
SoundCTM: Uniting Score-based and Consistency
Models for Text-to-Sound Generation

Koichi Saito1 Dongjun Kim2 Takashi Shibuya1 Chieh-Hsin Lai1
Zhi Zhong3 Yuhta Takida1 Yuki Mitsufuji1,3

1Sony AI 2Stanford University 3Sony Group Corporation
Koichi.Saito@sony.com

Abstract

Recent high-quality diffusion-based sound generation models can serve as valuable
tools for sound content creators. However, despite producing high-quality sounds,
these models often suffer from slow inference speeds. This drawback burdens
creators, who typically refine their sounds through trial and error to align sounds
with their artistic intentions. To address this issue, we introduce Sound Consistency
Trajectory Models (SoundCTM). Our model enables flexible transitioning between
high-quality 1-step sound generation and superior sound quality through multi-step
generation. This allows creators to initially control sounds with 1-step samples
before refining them through multi-step generation. We reframe original CTM’s
training framework and introduce a novel feature distance by utilizing the teacher’s
network for a distillation loss. Additionally, while distilling classifier-free guided
trajectories, we train conditional and unconditional student models simultaneously
and interpolate between these models during inference. SoundCTM achieves both
promising 1-step and multi-step real-time sound generation. Audio samples are
available at https://anonymus-soundctm.github.io/soundctm/.

1 Introduction

Sound content is essential for multimedia works such as video games, music, and films. Sound
creators create sounds such as footsteps, dragon roaring, and environmental sounds by mixing and
splicing digital sounds or by recording physical items. To enhance immersive experiences, they strive
to produce flexible, diverse, and high-quality sound content tailored to each project.

Sound generation models have a potential to be valuable tools for sound creators. Recent diffusion-
based Text-to-Sound (T2S) models [26, 27, 8, 14] have shown promising results. Despite producing
high-quality sounds, these models suffer from slow inference speeds due to the iterative sampling in
Diffusion Models (DMs) [33, 35, 16]. Sound creators must iterate to ensure the generated sounds
align with their creative intentions, a process requiring them to listen to each sample individually.
The slow inference adds a significant burden and time to the creative process. Thus, addressing slow
inference makes sound generation models more appealing to sound creators.

An initial attempt to address slow inference for DM-based sound generation models is Consis-
tencyTTA [2], which uses Consistency Distillation (CD) [36] on T2S Latent Diffusion Models
(LDMs) [30]. However, in practice, ConsistencyTTA focuses on 1-step generation, losing the
flexibility of balancing sample quality with the number of sampling steps (see Table 2). Even if
ConsistencyTTA is trained sufficiently well, achieving to demonstrate the trade-off between sample
quality and the number of sampling steps, the generated contents cannot be preserved across different
sampling steps (see Figure 1). This occurs even if the same initial noise and conditions are used since
a deterministic sampling cannot be applied to ConsistencyTTA due to its training regime that learns

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://anonymus-soundctm.github.io/soundctm/

1 Step 2 Step 16 Step

ConsistencyTTA
w/. stochastic sampling

(*Deterministic one is not feasible)

SoundCTM (Ours)
w/. deterministic sampling

FAD: 2.18 FAD: 2.38 FAD: 8.54

FAD: 2.08 FAD: 1.90 FAD: 1.38

Method Sampling steps Human evaluation for 1 step generation

ConsistencyTTA SoundCTM(Ours) Ground-Truth

REL
OVL

Figure 1: SoundCTM offers both 1-step high quality and multi-step higher quality sound generation
and can preserve generated contents across different number of sampling steps. Additionally, 1-step
generation of SoundCTM shows better overall audio quality (OVL) and relevance to text prompts
(REL) than that of ConsistencyTTA [2].

anytime-to-zero-time jumps. This is another crucial issue for creators who need accurate, high-quality
samples after finding suitable conditions for the models (see other examples in Figure 9).

In this paper, we present the Sound Consistency Trajectory Model (SoundCTM), a novel T2S model
that offers flexible switching between 1-step high-quality sound generation and higher-quality multi-
step generation. This is achieved through a training framework that learns anytime-to-anytime jumps
and employs deterministic sampling as proposed in Consistency Trajectory Models (CTMs) [19].
Built on CTM’s framework, we address the limitations of the current CTM training framework,
which heavily depends on domain-specific components to achieve notable generation performance.
Specifically, we propose a novel feature distance that uses a teacher’s network as a feature extractor
for distillation loss (see Section 3.1). Furthermore, we distill classifier-free guided text-conditional
trajectories with Classifier-Free Guidance (CFG) [12] as a new condition for student models and
train both text-conditional and unconditional student models, simultaneously. During inference, we
introduce a new hyperparameter to interpolate the text-conditional and unconditional student models
(see Section 3.2 and Algorithm 1).

In the experiments, SoundCTM achieves the state-of-the-art 1-step generation performance without
any fine-tuning or auxiliary neural networks. In addition, under multi-step sampling, SoundCTM
shows the flexible trade-off between the number of sampling steps and its generation quality.

