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Abstract

Reasoning tasks are crucial in many domains, especially in science and engineer-1

ing. Although large language models (LLMs) have made progress in reasoning2

tasks using techniques such as chain-of-thought and least-to-most prompting, these3

approaches still do not effectively scale to complex problems in either their perfor-4

mance or execution time. Moreover, they often require additional supervision for5

each new task, such as in-context examples. In this work, we introduce Recursive6

Decomposition with Dependencies (RDD), a scalable divide-and-conquer method7

for solving reasoning problems that requires less supervision than prior approaches.8

Our method can be directly applied to a new problem class even in the absence of9

any task-specific guidance. Furthermore, RDD supports sub-task dependencies,10

allowing for ordered execution of sub-tasks, as well as an error recovery mecha-11

nism that can correct mistakes made in previous steps. We evaluate our approach12

on two benchmarks with six difficulty levels each and in two in-context settings:13

one with task-specific examples and one without. Our results demonstrate that14

RDD outperforms other methods in a compute-matched setting as task complexity15

increases, while also being more computationally efficient.16

1 Introduction17

Large language models (LLMs) have been proven successful as the backbone of generic intelligent18

systems (OpenAI, 2022, 2024; Anil et al., 2023; Anthropic, 2024). These models possess strong19

conversational skills (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2023; Touvron et al.,20

2023), making them an effective tool to interact with users in a wide range of settings. However, the21

autoregressive architecture of transformer-based language models limits the complexity of problems22

that can be solved. As a result, language models struggle with reasoning tasks (Nogueira et al., 2021;23

Deletang et al., 2022; Dziri et al., 2023; Chen et al., 2023), from multi-hop question-answering and24

symbolic manipulation to arithmetic and logical inference. Recent methods have been proposed to25

increase the performance of LLMs on reasoning problems (Wei et al., 2022; Wang et al., 2022b;26

Zhou et al., 2022; Yao et al., 2023; Besta et al., 2024; Khot et al., 2022). In particular, many of these27

techniques focus on eliciting step-by-step solving processes or decomposition strategies.28

Nonetheless, we identify three issues affecting the currently available approaches. First, previous29

methods typically build a single reasoning chain (Wei et al., 2022; Wang et al., 2022b; Zhou et al.,30

2022; Khot et al., 2022; Yao et al., 2023), without supporting independent, parallelizable sub-31

tasks, and allow for limited or no communication between alternative chains. When decomposition32

is supported, prior work has been limited to fully separable decompositions, without supporting33

dependencies between sub-tasks (Zhang et al., 2024). Second, existing methods often require the34

user to provide task-specific examples (Khot et al., 2022) or a pre-defined decomposition strategy35

(Zhou et al., 2022; Zhang et al., 2024; Besta et al., 2024), making them difficult to incorporate into36
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generic intelligent systems. Third, the number of tokens required to express their reasoning chain37

frequently scales quadratically with respect to the complexity of the task at hand (Zhou et al., 2022),38

which becomes an even more pressing issue when considering the limited context window and high39

computational cost of LLMs. Additionally, as we empirically show, their downstream performance40

decays rapidly with increasing task complexity. Our work addresses these issues, empowering LLMs41

to solve more complex reasoning problems with decomposition strategies that are readily applicable42

to real-world generic intelligent systems.43

We propose Recursive Decomposition with Dependencies (RDD), a flexible and task-agnostic frame-44

work for task decomposition with desirable scaling properties and high potential for parallelization.45

Specifically, we use in-context learning to decompose reasoning problems into sub-problems, solve46

these individually, and then merge their solutions to solve the original problem. The model can47

optionally model dependencies between the sub-tasks proposed during the decomposition step.These48

steps are applied recursively: sub-tasks are repeatedly broken down until either a base case is reached49

or specific stopping criteria are met. By incorporating relevant in-context examples, sub-task indices,50

and a scheduler, our method can automatically generate new sub-tasks. It does this by using the51

results of completed sub-tasks as input for others, allowing the decomposition structure to extend52

from a simple tree to a more complex directed acyclic graph (DAG). These generic operations53

(split, solve, and merge) are applicable across tasks and do not require user intervention. Our54

decomposition strategy reduces the strain on the context window of the model and shortens the55

runtime per input problem.56

Our contributions are:57

1. We introduce a novel method, Recursive Decomposition with Dependencies (RDD), for solv-58

ing reasoning problems (Sec. 2) via decomposition into smaller subtasks with dependencies,59

2. We empirically demonstrate the effectiveness of our approach, both with and without60

task-specific demonstrations (Sec. 3),61

3. We evaluate our method on one task decomposable into independent sub-problems and62

another requiring dependency modeling (Sec. 3).63

2 Recursive Decomposition with Dependencies64

We assume access to a pretrained LLM and leverage in-context learning and prompting strategies to65

implement RDD. Our method consists of three steps: decomposing, unit-solving, and merging. We66

will refer to the initial problem provided by the user as the root problem x0 ∈ T l, where T is a set of67

tokens, and l is the length of the prompt. Decomposition: The root problem is initially decomposed68

into sub-problems by prompting the LLM with the decomposition meta-task. The model generates69

either a list of sub-problems or the response “This is a unit problem.” If the problem is identified to70

be a unit case, RDD prompts the model to solve it directly. Otherwise, the decomposition meta-task71

is repeated with each of the sub-problems recursively. Unit-solving: Unit cases can be solved72

with either direct input-output prompting, any other existing reasoning method, or by employing an73

external tool. Merging: For each set of already-solved sub-problems, we prompt the LLM to merge74

their solutions to solve their parent problem; we perform this process until we reach the root problem,75

at which point we obtain the final solution to x0 via the last merging step. A visual representation of76

this procedure is provided in Fig. 1 for a non-recursive case of depth one.77

Decomposition Unit-solving Merging

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: NULL

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: NULL

Problem: In which
country is
Tyrnava located?
Solution: NULL

Problem: In which
country is Tindaya
located?
Solution: NULL

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: NULL

Problem: In which
country is Tindaya
located?
Solution: Spain

Problem: In which
country is Tyrnava
located?
Solution: Finland

Problem: In which
country is Tindaya
located?
Solution: Spain

Problem: In which
country is Tyrnava
located?
Solution: Finland

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: No

Figure 1: The decomposition methodology pipeline: decomposing, unit-solving, and merging. Nodes
in gray represent unsolved problems, while nodes in green represent solved problems.
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2.1 Notation and definitions78

We estimate the conditions under which applying RDD is beneficial compared to a direct solution79

attempt by estimating the success rates of the decomposition, unit solving, and merging steps.80

We can define the function predicting the accuracy of the decomposition step as ϕd,Mθ,C (c, n) ∈81

[0, 1], and similar functions for the unit-solving and merging steps as ϕu,Mθ,C (c, n) ∈ [0, 1] and82

ϕm,Mθ,C (c, n) ∈ [0, 1], respectively, where c is the input problem class (e.g., multiplying two83

numbers), n is the within-class difficulty of the input problem (a problem-specific metric; typically,84

the size of the input data),Mθ is a language model which executes the decomposition, unit-solving85

and merging steps, and C is a classifier (in our method, implemented byMθ) which returns true if a86

(c, n) pair constitutes a unit problem and false otherwise. We may refer to the within-class difficulty87

also as just difficulty. Other variables, such as the maximal branching factor or width w of each88

decomposition step, may influence the expected accuracy of RDD, but are treated as fixed constants in89

this notation. We may also omitMθ and C for conciseness, assuming them to be constant. We define90

ϕRDD to be the overall accuracy of RRD applied with a modelMθ and classifier C on a problem of91

class c with difficulty n. We can also relax our existing notation for all aforementioned functions92

to only depend on a given random variable X0 from the domain Pc0,n0 , the set of root problem93

instances x0 belonging to class c0 and with difficulty of n0. We can approximate the individual and94

overall expected accuracies empirically by measuring their success rates for a large enough set of95

problem instances, which we explore in Sec. 3.4 within the scope of our evaluation setting.96

Transition points Let c0 be a fixed problem class solvable byMθ. We expect that, as we lower the97

within-class difficulty n0 of the problem instances X0 of class c0, we get ϕu (X0) ⪅ 1. In such cases,98

we expect ϕRDD (X0) ≤ ϕu (X0), since decomposing X0 will likely not improve the accuracy of the99

unit cases sufficiently to compensate for the additional decomposition and merging steps. Thus, we100

hypothesize the existence of a performance transition point at within-class difficulty n∗, after which101

ϕRDD (c0, n0) ≥ ϕu (c0, n0) will hold ∀n0 ≥ n∗. We empirically observe such transition points.102

2.2 Methodology103

Relationship legend:
Sub-problem

Dependency

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution: [8, 6]

Problem: <P-2> Reverse
the list: {P-1}.
Solution: [8, 6, 5]

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution: [5, 6, 8]

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 7

Problem: <P-1.4> Add
one to each element in
[{P-1.1}, {P-1.2}, {P-1.3}].
Solution: [5, 6, 8]

Figure 2: An example of the decomposition graph generated by the RDD method.

RDD enables the language modelMθ to suggest dependencies between sub-problems in the de-104

composition step. We request the model to assign a unique identifier (e.g., "P-1" and "P-2") to105

each proposed sub-problem. We also encourage the model to cross-reference solutions from other106

sub-problems via their identifiers (e.g., "Reverse the following list: {P-1}"). This construction implies107

that dependent problems cannot be decomposed nor solved without first solving their dependencies.108

Using the dependencies specification generated by the model, we can now define edges between109

sub-problems with a common parent in the decomposition tree, resulting in a directed acyclic graph110

(DAG). Fig. 2 shows an example decomposition graph produced by RDD.111

Information flow When solving sub-problems, we aim to minimize the amount of information112

about ancestor tasks included in the context to isolate the relevant information and achieve better scal-113
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ing properties with respect to the difficulty of the root problem. When prompting for a decomposition,114

only the current problem description is provided to the model, along with a description and a set of115

demonstrations of the meta-task (e.g., decomposition or merging). We do not include the history of116

ancestor problem descriptions, which increases in size with the depth of the recursion process; this117

feature requires a stronger language model to always provide all needed data and instructions in the118

description of each sub-problem. In the merging step, the decomposition of the current level and its119

sub-solutions are provided.120

Maximizing generic applicability We consider a fixed set of generic meta-task demonstrations121

included in the decomposition, merging, and unit-case prompts. This set exhibits a diverse range122

of tasks. We show experimentally that this same set of generic examples is effective for guiding123

decomposition for new, unseen tasks. The examples we use in our evaluation are available in App. D.124

Moreover, the meta-tasks RDD performs are fixed, regardless of the input problem, and thus also125

task-invariant. The generality of the demonstrations is a spectrum and thus presents a trade-off126

between the degree of applicability of the methodology and the degree of assistance it provides127

toMθ, the latter variable being correlated with performance. To increase performance in a given128

domain (e.g., programming assistance) at the cost of generality, the generic demonstrations can be129

selected from the same domain (e.g., coding problems).130

Algorithm 1 SCHEDULEBFS
Input: problem
1: unsolved← empty queue
2: for dependency ∈ problem.dependencies do
3: SCHEDULEBFS(dependency)
4: sub-problems← DECOMPOSE(problem)
5: for sub-problem ∈ sub-problems do
6: Add sub-problem to unsolved
7: while unsolved is not empty do
8: next-problem← unsolved.front
9: for dependency ∈ next-problem.dependencies do

