erroneous to improve
πϑ(a|x) by simply optimizing V̂BIPS(πϑ). We propose uncertainty-aware off-policy learning to
address this challenge.
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3 UNCERTAINTY-AWARE OFF-POLICY LEARNING

Our idea is incorporating the uncertainty of the logging policy estimation into policy learning. Ob-
serving that

V (πϑ) = Eβ∗

[
πϑ(a|x)
β̂(a|x)

· β̂(a|x)
β∗(a|x) · rx,a

]
,

we propose to learn the optimal policy by optimizing the following empirical estimator:

V̂UIPS(πϑ) =
1
N

∑N
n=1

πϑ(an|xn)

β̂(an|xn)
· ϕxn,an

· rxn,an
(5)

where ϕxn,an
is a weight, which reflects β̂(an|xn)/β

∗(an|xn), to be selected to make V̂UIPS(πϑ)

as close to V (πϑ) as possible. Intuitively, one should give small weights to samples whose β̂(a|x)
is far below the ground-truth β∗(a|x). Thus, we divide offline policy improvement into two steps,
and repeat them until certain convergence condition is met:

• Uncertainty aware policy evaluation: Derive the optimal uncertainty aware ϕx,a to make
V̂UIPS(πϑ) as accurate as possible.

• Policy Improvement: Learn an improved policy πϑ(a|x) by optimizing V̂UIPS(πϑ).

3.1 Uncertainty Aware Policy Evaluation

Optimal uncertainty aware weight ϕx,a. We measure the accuracy of V̂UIPS(πϑ) by its mean
squared error (MSE) to V (πϑ) following previous work (Su et al. (2020); Saito & Joachims (2022)).
MSE captures both the bias and variance of an estimator, since it is the summation of squared bias
and variance. We then locate the ϕx,a that can minimize the MSE. In particular, we demonstrate the
optimal ϕx,a has a closed-form formula which relates to both the value of πϑ(a|x)/β̂(a|x) and the
estimation uncertainty of β̂(a|x).
More specifically, instead of directly minimizing the MSE, which is intractable, we find the desirable
ϕx,a by minimizing the upper bound of MSE in the following theorem.

Theorem 1. Assume rx,a ∈ [0, 1], the mean squared error (MSE) between V̂UIPS(πϑ) and ground-
truth estimator V (πϑ) is upper bounded as follows:

MSE
(
V̂UIPS(πϑ)

)
= ED

[(
V̂UIPS(πϑ)− V (πϑ)

)2]
= Bias

(
V̂UIPS(πϑ)

)2
+Var

(
V̂UIPS(πϑ)

)
≤ Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
· Eβ∗

[(
β∗(a|x)
β̂(a|x)

ϕx,a − 1
)2]

+ Eβ∗

[
πϑ(a|x)2

β̂(a|x)2
ϕ2
x,a

]
The upper bound in Theorem 1 strictly increases with the two expectations related to ϕx,a, which
implies that for some choice λ ∈ [0,∞], the MSE-optimizing ϕx,a can be derived by minimizing:

λEβ∗

[(
β∗(a|x)
β̂(a|x)

ϕx,a − 1
)2]

+ Eβ∗

[
πϑ(a|x)2

β̂(a|x)2
ϕ2
x,a

]
. (6)

We cannot directly minimize Eq.(6) since the unknown β∗(a|x) is involved. However, various ways
(Gal & Ghahramani (2016); Xu et al. (2021)) can be employed to get the confidence interval which
will contain β∗(a|x) with high probability. More specifically, following previous work (Joachims
et al. (2018)), we assume β∗(a|x) can be modelled by a softmax function on top of an unknown
function fθ∗(x, a), i.e., the realizable assumption. Then we can get:

β∗(a|x) = exp(fθ∗ (x,a))∑
a′ exp(fθ∗ (x,a′)) , β̂(a|x) = exp(fθ(x,a))∑

a′ exp(fθ(x,a′)) , (7)

where fθ(x, a) is an estimate of fθ∗(x, a). Following the conventional definition of confidence in-
terval (Abbasi-Yadkori et al. (2011)), we define γ and Ux,a such that |fθ∗(x, a)−fθ(x, a)| ≤ γUx,a

holds with probability at least 1-δ, where γ is a function of δ (typically the smaller δ is, the larger
γ is). Then γUx,a measures the width of confidence interval of fθ(x, a) against its ground-
truth fθ∗(x, a). This implies that β∗(a|x) ∈ Bx,a with probability at least 1-δ, where:

Bx,a =
[
Ẑ exp(−γUx,a)

Z∗ β̂(a|x), Ẑ exp(γUx,a)
Z∗ β̂(a|x)

]
, Z∗ =

∑
a′ exp(fθ∗(a′|x)), Ẑ =

∑
a′ exp(fθ(a

′|x)).
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Since β∗(a|x) can be any value in Bx,a, we adopt the idea of robust optimization (Chen et al.
(2020)) and find the optimal ϕx,a by solving the following optimization problem:

minϕx,a
maxβx,a∈Bx,a

λEβ∗

[(
βx,a

β̂(a|x)
ϕx,a − 1

)2]
+ Eβ∗

[
πϑ(a|x)2

β̂(a|x)2
ϕ2
x,a

]
. (8)

The following theorem derives a closed-form formula for the optimal solution of (8) .
Theorem 2. Let η1, η2 ∈ [exp(−γUmax

x ), exp(γUmax
x )], where Umax

x = maxa Ux,a. The optimiza-
tion problem in Eq.(8) has a closed-form solution as follows:

ϕ∗
x,a = min

(
λ/
[

λ
η1

exp (−γUx,a) +
η1πϑ(a|x)2

β̂(a|x)2 exp(−γUx,a)

]
, 2η2/ [exp (γUx,a) + exp (−γUx,a)]

)
Insights on ϕ∗

x,a. The second term of ϕ∗
x,a (i.e., 2η2/ [exp (γUx,a) + exp (−γUx,a)] ) acts like a

capping threshold to ensure ϕ∗
x,a ≤ 2η2 holds even with small πϑ(a|x)/β̂(a|x) as shown in Lemma

1 in Appendix A.4. The key component is the first term, and Lemma 1 implies that:

• If the propensity score πϑ(a|x)/β̂(a|x) is above the threshold
√
λ/η1, UIPS will assign a smaller

weight to a sample with more inaccurate β̂(a|x) to prevent its distortion from a large propensity
score but an inaccurate logging probability.

• If the propensity score πϑ(a|x)/β̂(a|x) is below the threshold but not small enough to ac-
tivate the second term, then the propensity score at the worse case (i.e., taking B−

x,a =

β̂(a|x)Ẑ exp (−γUx,a) /Z
∗ as denominator) matters. If the propensity score at the worse case

is under control, i.e., πϑ(a|x)/B−
x,a <

√
λ, a larger Ux,a implies a small propensity score

πϑ(a|x)/β̂(a|x), and UIPS tends to boost this safe sample with a higher ϕ∗
x,a. Otherwise ϕ∗

x,a
still decreases as Ux,a becomes higher.

