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Abstract

In scientific machine learning, neural networks recently have become a popular
tool for learning the solutions of differential equations. However, practical results
often conflict the existing theoretical predictions in that observed convergence
stagnates early. A substantial improvement can be achieved by the presented
multilevel scheme which decomposes the considered problem into easier to train
sub-problems, resulting in a sequence of neural networks. The efficacy of the
approach is demonstrated for high-dimensional parametric elliptic PDEs that are
common benchmark problems in uncertainty quantification. Moreover, a theoretical
analysis of the expressivity of the developed neural networks is devised.

1 Introduction

The application of current machine learning methods to problems based on mathematical models has
become one of the most promising rising research areas. In engineering and the natural sciences in
particular, complicated mathematical models (usually formulated in terms of differential equations)
form the basis for new insights and groundbreaking technologies. Since the computation of such
models can be extremely time consuming, the use of machine learning tools was obvious and has
become increasingly common in recent years2. Consequently, significant progress has been made on
the one hand to understand the expressivity requirements for representing solutions of differential
equations [17, 23, 5, 19, 14]. On the other hand, a plethora of architectures has been devised to
implement differential equation solvers [4, 21, 24, 25]. Interestingly, while analytical results predict a
superior capacity of deep neural networks e.g. for the important cases of partial differential equations
(PDE) and stochastic differential equations (SDE), observed results unfortunately do not reflect the
theory [1]. Instead, the convergence of the error typically stagnates after some training iterations as
e.g. illustrated in [13, 16]. In particular, it often does not reach the accuracy of “classical” best-in-class
methods (e.g. stochastic Galerkin or collocation, tensor regression, compressed sensing).

In the following, we are concerned with learning the solution map v : Rp → H1
0 (D) of linear

parametric PDEs of the form

D(v,y) := f −A(y)v(y) = 0, (1)

defined with a linear differential operator A, fixed right-hand side f , appropriate boundary conditions
and a p-dimensional parameter vector y ∈ Rp (determining the model data) on some domain
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2this is often coined scientific machine learning (SciML)
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D ⊂ Rd. Such (possibly very high-dimensional) PDEs are common problems in the field of
Uncertainty Quantification (UQ). They can be used as meaningful benchmark problems to assess the
quality of novel SciML methods. Note that in contrast to many classical machine learning problems,
a dataset can be generated on the fly with arbitrary precision using the Finite Element (FE) method.

We recollect the notion of multilevel methods that are ubiquitous in numerical methods. These
consist of a hierarchical construction of the approximation, relying on a set of successively refined
discretizations and hence exploiting a decomposition of the problem complexity. Notably, for our
method this means that in each approximation step, only the correction to the next finer level has to
be represented in the respective sub-network.

The method which comes closest to our work was recently published in [18]. The three main
differences are: a) We train the networks on each grid level to also correct the errors of the previous
predictions (which turns out to be a significant design choice). b) We learn the solution v(y) of
the parametric PDE instead of some quantity of interest. For this to be feasible we make use of
a compression of the FE basis. c) We examine the required theoretical network complexity and
give an evaluation on standard UQ problems. Our numerical examples illustrate that the multilevel
construction leads to a stable convergence of the parametric solutions which is comparable to
best-in-class methods such as the ones in [9, 11, 12, 10, 6, 2].

2 A neural multilevel method

To construct the multilevel scheme for the considered PDE, we denote by V1 ⊂ . . . ⊂ VL ⊂ H1
0 (D)

a nested sequence of FE spaces resulting from L successive (uniform) refinements of a coarse grid
on the spatial domain D and let v` : Rp → V` be the function which maps a (stochastic) parameter
y ∈ Rp to the FE solution v`(y) of (1). Note that we can express the solution on the finest mesh vL
as a sum of corrections

vL(y) = v1(y) +

L∑
`=2

(v`(y)− v`−1(y)) =:
L∑

`=1

ṽ`(y), where each ṽ`(y) ∈ V`.