2 Preliminary

Diffusion Models Let pdata denote the data distribution. In DMs, the data variable x0 ∼ pdata
is generated through a reverse-time stochastic process [1] defined as dxt = −2t∇ log pt(xt)dt +√
2tdw̄t from time T to 0, where w̄t is the standard Wiener process in reverse-time. The marginal

density pt(x) is obtained by encoding x0 along with a fixed forward diffusion process, dxt =√
2tdwt, initialized by x0, where wt is the standard Wiener process in forward-time. Song et al.

[35] present the deterministic counterpart of the reverse-time process, called the Probability Flow
Ordinary Differential Equation (PF ODE), given by

dxt

dt
= −t∇ log pt(xt) =

xt − Ept|0(x|xt)[x|xt]

t
,

where pt|0(x|xt) is the probability distribution of the solution of the reverse-time stochastic process
from time t to 0, initiated from xt. Practically, the denoiser function Ept|0(x|xt)[x|xt] [6] is estimated
by a neural network Dϕ, obtained by minimizing a Denoising Score Matching (DSM) loss [37, 35]
Ex0,t,p0|t(x|x0)[∥x0 −Dϕ(x, t)∥22], where p0|t(x|x0) is the transition probability from time 0 to t,
initiated with x0. Given the trained denoiser, the empirical PF ODE is given by

dxt

dt
=

xt −Dϕ(xt, t)

t
. (1)

DMs can generate samples by solving the empirical PF ODE, initiated with xT .

Text-Conditional Sound Generation with Latent Diffusion Models LDM-based T2S models [26,
27, 8] generate audio matched to textual descriptions by first obtaining the latent counterpart of
the data variable z0 through the reverse-time process conditioned by text embedding ctext. This
latent variable z0 is then converted to x0 using a pretrained decoder D. During the training phase,
Dϕ(z, t, ctext) is trained by minimizing the DSM loss.

Multiple-step ODE solver

Feature extraction
by Teacher’s Network

PF ODE trajectory

SoundCTM’s jump

Feature distance computation

Figure 2: Illustrations of SoundCTM’s two predictions ztarget and zest at time s with an initial value
zt and the feature extraction by the teacher’s network for the CTM loss shown within the blue ellipse
area. The conditional embedding c and time s are also input to the feature extractor.

Consistency Trajectory Models CTMs predict both infinitesimally small step jump and long step
jump of the PF ODE trajectory. G(xt, t, s) is defined as the solution of the PF ODE from initial time
t to final time s ≤ t and G is estimated by Gθ as the neural jump. To train Gθ , two s-predictions are
compared: one from a teacher ϕ and the other from a student θ as:

Gθ(xt, t, s) ≈ Gsg(θ)
(
Solver(xt, t, u;ϕ), u, s

)
, (2)

where Solver(xt, t, s;ϕ) is the pre-trained PF ODE in Eq. (1), a random u ∈ [s, t) determines
the amount of teacher information to distill, and sg is the exponential moving average (EMA)
stop-gradient sg(θ)← stopgrad(µsg(θ) + (1− µ)θ).

3 SoundCTM

To address the challenges of achieving fast, flexible, and high-quality T2S generation, we introduce
SoundCTM. Since this paper primarily illustrates the method using LDM-based T2S models as the
teacher model, the student model is trained to estimate the neural jump Gθ as:

Gθ(zt, ctext, t, s) ≈ Gsg(θ)
(
Solver(zt, ctext, t, u;ϕ), ctext, u, s

)
, (3)

where zt is the latent counterpart of xt, and Solver(zt, ctext, t, s;ϕ) is the numerical solver of the
pre-trained text-conditional PF ODE by following Eq. (2). To quantify the dissimilarity between Gθ

and Gsg(θ), we propose a new feature distance in Section 3.1.

3.1 Teacher’s Network as Feature Extractor for Distillation Loss

We propose a new training framework that utilizes the teacher’s network as a feature extractor
and measures the feature distance dteacher between Gθ and Gsg(θ) in Eq. (3), as illustrated in Figure 2.
The main benefit of using dteacher is that it yields better performance compared with using the l2
distance in the z domain computed at either 0-time or s-time, as demonstrated in Table 1.

We define dteacher between two predictions Gθ and Gsg(θ) as follows:

dteacher(Gsg(θ), Gθ, c, t) =

M∑
m=1

∥TNϕ,m(Gsg(θ), c, t)− TNϕ,m(Gθ, c, t)∥22, (4)

where TNϕ,m(·, c, t) denotes the channel-wise normalized output feature of the m-th layer of the
pretrained teacher’s network, conditioned by time t and embedding c. This approach is feasible since
noisy latents are input to the teacher’s network during teacher’s training.