Uncertainty estimation. Now we describe how to calculate Ux,a, i.e., the uncertainty of the es-
timated β̂(a|x). In this work, we choose to estimate β∗(a|x) using a neural network, due to its
encouraging representation learning capacity. And various ways (Gal & Ghahramani (2016); Xu
et al. (2021)) can be leveraged to perform the uncertainty estimation in a neural network. For ex-
ample, (Gal & Ghahramani, 2016) proposed to estimate uncertainty using dropout; and (Xu et al.,
2021) provided a theoretical bound. Here we adopt the result in (Xu et al. (2021)) due to its com-
putational efficiency and theoretical soundness. Following the proof of Theorem 4.4 in (Xu et al.
(2021)), given the logged dataset D, we can get with high probability ∃γ:

|fθ(xn, an)− fθ∗(xn, an))| ≤ γ
√
g(xn, an)TM

−1
D g(xn, an)

where g(xn, an) is the gradient of fθ(xn, an) regarding to its last layer, i.e., g(xn, an) =
∇θw

fθ(xn, an), where θw ⊂ θ is the parameter of the last layer of fθ(xn, an). And MD =∑N
n=1 g(xn, an)g(xn, an)

T , implying Uxn,an
=
√
g(xn, an)TM

−1
D g(xn, an).

3.2 Policy Improvement

After getting the optimal ϕ∗
x,a as in Theorem 2, the policy πϑ(a|x) can be updated by the following

REINFORCE gradient:

∇ϑVUIPS(πϑ) = Eβ∗

[
πϑ(a|x)
β̂(a|x)

· ϕ∗
x,a · rx,a∇ϑ log(πϑ(a|x))

]
. (9)

UIPS then iterates policy evaluation and policy improvement for policy learning until converge. The
whole algorithm framework and important notations are summarized in Algorithm 1 and Table 6 in
Appendix A.1 respectively.

4 EMPIRICAL EVALUATION

In this section, we evaluate UIPS on both synthetic datasets and three real-world datasets with unbi-
ased data. We compare UIPS with the following baselines, which can be grouped into five categories:

• Cross-Entropy (CE): A supervised learning method with the cross-entropy loss as its objective,
which is the commonly used learning approach for a model with softmax output. No off-policy
correction is performed in this method.
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• IPS-Cap (Chen et al. (2019)): The standard IPS based off-policy learning, which prunes propen-
sity scores to control variance, i.e., taking min(c, πϑ(a|x)

β̂(a|x)
) as the propensity score. Setting c to a

small value can reduce variance, but introduces bias.
• MinVar & stableVar (Zhan et al. (2021)), Shrinkage (Su et al. (2020)): This line of work im-

proves off-policy evaluation estimators by reweighing each sample. For example, MinVar and sta-

bleVar reweigh each sample by hx,a∑
a′ hx,a′ with hx,a = β̂(a|x)

πϑ(a|x)2 and hx,a =

√
β̂(a|x)

πϑ(a|x) respectively,

since they find that πϑ(a|x)2/β̂(a|x) is directly related to variance. Su et al. (2020) proposes to
shrink the propensity score by multiplying a weight λ/(λ + πϑ(a|x)2

β̂(a|x)2
), which is a special case of

the proposed UIPS with Ux,a = 0 and η1 = 1. All these work simply treats β̂(a|x) as β∗(a|x),
and none of them consider the accuracy or uncertainty of β̂(a|x).

• SNIPS (Swaminathan & Joachims (2015c)), BanditNet (Joachims et al. (2018)),POEM (Swami-
nathan & Joachims (2015b)), POXM (Lopez et al. (2021)), Adaptive (Liu et al. (2022)): This line
of work aims for more stable and accurate policy learning. For example, SNIPS normalizes the
estimator by the sum of propensity scores in each batch. BanditNet extends SNIPS and leverages
an additional Lagrangian term to normalize the estimator by an approximated sum of propensity
scores of all samples. POEM jointly optimizes the estimator and its variance. POXM controls
estimation variance by pruning samples with small logging probabilities. Adaptive proposes a
new formulation to utilize negative samples.

• UIPS-P and UIPS-O : Two variants of our proposed UIPS with different ways of leveraging
uncertainties. UIPS-P directly penalizes samples whose estimated logging probabilities are of
high uncertainties, i.e., taking ϕx,a = 1.0/ exp(γUx,a), which follows previous work on offline
reinforcement learning (Wu et al. (2021); An et al. (2021)). UIPS-O adversarially uses the worst
propensity scores (πϑ(a|x)/B−

x,a) for policy learning, i.e., ϕx,a = 1.0/ exp(−γUx,a).

4.1 Synthetic Data

Data generation. Following previous work (Ma et al. (2020); Lopez et al. (2021)), we generate a
synthetic dataset by a supervision-to-bandit conversion on Wiki10-31K dataset (Bhatia et al. (2016)),
which is an extreme multi-label classification dataset. The Wiki10-31K dataset contains approxi-
mately 20K samples. Each sample is associated with a feature vector x̃ of 101,938 dimensions and
a label vector yx̃ of 31K classes with more than one positive class. Let yx̃,a denote the label of class
a under x̃ and we take each class as an action. We adopt the Wiki10-31K dataset rather than ones
in the UCI machine learning repository (Swaminathan & Joachims (2015a)), since it will be much
harder with such a large action space.

We then split the dataset into train, validation, test sets with size 11K:3K:6K. The test set is from the
official split. Since the original feature vector x̃ is too sparse, for ease of learning, we first embed it
to dimension d by x = Wx̃, and synthesize the ground-truth logging policy β∗(a|x) by:

β∗(a|x) = exp(xT θ∗
a/τ)∑

a′ exp(xT θ∗
a′/τ)

, (10)

where W and {θ∗
a} are pre-learned parameters by applying a logistic regression model on the train

set, τ is a hyper-parameter that controls the skewness of logging distribution. A small value of τ
leads to a near-deterministic policy, while a larger τ makes logging policy smoother. Due to space
limit, more details on data generation and implementation can be found in Appendix A.2.

Evaluation metrics. To evaluate the learned policy πϑ(a|x), we calculate Precision@K (P@K),
Recall@K (R@K) and NDCG@K as in previous work (Lopez et al. (2021); Ma et al. (2020)).
Higher P@K, R@K and NDCG@K imply a better policy.

Table 1 shows the mean performance and standard deviations of all algorithms under 10 random
seeds on three synthetic datasets generated under different τ . Since the ground-truth logging policy
is accessible on the synthetic datasets, we include a new baseline IPS-GT, which depicts the per-
formance the IPS estimator can achieve, assuming the ground-truth logging probabilities are known
and sample size is sufficiently large. We calculate p-value under t-test between UIPS and the best
baseline on each dataset to investigate the significance of improvement. First, we can observe that
UIPS achieves similar and even better performance than IPS-GT when τ = 0.5 and τ = 1, but
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τ = 0.5 τ = 1 τ = 2

Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@5 R@5 NDCG@5
IPS-GT 0.5589±1e−3 0.1582±6e−4 0.6093±1e−3 0.5526±2e−3 0.1565±6e−4 0.6007±1e−3 0.5531±2e−3 0.1557±7e−4 0.6037±1e−3

CE 0.5553±6e−4 0.1573±2e−4 0.6037±5e−4 0.5510±6e−4 0.1561±2e−4 0.5995±4e−4 0.5386±2e−3 0.1524 ±7e−4 0.5874±2e−3

IPS-Cap 0.5515±2e−3 0.1553 ±8e−4 0.6031±2e−3 0.5526±2e−3 0.1561±6e−4 0.6016±1e−3 0.5409±3e−3 0.1529±9e−4 0.5901±2e−3

MinVar 0.5340±2e−3 0.1509 ±6e−4 0.5857±2e−3 0.5282±2e−3 0.1491±7e−4 0.5791±2e−3 0.5036±4e−3 0.1415±1e−3 0.5543±3e−3

StableVar 0.4577±5e−3 0.1310 ±1e−3 0.5111±2e−3 0.5373±3e−3 0.1523±9e−4 0.5866±3e−3 0.5279±3e−3 0.1492±8e−4 0.5781±3e−3