10: SCHEDULEBFS(dependency)
11: sub-problems← DECOMPOSE(next-problem)
12: for sub-problem ∈ sub-problems do
13: Add sub-problem to unsolved
14: return SCHEDULEDFS(problem, [ ])

Scheduler The scheduler defines the ex-131

ecution order of the decomposition, unit-132

solving, and merging steps. The order133

of decomposition defines the structure of134

the resulting graph. The root problem is135

expanded via breadth-first search (BFS)136

traversal until an unsolved dependency is137

found, in which case the current traversal138

process halts and executes the BFS rou-139

tine with the dependency as the root prob-140

lem. A depth-first search (DFS) traver-141

sal schedules the unit-solving and merg-142

ing steps. The complete procedure we em-143

ploy is explicitly reflected in Algorithm 1.144

The SCHEDULEDFS procedure is provided145

in App. B; the DECOMPOSE routine cor-146

responds to the decomposition step. An147

example execution of this algorithm shown in Fig. 2 is provided in App. I. For a parallelized imple-148

mentation, the scheduler synchronizes the execution of sub-problems with inter-dependencies.149

3 Empirical Evaluation150

The hypotheses we aim to validate through our empirical study are the following:151

• Hypothesis 1: RDD increases accuracy in complex reasoning problems over state-of-the-art152

methods in a compute-matched setting.153

• Hypothesis 2: The recursive decomposition technique augments the model’s reasoning154

abilities even in the absence of task-specific data.155

• Hypothesis 3: Solving reasoning problems via RDD reduces the time taken to reach a156

solution compared to solving the entire problem via step-by-step prompting strategies.157

• Hypothesis 4: RDD reduces the average amount of tokens per generation process, thus158

lessening the strain on the context window.159

As baselines, we consider Chain-of-Thought (CoT; Wei et al. (2022)) and Least-to-Most prompting160

(LtM; Zhou et al. (2022)). We use self-consistency (SC; (Wang et al., 2022b)) to align the amount of161

computation between our method and the baselines. In our implementation of SC, we employ the162

LLM itself to decide the most consistent answer given the set of sampled solutions. The first solution163

candidate is sampled greedily, while the rest are sampled with a temperature of 0.7 to produce a164

variety of reasoning chains. Given that each SC sample will produce a large number of generated165

tokens and including them all in a single context window can be challenging, we propose to use binary166
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search to find the most consistent answer. RDD employs a single CoT or LtM chain at the unit-solving167

prompt but does not use self-consistency to aggregate multiple answers. We evaluate all methods on168

benchmark tasks of increasing difficulty. For each difficulty, scores are averaged across the same 100169

randomly sampled problem instances for all methods. We employed the instruction-tuned Llama 3170

70B (Meta, 2024) as the underlying model. This model was run on NVIDIA A100 and H100 GPUs.171

App. E provides resource usage statistics for all experiments in this section. It is additionally possible172

to parallelize the solving of independent sub-problems for a speedup.173

3.1 Task-specific Experiments174

5 10 20 50 70 90
Number of elements

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

CoT+SC
LtM+SC

RDD+LtM (ours)

Figure 3: An evaluation of RDD against CoT (Wei
et al., 2022) and LtM (Zhou et al., 2022) with
self-consistency (SC; Wang et al. (2022b)) on the
letter concatenation benchmark in the task-specific
few-shot setting. Our system uses LtM at the unit-
solving step; we refer to it as RDD+LtM.

We first experiment with task-specific examples175

to validate our approach. Each call to the model176

(i.e., all baseline calls, as well as the decompo-177

sition, unit-solving, and merging steps) operates178

in a 5-shot in-context setting. These examples179

are in-distribution with respect to the problem180

class c0, but out-of-distribution with respect to181

the within-class difficulty n0. For this experi-182

ment, we evaluate on the letter concatenation183

problem, which asks the LLM to concatenate184

the i’th character of each word in a list. This185

task can be recursively decomposed into inde-186

pendent sub-problems, thus not requiring depen-187

dency modeling. The difficulty n0 is the number188

of words in the list.189

Fig. 3 demonstrates the results for six input sizes.190

The score is computed as the average of an ex-191

act match metric. We find RDD to outperform192

the baselines as the task complexity increases,193

confirming Hypothesis 1. For n0 < 20, it does not seem beneficial to recursively decompose the194

problem. We observe a transition point 20 < n∗
0 < 50 with respect to LtM+SC. In Table 1 (App. E),195

we show that RDD also reduces execution time with respect to the baselines.196

3.2 Generic Experiments197
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(a) Letter Concatenation

3 5 7 10 15 20
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0.8

1.0

A
cc
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CoT+SC RDD+CoT (ours)

(b) Length Reversal

Figure 4: An evaluation of RDD against CoT with self-consistency (SC) the generic few-shot setting.
Our system uses CoT at the unit-solving step; we refer to it as RDD+CoT.

To evaluate Hypothesis 2, we verify whether the advantage of RDD is maintained when task-specific198

in-context examples are replaced with generic examples. These generic examples depict a wide range199

of tasks: arithmetic, coding, symbolic manipulation, multi-step logic reasoning, and multi-hop QA,200

but exclude the tested problem class c0. In this experiment, we operate in a 5-shot setting for the201

unit-solving and merging steps, and a 7-shot setting for the decomposition step. We provide the202
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included examples in App. D. We also improved the description of the problem with respect to the one203

used for the experiments described in Sec. 3.1: the model is tasked with concatenating each character204

using a space as a delimiter. If the characters are concatenated without a special separator, their205

tokenization may change when encoding them for subsequent steps in the autoregressive generation206

process. This behavior has been also described by Mirchandani et al. (2023) for tasks represented in207

grids of numbers. The rest of the setup is the same as previously described.208

For this set of experiments, we compare RDD with CoT as the unit-solving method (RDD+CoT)209

against CoT with self-consistency (CoT+SC). In Fig. 4a, we can observe that RDD again outperforms210

this baseline as the difficulty of the task increases. We see a performance transition point 10 < n∗
0 <211

20 with respect to CoT+SC. We again observe considerable time savings; a complete account of212

resource usage can be found in Table 2 (App. E).213

3.3 Sub-tasks with Dependencies214

This section shows the results of our evaluation with RDD on the task of length reversal. To solve215

this task, the model must substitute each word in a list with its length (number of characters), and216

then reverse the order of the items in the list. This task benefits from dependency modeling in the217

decomposition step. We compare our method against CoT+SC with generic in-context examples. We218

use five examples for the unit-solving and merging steps and eight for the decomposition step. The219

examples showcase several different decomposition and merging patterns and also cover a wide range220

of problem classes as previously described. We also augment the meta-prompt for the decomposition221

step to include instructions describing how to suggest dependencies (see App. C).222

Fig. 4b demonstrates the results of our experiment on the length reversal benchmark. We observe a223

transition point 5 < n∗ < 7, after which RDD outperforms CoT. Table 3 demonstrates that the time224

taken by RDD to complete the experiment is considerably lower than that of the CoT method.225

3.4 Error analysis226
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(a) Error analysis for the task-specific setting.
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(b) Error analysis for the generic setting.

Figure 5: The error sources of the recursive decomposition approach in the letter concatenation
benchmark with respect to n0 (the size of the list in the problem) for task-specific in-context (a) and
generic (b) experiments . ϕd corresponds to the observed success rate in the decomposition step, ϕm
in the merging step and ϕu in the unit-case. The values are computed using all problem classes ci and
within-class difficulties ni appearing in the decomposition graph. ϕRDD is the end-to-end accuracy.

Error sources To analyze the sources of errors when employing RDD, we empirically quantify the227

accuracies ϕd, ϕu and ϕm of the individual steps. Using these, we estimate the overall accuracy of the228

system ϕRDD, as described in Sec. 2.1. We perform this analysis using the data from our experiments229

on the letter concatenation task. The results are shown in Fig. 5a for the task-specific in-context setting230

and Fig. 5b for the generic in-context one, with the exact numbers included in App. F. To compute231

these statistics, we identified the accuracies of the decomposition, unit solving, and merging steps.232

For decomposition and merging steps, we consider whether the problem at hand was decomposed233
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or merged correctly. We employ an exact-match metric for all measured accuracies and average234

them for all instances of each task. Note that these values are averaged for all problem classes ci235

and within-class difficulties ni which appear recursively in the solving process; importantly, ϕu does236

not correspond to ϕu (c0, n0). In Fig. 6 (for more detail, see App. G), we provide an example of an237

error in the unit case which was common in our evaluation; errors made when solving a sub-problem238

often carry over to their parent problems during the merging step, which eventually can produce an239

erroneous final solution of the root problem x0.240

Error recovery Our framework is capable of recovering from the errors from the individual steps.241

To elicit this behavior, we include the sequence "If you find any mistakes in the sub-solutions, you242

can fix the mistakes while you merge the sub-solutions" in the merge step prompt. This is a key243

mechanism when modeling sub-problem dependencies: if the model does not follow the syntax to244

specify dependencies correctly, these may not be recognized by our parser. For instance, this may245

result in a sub-problem statement with missing data such as "Reverse the following list: ". The246

description-solution pair of this sub-problem will be straightforward to recognize as a mistake. Since247

we provide the model with the top problem description as well as the sub-problems’ descriptions in248

the merging step, it can identify such issues and propose a merged solution correcting the erroneous249

sub-solutions. We have observed that, in these cases, the model simply regards the top problem as a250

unit case and attempts to solve it directly; if it succeeds, we deem this behavior as error recovery.251

In Fig. 7 (App. H), we can observe an example of the merging step in the root problem recovering252

from an error made when solving its sub-problems. The meaning of the merging step changes if253

an error recovery behavior is possible: the merging step becomes a special type of unit-solving the254

root problem with additional context (which may or may not be informative), and it is no longer255

dependent on the accuracy of unit-solving the sub-problems.256

3.5 Space and time efficiency257

Execution time Hypothesis 3 has also been empirically proven by our results. In the tables provided258

in App. E, we can observe that the time RDD takes to complete experiments is lower than the time the259

baselines take. Note that these values include all samples and voting calls required by self-consistency;260

using vanilla CoT or LtM would be faster, but we strove to compare our method to baselines with261

access to similar computational resources. We hypothesize that higher time efficiency is achieved262

due to fewer output tokens generated by our implementation. Given the quadratic space complexity263

of the baseline methods with respect to the difficulty of the problems, we expect that recursively264

decomposing the root problem will lower the number of tokens generated by the model required265

to reach a solution. Since each output token is generated via a full forward pass of the underlying266

network, it is expected that a lower amount of forward passes will result in proportional time savings.267

Implementing the parallelization of independent steps in RDD would further increase time savings.268

Reduced context length By dividing the number of context and output tokens by the number of269

calls, we can see that Hypothesis 4 is confirmed: recursive decomposition helps alleviate issues270

relating to the overflow of the context window as the complexity of the tasks increases. We hypothesize271

this number is lower for RDD because of the space scaling properties of CoT-based methods.272

4 Related Work273

Expressive power of the reasoning graph Methods based on step-by-step decomposition, such as274

Chain-of-Thought (Wei et al., 2022), Socratic CoT (Shridhar et al., 2023), Least-to-Most prompting275

(Zhou et al., 2022), Plan-and-Solve prompting (Wang et al., 2023), iterative prompting (Wang et al.,276