Since dimV` grows exponentially with `, we make use of a proper orthogonal decomposition (POD)
[3, 22, 20] to yield spaces U` = span{u1` , . . . , u

dimU`
` } of lower dimension which allow an efficient

approximation of the corrections ṽ`(y).

In our neural multilevel method, we use neural networks NN` : Rp → RdimU` for ` = 1, . . . , L to
learn the basis coefficients ci`(y) of the approximate subspace corrections

vL(y) =

L∑
`=1

ṽ`(y) ≈
L∑

`=1

dimU`∑
i=1

ci`(y)u
i
` ≈

L∑
`=1

dimU`∑
i=1

[NN`(y)]iu
i
`.

To avoid an accumulation of the individual errors of NN` in the above sum, we train NN` to also
correct the errors of the output of the preceding levels (see Step 2 below for a precise description). For
this, in addition to the parameter vector y, we also feed the output coefficients of all previous networks
as input. We want to point out that correcting preceding errors provides an essential improvement
over the method in [18] (see Section 3). For simplicity, in the following we just write NN`(y) for
the output vector of the `-th network (instead of NN`(y,NN`−1, . . . ,NN1)).

To generate the training data, we draw N ∈ N samples y1, . . . ,yN and compute solutions
v`(y1), . . . , v`(yN ) for each ` = 1, . . . , L using the FE method. The iterative training procedure of
our neural multilevel procedure reads now as follows:
Algorithm 2.1.

Step 1: (i) Compute the POD basis functions u11, . . . , u
dimU1
1 from the snapshot matrix of FE

solutions [v1(y1), . . . , v1(yN )] subject to a desired accuracy.
(ii) Train the first network NN1 to minimize

N∑
k=1

∥∥∥∥∥
(

dimU1∑
i=1

[NN1(yk)]iu
i
1

)
− v1(yk)

∥∥∥∥∥
2

H1
0 (D)

.
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Step 2: For ` = 2, . . . , L:

(i) Successively update the current approximation

w`−1(yk) :=

`−1∑
j=1

dimUj∑
i=1

[NNj(yk)]iu
i
j .

(ii) Compute the POD basis functions u1` , . . . , u
dimU`
` from the snapshot matrix of correc-

tions [v`(y1)− w`−1(y1), . . . , v`(yN )− w`−1(yN )].
(iii) Train the network NN` to approximate the correction by minimizing

N∑
k=1

∥∥∥∥∥
dimU`∑
i=1

[NN`(yk)]iu
i
` − (v`(yk)− w`−1(yk))

∥∥∥∥∥
2

H1
0 (D)

.

3 Numerical examples

To assess the performance of Algorithm 2.1, we consider a common high-dimensional PDE and
compare the solution approximation of our neural multilevel scheme with two related NN models.
More specifically, we use the stationary parametric diffusion problem −div(T (a(y))∇u(y)) = 1
with homogeneous Dirichlet boundary conditions on the unit square. The conductivity is given
by a(y) = µ +

∑p
m=1 amym where am ∼ m−2 are planar Fourier modes, cf. [9]. We consider

the “uniform case” with T = id, µ = 1, p = 50 and y drawn from U([−1, 1]p), as well as the
severely more involved “log-normal case” with T = exp, µ = 1, p = 50 and y drawn from N(0, I).
Algorithm 2.1 is employed with L = 7 feed-forward ReLU neural networks NN1, . . . ,NNL

consisting of two hidden layers and 512 nodes per layer.

We analyse the approximation quality of our neural multilevel scheme by comparing it with the
closely related architecture of [18] (denoted “Lye et al.”)3 on an independent test set consisting of
1024 randomly drawn samples. Moreover, we compare the results to a single larger feed-forward
ReLU model (denoted “Single Net”) with roughly the same parameter count as all the multilevel
networks of one architecture combined. “Single Net” is trained to directly predict an approximation
on the finest mesh. For all three approaches, a POD is utilized with a prescribed tolerance of 10−7.
The network training is based on 105 samples that are randomly drawn according to the distribution
of the respective test case. On the finest level 7, the mesh consists of about 2× 105 triangles with
first order Lagrange elements.