3.2 CFG Handling for SoundCTM

To manage CFG, which plays a crucial role in text-conditional diffusion models [12, 8, 26], in
SoundCTM, we propose distilling the classifier-free guided PF ODE trajectory scaled by ω, uniformly
sampled from the range [ωmin, ωmax] during training, and using ω as a new condition in the student
network, defined as:

Gθ(zt, ctext, ω, t, s) =
s

t
zt +

(
1− s

t

)
gθ(zt, ctext, ω, t, s). (5)

To summarize Eq. (3) and Eq. (5), the distillation loss for SoundCTM is formulated as:

LSound
CTM (θ;ϕ) := Et∈[0,T]Es∈[0,t]Eu∈[s,t)EωEz0

Ezt|z0

[
dteacher

(
ztarget(zt, ctext, ω, t, u, s), zest(zt, ctext, ω, t, s), ctext, s

)]
,

(6)

where

ztarget(zt, ctext, ω, t, u, s) := Gsg(θ)(Solver(zt, ctext, ω, t, u;ϕ), ctext, ω, u, s),

zest(zt, ctext, ω, t, s) := Gθ(zt, ctext, ω, t, s),

Solver(zt, ctext, ω, t, u;ϕ) := ωSolver(zt, ctext, t, u;ϕ) + (1 − ω)Solver(zt,∅, t, u;ϕ), ∅ is
an unconditional embedding, and ω ∼ U [ωmin, ωmax], respectively. To achieve better generation
performance, the two auxiliary losses, the DSM loss and an adversarial loss [10], are used in the
original CTM. For SoundCTM, we use the DSM loss , defined as:

LSound
DSM (θ) = Et,z0,ωEzt|z0

[∥z0 − gθ(zt, ctext, ω, t, t)∥22]. (7)

Note that the DSM loss serves to improve the accuracy of approximating the small jumps during the
training. Summing Eqs. (6) and (7), SoundCTM is trained with the following objective:

L(θ) := LSound
CTM (θ;ϕ) + λDSMLSound

DSM (θ), (8)

where λDSM is a scaling weight for LSound
DSM . Algorithm 2 summarizes SoundCTM’s training framework.

Algorithm 1 SoundCTM’s Inference

Require: Hyperparameter ν, text condition ctext, CFG
scale ω, hyperparameter of CTM’s γ-sampling γ

1: Sample zt0 from prior distribution
2: for n = 0 to N − 1 do
3: t̃n+1 ←

√
1− γ2tn+1

4: zt̃n+1
← νGθ(ztn , ctext, ω, tn, t̃n+1)

5: +(1− ν)Gθ(ztn ,∅, ω, tn, t̃n+1)
6: ztn+1 ← zt̃n+1

+ γtn+1ϵ

7: end for
8: Return ztN

ν-interpolation for SoundCTM’s Sampling
For SoundCTM’s inference, we introduce ν-
interpolation, which linearly interpolates be-
tween the text-conditional student models
Gθ(zt, ctext, ω, t, s) and unconditional student
models Gθ(zt,∅, ω, t, s). In contrast to the
previous sampling methods for the diffusion-
based distillation models [19, 2], we also use
Gθ(zt,∅, ω, t, s) as highlighted in blue Algo-
rithm 1.

4 Experiments

We evaluate SoundCTM on the AudioCaps dataset [18], which contains 47, 289 pairs of 10-second
audio samples and human-written text descriptions for the training set and 957 pairs for the testset. All
audio samples are downsampled to 16 kHz. We adopt TANGO [8] as the teacher model trained with
EDM’s variance exploding formulation [16]. We use deterministic sampling (γ = 0 in algorithm 1)
and evaluate the model performance with student EMA rate µ = 0.999. We also conduct the human
evaluation in Appendix C.1.

Table 1: Performance comparisons on AudioCaps test set. †
denotes the results tested by us with provided checkpoint.

Model # of steps FADvgg ↓ KLpasst ↓ ISpasst ↑ CLAP ↑
Teacher Models
TANGO-ConsistencyTTA (reported) 200 1.91 - - -(Teacher of ConsistencyTTA w/. DDIM)
TANGO-EDM 40 1.71 1.28 8.11 0.46(Teacher of Ours w/. Heun)

Student Models
ConsistencyTTA [2] 1 2.58 1.33† 6.85† 0.41†

SoundCTM w/. l2 (0-time step) 1 2.43 1.28 6.87 0.42
SoundCTM w/. l2 (s-time step) 1 2.45 1.28 6.83 0.42
SoundCTM w/. dteacher 1 2.17 1.27 7.18 0.43

Evaluation Metrics We use four
objective metrics: the Frechet Au-
dio Distance (FADvgg) [17] between
the extracted embeddings by VG-
Gish, the Kullback-Leibler diver-
gence (KLpasst) between the outputs
of PaSST [22], a state-of-the-art au-
dio classification model, the Inception
Score (ISpasst) [31] using the outputs
of PaSST, and the CLAP score [39]. We refer the detail explanations of these metrics in Appendix B.1.

Effectiveness of Utilizing Teacher’s Network as Feature Extractor We first evaluate the efficacy
of utilizing the teacher’s network as a feature extractor for the distillation loss by comparing the
following cases: 1) the l2 at 0-time step, 2) the l2 at s-time step, and 3) the dteacher at s-time step. We
report the results of 1-step generation with ω = 3.5 and ν = 1.0 for inference. As shown in Table 1,
the results of the dteacher case is better than the others. This result indicates that using dteacher allows
the student to distill the trajectory more accurately than using l2.