2022a) PAL (Gao et al., 2023), Parsel (Zelikman et al., 2023) or the method proposed by Perez277

et al. (2020) to decompose multi-hop QA tasks, can be understood as chain-like decompositions of278

a problem. Tree-of-Thoughts (ToT; (Yao et al., 2023)) builds a tree; however, the structure of this279

graph represents a sampling process, not a recursive decomposition. Zhang et al. (2024) propose a280

tree-like recursive decomposition strategy, not considering sub-problem dependencies. Although281

DecomP (Khot et al., 2022) performs steps in sequence in a chain-like fashion, it also implicitly282

models the solving process as a directed acyclic graph (DAG) via tool usage, but its structure needs283

to be demonstrated by the user for every problem class; this graph is also not modeling dependencies284

between sub-problems. Graph of Thoughts (Besta et al., 2024) explicitly uses a DAG, but both its285
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structure and the meaning of the nodes (i.e., sub-problem descriptions) must be provided by the286

user for every problem instance. Instead, RDD enables the model to explicitly model dependencies287

without user input beyond the initial problem description, resulting in a DAG.288

Generic applicability The previously mentioned methods modeling the reasoning process as a289

chain are often able to demonstrate their decomposition strategies with generic in-context examples290

(e.g., few-shot CoT by Brown et al. (2020)), that is, without the user needing to provide examples for291

each new problem instance. However, some of these strategies cannot be applied to any arbitrary292

problem class, such as LtM (Libby et al., 2008; Zhou et al., 2022). More complex methods (Yao293

et al., 2023; Khot et al., 2022; Besta et al., 2024) require extensive user-generated input to model the294

reasoning process. In contrast, RDD can model complex reasoning structures without unrealistic data295

requirements at runtime.296

Parallelization of problem-solving process Similar to Skeleton-of-Thought (Ning et al., 2023),297

we enable parallel decoding of the solution to a problem by identifying independent steps in the298

reasoning that can be computed in parallel. However, SoT does not decompose reasoning chains;299

the authors state that it is challenging to apply their method on problems that require step-by-step300

thinking. Other aforementioned methods relying on sequential decomposition do not allow for the301

parallelization of reasoning steps.302

5 Conclusion303

We have developed a recursive decomposition technique for LLMs allowing for sub-problem depen-304

dencies. Our empirical evaluation considered two benchmarks on six levels of increasing difficulty305

and two settings of varying degrees of task-specific resource availability. Based on our experiments,306

we also analyzed the nature of the errors our method makes during the solving process. RDD307

outperforms state-of-the-art baselines as the difficulty of the tasks increases. Moreover, RDD is308

parallelizable by design, allows for error recovery, and achieves lower time and space complexities309

than existing baselines.310

Our results show that recursively decomposing reasoning problems with general-purpose LLMs is311

feasible, and can provide significant performance and resource usage benefits for complex tasks. The312

applicability of previous reasoning-enhancing methods to generic AI systems has been limited; the313

design of the RDD methodology and its demonstrated viability without task-specific support remove314

integration barriers towards existing LLM-based systems. We believe that our proposed method315

and our findings can be used to advance the reasoning capabilities of real-world language-based AI316

systems. Future work may explore alternative implementations of the unit-problem classifier, quantify317

the speedup achieved by a parallelized implementation of RDD, and develop improved strategies to318

elicit dependencies during the decomposition step and embed them in the merging prompt.319
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A Requirements for improved efficacy440

We can recursively formulate the expected accuracy of our decomposition method as441

ϕRDD (X0) = ϕd (X0)ϕm (X0)

w∏
i=1

[1 [C (Xi)]ϕu (Xi) + 1 [¬C (Xi)]ϕRDD (Xi)] . (1)

Each random variable Xi has as domain the set of sub-problems xi resulting from the decomposition442

of X0 performed byMθ, and we can attribute a class ci and difficulty ni to each of them. We also443

assume a constant width value w, corresponding to the number of sub-problems that a decomposition444

always produces.445

We can identify several requirements for the following desideratum to hold:446

ϕRDD (X0) > ϕu (X0) . (2)

Our desideratum states that we are more likely to arrive at a correct solution for a problem instance447

x0 if we recursively decompose it instead of solving it directly as a unit case.448

Theorem 1 (Decomposition and merging requirement). In order for the desideratum in Eq. (2) to449

hold, it is required that450

ϕd (X0)ϕm (X0) > ϕu (X0) . (3)

In other words, the probability of decomposing the problem into sub-problems and then merging451

their sub-solutions should be greater than the probability of solving the problem directly, so that the452

additional non-zero probability of obtaining wrong solutions for each of the sub-problems is balanced453

out. In simpler terms, the tasks of decomposing and merging a problem instance x0 must be easier454

than the task of solving x0 without decomposition.455

Proof. We can prove this requirement by contradiction. Let us assume that our desideratum stated456

in Eq. (2) can hold when ϕd (X0)ϕm (X0) ≤ ϕu (X0). Without loss of generality, we can use the457

notation ϕu/RDD (Xi) to refer to the accuracies of the unit and non-unit cases for the sub-problems Xi458

of X0 indifferently, ∀i ∈ [1, w]. We can employ the definition of ϕRDD given in Eq. (1) as459

ϕRDD (X0) = ϕd (X0)ϕm (X0)ϕu/RDD (X1) . . . ϕu/RDD (Xw) . (4)

Since all accuracies are in the range [0, 1], this leads to460

ϕRDD (X0) ≤ ϕd (X0)ϕm (X0) . (5)

Given our initial assumption, we can conclude that461

ϕRDD (X0) ≤ ϕu (X0) , (6)

which is a contradiction, as we stated that our desideratum would hold.462

Theorem 2 (Unit case requirement). An additional requirement for the desideratum in Eq. (2) to463

hold is that464

ϕu (Xi) > ϕu (X0) ,∀i ∈ [1, w]. (7)

Proof. We can prove that this requirement is needed by contradiction. Assume ϕu (Xi) ≤465

ϕu (X0) ,∃i ∈ [1, w], such that Eq. (2) holds. Let us first consider the case when C classifies466

Xi as a unit problem. All other sub-problems Xj , s.t. j ∈ [1, w] \ {i}, may be classified as either467

unit or non-unit problems without loss of generality. We can use Eq. (1) to formulate468

ϕRDD (X0) = ϕd (X0)ϕm (X0)ϕu/RDD (X1) . . . ϕu (Xi) . . . ϕu/RDD (Xw) . (8)

By definition, all accuracies are in the range [0, 1]. Hence, we have that469

ϕRDD (X0) ≤ ϕu (Xi) . (9)

Given our initial assumption, we can state that470

ϕRDD (X0) ≤ ϕu (X0) , (10)

which is a contradiction, as our initial claim was that ϕRDD (X0) > ϕu (X0). We can see that this471

proof can be easily extended to the case where there exists more than one sub-problem Xi such that472
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ϕu (Xi) ≤ ϕu (X0). Let us now consider the second case of C classifying X0 as a non-unit problem.473

In this case, we can construct a similar proof for this recursive scenario. Similar to the previous case,474

we can use Eq. (1) as475

ϕRDD (X0) = ϕd (X0)ϕm (X0)ϕu/RDD (X1) . . . ϕRDD (Xi) . . . ϕu/RDD (Xw) . (11)

Since all accuracies are in the range [0, 1], we have that476

ϕRDD (X0) ≤ ϕRDD (Xi) . (12)

If we consider Xi as the root problem of its own decomposition sub-graph, we can use the same477

derivation process leading to Eq. (10) to state that478

ϕRDD (Xi) ≤ ϕu (Xi) , (13)

and thus479

ϕRDD (X0) ≤ ϕu (Xi) . (14)
We have reached the same statement described in Eq. (9), which we have already proven to lead to a480

contradiction. If we continue decomposing the sub-problems recursively, we can keep extending our481

proof until a unit case is reached (which can be guaranteed given strict termination criteria).482
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B Scheduler algorithm483

The procedure for the DFS scheduler is described in Algorithm 2. The DECOMPOSE procedure484

corresponds to the decomposition step and the MERGEORUNIT procedure to either the unit-solving485

or merging steps performed byMθ.486

Algorithm 2 SCHEDULEDFS
Input: problem, visited

1: if problem ∈ visited then
2: raise a cycle error
3: visited← visited ∪ problem
4: if problem is decomposed then
5: sub-problems← problem.sub-problems
6: else
7: sub-problems← DECOMPOSE(problem)
8: for sub-problem ∈ sub-problems do
9: SCHEDULEDFS(sub-problem, visited)

10: return MERGEORUNIT(problem)
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C Prompts487

Listing 1 CoT prompt, for both the baseline and unit cases.

Your task is to solve the problem below. You can reason about the problem before
stating your answer. The answer MUST be between the following tags:
<ANSWER>...</ANSWER>. An example is provided to showcase how to use the tags;
you must only solve the last problem given.

↪→
↪→
↪→

## Examples

{examples}

## Problem

Problem: {problem}
Answer: Let's think step by step.

Listing 2 LtM prompt, for both the baseline and unit cases.

Your task is to solve the problem below. You can reason about the problem before
stating your answer. The answer MUST be between the following tags:
<ANSWER>...</ANSWER>. An example is provided to showcase how to use the tags;
you must only solve the last problem given.

↪→
↪→
↪→

## Examples

{examples}

## Problem

Problem: {problem}
Answer:
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Listing 3 RDD prompt for the decomposition step with independent sub-problems.

You manage {width} workers. Your task is to decompose the problem below in order
to delegate sub-problems to your workers. The decomposition must be complete:
combining the solutions to the sub-problems must be enough to solve the
original problem. You must be brief and clear. You must consider that all
sub-problems must be solved independently and that merging their solutions
should produce the solution to the original problem. Do not attempt to solve
the sub-problems.

↪→
↪→
↪→
↪→
↪→
↪→

If the problem is simple enough to be solved by a single worker, you must only
output "This is a unit problem". Otherwise, you must propose sub-problems in a
bullet list. In each bullet point, provide all necessary information for a
worker to solve the sub-problem. The workers will not be provided with the
original problem description nor the other sub-problems. Therefore, you must
include all necessary data and instructions in the description of each
sub-problem. You must only use from one up to {width} of the workers, never
more than {width} workers. The sub-problems you generate can be still complex;
they will be decomposed again by your workers if necessary.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

You can decompose the task via either the "data decomposition strategy" or the
"task decomposition strategy":↪→

- The data decomposition strategy produces sub-problems describing exactly the
same data transformation given in the original problem, applied to partitions
of the input data. The partitions of the input data must be of approximately
equal size. The sub-problem descriptions must be exactly the same as the
description of the original problem.

↪→
↪→
↪→
↪→
- The task decomposition strategy produces sub-problems describing different data

transformations, applied to exactly the same input data given in the original
problem. For example, the sub-problem transformations may describe sub-steps
required to solve the original problem.

↪→
↪→
↪→

Examples are provided below to illustrate some decompositions; you must only
provide a decomposition for the last problem.↪→

## Examples

{examples}

## Problem

Problem: {problem}
Answer:
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Listing 4 RDD prompt for the merging step.

The problem below was decomposed into sub-problems. The sub-problems and their
sub-solutions are provided in bullet points below the problem. Your task is to
solve the problem with the help of the sub-solutions. Often, obtaining the
final solution to the problem only requires you to apply a transformation to
the sub-solutions. If you find any mistakes in the sub-solutions, you can fix
the mistakes while you merge the sub-solutions.