Shrinkage 0.5526±2e−3 0.1562 ±7e−4 0.6024±1e−3 0.5499±4e−3 0.1545±1e−3 0.6040±3e−3 0.5347±2e−3 0.1513 ±6e−4 0.5824 ±2e−3

SNIPS 0.2616±6e−2 0.0749±2e−2 0.3150±7e−2 0.3538±5e−2 0.0987±1e−2 0.4144±6e−2 0.4379±3e−2 0.1226±9e−3 0.5177±3e−2

BanditNet 0.4011±3e−2 0.1131±8e−3 0.4830±2e−2 0.3894±4e−2 0.1095±1e−2 0.4741±3e−2 0.4122±3e−2 0.1153±8e−3 0.4934±3e−2

POEM 0.5480±2e−3 0.1539±8e−4 0.6008±2e−3 0.5502±2e−3 0.1551±6e−4 0.6000±2e−3 0.5399±2e−3 0.1526±8e−4 0.5893±2e−3

POXM 0.4006±3e−2 0.1130±8e−3 0.4828±2e−2 0.3616±4e−2 0.1019±1e−2 0.4522±4e−2 0.3816±4e−2 0.1069±1e−2 0.4680±4e−2

Adaptive 0.3831±2e−2 0.1050±4e−3 0.4382±2e−2 0.4734±4e−3 0.1325±1e−3 0.5326±3e−3 0.3936±1e−2 0.1097±4e−3 0.4368±2e−2

UIPS-P 0.4019±3e−2 0.1131±1e−2 0.4831±3e−2 0.3904±4e−2 0.1096±1e−2 0.4749±3e−2 0.4109±3e−2 0.1149±1e−2 0.4922±3e−2

UIPS-O 0.4135±4e−2 0.1167±1e−2 0.4954±4e−2 0.3896±4e−2 0.1096±1e−2 0.4739±3e−2 0.4519±3e−2 0.1268±8e−3 0.5296±2e−2

UIPS 0.5608±2e−3 0.1589±8e−4 0.6113±3e−3 0.5572±2e−3 0.1571±8e−4 0.6074±2e−3 0.5432±3e−3 0.1534±8e−4 0.5946±2e−3

p-value 4e−6 4e−5 2e−10 2e−7 2e−3 4e−10 1e−1 2e−1 4e−2

Table 1: Experimental results on synthetic datasets. The best and second best results are highlighted with bold
and underline respectively. The p-value under the t-test between UIPS and the best baseline on each dataset is
also provided.

Low Frequent Action Related Samples
( High Uncertainty)

High Frequent Action Related Samples
(Low Uncertainty)

Algorithm P@5(RI) R@5(RI) NDCG@5(RI) P@5(RI) R@5(RI) NDCG@5(RI)
CE 0.5186 0.1228 0.5521 0.5931 0.1921 0.6575

IPS-Cap 0.5170(-0.31%) 0.1218(-0.81%) 0.5539(+0.32%) 0.5996(+1.10%) 0.1935(+0.73%) 0.6647(+1.10%)
Shrinkage 0.5145(-0.79%) 0.1212(-1.30%) 0.5519(-0.04%) 0.5982(+0.86%) 0.1931(+0.52%) 0.6628(+0.81%)

UIPS 0.5276(+1.74%) 0.1250(+1.79%) 0.5623(+1.85%) 0.6055(+2.09%) 0.1961(+2.08%) 0.6715(+2.13%)

Table 2: Performance under different uncertainties.

Table 3: Effect of λ and γ on NDCG@5.

Algorithm MSE
IPS-CaP 0.4953
minVar 0.8928

stableVar 0.8112
Shrinage 0.5125

UIPS 0.4516

Table 4: MSE of different off-policy
evaluation estimators.

performs worse than IPS-GT on the dataset with τ = 2. Although IPS-GT can access the ground-
truth logging probabilities, it still suffers from high variance caused by samples with small logging
probabilities, which is the main cause of its worse performance when τ = 0.5 and τ = 1. When
the ground-truth logging policy is smoother (e.g., τ = 2), the variance of the IPS estimator becomes
much smaller, and off-policy correction with the ground-truth logging probabilities, rather than the
estimated ones, leads to better model performance. We can then observe that as τ increases, i.e.,
the probability of selecting positive actions decreases, the performance of most algorithms drop,
including CE, IPS-Cap, UIPS, Shrinkage, POEM, Adaptive, etc. However, UIPS still achieves the
best performance on all three datasets under all three metrics. And as τ decreases, the improvement
of UIPS becomes larger and more significant. SNIPS, BanditNet , POXM are more robust to small
logging probabilities of positive actions. UIPS consistently outperforms Shrinkage (a special case
of UIPS with uncertainties always being zero) on all three datasets, demonstrating the benefits of
considering the estimation uncertainty. Finally, regardless of the scale of propensity scores, blindly
reweighing through uncertainties also leads to poor performance, as shown by UIPS-P and UIPS-O.

Performance under different uncertainty levels. As shown in Figure 1, low-frequency actions in
the logged dataset suffer higher uncertainties in their propensity estimation. Thus, we divide the test
set into two subsets according to the average frequency of associated actions, where the uncertainty
in the subset associated with low-frequency actions is on average 9% higher than that in the subset
associated with high-frequency actions. Table 2 shows the results on these two subsets when τ =
0.5. We only report the results of the best three baselines due to space limit. One can clearly observe
that only UIPS performed better than CE on the test set associated with low-frequency actions,
implying the advantage of UIPS in dealing with the inaccurately estimated logging probabilities.
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Yahoo Coat KuaiRec
Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@50 R@50 NDCG@50

CE 0.2819±2e−3 0.7594±6e−3 0.6073±7e−3 0.2799±5e−3 0.4618±1e−2 0.4529±7e−3 0.8802±2e−3 0.0240±8e−5 0.8810±6e−3

IPS-Cap 0.2751±2e−3 0.7419±8e−3 0.5928±7e−3 0.2758±6e−3 0.4582±7e−3 0.4399±9e−3 0.8750±3e−3 0.0238±7e−5 0.8788±5e−3

MinVar 0.2843±4e−3 0.7685±1e−2 0.6168±1e−2 0.2813±3e−3 0.4668±9e−3 0.4414±8e−3 0.8827±1e−3 0.0240±5e−5 0.8886±2e−3

StableVar 0.2787±2e−3 0.7499±7e−3 0.5919±7e−3 0.2840±3e−3 0.4662±5e−3 0.4393±7e−3 0.8524±7e−3 0.0231±2e−4 0.8570±4e−3

Shrinkage 0.2843±3e−3 0.7654±8e−3 0.6204±7e−3 0.2790±5e−3 0.4636±4e−3 0.4464±1e−2 0.8744±3e−3 0.0238±9e−5 0.8771±6e−3

SNIPS 0.2222±4e−3 0.5828±1e−2 0.4357±1e−2 0.2643±7e−3 0.4287±1e−2 0.4009±9e−3 0.8411±6e−3 0.0228±2e−4 0.8431±6e−3

BanditNet 0.2413±8e−3 0.6442±2e−2 0.4988±2e−2 0.2781±8e−3 0.4527±1e−2 0.4251±1e−2 0.8758±5e−3 0.0239±2e−4 0.8810±4e−3

POEM 0.2732±3e−3 0.7357±1e−2 0.5880±1e−2 0.2791±4e−3 0.4566±6e−3 0.4375±6e−3 0.7785±1e−2 0.0210±2e−4 0.7779±6e−3