In Figure 1, the H1
0 -error with respect to a high fidelity reference solution of our method and “Lye et.

al” is displayed for an increasing number of levels (solid line). It is noteworthy that our “ML Net”
essentially keeps its convergence rate throughout while “Lye at al.” flattens out, starting at level 4 or 5,
respectively. We also reach a relative error that is much better than what is shown in other NN methods
such as e.g. [13]. The reason for this may be found in the subtle difference of the two methods.
“Lye et. al” predicts the level corrections independently of the neural network approximations of the
previous level (and their errors) leading to a successive error accumulation from level to level. In
contrast, on each level, “ML Net” is aware of the previous errors and trained to correct them. The
H1

0 -error with respect to a high fidelity reference solution projected onto the corresponding grid
(dotted line) supports this hypothesis. While the error for “ML Net” stays relatively constant with
increasing levels we can observe an error accumulation for “Lye et al”. The approximation error of
the “Single Net” with respect to the high fidelity reference solution is indicated by a red triangle. Its
performance is comparable to “Lye et al”.

The results suggest that it is advantageous to learn the corrections iteratively with respect to the
preceding approximation to mitigate error accumulation instead of learning the grid corrections
independently. Throughout the experiments, our method is the only one whose approximation error
is not significantly larger than the FE grid approximation error.

3We point out, that the original method from [18] aims at predicting quantities of interest. As it is the closest
method to ours found in the literature, we adapted their approach to the setting considered in this paper.
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Figure 1: Relative energy errors evaluated on an independent test set for the uniform case with p = 50
(left) and the log-normal case with p = 50 (right).

4 Theoretical analysis

In this section, we analyse the complexity (in terms of the number of weights) of the neural networks
in our multilevel method4. The proof is based on the well-established ability of neural networks to
approximate polynomials efficiently [15, 8, 26] and will be published in our upcoming paper. Our
result is in line with the literature [7, Section 3.9] and shows that for fixed stochastic dimension p, to
reach the accuracy of the FE solution on the finest grid (∼ η−L) it suffices to have a polynomially
growing number of weights assuming a suitable dimensionality reduction. As expected, this rate
deteriorates with increasing stochastic parameter dimension. A related analysis without using a
multilevel scheme is presented in [23, 17].
Theorem 4.1. For each L ∈ N there exist neural networks NN1, . . . ,NNL where the total number
of weights is bounded by

L∑
`=1

#NN` . L2p+2 + Lp
L∑

`=1

dimU`,

such that the multilevel Algorithm 2.1 together with a POD of accuracy εPOD achieves the precision
on the order of the FE solution on the finest grid (up to a multiplication of L)∥∥∥∥∥

L∑
`=1

dimU`∑
i=1

[NN`(y)]iu
i
` − v(y)

∥∥∥∥∥
H1

0 (D)

≤
(
2Lη−L + εPOD

)
‖f‖∗.

Analysing Single Net in a similar way, we can show that its required complexity grows asymptotically
faster than the bound in Theorem 4.1. This crucial observation shows the efficiency of the multilevel
ansatz in terms of its approximative power.

5 Conclusion

We describe and numerically demonstrate a neural multilevel scheme which is comparable to best-in-
class performance for the solution approximation of high-dimensional parametric PDEs as commonly
encountered in UQ. As such, the proposed scheme outperforms other neural network approaches
from the recent literature. Regarding analytical aspects, we provide complexity bounds which behave
favourably with respect to the expected theoretical convergence for this type of problem. Moreover,
asymptotic estimates also show the advantage of the proposed multilevel structure. For detailed
theoretical results, we refer to our upcoming paper.

4For the analysis to be tractable, we ignore the dependence of the corrections on the output of the previous
levels (see Algorithm 2.1 Step 2).
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Nevertheless, despite the favourable observed performance, there are still several open questions. In
particular, a theoretical non-asymptotic multilevel advantage as in other UQ methods has not been
uncovered yet. Moreover, the required POD reduces the scalability of the approach and prevents
an application when regularity of the parameter to solution map is low. In future work, one might
consider different architectures to lessen the dependence on dimensionality reduction methods using
e.g. CNNs.
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