Table 2: Performance comparisons on AudioCaps test set. Bold and underlined scores indicate the
best and second-best results. † denotes the results tested by us using the provided checkpoints by the
authors, as not all metrics are provided in each paper.

Model # of sampling
ω ν FADvgg ↓ KLpasst ↓ ISpasst ↑ CLAP ↑steps

Diffusion Models
AudioLDM-Large-FT [26] 200 3.0 - 1.96 1.59 - -
AudioLDM 2-AC-Large [27] 200 3.5 - 1.42 0.98 - -
AudioLDM 2-Full-Large [27] 200 3.5 - 1.86 1.64 - -
TANGO† [8] 200 3.0 - 1.64 1.31 6.35 0.44
TANGO w/. Heun Solver (Our teacher model) 40 3.5 - 1.71 1.28 8.11 0.46
Distillation Models
ConsistencyTTA [2](reported) 1 5.0 - 2.58 - - -
ConsistencyTTA† (tested by us) 1 5.0 - 2.67 1.33 6.85 0.41

2 5.0 - 3.18 1.34 7.12 0.38
ConsistencyTTA-CLAP-FT (reported) 1 3.0 - 2.18 - - -
ConsistencyTTA-CLAP-FT† (tested by us) 1 3.0 - 2.22 1.35 6.95 0.41

2 3.0 - 2.38 1.32 7.15 0.40
SoundCTM(Ours) 1 3.5 1.0 2.08 1.26 7.13 0.43

2 3.5 1.0 1.90 1.24 7.26 0.45
4 3.5 1.0 1.72 1.22 7.37 0.45
8 3.0 1.5 1.45 1.20 7.98 0.46
16 3.0 2.0 1.38 1.19 8.24 0.46

Additionally, we compare SoundCTM’s performance with the 1-step generation of Consisten-
cyTTA [2]. The results of SoundCTM’s 1-step generation trained with l2 at 0-time step is slightly
better than those of ConsistencyTTA’s 1-step generation. This performance gap is likely due to
differences in the teacher models. In the context of 1-step generation, the differences in the training
framework between ConsistencyTTA and SoundCTM using l2 at the 0-time step do not fundamentally
contribute to the variations in their 1-step generation performance. On the other hand, using dteacher
further boosts SoundCTM’s performance compared with using l2. This indicates that SoundCTM
with dteacher surpasses ConsistencyTTA even considering of the teacher difference.

Performance Comparison with Other T2S Models We compare SoundCTM’s performance with
other T2S models under both 1-step and multi-step generation. We employ AudioLDM-L-FT [26],
AudioLDM2-L [27], TANGO [8], and ConsistencyTTA as our baseline models. Table 2 presents the
quantitative results. All the DM-based models use DDIM sampling [34] except for our teacher model
that uses 2nd order Heun Solver [16]. Under the 1-step generation setting, SoundCTM shows the
best performance in all evaluation metrics. This achievement is the obtained from using dteacher as
discussed earlier. Note that ConsistencyTTA-CLAP-FT conducts extra fine-tuning to maximize the
CLAP score using CLAP network after its CD training.

Under the multi-step case, there are clear trade-offs between the performance improvements and the
number of sampling steps. We highlight these results are attributed to SoundCTM’s deterministic
sampling (γ = 0) and anytime-to-anytime jump training framework, which cannot be achieved with
the CD framework and its lack of deterministic sampling capability.

Table 3: Inference speed and RTF. RTF < 1.0 indi-
cates real-time generation.

Method # of steps Batch size Speed [sec.] RTF ↓
TANGO (Diffusion models) 200 1 24 2.4
SoundCTM on GPU 16 1 2.43 0.24
SoundCTM on CPU 2 1 6.93 0.69

Generation Time Since one of our goals is to
achieve fast high-quality generation, we verified
that our model can conduct fast generation by
measuring the inference time and real-time fac-
tors (RTFs) on a single NVIDIA RTX A6000.
For reference, we also measure those of the original TANGO with a batch size of one. As shown in
Table 3, SoundCTM can achieve real-time generation on a GPU with 16-step and on an Intel Xeon
CPU with 2-step.

5 Conclusion

We propose SoundCTM that achieves not only high-quality 1-step generation but also significantly
improves sample quality by increasing the number of sampling steps with a single model. Our new
training framework contributes to its performance. Furthermore, our frameworks, which does not
rely on domain-specific components, has the potential to extend the applicability of CTM to a wider
range of domains while maintaining both its fundamental methodology and impressive performance.

References
[1] Brian. D. O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their

Applications, 12:313–326, 1982.

[2] Yatong Bai, Trung Dang, Dung Tran, Kazuhito Koishida, and Somayeh Sojoudi. Acceler-
ating diffusion-based text-to-audio generation with consistency distillation. arXiv preprint
arXiv:2309.10740, 2023.

[3] Keunwoo Choi, Jaekwon Im, Laurie Heller, Brian McFee, Keisuke Imoto, Yuki Okamoto,
Mathieu Lagrange, and Shinosuke Takamichi. Foley sound synthesis at the dcase 2023 challenge.
In arXiv e-prints: 2304.12521, 2023.

[4] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022.