↪→
↪→
↪→
↪→
↪→

You must reason about how to merge the sub-solutions and solve the problem before
stating your final answer. The final answer MUST be between the following tags:
<ANSWER>...</ANSWER>. Some examples are provided to showcase how to use the
tags and to illustrate some merging strategies; you must only solve the last
problem.

↪→
↪→
↪→
↪→

## Examples

{examples}

## Problem

Problem: {problem}
{subsolutions}
Answer:
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Listing 5 RDD prompt for the decomposition step with possibly dependent sub-problems.

You manage {width} workers. Your task is to decompose the problem below in order
to delegate sub-problems to your workers. You must only use from one up to
{width} of the workers, never more than {width} workers. The decomposition must
be complete: combining the solutions to the sub-problems must be enough to
solve the original problem. You must be brief and clear. Do not attempt to
solve the sub-problems.

↪→
↪→
↪→
↪→
↪→

If the problem is simple enough to be solved by a single worker, you must only
output "This is a unit problem". Otherwise, you must propose sub-problems in a
bullet list. The workers will not be provided with the original problem
description nor the other sub-problem descriptions. Therefore, you must
include all necessary data and instructions in the description of each
sub-problem. You must never reference the original problem and you must not
assume the workers can access its description and input data; instead, you
must copy all relevant instructions and input data to the descriptions of
sub-problems when necessary. The sub-problems you generate can be still
complex; they will be decomposed again by your workers if necessary.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

You can decompose the task via either the "data decomposition strategy" or the
"task decomposition strategy":↪→

- The data decomposition strategy produces sub-problems describing exactly the
same data transformation given in the original problem, applied to partitions
of the input data. The partitions of the input data must be of approximately
equal size. The sub-problem descriptions must be exactly the same as the
description of the original problem.

↪→
↪→
↪→
↪→
- The task decomposition strategy produces sub-problems describing different data

transformations, applied to exactly the same input data given in the original
problem. For example, the sub-problem transformations may describe sub-steps
required to solve the original problem.

↪→
↪→
↪→

Each sub-problem must have a unique identifier given between square brackets
before the sub-problem description. If you need to, you can also specify
dependencies: within each sub-problem's description, you can refer to the
solutions to other sub-problems using their identifiers between curly braces.
Sub-problems cannot have the original problem as a dependency. The scheduler
will substitute the identifiers of the dependencies with their solutions
before sending the sub-problems to the workers. All dependencies stated
between curly braces must also be sub-problems present in your bullet list.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

The examples below illustrate some decompositions. You must only provide a
decomposition for the last problem, do not attempt to decompose the examples.↪→

[Continues as the prompt given in A.3.1.]
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D In-context examples488

Listing 6 CoT examples for the letter concatenation task.

<INPUT>Concatenate using a space the characters at index 1 of each word in the
list [Gladys, Rathav, Miya]; indices start at zero.</INPUT>↪→

<TARGET>Let's think step by step. The characters at index 1 in the input words are
"l", "a" and "i". If we concatenate these, we get the answer <ANSWER>"l a
i"</ANSWER>.</TARGET>

↪→
↪→

<INPUT>Concatenate using a space the characters at index 3 of each word in the
list [Gloria, Ricardo, Kanwar, Chon, Manoj, Enrique, Xiong, Shaw]; indices
start at zero.</INPUT>

↪→
↪→
<TARGET>Let's think step by step. The characters at index 3 in the input words are

"r", "a", "w", "n", "o", "i", "n" and "w". If we concatenate these, we get the
answer <ANSWER>"r a w n o i n w"</ANSWER>.</TARGET>

↪→
↪→

<INPUT>Concatenate using a space the characters at index 0 of each word in the
list [Olga, Cynthia, Gladys, Cynthia, Aliyu]; indices start at zero.</INPUT>↪→

<TARGET>Let's think step by step. The characters at index 0 in the input words are
"O", "C", "G", "C" and "A". If we concatenate these, we get the answer
<ANSWER>"O C G C A"</ANSWER>.</TARGET>

↪→
↪→

<INPUT>Concatenate using a space the characters at index 3 of each word in the
list [Wilson]; indices start at zero.</INPUT>↪→

<TARGET>Let's think step by step. The characters at index 3 in the input words are
"s". If we concatenate these, we get the answer <ANSWER>"s"</ANSWER>.</TARGET>↪→

<INPUT>Concatenate using a space the characters at index 2 of each word in the
list [Ilya, Jacques, Francesco, Samuel, Jadhav, Rivera, Irma, Jianping, Samuel,
Christian]; indices start at zero.</INPUT>

↪→
↪→
<TARGET>Let's think step by step. The characters at index 2 in the input words are

"y", "c", "a", "m", "d", "v", "m", "a", "m" and "r". If we concatenate these,
we get the answer <ANSWER>"y c a m d v m a m r"</ANSWER>.</TARGET>

↪→
↪→
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Listing 7 Generic CoT examples.

<INPUT>Who is younger: Michael Jordan, Cristiano Ronaldo or Usain Bolt?
- Sub-problem 1: How old is Cristiano Ronaldo? Sub-solution 1: 39 years old.
- Sub-problem 2: How old is Michael Jordan? Sub-solution 2: 61 years old.
- Sub-problem 3: How old is Usain Bolt? Sub-solution 3: 37 years old.</INPUT>
<TARGET>Let's think step by step. We must compare the ages of each person:

(Michael Jordan, 61) > (Cristiano Ronaldo, 39) > (Usain Bolt, 37). The answer
must be the person with the lowest age. Thus, the solution is <ANSWER>Usain
Bolt</ANSWER></TARGET>

↪→
↪→
↪→

<INPUT>Peter had 3 apples, 7 oranges and 12 pears. He gave 1 apple to John, 4
oranges to Maria and 3 pears to Ana. How many pieces of fruit does Peter have
left?</INPUT>

↪→
↪→
<TARGET>Let's think step by step. If Peter has 3 apples and gives 1 to John, he

will lose 1 apple. If Peter has 7 oranges and gives 4 to Maria, he will lose 4
oranges. If Peter has 12 pears and gives 3 to Ana, he will lose 3 pears. Thus,
the solution is 3 - 1 + 7 - 4 + 12 - 3 = <ANSWER>14</ANSWER></TARGET>

↪→
↪→
↪→

<INPUT>What is ((((5 + 4) * 100) + 267) / (3 * 10))?</INPUT>
<TARGET>Let's think step by step. 5 + 4 = 9. 9 * 100 = 900. 900 + 267 = 1167. 3 *

10 = 30. Thus, the answer is 1167 / 30 = <ANSWER>38.9</ANSWER></TARGET>↪→

<INPUT>Which word in the list [hush, oceanic, surge, present, lie, wry, giraffe,
dine, guide, urge, complete, tasteless, glorious, bird, raspy, murky, zoom,
juice, select, liquid, hope, install, complete, aromatic, oceanic, fish,
excited, fabricator, internal, dinosaurs, noiseless, partner] is
longer?</INPUT>

↪→
↪→
↪→
↪→
<TARGET>Let's think step by step. The lengths of each word are (hush, 4), (oceanic,

7), (surge, 5), (present, 7), (lie, 3), (wry, 3), (giraffe, 7), (dine, 4),
(guide, 5), (urge, 4), (complete, 8), (tasteless, 9), (glorious, 8), (bird, 4),
(raspy, 5), (murky, 5), (zoom, 4), (juice, 5), (select, 6), (liquid, 6), (hope,
4), (install, 7), (complete, 8), (aromatic, 8), (oceanic, 7), (fish, 4),
(excited, 7), (fabricator, 10), (internal, 8), (dinosaurs, 9), (noiseless, 9)
and (partner, 7). Thus, the solution is <ANSWER>fabricator</ANSWER></TARGET>

↪→
↪→
↪→
↪→
↪→
↪→

<INPUT>Is the following sports-related sentence plausible? "Joao Moutinho caught
the screen pass in the NFC championship."</INPUT>↪→

<TARGET>Joao Moutinho is a soccer player. The NFC championship is part of American
football, not soccer. Thus, the answer is <ANSWER>no</ANSWER></TARGET>↪→
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Listing 8 LtM examples for the letter concatenation task.

<INPUT>Concatenate using a space the characters at index 1 of each word in the
list [Gladys, Rathav, Miya]; indices start at zero.</INPUT>↪→

<TARGET>The letters at index 1 of "Gladys" and "Rathav" are "l" and "a".
Concatenating "l" and "a" leads to "l a". The letter at index 1 of "Miya" is
"i". Concatenating "l a" and "i" leads to <ANSWER>"l a i"</ANSWER>.</TARGET>

↪→
↪→

<INPUT>Concatenate using a space the characters at index 3 of each word in the
list [Gloria, Ricardo, Kanwar, Chon, Manoj, Enrique, Xiong, Shaw]; indices
start at zero.</INPUT>

↪→
↪→
<TARGET>The letters at index 3 of "Gloria" and "Ricardo" are "r" and "a".

Concatenating "r" and "a" leads to "r a". The letter at index 3 of "Kanwar" is
"w". Concatenating "r a" and "w" leads to "r a w". The letter at index 3 of
"Chon" is "n". Concatenating "r a w" and "n" leads to "r a w n". The letter at
index 3 of "Manoj" is "o". Concatenating "r a w n" and "o" leads to "r a w n
o". The letter at index 3 of "Enrique" is "i". Concatenating "r a w n o" and
"i" leads to "r a w n o i". The letter at index 3 of "Xiong" is "n".
Concatenating "r a w n o i" and "n" leads to "r a w n o i n". The letter at
index 3 of "Shaw" is "w". Concatenating "r a w n o i n" and "w" leads to
<ANSWER>"r a w n o i n w"</ANSWER>.</TARGET>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

<INPUT>Concatenate using a space the characters at index 0 of each word in the
list [Olga, Cynthia, Gladys, Cynthia, Aliyu]; indices start at zero.</INPUT>↪→

<TARGET>The letters at index 0 of "Olga" and "Cynthia" are "O" and "C".
Concatenating "O" and "C" leads to "O C". The letter at index 0 of "Gladys" is
"G". Concatenating "O C" and "G" leads to "O C G". The letter at index 0 of
"Cynthia" is "C". Concatenating "O C G" and "C" leads to "O C G C". The letter
at index 0 of "Aliyu" is "A". Concatenating "O C G C" and "A" leads to
<ANSWER>"O C G C A"</ANSWER>.</TARGET>

↪→
↪→
↪→
↪→
↪→

<INPUT>Concatenate using a space the characters at index 3 of each word in the
list [Wilson]; indices start at zero.</INPUT>↪→

<TARGET>The letter at index 3 of "Wilson" is <ANSWER>"s"</ANSWER>.</TARGET>

<INPUT>Concatenate using a space the characters at index 2 of each word in the
list [Ilya, Jacques, Francesco, Samuel, Jadhav, Rivera, Irma, Jianping, Samuel,
Christian]; indices start at zero.</INPUT>

↪→
↪→
<TARGET>The letters at index 2 of "Ilya" and "Jacques" are "y" and "c".