POXM 0.2250±5e−3 0.5940±1e−2 0.4542±2e−2 0.2663±6e−3 0.4308±9e−3 0.4006±1e−2 0.8962±1e−2 0.0245±4e−4 0.9041±1e−2

Adaptive 0.2762±3e−3 0.7451±9e−3 0.5919±8e−3 0.2830±3e−3 0.4634±5e−3 0.4217±5e−3 0.8375±1e−2 0.0227±4e−4 0.8460±1e−2

UIPS-P 0.1829±8e−3 0.4560±3e−2 0.3300±1e−2 0.2685±7e−3 0.4364±9e−3 0.4087±7e−3 0.8638±8e−3 0.0235±3e−4 0.8685±7e−3

UIPS-O 0.1947±3e−3 0.4959±1e−2 0.3600±8e−3 0.2657±5e−3 0.4306±9e−3 0.4146±9e−3 0.8651±8e−3 0.0235±2e−4 0.8697±7e−3

UIPS 0.2868±2e−3 0.7742±5e−3 0.6274±5e−3 0.2877±3e−3 0.4757±5e−3 0.4576±8e−3 0.9120±1e−3 0.0250±5e−5 0.9174±7e−4

P-value 4e−2 1e−2 3e−2 2e−2 6e−4 5e−5 6e−4 6e−4 1e−3

Table 5: Experimental results on real-world datasets. The best and second best results are highlighted with
bold and underline respectively. The p-value under the t-test between UIPS and the best baseline on each
dataset is also provided.
Ablation Study. In this experiment, we aim to answer two questions: (1) Can V̂UIPS(πϑ)) in Eq.
(5) lead to more accurate off-policy evaluation? (2) How will UIPS perform with different hyper-
parameters. Due to space limit, we report results on synthetic dataset with τ = 0.5.

To answer the first question, we evaluate the following ϵ-greedy policy: π(a|x) = 1−ϵ
|Mx| · I{a ∈

Mx} + ϵ/|A|, where Mx contains all positive actions associated with feature vector x. Then for
each x in the test set, we sample 1K data points in a similar way as discussed previously to calculate
the value of estimators. Table 4 shows the MSE of the estimators to ground-truth policy value under
20 different random seeds. We only compared with baselines on off-policy evaluation estimator, i.e.,
IPS-Cap, MinVar, StableVar and Shrinkage. One can observe from Table 4 that UIPS does lead to
the smallest MSE, implying the most accurate off-policy evaluation.

For the second question, γ and η21/λ are the two most important hyperparameters as discussed in
Appendix A.2.1. Thus we fix η1, η2, and vary λ and γ to track the performance of UIPS. Recall that
a larger γ implies a higher chance the derived interval contains β∗(a|x), while

√
λ/η1 is closely

related to how UIPS works as discussed in “Insights on ϕ∗
x,a” in Section 3.1. Figure 3 reports

NDCG@5 under diferent γ and λ. Results on P@5 and R@5 can be found in Appendix A.2.1.
We can observe that to make UIPS perform, Bx,a needs to be of high confidence, e.g., γ = 25

performed the best when τ = 0.5. Moreover, the threshold
√
λ/η1 cannot be too small or too large.

4.2 Real-World Data

Off-policy learning has its utility in recommendation scenarios (Chen et al. (2019); Ma et al. (2020)),
where context vector x denotes the state of a user and each candidate item is taken as an action. To
further demonstrate the efficiency of UIPS in real-world scenarios, we evaluate it on three recom-
mendation datasets with unbiased testing data: (1) Yahoo!R31; (2)Coat2; (3)KuaiRec (Gao et al.
(2022)), from music, fashion and micro-video recommendation scenario respectively. All these
datasets contain an unbiased test set collected from a randomized controlled trial where items are
randomly selected. The statistics of the three datasets and implementation details, e.g., model archi-
tectures and dataset splits, can be found in Appendix A.2.2.

We still adopt P@K, R@K and NDCG@K as our evaluation metrics. Following (Ding et al. (2022)),
we take K = 5 on Yahoo!R3 and Coat datasets, and K = 50 on KuaiRec dataset. The p-value un-
der the t-test between UIPS and the best baseline on each dataset is also reported to investigate the
significance of the improvements. We can first observe that on all three datasets, the proposed UIPS
achieves the highest precision, recall and NDCG. IPS-Cap cannot outperform CE due to the inac-
curacy of the estimated logging probabilities. BanditNet, POEM and POXM tend to perform better
with a larger action space, while MinVar, StableVar and Shrinkage as well as Adaptive are more
suitable for scenarios with small action size. UIPS still outperforms Shrinkage, highlighting the im-
portance of modeling uncertainty in the estimated logging policy. However, reweighing based solely
on uncertainties, ignoring the corresponding propensity scores, will also lead to poor performance,
as shown by UIPS-P and UIPS-O.

1https://webscope.sandbox.yahoo.com/
2https://www.cs.cornell.edu/˜schnabts/mnar/
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5 RELATED WORK

This work is the first of its kind to take into consideration the uncertainty of the estimated logging
policy for improved policy learning. The following two lines of work are related to this paper.

Off-policy learning. In many real-world applications, such as search engines, recommender sys-
tems, etc., interactive online model update is expensive and risky (Jiang & Li (2016)). Off-policy
learning has therefore attracted increasing interest, since it can leverage the already logged feedback
data (Agarwal et al. (2019); Chen et al. (2019); Liu et al. (2022)). The main challenge in off-policy
learning is how to address the mismatch between the logging policy and the learning policy. One line
of work (Achiam et al. (2017); Schulman et al. (2015)) circumvents this by constraining the learn-
ing policy not too far from the logging policy. However, such constraint is too restrictive thus not
applicable in some scenarios such as recommender systems where user behaviors and items change
rapidly. Another more common and widely-applied approach is to leverage Inverse Propensity Score
(IPS) method to correct the discrepancy between two policies. And various methods are proposed
for stabilized learning (Swaminathan & Joachims (2015c;a;b)) and variance control (Lopez et al.
(2021); Liu et al. (2022)) on top of IPS. However, all these work directly use the estimated logging
policy for off-policy correction, leading to sub-optimal performance as shown in our experiments.
Some other work further extend IPS-based off-policy learning for more complex problems, such
as slate recommendation (Swaminathan et al. (2017)), two-stage recommender systems (Ma et al.
(2020)), etc. But they still fail to realize the effect of accuracy of the estimated logging policy. A
recent work (Ding et al. (2022)) on causal recommendation also argues that propensity scores may
not be correct due to unobserved confounders. However, they assume the effect of unobserved con-
founder for any sample can be bounded by a pre-defined hyper-parameter, and adversarially search
for the worst-case propensity to update model parameters. Adapting to off-policy learning, it is a
special case of our UIPS-O variant with uncertainty as a pre-defined constant.

Off-policy learning can be directly built on off-policy evaluation. In this line of research, several
work (Su et al. (2020); Zhan et al. (2021)) also propose to control the high variance of learning
caused by small logging probabilities by instance reweighing. However, they directly take the es-
timated logging policy as true logging policy for correction, thus worse than UIPS as shown in
experiments. A recent work (Saito & Joachims (2022)) assumes additional structure in action space
and proposes the marginalized IPS. Instead, our work considers the uncertainty when estimating the
logging policy and thus does not add new assumptions about the problem space.