[5] Marco Comunità, Zhi Zhong, Akira Takahashi, Shiqi Yang, Mengjie Zhao, Koichi Saito, Yukara
Ikemiya, Takashi Shibuya, Shusuke Takahashi, and Yuki Mitsufuji. Specmaskgit: Masked
generative modeling of audio spectrograms for efficient audio synthesis and beyond. arXiv
preprint arXiv:2406.17672, 2024.

[6] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106:1602 – 1614, 2011.

[7] Zach Evans, CJ Carr, Josiah Taylor, Scott H. Hawley, and Jordi Pons. Fast timing-conditioned
latent audio diffusion. Proc. International Conference on Machine Learning (ICML), 2024.

[8] Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio
generation using instruction tuned llm and latent diffusion model. Proc. ACM Int. Conf. on
Multimedia. (ACMMM), 2023.

[9] Sang gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan:
A universal neural vocoder with large-scale training. In Proc. International Conference on
Learning Representation (ICLR), 2023.

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Proc. Advances
in Neural Information Processing Systems (NeurIPS), 2014.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[12] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In arXiv e-prints:
2207.12598, 2022.

[13] Jiawei Huang, Yi Ren, Rongjie Huang, Dongchao Yang, Zhenhui Ye, Chen Zhang, Jinglin Liu,
Xiang Yin, Zejun Ma, and Zhou Zhao. Make-an-audio 2: Temporal-enhanced text-to-audio
generation. arXiv preprint arXiv:2305.18474, 2023.

[14] Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui
Ye, Jinglin Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with
prompt-enhanced diffusion models. Proc. International Conference on Machine Learning
(ICML), 2023.

[15] Vladimir Iashin and Esa Rahtu. Taming visually guided sound generation. In British Machine
Vision Conference (BMVC), 2021.

[16] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[17] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fréchet audio distance:
A metric for evaluating music enhancement algorithms. arXiv preprint arXiv:1812.08466, 2019.

[18] Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. AudioCaps: Generat-
ing Captions for Audios in The Wild. In NAACL-HLT, 2019.

[19] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ode trajectory of diffusion. In Proc. International Conference on
Learning Representation (ICLR), 2024.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc.
International Conference on Learning Representation (ICLR), 2017.

[21] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[22] Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Gerhard Widmer. Efficient training
of audio transformers with patchout. In Interspeech 2022, 23rd Annual Conference of the
International Speech Communication Association, Incheon, Korea, 18-22 September 2022,
pages 2753–2757, 2022.

[23] Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet,
Devi Parikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided audio generation.
Proc. International Conference on Learning Representation (ICLR), 2023.

[24] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
fidelity audio compression with improved rvqgan. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[25] Mark Levy, Bruno Di Giorgi, Floris Weers, Angelos Katharopoulos, and Tom Nickson. Con-
trollable music production with diffusion models and guidance gradients. arXiv preprint
arXiv:2311.00613, 2023.

[26] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. Proc.
International Conference on Machine Learning (ICML), 2023.

[27] Haohe Liu, Qiao Tian, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Yuping Wang, Wenwu
Wang, Yuxuan Wang, and Mark D. Plumbley. AudioLDM 2: Learning holistic audio generation
with self-supervised pretraining. IEEE/ACM Trans. Audio, Speech, Lang. Process., 2024.

[28] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Jiawei Han. On the variance of the adaptive learning rate and beyond. In Proc. International
Conference on Learning Representation (ICLR), April 2020.

[29] Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J. Bryan. Ditto:
Diffusion inference-time t-optimization for music generation. Proc. International Conference
on Machine Learning (ICML), 2024.

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[31] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2016.

[32] Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified
least squares procedures. Analytical Chemistry, 36(8):1627–1639, 1964.

[33] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In Proc. International Conference
on Machine Learning (ICML), 2015.

[34] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. Proc. International
Conference on Learning Representation (ICLR), 2021.

[35] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In Proc.
International Conference on Learning Representation (ICLR), 2021.

[36] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. Proc.
International Conference on Machine Learning (ICML), 2023.

[37] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 23(7):1661–1674, 2011.

[38] Shih-Lun Wu, Chris Donahue, Shinji Watanabe, and Nicholas J. Bryan. Music controlnet:
Multiple time-varying controls for music generation. IEEE/ACM Trans. Audio, Speech, Lang.
Process., 2024.

[39] Yusong Wu*, Ke Chen*, Tianyu Zhang*, Yuchen Hui*, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov. Large-scale contrastive language-audio pretraining with feature fusion and keyword-
to-caption augmentation. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP, 2023.

[40] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
energy-guided conditional diffusion model. Proc. IEEE International Conference on Computer
Vision (ICCV), 2023.

[41] Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet,
Gabriel Synnaeve, and Yossi Adi. Masked audio generation using a single non-autoregressive
transformer. Proc. International Conference on Learning Representation (ICLR), 2024.

A Related Work

Masked Audio Token Modeling AudioGen [23], MAGNeT [41], and SpecMaskGIT [5] utilize
masked generative sequence modeling of discrete audio tokens for T2S generation. These models
exhibit a trade-off between sample quality and inference speed due to their token prediction methods.
AudioGen provides better sample quality but requires much more time for sample generation due to
its autoregressive prediction. In contrast, MAGNeT and SpecMaskGIT offer faster inference through
its non-autoregressive prediction.