Concatenating "y" and "c" leads to "y c". The letter at index 2 of "Francesco"
is "a". Concatenating "y c" and "a" leads to "y c a". The letter at index 2 of
"Samuel" is "m". Concatenating "y c a" and "m" leads to "y c a m". The letter
at index 2 of "Jadhav" is "d". Concatenating "y c a m" and "d" leads to "y c a
m d". The letter at index 2 of "Rivera" is "v". Concatenating "y c a m d" and
"v" leads to "y c a m d v". The letter at index 2 of "Irma" is "m".
Concatenating "y c a m d v" and "m" leads to "y c a m d v m". The letter at
index 2 of "Jianping" is "a". Concatenating "y c a m d v m" and "a" leads to
"y c a m d v m a". The letter at index 2 of "Samuel" is "m". Concatenating "y
c a m d v m a" and "m" leads to "y c a m d v m a m". The letter at index 2 of
"Christian" is "r". Concatenating "y c a m d v m a m" and "r" leads to
<ANSWER>"y c a m d v m a m r"</ANSWER>.</TARGET>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
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Listing 9 RDD examples for the decomposition step and the letter concatenation task.

<INPUT>Concatenate using a space the characters at index 1 of each word in the
list [Dong]; indices start at zero.</INPUT>↪→

<TARGET>This is a unit problem.</TARGET>

<INPUT>Concatenate using a space the characters at index 2 of each word in the
list [Shimizu, Hoang, Muhammad, Mejia, Fernandes, Punam, Cesar]; indices start
at zero.</INPUT>

↪→
↪→
<TARGET>- Concatenate using a space the characters at index 2 of each word in the

list [Shimizu, Hoang, Muhammad, Mejia]; indices start at zero.↪→
- Concatenate using a space the characters at index 2 of each word in the list

[Fernandes, Punam, Cesar]; indices start at zero.</TARGET>↪→

<INPUT>Concatenate using a space the characters at index 2 of each word in the
list [Lawal, Jadhav, Sekha, Jadhav, Abraham, Sushila, Hoang, Gerhard, Heinz];
indices start at zero.</INPUT>

↪→
↪→
<TARGET>- Concatenate using a space the characters at index 2 of each word in the

list [Lawal, Jadhav, Sekha, Jadhav]; indices start at zero.↪→
- Concatenate using a space the characters at index 2 of each word in the list

[Abraham, Sushila, Hoang, Gerhard]; indices start at zero.↪→
- Concatenate using a space the characters at index 2 of each word in the list

[Heinz]; indices start at zero.</TARGET>↪→

<INPUT>Concatenate using a space the characters at index 2 of each word in the
list [Kailash, Ouattara, Kasongo, Perez, Jyoti]; indices start at
zero.</INPUT>

↪→
↪→
<TARGET>This is a unit problem.</TARGET>

<INPUT>Concatenate using a space the characters at index 0 of each word in the
list [Guan, Madina, Mejia, Herrera, Christopher, Sergey, Karina, Lucy, Ortega,
Vera, Mallik, Weimin, Kwon, Zhan, Shaw, Tahir, Chang, Halyna, Weidong, Ochoa,
Dung, George, Nayak, Jianming, Paola, Awad, Nabil, Garba, Amal, Sergey,
Mustapha, Garcia, Bello, Sergey, Otieno, Rojas, Andrew, Mustafa, Haji, Philip,
Leticia, Syed, Blanca, Mahendra, Salim, Ghulam, Quan, Yanhua, Artyom,
Muhammad]; indices start at zero.</INPUT>

↪→
↪→
↪→
↪→
↪→
↪→
<TARGET>- Concatenate using a space the characters at index 0 of each word in the

list [Guan, Madina, Mejia, Herrera, Christopher, Sergey, Karina, Lucy, Ortega,
Vera, Mallik, Weimin]; indices start at zero.

↪→
↪→
- Concatenate using a space the characters at index 0 of each word in the list

[Kwon, Zhan, Shaw, Tahir, Chang, Halyna, Weidong, Ochoa, Dung, George, Nayak,
Jianming]; indices start at zero.

↪→
↪→
- Concatenate using a space the characters at index 0 of each word in the list

[Paola, Awad, Nabil, Garba, Amal, Sergey, Mustapha, Garcia, Bello, Sergey,
Otieno, Rojas]; indices start at zero.

↪→
↪→
- Concatenate using a space the characters at index 0 of each word in the list

[Andrew, Mustafa, Haji, Philip, Leticia, Syed, Blanca, Mahendra, Salim, Ghulam,
Quan, Yanhua, Artyom, Muhammad]; indices start at zero.</TARGET>

↪→
↪→
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Listing 10 Generic RDD examples for the decomposition step.

<INPUT>If Peter has 3 apples and gives 1 to John, how many apples does Peter have
left?</INPUT>↪→

<TARGET>This problem is simple enough to be solved directly by a single
mathematical operation. <ANSWER>This is a unit problem.</ANSWER></TARGET>↪→

<INPUT>What is ((((5 + 4) * 100) + 267) / (3 * 10))?</INPUT>
<TARGET>We can use the data decomposition strategy here by splitting the input

formula into sub-formulas. We can use two workers. The merged solution will be
$sub_solution_1 / sub_solution_2$.

↪→
↪→
<ANSWER>- What is ((5 + 4) * 100) + 267?
- What is 3 * 10?</ANSWER></TARGET>

<INPUT>What is the result of log_2(16)?</INPUT>
<TARGET>This problem is simple enough to be solved directly by a single

mathematical operation. <ANSWER>This is a unit problem.</ANSWER></TARGET>↪→

<INPUT>Write the blueprint for a webpage view using the Vue3 framework about a
study on salaries based on profession and age. The view must contain an
initial text description of the study, a table with headers "Name", "Age",
"Profession" and "Salary", as well as a picture slider. The data for the table
will be available from a local JSON file, and the pictures for the slider will
also be available locally.</INPUT>

↪→
↪→
↪→
↪→
↪→
<TARGET>We can use the task decomposition strategy here by splitting the task into

smaller independent tasks, consisting on creating Vue3 components for each
element of the view. We can use two workers. The merged solution will be the
code for the components generated when solving the sub-problems, as well as
code for the view using such components.

↪→
↪→
↪→
↪→
<ANSWER>- Write code using the Vue3 framework for a component representing a table

with headers "Name", "Age", "Profession" and "Salary". The data for the table
will be available from a local JSON file.

↪→
↪→
- Write code using the Vue3 framework for a component representing a picture

slider. The pictures for the slider will be available
locally.</ANSWER></TARGET>

↪→
↪→

<INPUT>Write a Python function that takes the base and height of a triangle (two
floating point numbers) and returns its area (also a floating point
number).</INPUT>

↪→
↪→
<TARGET>This problem is simple enough to be solved directly by writing a short

Python function. <ANSWER>This is a unit problem.</ANSWER></TARGET>↪→

<INPUT>Which word in the list [hush, oceanic, surge, present, lie, wry, giraffe,
dine, guide, urge, complete, tasteless, glorious, bird, raspy, murky, zoom,
juice, select, liquid, hope, install, complete, aromatic, oceanic, fish,
excited, tail, internal, dinosaurs, noiseless, partner] is longer? If there is
more than one word with the same length, any of them is a valid
answer.</INPUT>

↪→
↪→
↪→
↪→
↪→
<TARGET>We can use the data decomposition strategy here by splitting the input

list of words into smaller lists. We can use three workers. Each of the list
partitions will be approximately the same size. The merged solution will be
the longest word out of all the sub-solutions.

↪→
↪→
↪→
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Listing 11 Generic RDD examples for the decomposition step (continued).

<ANSWER>- Which word in the list [hush, oceanic, surge, present, lie, wry, giraffe,
dine, guide, urge, complete] is longer? If there is more than one word with
the same length, any of them is a valid answer.

↪→
↪→
- Which word in the list [tasteless, glorious, bird, raspy, murky, zoom, juice,

select, liquid, hope, install] is longer? If there is more than one word with
the same length, any of them is a valid answer.

↪→
↪→
- Which word in the list [complete, aromatic, oceanic, fish, excited, tail,

internal, dinosaurs, noiseless, partner] is longer? If there is more than one
word with the same length, any of them is a valid answer.</ANSWER></TARGET>

↪→
↪→

<INPUT>Which word in the list [cow, banana, ensemble, castle, wise] is
longer?</INPUT>↪→

<TARGET>This problem is simple enough to be solved directly by performing a length
comparison of only two words. <ANSWER>This is a unit
problem.</ANSWER></TARGET>

↪→
↪→

<INPUT>Is the following sports-related sentence plausible? "Joao Moutinho caught
the screen pass in the NFC championship."</INPUT>↪→

<TARGET>We can use the task decomposition strategy here by proposing questions to
gather the information required to solve the original problem. We can use two
workers. The merged solution will be "yes" if the resulting information of
both Joao Moutinho and the NFC championship match, and "no" otherwise.

↪→
↪→
↪→
<ANSWER>- Which sport does Joao Moutinho play?
- To which sport does the NFC championship belong to?</ANSWER></TARGET>
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Listing 12 RDD examples for the merging step and the letter concatenation task.

<INPUT>Concatenate using a space the characters at index 1 of each word in the
list [Orlando, Arif, Keith, Lyudmyla, Amin, Theresa, Stefan, Gilberto, Samina,
Yoko, Katarzyna, Haiying, Saraswati, Theresa, Bernadette, Maung, Lopez,
Pereira, Shaikh, Brown, Ortiz]; indices start at zero.

↪→
↪→
↪→
- Sub-problem 1: Concatenate using a space the characters at index 1 of each word

in the list [Orlando, Arif, Keith, Lyudmyla, Amin]; indices start at zero.
Sub-solution 1: "r r e y m".

↪→
↪→
- Sub-problem 2: Concatenate using a space the characters at index 1 of each word

in the list [Theresa, Stefan, Gilberto, Samina, Yoko]; indices start at zero.
Sub-solution 2: "h t i a o".

↪→
↪→
- Sub-problem 3: Concatenate using a space the characters at index 1 of each word

in the list [Katarzyna, Haiying, Saraswati, Theresa, Bernadette]; indices
start at zero. Sub-solution 3: "a a a h e".

↪→
↪→
- Sub-problem 4: Concatenate using a space the characters at index 1 of each word

in the list [Maung, Lopez, Pereira, Shaikh, Brown, Ortiz]; indices start at
zero. Sub-solution 4: "a o e h r r".</INPUT>

↪→
↪→
<TARGET>"r r e y m h t i a o a a a h e a o e h r r"</TARGET>

<INPUT>Concatenate using a space the characters at index 2 of each word in the
list [Lawal, Jadhav, Sekha, Jadhav, Abraham, Sushila, Hoang, Gerhard, Heinz];
indices start at zero.

↪→
↪→
- Sub-problem 1: Concatenate using a space the characters at index 2 of each word

in the list [Lawal, Jadhav, Sekha, Jadhav]; indices start at zero.
Sub-solution 1: "w d k d".

↪→
↪→
- Sub-problem 2: Concatenate using a space the characters at index 2 of each word

in the list [Abraham, Sushila, Hoang, Gerhard]; indices start at zero.
Sub-solution 2: "r s a r".

↪→
↪→
- Sub-problem 3: Concatenate using a space the characters at index 2 of each word

in the list [Heinz]; indices start at zero. Sub-solution 3: "i".</INPUT>↪→
<TARGET>"w d k d r s a r i"</TARGET>

<INPUT>Concatenate using a space the characters at index 1 of each word in the
list [Prem, Wilson, Ashraf, Gilberto, Shobha]; indices start at zero.↪→

- Sub-problem 1: Concatenate using a space the characters at index 1 of each word
in the list [Prem, Wilson, Ashraf]; indices start at zero. Sub-solution 1: "r
i s".