Uncertainty-aware Learning. Estimation uncertainty has been extensively used for making trade-
offs between exploration and exploitation in online learning (Xu et al. (2021); Zhou et al. (2020);
Abbasi-Yadkori et al. (2011)). Recently, several work on offline reinforcement learning (Wu et al.
(2021); An et al. (2021); Bai et al. (2022)) penalize the value function of out-of-distribution states
and actions by directly subtracting uncertainty to tackle the extrapolating error. However, blindly
penalizing samples of high uncertainty (i.e., UIPS-P) is problematic, as shown in our experiments.
Proper correction depends on both uncertainty in logging policy estimation and the actual value of
estimated logging probabilities.

6 CONCLUSION

In this paper, we propose a novel Uncertainty-aware Inverse Propensity Score estimator (UIPS) to
explicitly model the uncertainty about the estimated logging policy for improved off-policy learning.
UIPS weighs each logged instance to approach the ground-truth estimator and a closed-form solution
of the optimal weight is derived by minimizing the upper bound of the mean squared error (MSE).
An improved policy can be obtained by optimizing the resulting estimator. Extensive experiments
on synthetic datasets and three real-world datasets demonstrate the efficiency of UIPS .

As demonstrated in this work, explicitly modeling the uncertainty of the estimated logging policy is
crucial for effective off-policy learning; but the best use of this uncertainty is not to simply down-
weigh or drop instances with uncertain estimations, but to balance it with the actually estimated
logging probabilities in a per-instance basis. As our future work, it is promising to investigate how
UIPS can be extended to value-based learning methods, e.g., actor-critics. And on the other hand, it
is also important to analyze how tight our upper bound analysis of MSE is; and if possible, find new
ways to tighten it for improvements.
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bandits. In Advances in Neural Information Processing Systems, pp. 2312–2320, 2011.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and Thorsten Joachims.
Estimating position bias without intrusive interventions. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 474–482, 2019.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classi-
fication repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/
downloads/XC/XMLRepository.html.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. Top-k
off-policy correction for a reinforce recommender system. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 456–464, 2019.

Ruidi Chen, Ioannis Ch Paschalidis, et al. Distributionally robust learning. Foundations and Trends®
in Optimization, 4(1-2):1–243, 2020.

Sihao Ding, Peng Wu, Fuli Feng, Yitong Wang, Xiangnan He, Yong Liao, and Yongdong Zhang.
Addressing unmeasured confounder for recommendation with sensitivity analysis. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 305–315,
2022.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang, Xiangnan He, Ji-
axin Mao, and Tat-Seng Chua. Kuairec: A fully-observed dataset and insights for evaluating
recommender systems. In Proceedings of the 31st ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’22, 2022. doi: 10.1145/3511808.3557220. URL
https://doi.org/10.1145/3511808.3557220.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International Conference on Machine Learning, pp. 652–661. PMLR, 2016.

Thorsten Joachims, Adith Swaminathan, and Maarten De Rijke. Deep learning with logged bandit
feedback. In International Conference on Learning Representations, 2018.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pp. 1–9. PMLR, 2013.

Yaxu Liu, Jui-Nan Yen, Bowen Yuan, Rundong Shi, Peng Yan, and Chih-Jen Lin. Practical coun-
terfactual policy learning for top-k recommendations. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1141–1151, 2022.

Romain Lopez, Inderjit S Dhillon, and Michael I Jordan. Learning from extreme bandit feedback. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 8732–8740, 2021.

10

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://doi.org/10.1145/3511808.3557220


Under review as a conference paper at ICLR 2023

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong, and Ed H Chi.
Off-policy learning in two-stage recommender systems. In Proceedings of The Web Conference
2020, pp. 463–473, 2020.
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A APPENDIX

A.1 NOTATIONS AND ALGORITHM FRAMEWORK.

For ease of reading, we list important notations in Table 6 and summarize the main framework of
the proposed UIPS in Algorithm 1.

Notation Description
X context space
A action set

x ∈ Rd context vector
a action

rx,a reward
π(a|x) targeted policy to evaluate
β∗(a|x) the unknown ground-truth logging policy
β̂(a|x) the estimated logging policy
V (π) value function

D := {(xn, an, rxn,an
)|n ∈ [N ]} logged dataset containing N samples

ϕ∗
x,a the optimal uncertainty-aware weight

fθ∗(x, a)
the unknown ground-truth function
that generates β∗(a|x) = exp(fθ∗ (x,a))∑

a′ exp(fθ∗ (x,a′))

fθ(x, a) the estimate of fθ∗(x, a) that generates β̂(a|x)
Bx,a confidence interval of β̂(a|x)
Ux,a uncertainty defined as |fθ∗(x, a)− fθ(x, a)| ≤ γUx,a

g(xn, an) gradient of fθ(x, a) regarding to the last layer.

Table 6: Notations

Computation Cost. The additional computation cost of UIPS over IPS comes from two parts:

• Pre-calculating uncertainties (line 1-5 in Algorithm 1) : This part calculates uncertainty
of the logging probability for each (s, a) pair, and “it only needs to be executed once”.
The computational cost of this step is O(Nd2 + d3), where O(Nd2) is for calculating
uncertainties in each (s, a) pair and O(d3) is for matrix inverse.

• Calculating ϕ∗
x,a during training (line 8 in Algorithm 1): It only takes O(1) time, the same

computational cost as calculating IPS score.

Note that calculating logging probability for each sample, which is essential for both UIPS and IPS,
takes O(Nd|A|) time. Since the dimension d is usually much less than action size |A| and samples
size N , UIPS does not introduce significant computational overhead compared to the original IPS
solution.

A.2 EXPERIMENTS DETAILS

A.2.1 SYNTHETIC DATA

Data generation. Given the ground-truth logging policy β∗(a|x), we generate the logged dataset
as follows. For each sample in train set, we first get the embedded context vector x form its original

12
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Algorithm 1: UIPS
Input: The logged dataset D := {(xn, an, rxn,an)|n ∈ [N ]}, the estimated logging policy

model β̂(a|x) = exp(fθ(x,a))∑
a′ exp(fθ(x,a′)) , latent dimension d.

Init: MD = Id×d

// calculate MD for uncertainty calculation.
1 for n = 1, 2, ..., N do
2 MD = MD +∇θfθ(xn, an)∇θfθ(xn, an)

T ;

3 M inv
D = inv(MD) ;

4 for n = 1, 2, ..., N do
5 Uxn,an =

√
∇θfθ(xn, an)TM inv

D ∇θfθ(xn, an);
// Main part of UIPS

6 while not converge do
7 for n = 1, 2, ..., N do
8 Calculating ϕ∗

xn,an
as in Theorem 2 ;

9 Calculating gradients as in Equation (9) and updating πϑ(a|x).

Output: The learnt policy πϑ(a|x).

feature vector x̃. We then sample an action a according to β∗(a|x), and obtain the reward rx,a =
yx̃,a, resulting a bandit feedback (x, a, rx,a), where yx̃,a is the label of class a under the original
feature vector x̃. We repeat above process N times to collect the logged dataset. In our experiments,
we take d = 64, N = 100.

Implementation Details. We model the logging policy as in Equation (7) with fθ(x, a) = xTθa,
where {θa} are parameters to learn. To train the logging policy, we take all samples in the logged
dataset D as positive instances, and randomly sample non-selected actions as negative instances
as in (Chen et al. (2019)). We use grid search to select the hyperparameters based on the model’s
performance on validation dataset: the learning rate was searched in {1e−5, 1e−4, 1e−3, 1e−2};
λ, γ, η1 were searched in {0.5, 0.1, 1, 2,5, 10, 15, 20, 25, 30, 40, 50}. And η2 was searched in {1,
10, 100, 1000}. For baseline algorithms, we perform a similar grid search as mentioned above, and
the search range follows the original papers.