Diffusion-based Models Recent literature [14, 13, 26, 27, 8, 7] and competitions [3] report that
LDM-based sound generation models outperform other approaches such as GANs. For fast generation,
ConsistencyTTA [2] and Stable Audio [7] employ efficient strategies. Stable Audio, for instance,
compresses a 95-second waveform signal to a latent representation, allowing its LDM to generate
the representation through a multi-step reverse-time process, unlike other models that compress only
10-second audio signals.

Training-free Controllable Generation Levy et al. [25] demonstrate training-free controllable
music generation using loss-based guidance [40]. Their approach defines a task-specific loss, such as
for music continuation and infilling, and incorporates the gradient of this loss into the reverse-time
diffusion process. Novack et al. [29] also present controllable generation by optimizing initial noisy
latents based on loss computed in the target condition space. During optimization, diffusion models
perform a reverse-time process to obtain a clean signal, which is projected onto the condition space
by a predefined differentiable feature extractor. Post-optimization, the model generates a music signal
from the optimized initial latent.

B Experimental Details

B.1 Details of T2S Generation

Training Details For teacher’s training, we use σdata = 0.25 and time sampling t ∼ N (−1.2, 1.22)
by following EDM’s training manner. We mostly follow the original CTM’s training setup for student
training. We utilize the EDM’s skip connection cskip(t) =

σ2
data

t2+σ2
data

and output scale cout(t) =
tσdata√
t2+σ2

data

for gθ modeling as

gθ(zt, ctext, ω, t, s) = cskip(t)zt + cout(t)NNθ(zt, ctext, ω, t, s),

where NNθ refers to the actual neural network output. We initialize the student’s NNθ with ϕ except
for student model’s s-embedding and ω-embedding structure. Following the original CTM, we

employ adaptive weighting with λDSM =
∥∇θL

LSound
CTM (θ;ϕ)∥

∥∇θL
LSound

DSM (θ)∥ , where θL is the last layer of the student’s
network.

We use 8×NVIDIA H100 (80G) GPUs and a global batch size of 64 for the training. We choose t
and s from the N -discretized timesteps to calculate LSound

CTM . For LSound
DSM calculation, we opt to use 50%

of time sampling t ∼ N (−1.2, 1.22). For the other half time, we first draw sample from ξ ∼ [0, 0.7]

and transform it using (σ
1/ρ
max + ξ(σ

1/ρ
min − σ

1/ρ
max))ρ. We apply Exponential Moving Average (EMA) to

update sg(θ) by

sg(θ)← stopgrad(µsg(θ) + (1− µ)θ).

Throughout the experiments, for student training, we use N = 40, µ = 0.999, σmin = 0.002,
σmax = 80, ρ = 7, RAdam optimizer [28] with a learning rate of 8.0 × 10−5, and σdata = 0.25.
We set the maximum number of ODE steps as 39 during training and we use Heun solver for
Solver(zt, ctext, ω, t, u;ϕ) . To obtain the results shown in Table 2 and Figure 4, SoundCTM was
trained for 30 K iterations. For other results, models were trained for 18 K iterations. We also utilized
TANGO’s data augmentation [8, Sec. 2.3] during student training.

The network architecture and dataset for the teacher’s training remained unchanged from the original
ones. Our teacher model (TANGO) and SoundCTM share the overall model architecture, comprising
the VAE-GAN [26], the HiFiGAN vocoder [21] as D and the Stable Diffusion UNet architecture (SD-
1.5), which consists of 9 2D-convolutional ResNet [11] blocks as Dϕ. The UNet has a total of 866 M

Table 4: Subjective evaluation on AudioCaps testset
Method # of sampling steps OVL ↑ REL ↑
Ground-truth - 4.06 3.90

ConsistencyTTA [2] 1 3.08 3.08
SoundCTM w/. l2 (0-time step) 1 3.18 3.28
SoundCTM w/. dteacher 1 3.17 3.34

parameters, and the frozen FLAN-T5-Large text encoder [4] is used. The UNet employs 8 latent
channels and a cross-attention dimension of 1024. For D in SoundCTM, we used the AudioLDM1
checkpoint by following TANGO.

Evaluation Details For large-NFE sampling, we follow the EDM’s and the CTM’s time discretiza-
tion. Namely, if we draw n-NFE samples, we divide [0, 1] with n points and transform it (say ξ) to
the time scale by (σ

1/ρ
max + (σ

1/ρ
min − σ

1/ρ
max)ξ)ρ. However, we emphasize the time discretization for both

training and sampling is a modeler’s choice.

We use four objective metrics: the Frechet Audio Distance (FADvgg) [17] between the extracted em-
beddings by VGGish, the Kullback-Leibler divergence (KLpasst) between the outputs of PaSST [22],
a state-of-the-art audio classification model, the Inception Score (ISpasst) [31] using the outputs of
PaSST, and the CLAP score1. The lower FAD indicates better audio quality of the generated audio.
The KL measures how semantically similar the generated audio is to the reference audio. The IS
evaluates sample diversity. The CLAP score demonstrates how well the generated audio adheres to
the given textual description.