↪→
↪→
- Sub-problem 2: Concatenate using a space the characters at index 1 of each word

in the list [Gilberto, Shobha]; indices start at zero. Sub-solution 2: "i
h".</INPUT>

↪→
↪→
<TARGET>"r i s i h"</TARGET>
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Listing 13 RDD examples for the merging step and the letter concatenation task (continued).

<INPUT>Concatenate using a space the characters at index 1 of each word in the
list [Robin, Mostafa, Hadi, Gutierrez, Farooq, Nicolas, Alicia, Sandra,
Xiaolin, Valerie]; indices start at zero.

↪→
↪→
- Sub-problem 1: Concatenate using a space the characters at index 1 of each word

in the list [Robin, Mostafa, Hadi]; indices start at zero. Sub-solution 1: "o
o a".

↪→
↪→
- Sub-problem 2: Concatenate using a space the characters at index 1 of each word

in the list [Gutierrez, Farooq, Nicolas]; indices start at zero. Sub-solution
2: "u a i".

↪→
↪→
- Sub-problem 3: Concatenate using a space the characters at index 1 of each word

in the list [Alicia, Sandra, Xiaolin, Valerie]; indices start at zero.
Sub-solution 3: "l a i a".</INPUT>

↪→
↪→
<TARGET>"o o a u a i l a i a"</TARGET>

<INPUT>Concatenate using a space the characters at index 1 of each word in the
list [Cheng, Jianwei, Magdalena, Raimundo, Rosario, Raju, Orlando]; indices
start at zero.

↪→
↪→
- Sub-problem 1: Concatenate using a space the characters at index 1 of each word

in the list [Cheng, Jianwei, Magdalena]; indices start at zero. Sub-solution 1:
"h i a".

↪→
↪→
- Sub-problem 2: Concatenate using a space the characters at index 1 of each word

in the list [Raimundo, Rosario, Raju]; indices start at zero. Sub-solution 2:
"a o a".

↪→
↪→
- Sub-problem 3: Concatenate using a space the characters at index 1 of each word

in the list [Orlando]; indices start at zero. Sub-solution 3: "r".</INPUT>↪→
<TARGET>"h i a a o a r"</TARGET>
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Listing 14 Generic RDD examples for the merging step.

<INPUT>Who is younger: Michael Jordan, Cristiano Ronaldo or Usain Bolt?
- Sub-problem 1: How old is Cristiano Ronaldo? Sub-solution 1: 39 years old.
- Sub-problem 2: How old is Michael Jordan? Sub-solution 2: 61 years old.
- Sub-problem 3: How old is Usain Bolt? Sub-solution 3: 37 years old.</INPUT>
<TARGET>We can obtain the solution to the original problem by comparing the ages

given in the sub-solutions. Thus, the solution is <ANSWER>Usain
Bolt</ANSWER></TARGET>

↪→
↪→

<INPUT>Peter had 3 apples, 7 oranges and 12 pears. He gave 1 apple to John, 4
oranges to Maria and 3 pears to Ana. How many pieces of fruit does Peter have
left?

↪→
↪→
- Sub-problem 1: Peter had 3 apples and gave 1 to John. How many apples does Peter

have left? Sub-solution 1: 2.↪→
- Sub-problem 2: Peter had 7 oranges and gave 4 to Maria. How many oranges does

Peter have left? Sub-solution 2: 3.↪→
- Sub-problem 3: Peter had 12 pears and gave 3 to Ana. How many pears does Peter

have left? Sub-solution 3: 9.</INPUT>↪→
<TARGET>We can obtain the solution to the original problem by adding up the pieces

Peter has left for each type of fruit. These pieces are given by each
sub-solution. Thus, the solution is 2 + 3 + 9 = <ANSWER>14</ANSWER></TARGET>

↪→
↪→

<INPUT>What is ((((5 + 4) * 100) + 267) / (3 * 10))?
- Sub-problem 1: What is ((5 + 4) * 100) + 267? Sub-solution 1: 1167.
- Sub-problem 2: What is 3 * 10? Sub-solution 2: 30.</INPUT>
<TARGET>We can obtain the solution to the original problem by performing the

operation $sub_solution_1 / sub_solution_2$. Thus, the solution is 1167 / 30 =
<ANSWER>38.9</ANSWER></TARGET>

↪→
↪→

<INPUT>Which word in the list [hush, oceanic, surge, present, lie, wry, giraffe,
dine, guide, urge, complete, tasteless, glorious, bird, raspy, murky, zoom,
juice, select, liquid, hope, install, complete, aromatic, oceanic, fish,
excited, fabricator, internal, dinosaurs, noiseless, partner] is longer?

↪→
↪→
↪→
- Sub-problem 1: Which word in the list [hush, oceanic, surge, present, lie, wry,

giraffe, dine, guide, urge, complete] is longer? Sub-solution 1: complete.↪→
- Sub-problem 2: Which word in the list [tasteless, glorious, bird, raspy, murky,

zoom, juice, select, liquid, hope, install] is longer? Sub-solution 2:
tasteless.

↪→
↪→
- Sub-problem 3: Which word in the list [complete, aromatic, oceanic, fish,

excited, fabricator, internal, dinosaurs, noiseless, partner] is longer?
Sub-solution 3: fabricator.</INPUT>

↪→
↪→
<TARGET>We can obtain the solution to the original problem by taking the longest

word out of the three sub-solutions. "complete" has 8 letters, "tasteless" has
9 letters and "fabricator" has 10 letters. Thus, the solution is
<ANSWER>fabricator</ANSWER></TARGET>

↪→
↪→
↪→

<INPUT>Is the following sports-related sentence plausible? "Joao Moutinho caught
the screen pass in the NFC championship."↪→

- Sub-problem 1: Which sport does Joao Moutinho play? Sub-solution 1: Soccer.
- Sub-problem 2: To which sport does the NFC championship belong to? Sub-solution

2: American football.</INPUT>↪→
<TARGET>Joao Moutinho does not play the same sport that the NFC championship

belongs to. Thus, the answer is <ANSWER>no</ANSWER></TARGET>↪→
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Listing 15 Generic RDD examples for the decomposition step and the length reversal task.

<INPUT>If Peter has 3 apples and gives 1 to John, how many apples does Peter have
left?</INPUT>↪→

<TARGET>This problem is simple enough to be solved directly by a single
mathematical operation. <ANSWER>This is a unit problem.</ANSWER></TARGET>↪→

<INPUT>Who is the brother of the Sultan of Brunei married to?</INPUT>
<TARGET>We can use the task decomposition strategy here by splitting the task into

smaller tasks, in order to find out the necessary information to answer the
main question. We can use two workers. The merged solution will be attained by
using the intermediate information to solve the original question.

↪→
↪→
↪→
<ANSWER>- [P-1] Who is the Sultan of Brunei?
- [P-2] Who is the brother of {P-1}?
- [P-3] Who is married to {P-2}?</ANSWER></TARGET>

<INPUT>Solve for $y$: $\frac{4}{\log_2 8}x = \log_2 16 + 7$, $y = 3x$.</INPUT>
<TARGET>We can use the task decomposition strategy here by splitting the task into

simpler mathematical operations. We can use three workers. The merged solution
will be attained by using the intermediate results to obtain a value for $y$.

↪→
↪→
<ANSWER>- [P-1] What is the result of $\frac{4}{\log_2 8}$?
- [P-2] What is the result of $\log_2 16 + 7$?
- [P-3] What is result of $\frac{{P-2}}{{P-1}}$?</ANSWER></TARGET>

<INPUT>Write the blueprint for a webpage view using the Vue3 framework about a
study on salaries based on profession and age. The view must contain an
initial text description of the study, a table with headers "Name", "Age",
"Profession" and "Salary", as well as a picture slider. The data for the table
will be available from a local JSON file, and the pictures for the slider will
also be available locally.</INPUT>

↪→
↪→
↪→
↪→
↪→
<TARGET>We can use the task decomposition strategy here by splitting the task into

smaller tasks, consisting on creating Vue3 components for each element of the
view. We can use two workers. The merged solution will be the code for the
components generated when solving the sub-problems, as well as code for the
view using such components.

↪→
↪→
↪→
↪→
<ANSWER>- [P-1] Write code using the Vue3 framework for a component representing a

table with headers "Name", "Age", "Profession" and "Salary". The data for the
table will be available from a local JSON file.

↪→
↪→
- [P-2] Write code using the Vue3 framework for a component representing a picture

slider. The pictures for the slider will be available
locally.</ANSWER></TARGET>

↪→
↪→

<INPUT>Write a Python function that takes the base and height of a triangle (two
floating point numbers) and returns its area (also a floating point
number).</INPUT>

↪→
↪→
<TARGET>This problem is simple enough to be solved directly by writing a short

Python function. <ANSWER>This is a unit problem.</ANSWER></TARGET>↪→
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Listing 16 Generic RDD examples for the decomposition step and the length reversal task (continued).

<INPUT>Which is the oldest country out of Germany, Japan, Switzerland, Spain,
Bolivia, Angola, Laos, Belgium, Canada, Mexico, Costa Rica, Indonesia,
Pakistan and Rwanda?</INPUT>

↪→
↪→
<TARGET>We can use the data decomposition strategy here by splitting the input

data into evenly sized partitions and solving the same problem for each
partition. We can use two workers. The merged solution will be oldest country
out of all the sub-solutions.

↪→
↪→
↪→
<ANSWER>- [P-1] Which is the oldest country out of Germany, Japan, Switzerland,

Spain, Bolivia, Angola and Laos?↪→
- [P-2] Which is the oldest country out of Belgium, Canada, Mexico, Costa Rica,

Indonesia, Pakistan and Rwanda?</ANSWER></TARGET>↪→

<INPUT>Which is the oldest country out of Germany, Japan, Switzerland, Spain,
Bolivia, Angola and Laos?</INPUT>↪→

<TARGET>We can use the task decomposition strategy here by performing different
steps to obtain all required information to answer the question. We can use
two workers. The merged solution will be the longest word out of all the
sub-solutions.

↪→
↪→
↪→
<ANSWER>- [P-1] Create a list of country-age pairs for each country and their

respective ages out of Germany, Japan, Switzerland, Spain, Bolivia, Angola and
Laos.