Ablation Study: Hyperparameter tuning. Although UIPS has four hyperparameters (λ, γ, η1, and
η2), one only needs to carefully finetune two of them, i.e., γ and η21/λ, to obtain good performance
of UIPS. This is because:

• η2 acts like a capping threshold to ensure ϕ∗
x,a ≤ 2η2 holds even with small propensity

scores. Hence, it should be set to a large value (e.g., 100).
• The key component (i.e., the first term) of ϕ∗

x,a can be rewritten in the following way.
While all (x, a) pairs will be multiplied by ϕ∗

x,a, η1 in the numerator will not affect final
performance too much, and the key is to find a good value of η21/λ to balance the two terms
in the denominator:

η1/

[
exp (−γUx,a) +

η21/λ · πϑ(a|x)2

β̂(a|x)2 exp (−γUx,a)

]
.

Thus with η1 and η2 fixed, effect of hyperparameter γ and λ on precision and recall can be found in
Figure 2a and Figure 2b respectively.

A.2.2 REAL-WORLD DATA

Statistics of data. The statistics of three real-world recommendation datasets with unbiased data
can be found in Table 7.

All these datasets contain a set of biased data collected from users’ interactions on the platform,
and a set of unbiased data collected from a randomized controlled trial where items are randomly
selected. As in (Ding et al. (2022)), on each dataset, the biased data is used for training, and the

13
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(a) Precision@5 (b) Recall@5

Figure 2: Effect of λ and γ on Precision@5 and Recall@5.

Dataset #User #Item #Biased Data #Unbiased Data
Yahoo 15,400 1,000 311,704 54,000
Coat 290 300 6,960 4,640

KuaiRec 7,176 10,729 12,530,806 4,676,570

Table 7: The statistics of three real-world datasets.

unbiased data is for testing, with a small part of unbiased data split for validation purpose (5% on
Yahoo and Coat, and 15% on KuaiRec). We take the reward as 1 if : (1) the rating is larger than
3 in Yahoo!R3 and Coat datasets; (2) the user watched more than 70% of the video in KuaiRec.
Otherwise, the reward is labeled as 0.

Implementation Details. We adopt a two-tower neural network architecture to implement both the
logging and learning policy, as shown in Figure 3. For the learning policy, the user representation
and the item representation are first modelled through two separate neural networks (i.e., the user
tower and the item tower), and then their element-by-element product vector is projected to predict
the user’s preference for the item. We then re-use the user state generated from the user tower of
the learning policy, and model the logging policy with another separate item tower, following (Chen
et al. (2019)). We also block gradients to prevent the logging policy interfering the user state of
the learning policy. In each learning epoch, we will first estimate the logging policy, and then take
the estimated logging probabilities as well as their uncertainties to optimize the learning policy. All
hyperparameters are searched in a similar way described in Section 4.1.

Figure 3: Model architecture of the logging and the learning policy in real-world datasets

14
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A.3 EXPERIMENTS ON THE DOUBLY ROBUST ESTIMATORS.

The doubly robust (DR) estimator (Jiang & Li (2016)), which is a hybrid of direct method (DM)
estimator and inverse propensity score (IPS) estimator, is also widely used for off-policy evaluation.
More specifically, let η̂ : X × A → R be the imputation model in DM that estimates the reward of
action a under context vector x, and β̂(a|x) be the estimated logging policy in the IPS estimator. The
DR estimator evaluates the policy π based on the logged dataset D := {(xn, an, rxn,an

)|n ∈ [N ]},
by:

V̂DR(π) = V̂DM(π) + 1
N

∑N
n=1

π(an|xn)

β̂(an|xn)
(rxn,an

− η̂(xn, an)) (11)

where V̂DM(π) is the DM estimator:

V̂DM(π) = 1
N

∑N
n=1

∑
a∈A π(a|xn)η̂(xn, a). (12)

Again assuming the policy π(a|x) is parameterized by ϑ, the REINFORCE gradient of V̂DR(πϑ)
with respect to ϑ can be readily derived as follows:

∇ϑV̂DR(πϑ) =
1
N

∑N
n=1

(∑
a∈A πϑ(a|xn)η̂(xn, a)∇ϑ log(πϑ(a|xn))

)
+ 1

N

∑N
n=1

(
π(an|xn)

β̂(an|xn)
(rxn,an

− η̂(xn, an)∇ϑ log(πϑ(an|xn)
)
. (13)

The imputation model η̂(x, a) is pre-trained following previous work (Liu et al. (2022)) with the
same model architecture as the logging policy model. Besides the standard DR estimator, we also
adapt UIPS and the best two baselines on off-policy evalaution estimator (i.e., MinVar and Shrink-
age) to doubly robust setting using the same imputation model.

Table 8 and Table 9 show the results on the synthetic datasets and three real-world datasets respec-
tively. For ease of comparison, we also include the experimental results of IPS-Cap and UIPS on
each dataset in two tables. Two p-values are also provided: (1) P-value(UIPSDR): The p-value un-
der the t-test between UIPSDR and the best DR baseline on each dataset; (2) P-value(UIPS): The
p-value under the t-test between UIPS and the best DR baseline on each dataset. From Table 8
and Table 9, we can first observe that DR cannot consistently outperform IPS-Cap: It outperforms
IPS-Cap on the Coat and KuaiRec dataset, while achieving much worse performance on the syn-
thetic datasets and Yahoo dataset. This is because the imputation model also plays an important
role in gradient calculation as shown in Equation(13), so its accuracy greatly affects policy learn-
ing. When the imputation model is sufficiently accurate, for example, on the Coat dataset with only
300 actions, incorporating the DM estimator not only leads to better performance of DR over IPS,
but also improved performance of UIPSDR over UIPS. And in particular, in this situation UIPSDR
performs better than DR with the gain being statistically significant. When the imputation model
is not accurate enough, for example, on the KuaiRec dataset with a large action space but sparse
reward feedback, DR is still worse than UIPS, and UIPSDR also performs worse than UIPS due to
the distortion of the imputation model.

A.4 THEORETICAL PROOF.

Proof of Proposition 1:

Proof. With the linearity of expectation, we have ED

[
V̂BIPS(πϑ)

]
= Eβ∗

[
πϑ(a|x)
β̂(a|x)

rx,a

]
, thus:

Bias
(
V̂BIPS(πϑ)

)
= ED

[
V̂BIPS(πϑ)− V (πϑ)

]
= Eβ∗

[
πϑ(a|x)
β̂(a|x)

rx,a

]
− Eβ∗

[
πϑ(a|x)
β∗(a|x) rx,a

]
= Eβ∗

[
πϑ(a|x)
β∗(a|x) rx,a

(
β∗(a|x)
β̂(a|x)

− 1
)]

= Eπϑ

[
rx,a

(
β∗(a|x)
β̂(a|x)

− 1
)]

. (14)
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τ = 0.5 τ = 1 τ = 2

Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@5 R@5 NDCG@5
IPS-Cap 0.5515±2e−3 0.1553 ±8e−4 0.6031±2e−3 0.5526±2e−3 0.1561±6e−4 0.6016±1e−3 0.5409±3e−3 0.1529±9e−4 0.5901±2e−3

UIPS 0.5589±3e−3 0.1583±9e−4 0.6095±3e−3 0.5572±2e−3 0.1571±8e−4 0.6074±2e−3 0.5432±3e−3 0.1534±8e−4 0.5946±2e−3

DR 0.3846±3e−2 0.1082±8e−3 0.4684±3e−2 0.3631±3e−2 0.1017±9e−3 0.4494±3e−2 0.3560±3e−2 0.0995±7e−3 0.4470±2e−3