Algorithm 2 SoundCTM’s Training

Require:Probability of unconditional training puncond

1: repeat
2: Sample (x0, ctext) from pdata
3: Calculate z0 through E(x0)
4: ctext ← ∅ with puncond
5: Sample ϵ ∼ N (0, I)
6: Sample t ∈ [0, T], s ∈ [0, t], u ∈ [s, t)
7: Sample ω ∼ U [ωmin, ωmax]
8: Calculate zt = z0 + tϵ
9: Calculate Solver(zt, ctext, ω, t, u;ϕ)

10: Calculate ztarget(zt, ctext, ω, t, u, s)
11: Calculate zest(zt, ctext, ω, t, s)
12: Update θ ← θ − ∂

∂θ
L(θ)

13: until converged

C Additional Experiments on Text-to-Sound Generation Task

C.1 Human Evaluation

For further demonstration of the effectiveness of using teacher’s network as a feature extractor, which
we propose in Section 3.1 and quantitatively evaluate in Table 1, we also conduct a human evaluation.
We ask 15 human evaluators to assess the generated audio samples from both overall audio quality
(OVL) and relevance to the text prompts (REL). We present 20 samples per model to the participants
and asked them to rate the samples on a five-point scale ranging from 5 (Excellent quality) to 1 (Bad
quality). The text prompts for the generated samples are randomly picked from AudioCaps testset.
We use ConsistencyTTA, SoundCTM w/. l2 (0-time step), and Ground-truth samples as baselines.

1We use the "630k-audioset-best.pt" checkpoint from https://github.com/LAION-AI/CLAP

https://github.com/LAION-AI/CLAP

FA
D

(a) 1-step generation

FA
D

(b) 2-step generation

FA
D

(c) 8-step generation

FA
D

(d) 16-step generation

Figure 3: FAD for various ω and ν. The solid, dashed, dotted lines indicate the FAD of the students
trained with ω ∼ U [2.0, 5.0], the students trained with ω ∼ U [1.5, 7.0], and the teachers.

The results in Table 4 indicate that, firstly, SoundCTM outperforms ConsistencyTTA. Moreover, using
dteacher improves sample quality in terms of the adherence to text descriptions. One possible reason
for this is that dteacher effectively incorporates textual information as a condition when calculating the
distance (see Eq. (4) and Figure 2).

C.2 Influence of Architecture Difference for Feature Extractors

Table 5: Performance comparison on different ar-
chitectures for feature extractors

Network architecture # of steps FADvgg ↓ ISpasst ↑ CLAP ↑
First half of UNet 1 2.18 7.15 0.43

4 1.79 7.11 0.44
Entire UNet 1 2.17 7.18 0.43

4 1.76 7.14 0.45

We compare the results of using the teacher’s en-
tire network with those of using the first half of
it, as shown in Table 5. The results are not signif-
icantly different, indicating that there is potential
that the model can reduce memory consumption
by using only part of the teacher’s network with-
out performance degradation.

C.3 Influence of ω and ν for SoundCTM’s Sampling

We examine the influence of both ω and ν on SoundCTM’s performance. In Figure 3, we compare
SoundCTM trained with ω ∼ U [2.0, 5.0] to ω ∼ U [1.5, 7.0] across various ω and ν values during
inference. Overall, there is no significant difference in FAD between ω ∼ U [2.0, 5.0] (solid line) and
ω ∼ U [1.5, 7.0] (dashed line). This suggests that precisely pre-defining the range of ω for the student
training is not necessary. A wider range of ω can be used for student training when prior knowledge
of the teacher’s dynamics of ω is absent, and high-quality generation can be achieved by adjusting ω
and ν during inference.

The students show the better FAD than the best FAD of teachers through ν-interpolation during
SoundCTM’s sampling. This result could be interpreted as ν allows for generating samples that are
more favorable to the FAD in the conditional domain, as the pairs between ctext and the samples x0

given the condition are many-to-many.

C.4 Preliminary Experiments of Employing Adversarial Loss for Student Training

Although the original CTMs on image domain demonstrate impressive 1-step image generation
performance, this performance heavily depends on an adversarial loss (GAN loss) [10] (See [19,
Fig.12]). However, obtaining performance improvements via the GAN loss requires careful selection
of a discriminator.

In fact, in our preliminary experiments, even though we employed the several off-the-shelf dis-
criminators in the audio domain [9, 24, 15] they did not lead better performance (we report one of
the preliminary results of using GAN loss in Table 6. In this preliminary experiment, we use the
discriminators from DAC [24]. Along with the lack of performance improvement from using the
GAN loss, there is also a significant increase in memory consumption.). Therefore, in this work,
we do not utilize the GAN loss for SoundCTM’s training. That said, developing new GAN setups
tailored for large-scale conditional sound generation tasks might be worth exploring as future work.

Table 6: Quantitative evaluation of one of the preliminary experiments with and without using GAN
loss. Memory consumption is measured with a batch size of two per GPU. DAC’s discriminators [24]
are used in this experiment. We could not see any benefits of using GAN loss in this setup.