↪→
↪→
- [P-2] Which is the country with the largest age, given the following list of

country-age pairs: {P-1}?</ANSWER></TARGET>↪→

<INPUT>Which word in the list [cow, banana, ensemble, castle, wise] is
longer?</INPUT>↪→

<TARGET>This problem is simple enough to be solved directly by performing a length
comparison of only five words. <ANSWER>This is a unit
problem.</ANSWER></TARGET>

↪→
↪→
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E Resource usage statistics489

We attempted to match the estimated resource usage of the baselines and our method by the amount490

of Self-Consistency (SC) (Wang et al., 2022b) samples. We used the following formula for resource491

matching: n_context_tokens + 3 · n_output_tokens.492

n0 Method Time Calls Context tokens Output tokens
5 CoT+SC 2.75h 2,500 1,249,529 84,656

LtM+SC 3.78h 1,100 1,141,800 122,996
RDD+LtM 0.53h 506 466,812 14,572

10 CoT+SC 3.80h 2,500 1,332,860 120,837
LtM+SC 8.87h 1,100 1,373,365 295,972
RDD+LtM 1.20h 880 817,621 35,440

20 CoT+SC 5.82h 2,500 1,497,807 188,666
LtM+SC 11.15h 500 889,367 378,866
RDD+LtM 2.50h 1,541 1,416,940 75,390

50 CoT+SC 13.18h 2,700 2,166,008 437,959
LtM+SC 17.78h* 700 1,893,349 899,997
RDD+LtM 4.85h 2,022 2,712,931 250,710

70 CoT+SC 12,18h* 2,700 2,527,744 653,758
LtM+SC 66.94h* 509 754,192 3,098,360
RDD+LtM 7.10h 924 1,289,806 389,013

90 CoT+SC 25.57h* 2,700 3,536,975 1,372,692
LtM+SC 310.12h* 421 686,331 3,121,383
RDD+LtM 10.53h 974 1,396,950 570,232

Table 1: Resource usage for the letter concatenation benchmark with task-specific examples. Experi-
ments were run with NVIDIA A100 GPUs; those experiments marked with an asterisk were run with
NVIDIA H100 GPUs instead.

n0 Method Time Calls Context tokens Output tokens
5 CoT+SC 2.75h 2,500 1,903,006 135,905

RDD+CoT 0.57h 400 436,868 26,380

10 CoT+SC 3.93h 2,500 2,024,457 200,147
RDD+CoT 0.63h 400 442,718 31,960

20 CoT+SC 6.38h 2,500 2,272,076 331,999
RDD+CoT 1.83h 1,000 1,141,523 90,086

50 CoT+SC 15.03h 2,700 3,301,632 810,976
RDD+CoT 3.48h 1,700 1,915,870 171,422

70 CoT+SC 15.09h 2,200 3,030,226 843,774
RDD+CoT 5.32h 2,600 2,854,574 241,592

90 CoT+SC 21.30h 2,200 3,550,609 1,128,185
RDD+CoT 5.77h 2,562 2,883,035 290,143

Table 2: Resource usage for the letter concatenation benchmark with generic examples.
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n0 Method Time Calls Context tokens Output tokens
3 CoT+SC 1.90h 1,500 1,238,293 97,128

RDD+CoT 1.28h 1,012 1,095,336 62,267

5 CoT+SC 2.49h 1,500 1,641,229 127,839
RDD+CoT 1.42h 900 1,003,953 72,215

7 CoT+SC 3.13h 1,500 1,332,821 164,456
RDD+CoT 1.70h 902 1,015,943 86,072

10 CoT+SC 3.72h 1,500 1,742,526 194,890
RDD+CoT 2.05h 900 1,028,783 103,765

15 CoT+SC 6.02h 1,500 1,545,019 319,041
RDD+CoT 2.60h 900 1,053,831 135,297

20 CoT+SC 6.28h 1,500 1,945,648 335,419
RDD+CoT 3.03h 900 1,079,213 159,455

Table 3: Resource usage for the length reversal benchmark with generic examples and RDD.
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F Error analysis data493

n0 ϕd ϕm ϕu ϕRDD

5 1.00 0.99 0.99 0.98
10 1.00 0.98 0.97 0.91
20 1.00 0.97 0.98 0.85
50 1.00 0.97 0.98 0.80
70 1.00 0.96 0.98 0.84
90 0.94 0.94 0.87 0.45

(a) Error analysis data for the task-specific in-context
setting.

n0 ϕd ϕm ϕu ϕRDD

5 1.00 0.96 0.97 0.93
10 1.00 0.99 0.93 0.85
20 1.00 0.96 0.92 0.71
50 1.00 0.93 0.92 0.42
70 1.00 0.85 0.93 0.28
90 1.00 0.81 0.90 0.11

(b) Error analysis data for the generic in-context setting.

Table 4: A complete data account for the analysis provided in Sec. 3.4. The data for the task-specific
in-context experiment is given in (a) and the one for the generic in-context experiment in (b).
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G Example of error propagation494

Problem: <ROOT> Concatenate using a space the characters at index one of each word in the
list [Rodrigo, Carmen, Alice, Wanyue, Yutao]; indices start at zero.
Solution: o a l n u.

Problem: <P-2> Concatenate using a
space the characters at index one of
each word in the list [Alice, Wanyue,
Yutao]; indices start at zero.
Solution: l n u

Problem: <P-1> <ROOT> Concatenate
using a space the characters at index
one of each word in the list [Rodrigo,
Carmen]; indices start at zero..
Solution: o a

Figure 6: Example of error propagation behavior during the execution of RDD. Green nodes cor-
respond to correctly solved problems and red nodes to incorrectly solved problems. The method
performs a mistake when unit-solving P-2, which is carried over to the solution of the root problem.
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H Example of error recovery495

Problem: <ROOT> Substitute each word in the list [Rodrigo, Carmen, Alice, Wanyue, Yutao]
for its character length, and then reverse the order of the resulting list.
Solution: There has been an error when decomposing the problem. We can solve it by first
constructing a list of lengths: [7, 6, 5, 6, 5]. Then, we can reverse it to obtain the final solution:
[5, 6, 5, 6, 7].

Problem: <P-2> Reverse the list: {P-1}.
Processed problem: <P-2> Reverse the list:
Could you provide the list of words? 
Solution: It seems the list to reverse has not
been provided.

Problem: <P-1> Substitute each word
for its character length.
Solution: Could you provide the list of
words?

Figure 7: Example of error recovery behavior during the execution of RDD. Green nodes correspond
to correctly solved problems and red nodes to incorrectly solved problems. The method does not
perform the decomposition step correctly as P-1 is formulated with missing data. This issue is carried
over to P-2, but the merge step in the root problem recovers from this error.
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I Example execution of the RDD method496

An example execution of the SCHEDULEBFS procedure (Algorithm 1). The execution can be497

followed from top to bottom. On the top-left edge of each image, we provide the type of meta-task498

that is performed in each step, as well as the node to which it is applied. Orange borders express a499

decomposition transformation of the node or an embedding of the solutions of dependencies. Green500

borders represent the solving process of the node, either via unit-solving or merging.501

START
ROOT

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution:

DECOMPOSE
ROOT
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Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution:

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution:

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution:

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution:

Problem: <P-1.4> Add
one to each element in
[{P-1.1}, {P-1.2}, {P-1.3}].
Solution:

DECOMPOSE
P-1

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution:

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution:

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution:

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution:

Problem: <P-1.4> Add
one to each element in
[{P-1.1}, {P-1.2}, {P-1.3}].
Solution:

DECOMPOSE
P-1.1, P-1.2, P-1.3

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution:

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[{P-1.1}, {P-1.2}, {P-1.3}].
Solution:

UNIT-SOLVE
P-1.1, P-1.2, P-1.3
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Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution:

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution:

EMBED DATA
P-1.4

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution:

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution:

DECOMPOSE
P-1.4

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution:

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution: [5, 6, 7]

UNIT-SOLVE
P-1.4
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Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: {P-1}.
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution: [5, 6, 7]

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution: [5, 6, 7]

MERGE
P-1

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: [5, 6, 7].
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution: [5, 6, 7]

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution: [5, 6, 7]

EMBED DATA
P-2

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: [5, 6, 7].
Solution:

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution: [5, 6, 7]

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution: [5, 6, 7]

DECOMPOSE
P-2
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Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution:

Problem: <P-2> Reverse
the list: [5, 6, 7].
Solution: [7, 6, 5]

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution: [5, 6, 7]

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution: [5, 6, 7]

UNIT-SOLVE
P-2

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution: [7, 6]

Problem: <P-2> Reverse
the list: [5, 6, 7].
Solution: [7, 6, 5]

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution: [5, 6, 7]

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 6

Problem: <P-1.4> Add
one to each element in
[4, 5, 6].
Solution: [5, 6, 7]

MERGE
ROOT
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NeurIPS Paper Checklist502

1. Claims503

Question: Do the main claims made in the abstract and introduction accurately reflect the504

paper’s contributions and scope?505

Answer: [Yes]506

Justification: The abstract contains a summary of the contributions and benefits of the507

proposed method. The introduction explicitly contains a list of the contributions and defines508

the problem and scope our proposed method addresses.509

Guidelines:510

• The answer NA means that the abstract and introduction do not include the claims511

made in the paper.512

• The abstract and/or introduction should clearly state the claims made, including the513

contributions made in the paper and important assumptions and limitations. A No or514

NA answer to this question will not be perceived well by the reviewers.515

• The claims made should match theoretical and experimental results, and reflect how516

much the results can be expected to generalize to other settings.517

• It is fine to include aspirational goals as motivation as long as it is clear that these goals518

are not attained by the paper.519

2. Limitations520

Question: Does the paper discuss the limitations of the work performed by the authors?521

Answer: [Yes]522

Justification: In Sec. 2.1, we introduce the concept of transition points, before which RDD523

is not beneficial. In Sec. 2.2, we explain that our strategy to not provide a history of parent524

problems requires stronger language models to perform the decomposition step correctly. In525

Sec. 5, we refer to the improvements that could be made to the methodology in future work.526

Throughout the paper, we also mention the increased amount of computational resources527

our method needs to function.528

Guidelines:529

• The answer NA means that the paper has no limitation while the answer No means that530

the paper has limitations, but those are not discussed in the paper.531

• The authors are encouraged to create a separate "Limitations" section in their paper.532

• The paper should point out any strong assumptions and how robust the results are to533

violations of these assumptions (e.g., independence assumptions, noiseless settings,534

model well-specification, asymptotic approximations only holding locally). The authors535

should reflect on how these assumptions might be violated in practice and what the536

implications would be.537

• The authors should reflect on the scope of the claims made, e.g., if the approach was538

only tested on a few datasets or with a few runs. In general, empirical results often539

depend on implicit assumptions, which should be articulated.540

• The authors should reflect on the factors that influence the performance of the approach.541

For example, a facial recognition algorithm may perform poorly when image resolution542

is low or images are taken in low lighting. Or a speech-to-text system might not be543

used reliably to provide closed captions for online lectures because it fails to handle544

technical jargon.545

• The authors should discuss the computational efficiency of the proposed algorithms546

and how they scale with dataset size.547

• If applicable, the authors should discuss possible limitations of their approach to548

address problems of privacy and fairness.549

• While the authors might fear that complete honesty about limitations might be used by550

reviewers as grounds for rejection, a worse outcome might be that reviewers discover551

limitations that aren’t acknowledged in the paper. The authors should use their best552

judgment and recognize that individual actions in favor of transparency play an impor-553

tant role in developing norms that preserve the integrity of the community. Reviewers554

will be specifically instructed to not penalize honesty concerning limitations.555
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3. Theory Assumptions and Proofs556

Question: For each theoretical result, does the paper provide the full set of assumptions and557

a complete (and correct) proof?558

Answer: [Yes]559

Justification: We do not present theoretical results in the main body of the paper. In Sec. 2.1,560

we hypothesize and formulate the appearance of transition points, which we later confirm561

empirically. We do include theoretical results in App. A; we first introduce a formulation of562

ϕRDD and then prove two requirements for a desideratum relevant to our work.563

Guidelines:564

• The answer NA means that the paper does not include theoretical results.565

• All the theorems, formulas, and proofs in the paper should be numbered and cross-566

referenced.567

• All assumptions should be clearly stated or referenced in the statement of any theorems.568