MinVarDR 0.3212±3e−2 0.0908±8e−3 0.4062±3e−2 0.3240±5e−2 0.0903±1e−2 0.3905±5e−2 0.3234±5e−2 0.0910±1e−2 0.4059±4e−2

ShrinkageDR 0.4139±2e−2 0.1161±7e−3 0.4969±3e−2 0.3944±3e−2 0.1101±8e−3 0.4797±2e−2 0.4080±3e−2 0.1135±7e−3 0.4901±2e−2

UIPSDR 0.4278±2e−2 0.1200±6e−3 0.5069±2e−2 0.4008±2e−2 0.1126±7e−3 0.4847±2e−2 0.4144±2e−2 0.1162±8e−3 0.4972±2e−2

P-value(UIPSDR) 2e−1 2e−1 3e−1 6e−1 4e−1 6e−1 6e−1 4e−1 5e−1

P-value(UIPS) 6e−13 4e−13 4e−12 2e−12 1e−12 5e−12 8e−12 8e−12 2e−11

Table 8: Experiment results on synthetic datasets. The best and second best results are highlighted with bold
and underline respectively. Two p-values are calculated: (1) P-value(UIPSDR): The p-value under the t-test
between UIPSDR and the best DR baseline on each dataset; (2) P-value(UIPS): The p-value under the t-test
between UIPS and the best DR baseline on each dataset.

Yahoo Coat KuaiRec
Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@50 R@50 NDCG@50
IPS-Cap 0.2751±2e−3 0.7419±8e−3 0.5928±7e−3 0.2758±6e−3 0.4582±7e−3 0.4399±9e−3 0.8750±3e−3 0.0238±7e−5 0.8788±5e−3

UIPS 0.2868±2e−3 0.7742±5e−3 0.6274±5e−3 0.2877±3e−3 0.4757±5e−3 0.4576±8e−3 0.9120±1e−3 0.0250±5e−5 0.9174±7e−4

DR 0.2670±2e−3 0.7174±6e−3 0.5636±6e−3 0.2884±3e−3 0.4760±5e−3 0.4541±5e−3 0.8794±1e−2 0.0240±5e−4 0.8824±2e−2

MinVarDR 0.2272±5e−3 0.5989±1e−2 0.4525±1e−2 0.2704±4e−3 0.4434±9e−3 0.4137±6e−3 0.8640±7e−3 0.0235±2e−4 0.8657±7e−3

ShrinkageDR 0.2697±2e−3 0.7226±6e−3 0.5713±5e−3 0.2895±4e−3 0.4749±6e−3 0.4526±6e−3 0.8778±2e−2 0.0239±5e−4 0.8800±2e−2

UIPSDR 0.2721±1e−3 0.7294±6e−3 0.5750±5e−3 0.2946±4e−3 0.4854±8e−3 0.4647±8e−3 0.8849±1e−2 0.0242±4e−4 0.8896±1e−2

P-value(UIPSDR) 1e−2 2e−2 1e−1 7e−3 5e−3 2e−3 4e−1 4e−1 3e−1

P-value(UIPS) 1e−12 6e−14 6e−15 3e−1 8e−1 1e−1 2e−6 2e−6 1e−3

Table 9: Experimental results on real-world unbiased datasets. The best and second best results are highlighted
with bold and underline respectively. Two p-values are calculated: (1) P-value(UIPSDR): The p-value under
the t-test between UIPSDR and the best DR baseline on each dataset; (2) P-value(UIPS): The p-value under the
t-test between UIPS and the best DR baseline on each dataset.

For variance, since samples are independently sampled from logging policy, thus :

VarD

(
V̂BIPS(πϑ)

)
=

1

N
Varβ∗

(
πϑ(a|x)
β̂(a|x)

rx,a

)
.

By re-scaling, we get:

N ·VarD
(
V̂BIPS(πϑ)

)
= Varβ∗

(
πϑ(a|x)
β̂(a|x)

rx,a

)
= Eβ∗

[
πϑ(a|x)2

β̂(a|x)2
r2x,a

]
−
(
Eβ∗

[
πϑ(a|x)
β̂(a|x)

rx,a

])2
= Eπϑ

[
πϑ(a|x)
β∗(a|x) ·

β∗(a|x)2

β̂(a|x)2
r2x,a

]
−
(
Eπϑ

[
β∗(a|x)
β̂(a|x)

rx,a

])2
= Varπϑ

(
β∗(a|x)
β̂(a|x)

rx,a

)
+ Eπϑ

[(
πϑ(a|x)
β∗(a|x) − 1

)
· β∗(a|x)2

β̂(a|x)2
r2x,a

]
. (15)

Then we complete the proof.

Proof of Theorem 1:

Proof. We can get:

MSE
(
V̂UIPS(πϑ)

)
= ED

[(
V̂UIPS(πϑ)− V (πϑ)

)2]
=
(
ED

[
V̂UIPS(πϑ)− V (πϑ)

])2
+VarD

(
V̂UIPS(πϑ)− V (πϑ)

)
=
(
ED

[
V̂UIPS(πϑ)− V (πϑ)

])2
+VarD

(
V̂UIPS(πϑ)

)
= Bias(V̂UIPS(πϑ))

2 +Var(V̂UIPS(πϑ)).
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We first bound the bias term:

Bias(V̂UIPS(πϑ)) = ED

[
V̂UIPS(πϑ)− V (πϑ)

]
= Eβ∗

[
πϑ(a|x)
β̂(a|x)

ϕx,arx,a

]
− V (πϑ) (1)

= Eβ∗

[
πϑ(a|x)
β̂(a|x)

ϕx,arx,a − πϑ(a|x)
β∗(a|x) rx,a

]
= Eβ∗

[
rx,a

πϑ(a|x)
β∗(a|x) ·

(
β∗(a|x)
β̂(a|x)

ϕx,a − 1
)]

≤
√
Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
·

√
Eβ∗

[(
β∗(a|x)
β̂(a|x)

ϕx,a − 1
)2]

(2)

Equality (1) follows the linearity of expectation. Inequality (2) is due to the Cauchy-Schwarz in-
equality. We then bound the variance term:

Var(V̂UIPS(πϑ)) =
1
NVarβ∗

(
πϑ(a|x)
β̂(a|x)

ϕx,arx,a

)
(1)

= 1
N

(
Eβ∗

[
πϑ(a|x)2

β̂(a|x)2
ϕ2
x,ar

2
x,a

]
−
(
Eβ∗

[
πϑ(a|x)
β̂(a|x)

ϕx,arx,a

])2)
(16)

≤ 1
NEβ∗

[
πϑ(a|x)2

β̂(a|x)2
ϕ2
x,ar

2
x,a

]
≤ Eβ∗

[
πϑ(a|x)2

β̂(a|x)2
ϕ2
x,a

]
(17)

Combining the bound of bias and variance, we can complete the proof.

Proof of Theorem 2:

Proof. We first define several notations:

• T (ϕx,a, βx,a) = λEβ∗

[(
βx,a

β̂(a|x)
ϕx,a − 1

)2]
+ Eβ∗

[
πϑ(a|x)2

β̂(a|x)2
ϕ2
x,a

]
.

• T̃ (ϕx,a) = maxβx,a∈Bx,a
T (ϕx,a, βx,a) denotes the maximum value of inner problem.

• T ∗ = minϕx,a
T̃ (ϕx,a) = minϕx,a

maxβx,a∈Bx,a
T (ϕx,a, βx,a) denote the optimal min-

max value. And ϕ∗
x,a = argminϕx,a

T̃ (ϕx,a) .