• The proofs can either appear in the main paper or the supplemental material, but if569

they appear in the supplemental material, the authors are encouraged to provide a short570

proof sketch to provide intuition.571

• Inversely, any informal proof provided in the core of the paper should be complemented572

by formal proofs provided in appendix or supplemental material.573

• Theorems and Lemmas that the proof relies upon should be properly referenced.574

4. Experimental Result Reproducibility575

Question: Does the paper fully disclose all the information needed to reproduce the main ex-576

perimental results of the paper to the extent that it affects the main claims and/or conclusions577

of the paper (regardless of whether the code and data are provided or not)?578

Answer: [Yes]579

Justification: Yes, we provide our experimental setup in Sec. 3 and provide all prompts and580

in-context examples used in App. C and App. D, respectively.581

Guidelines:582

• The answer NA means that the paper does not include experiments.583

• If the paper includes experiments, a No answer to this question will not be perceived584

well by the reviewers: Making the paper reproducible is important, regardless of585

whether the code and data are provided or not.586

• If the contribution is a dataset and/or model, the authors should describe the steps taken587

to make their results reproducible or verifiable.588

• Depending on the contribution, reproducibility can be accomplished in various ways.589

For example, if the contribution is a novel architecture, describing the architecture fully590

might suffice, or if the contribution is a specific model and empirical evaluation, it may591

be necessary to either make it possible for others to replicate the model with the same592

dataset, or provide access to the model. In general. releasing code and data is often593

one good way to accomplish this, but reproducibility can also be provided via detailed594

instructions for how to replicate the results, access to a hosted model (e.g., in the case595

of a large language model), releasing of a model checkpoint, or other means that are596

appropriate to the research performed.597

• While NeurIPS does not require releasing code, the conference does require all submis-598

sions to provide some reasonable avenue for reproducibility, which may depend on the599

nature of the contribution. For example600

(a) If the contribution is primarily a new algorithm, the paper should make it clear how601

to reproduce that algorithm.602

(b) If the contribution is primarily a new model architecture, the paper should describe603

the architecture clearly and fully.604

(c) If the contribution is a new model (e.g., a large language model), then there should605

either be a way to access this model for reproducing the results or a way to reproduce606

the model (e.g., with an open-source dataset or instructions for how to construct607

the dataset).608
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(d) We recognize that reproducibility may be tricky in some cases, in which case609

authors are welcome to describe the particular way they provide for reproducibility.610

In the case of closed-source models, it may be that access to the model is limited in611

some way (e.g., to registered users), but it should be possible for other researchers612

to have some path to reproducing or verifying the results.613

5. Open access to data and code614

Question: Does the paper provide open access to the data and code, with sufficient instruc-615

tions to faithfully reproduce the main experimental results, as described in supplemental616

material?617

Answer: [Yes]618

Justification: We have open-sourced our implementation of the method and the code we619

have used to perform our experiments. We do not provide a link to it in the submission620

version of the paper to preserve anonymity.621

Guidelines:622

• The answer NA means that paper does not include experiments requiring code.623

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/624

public/guides/CodeSubmissionPolicy) for more details.625

• While we encourage the release of code and data, we understand that this might not be626

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not627

including code, unless this is central to the contribution (e.g., for a new open-source628

benchmark).629

• The instructions should contain the exact command and environment needed to run to630

reproduce the results. See the NeurIPS code and data submission guidelines (https:631

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.632

• The authors should provide instructions on data access and preparation, including how633

to access the raw data, preprocessed data, intermediate data, and generated data, etc.634

• The authors should provide scripts to reproduce all experimental results for the new635

proposed method and baselines. If only a subset of experiments are reproducible, they636

should state which ones are omitted from the script and why.637

• At submission time, to preserve anonymity, the authors should release anonymized638

versions (if applicable).639

• Providing as much information as possible in supplemental material (appended to the640

paper) is recommended, but including URLs to data and code is permitted.641

6. Experimental Setting/Details642

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-643

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the644

results?645

Answer: [Yes]646

Justification: The main hyperparameters and models used are mentioned in Sec. 3. The full647

details are available in the open-sourced code.648

Guidelines:649

• The answer NA means that the paper does not include experiments.650

• The experimental setting should be presented in the core of the paper to a level of detail651

that is necessary to appreciate the results and make sense of them.652

• The full details can be provided either with the code, in appendix, or as supplemental653

material.654

7. Experiment Statistical Significance655

Question: Does the paper report error bars suitably and correctly defined or other appropriate656

information about the statistical significance of the experiments?657

Answer: [No]658

Justification: We include experiments with varying levels of complexity and demonstrate659

significance through those.660
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8. Experiments Compute Resources661

Question: For each experiment, does the paper provide sufficient information on the com-662

puter resources (type of compute workers, memory, time of execution) needed to reproduce663

the experiments?664

Answer: [Yes]665

Justification: This information is provided in App. E.666

Guidelines:667

• The answer NA means that the paper does not include experiments.668

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,669

or cloud provider, including relevant memory and storage.670

• The paper should provide the amount of compute required for each of the individual671

experimental runs as well as estimate the total compute.672

• The paper should disclose whether the full research project required more compute673

than the experiments reported in the paper (e.g., preliminary or failed experiments that674

didn’t make it into the paper).675

9. Code Of Ethics676

Question: Does the research conducted in the paper conform, in every respect, with the677

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?678

Answer: [Yes]679

Justification: We have reviewed the NeurIPS Code of Ethics and believe we comply with it.680

Guidelines:681

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.682

• If the authors answer No, they should explain the special circumstances that require a683

deviation from the Code of Ethics.684

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-685

eration due to laws or regulations in their jurisdiction).686

10. Broader Impacts687

Question: Does the paper discuss both potential positive societal impacts and negative688

societal impacts of the work performed?689

Answer: [Yes]690

Justification: We address societal impact as a core contribution of the paper: we have aimed691

for developing a method which is generically applicable to existing intelligent systems in the692

real-world. Our methodology ensures that real-world users can employ our method without693

unfeasible data requirements.694

Guidelines:695

• The answer NA means that there is no societal impact of the work performed.696

• If the authors answer NA or No, they should explain why their work has no societal697

impact or why the paper does not address societal impact.698

• Examples of negative societal impacts include potential malicious or unintended uses699

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations700

(e.g., deployment of technologies that could make decisions that unfairly impact specific701

groups), privacy considerations, and security considerations.702

• The conference expects that many papers will be foundational research and not tied703

to particular applications, let alone deployments. However, if there is a direct path to704

any negative applications, the authors should point it out. For example, it is legitimate705

to point out that an improvement in the quality of generative models could be used to706

generate deepfakes for disinformation. On the other hand, it is not needed to point out707

that a generic algorithm for optimizing neural networks could enable people to train708

models that generate Deepfakes faster.709

• The authors should consider possible harms that could arise when the technology is710

being used as intended and functioning correctly, harms that could arise when the711

technology is being used as intended but gives incorrect results, and harms following712

from (intentional or unintentional) misuse of the technology.713
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• If there are negative societal impacts, the authors could also discuss possible mitigation714

strategies (e.g., gated release of models, providing defenses in addition to attacks,715

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from716

feedback over time, improving the efficiency and accessibility of ML).717

11. Safeguards718

Question: Does the paper describe safeguards that have been put in place for responsible719

release of data or models that have a high risk for misuse (e.g., pretrained language models,720

image generators, or scraped datasets)?721

Answer: [NA]722

Justification: We do not release new data or models.723

Guidelines:724

• The answer NA means that the paper poses no such risks.725

• Released models that have a high risk for misuse or dual-use should be released with726

necessary safeguards to allow for controlled use of the model, for example by requiring727

that users adhere to usage guidelines or restrictions to access the model or implementing728

safety filters.729

• Datasets that have been scraped from the Internet could pose safety risks. The authors730

should describe how they avoided releasing unsafe images.731

• We recognize that providing effective safeguards is challenging, and many papers do732

not require this, but we encourage authors to take this into account and make a best733

faith effort.734

12. Licenses for existing assets735

Question: Are the creators or original owners of assets (e.g., code, data, models), used in736

the paper, properly credited and are the license and terms of use explicitly mentioned and737

properly respected?738

Answer: [Yes]739

Justification: We believe we have credited all creators and owners of our referenced works.740

Guidelines:741

• The answer NA means that the paper does not use existing assets.742

• The authors should cite the original paper that produced the code package or dataset.743

• The authors should state which version of the asset is used and, if possible, include a744

URL.745

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.746

• For scraped data from a particular source (e.g., website), the copyright and terms of747

service of that source should be provided.748

• If assets are released, the license, copyright information, and terms of use in the749

package should be provided. For popular datasets, paperswithcode.com/datasets750

has curated licenses for some datasets. Their licensing guide can help determine the751

license of a dataset.752

• For existing datasets that are re-packaged, both the original license and the license of753

the derived asset (if it has changed) should be provided.754

• If this information is not available online, the authors are encouraged to reach out to755

the asset’s creators.756

13. New Assets757

Question: Are new assets introduced in the paper well documented and is the documentation758

provided alongside the assets?759

Answer: [Yes]760

Justification: The open-source implementation of our method and the evaluation code are761

documented.762

Guidelines:763

• The answer NA means that the paper does not release new assets.764
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• Researchers should communicate the details of the dataset/code/model as part of their765

submissions via structured templates. This includes details about training, license,766

limitations, etc.767

• The paper should discuss whether and how consent was obtained from people whose768

asset is used.769

• At submission time, remember to anonymize your assets (if applicable). You can either770

create an anonymized URL or include an anonymized zip file.771

14. Crowdsourcing and Research with Human Subjects772

Question: For crowdsourcing experiments and research with human subjects, does the paper773

include the full text of instructions given to participants and screenshots, if applicable, as774

well as details about compensation (if any)?775

Answer: [NA]776

Justification: This work does not include experiments with human subjects.777

Guidelines:778

• The answer NA means that the paper does not involve crowdsourcing nor research with779

human subjects.780

• Including this information in the supplemental material is fine, but if the main contribu-781

tion of the paper involves human subjects, then as much detail as possible should be782

included in the main paper.783

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,784

or other labor should be paid at least the minimum wage in the country of the data785

collector.786

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human787

Subjects788

Question: Does the paper describe potential risks incurred by study participants, whether789

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)790

approvals (or an equivalent approval/review based on the requirements of your country or791

institution) were obtained?792

Answer: [NA]793

Justification: This work does not include experiments with human subjects.794

Guidelines:795

• The answer NA means that the paper does not involve crowdsourcing nor research with796

human subjects.797

• Depending on the country in which research is conducted, IRB approval (or equivalent)798

may be required for any human subjects research. If you obtained IRB approval, you799

should clearly state this in the paper.800

• We recognize that the procedures for this may vary significantly between institutions801

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the802

guidelines for their institution.803

• For initial submissions, do not include any information that would break anonymity (if804

applicable), such as the institution conducting the review.805

45


	Introduction
	Recursive Decomposition with Dependencies
	Notation and definitions
	Methodology

	Empirical Evaluation
	Task-specific Experiments
	Generic Experiments
	Sub-tasks with Dependencies
	Error analysis
	Space and time efficiency

	Related Work
	Conclusion
	Requirements for improved efficacy
	Scheduler algorithm
	Prompts
	In-context examples
	Resource usage statistics
	Error analysis data
	Example of error propagation
	Example of error recovery
	Example execution of the RDD method