• B−
x,a :=

Ẑ exp(−γUx,a)
Z∗ β̂(a|x), and B+

x,a :=
Ẑ exp(γUx,a)

Z∗ β̂(a|x).

We first find the maximum value of inner problem, i.e., T̃ (ϕx,a) for any fixed ϕx,a. And there are
three cases shown in Figure 4:

Figure 4: Three cases for maximizing inner problem.

Case I: When β̂(a|x)
ϕx,a

≥ B+
x,a, , T̃ (ϕx,a) achieves the maximum value at βx,a = B−

x,a. In other

words, T̃ (ϕx,a) = T (ϕx,a,B
−
x,a) when ϕx,a ≤ β̂(a|x)

B+
x,a

.
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Case II: When B−
x,a ≤ β̂(a|x)

ϕx,a
≤ B+

x,a, i.e., Z∗ exp(−γUx,a)

Ẑ
≤ ϕx,a ≤ Z∗ exp(γUx,a)

Ẑ
, then T̃ (ϕx,a)

will be the maximum between T (ϕx,a,B
−
x,a) and T (ϕx,a,B

+
x,a).

More specifically, when β̂(a|x)
ϕx,a

≤ B+
x,a+B−

x,a

2 , i.e., ϕx,a ≥ 2β̂(a|x)
B+

x,a+B−
x,a

, T̃ (ϕx,a) = T (ϕx,a,B
+
x,a).

Otherwise when ϕx,a < 2β̂(a|x)
B+

x,a+B−
x,a

, T̃ (ϕx,a) = T (ϕx,a,B
−
x,a).

Case III: When ϕx,a ≥ β̂(a|x)
B−

x,a
. implying β̂(a|x)

ϕx,a
≤ B−

x,a, T̃ (ϕx,a) = T (ϕx,a,B
+
x,a).

Overall, we get that:

T̃ (ϕx,a) =

 T (ϕx,a,B
−
x,a), ϕx,a ∈ (−∞, 2β̂(a|x)

B+
x,a+B−

x,a
]

T (ϕx,a,B
+
x,a) ϕx,a ∈ [ 2β̂(a|x)

B+
x,a+B−

x,a
,∞)

(18)

Next we try to find the minimum value of T̃ (ϕx,a). We first observe that without considering
constraint on ϕx,a, when

ϕ+
x,a =

λ

λ
Ẑ exp(γUx,a)

Z∗ + πϑ(a|x)2

β̂(a|x)2 Ẑ exp(γUx,a)
Z∗

,

T (ϕx,a,B
+
x,a) achieves the global minimum value. However, ϕ+

x,a ≤ β̂(a|x)
B+

x,a
, which implies when

ϕx,a ∈ [ 2β̂(a|x)
B+

x,a+B−
x,a

,∞), the minimum value of T (ϕx,a,B
+
x,a) achieves at 2β̂(a|x)

B+
x,a+B−

x,a
.

On the other hand, without considering any constraint on ϕx,a , global minimum value of
T (ϕx,a,B

−
x,a) achieves at:

ϕ−
x,a =

λ

λ
Ẑ exp(−γUx,a)

Z∗ + πϑ(a|x)2

β̂(a|x)2 Ẑ exp(−γUx,a)
Z∗

. (19)

Thus if ϕ−
x,a ≤ 2β̂(a|x)

B+
x,a+B−

x,a
, ϕ∗

x,a = ϕ−
x,a. Otherwise ϕ∗

x,a = 2β̂(a|x)
B+

x,a+B−
x,a

.

Overall,

ϕ∗
x,a = min

 λ

λ
Ẑ exp(−γUx,a)

Z∗ +
πϑ(a|x)2

β̂(a|x)2
Ẑ exp(−γUx,a)

Z∗

, 2
Ẑ exp(γUx,a)

Z∗ +
Ẑ exp(−γUx,a)

Z∗

 (20)

We use η1 and η2 to represent Z∗

Ẑ
in the two terms respectively. We can get

ϕ∗
x,a = min

(
λ

λ
η1

exp(−γUx,a)+
η1πϑ(a|x)2

β̂(a|x)2 exp(−γUx,a)

, 2η2

exp(γUx,a)+exp(−γUx,a)

)
(21)

where η1, η2 ∈ [exp(−γUmax
s ), exp(γUmax

s )], since Ẑ exp(−γUmax
s ) ≤ Z∗ =∑

a′ exp(fθ∗(a′|x)) ≤ Ẑ exp(Umax
s ). Usually we set η1 ≤ η2. We introduce two parameters

since the scale of η1 is closely related to the scale of λ, while the scale of η2 is independent.

Then we complete the proof .

Lemma 1. Assume η1 ≤ η2, then with fixed πϑ(a|x) and β̂(a|x), and αx,a =√
λ

2η1η2
− λ(1−η1)

η2
1

exp(−2γUx,a), we have the following observations:

• If πϑ(a|x)
β̂(a|x)

≤ αx,a, ϕ∗
x,a = 2η2/ [exp(γUx,a) + exp(−γUx,a)]. Otherwise ϕ∗

x,a =

λ/
[

λ
η1

exp (−γUx,a) +
η1πϑ(a|x)2

β̂2(a|x) exp(−γUx,a)
]
]
. In other words, ϕ∗

x,a ≤ 2η2 always holds.
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• If πϑ(a|x)
β̂(a|x)

≥
√
λ

η1
, then ϕ∗

s,a will always decrease as Ux,a increases.

• If αx,a ≤ πϑ(a|x)
β̂(a|x)

<
√
λ

η1
exp(−γUx,a), larger Ux,a brings larger ϕ∗

x,a. Otherwise ϕ∗
x,a still

decreases as Ux,a increases.

Proof. For the first observation, deriving

λ
λ
η1

exp (−γUx,a) +
η1πϑ(a|x)2

β̂2(a|x) exp(−γUx,a)

≤ 2η2
exp (γUx,a) + exp (−γUx,a)

we can get the result.

For the second and third observation, since η1 ≤ η2, then αx,a ≤
√
λ√

2η1
≤

√
λ

η1
. Let L(u) =

λ
η1

exp(−γu) + η1πϑ(a|x)2

β̂(a|x)2 exp(−γu)
, we can have:

∇uL(u) = −γ
λ

η1
exp(−γu) + γ

η1πϑ(a|x)2

β̂(a|x)2
exp(γu)

By letting ∇uL(u) ≥ 0, we can get u ≥ 1
γ log

( √
λβ̂(a|x)

η1πϑ(a|x)

)
. This implies when Ux,a ≥

1
γ log

( √
λβ̂(a|x)

η1πϑ(a|x)

)
, ϕ∗

x,a will decrease as Ux,a increases. Otherwise as Ux,a increases, ϕ∗
x,a also

increases.

Specially, when πϑ(a|x)
β̂(a|x)

≥
√
λ

η1
, log

( √
λβ̂(a|x)

η1πϑ(a|x)

)
≤ 0. Given Ux,a ≥ 0, this implies that ϕ∗

x,a will
always decrease as Ux,a increases in this case.

Otherwise, when αx,a ≤ πϑ(a|x)
β̂(a|x)

≤
√
λ

η1
exp(−γUx,a), with

πϑ(a|x)
β̂(a|x) exp(−γUx,a)

≤
√
λ

η1
=⇒ Ux,a ≤ 1

γ
log

(√
λβ̂(a|x)

η1πϑ(a|x)

)
.

larger Ux,a implies larger ϕx,a. Otherwise ϕ∗
x,a still decreases as Ux,a increases. This completes

the proof.
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