Method # of steps FADvgg ↓ KLpasst ↓ ISpasst ↑ CLAP ↑ Memory consumption for training

w/o. GAN 2 2.43 1.29 7.50 0.42 46782 MiB
4 2.28 1.21 7.63 0.43

w/. GAN 2 2.91 1.37 6.29 0.37 64492 MiB
4 2.37 1.35 7.53 0.41

FA
D

(L
ow

er
 th

e
be

tt
er

)

Number of sampling steps

RTF: 0.24 on GPU

RTF: 0.69 on CPU

SoundCTM(Ours)

Figure 4: Performance comparison on AudioCaps testset. Real-time factors (RTFs) are measured on
a single NVIDIA RTX A6000 and Intel Xeon CPU. SoundCTM can switch 1-step generation and
multiple-step generation.

D Towards Training-free Controllable T2S Generation with SoundCTM

D.1 Methodology

Loss-based Guidance Framework for SoundCTM In DMs, the loss-based guidance method
involves an additional update zt−1 = zt−1 − ρt∇zt

L(f(ẑ0(zt)),ycondition) during sampling, where
ẑ0(zt) is a clean estimate derived from zt using Tweedie’s formula [6], and ρt is a learning rate.
We propose replacing ẑ0(zt) with z0|t = Gθ(zt, ctext, ω, t, 0) and conducting loss-based sampling
within SoundCTM’s γ-sampling, as shown in Algorithm 3. We denote the sampling timesteps as
T = t0 > · · · > tN = 0.

Test-time Optimization-based Framework for SoundCTM In addition, we explore SoundCTM’s
capabilities for controllable sound generation without additional training. In the music domain,
DITTO [29] that optimizing an initial noise latent zT of DMs achieves decent performance for
training-free controllable music generation. Specifically, zT is optimized by

z∗T = argmin
zT

L(f(x0),ycondition), (9)

where z∗T is the optimized output, f(·) is a differentiable feature extractor that converts x0 into the
same space as the target condition ycondition, and x0 = D(z0). Although DITTO shows promising
performance, it requires substantial time to generate a sample since x0 and z0 is given by the N -
timestep reverse diffusion process in each optimization iteration2. Novack et al. [29] also report the
performance of a loss-based guidance method [40, 25] as a baseline, which is another major method

2In their study, 20 diffusion steps are conducted per iteration, and the number of optimization steps ranges
from 70 to 150, resulting in a total of approximately 1, 400 to 3, 000 diffusion steps.

for controllable generation, using the same loss L(f(x0),ycondition), and DITTO outperforms the
guidance-based method.

To explore SoundCTM’s capability for controllable generation in a training-free manner, we propose
two new frameworks for SoundCTM based on zT -optimization and loss-based guidance. Firstly, we
dramatically accelerate zT -optimization by utilizing SoundCTM’s 1-step generation, as shown in
Algorithm 4, making each iteration N times faster than DITTO.

Algorithm 3 SoundCTM’s Loss-based Guidance Framework

Require: ν, ctext, ycondition, ω, γ, ρtn
1: Start from zt0
2: for n = 0 to N − 1 do
3: t̃n+1 ←

√
1− γ2tn+1

4: Denoise zt̃n+1
← νGθ(ztn , ctext, ω, tn, t̃n+1)

5: +(1− ν)Gθ(ztn ,∅, ω, tn, t̃n+1)
6: ztN |tn = Gθ(ztn , ctext, ω, tn, tN)
7: ŷcondition = f(D(ztN |tn))
8: zt̃n+1

= zt̃n+1
− ρtn∇ztn

L(ŷcondition,ycondition)

9: Diffuse ztn+1 ← zt̃n+1
+ γtn+1ϵ

10: end for
11: Return ztN

Algorithm 4 SoundCTM’s Optimization-based Training-free Controllable Generation Framework

Require: ν, ctext, ω, ycondition, γ, Learning rate ρtn

1: Sample zt0 ∼ N (0, I)
2: // Run optimization
3: for k = 0 to K − 1 do
4: Denoise ztN ← Gθ(zt0 , ctext, ω, t0, 0)
5: ŷcondition = f(D(ztN))
6: Update zt0 ← zt0 − ρtn∇zt0

L(ŷcondition,ycondition)
7: end for
8: // Run generation from optimized z∗t0
9: Start from z∗t0

10: for n = 0 to N − 1 do
11: t̃n+1 ←

√
1− γ2tn+1

12: zt̃n+1
← νGθ(ztn , ctext, ω, tn, t̃n+1)

13: +(1− ν)Gθ(ztn ,∅, ω, tn, t̃n+1)
14: ztn+1

← zt̃n+1
+ γtn+1ϵ

15: end for
16: Return ztN

By leveraging the anytime-to-anytime jump capability, SoundCTM can achieve both fast zT -
optimization with 1-step sampling and multiple-step controllable generation with loss-based guidance
within a single model. This is not possible with either a single Consistency Model (CM) [36]-based
T2S model or a DM-based T2S model.

D.2 Training-Free Sound Intensity Control

To validate the proposed framework for training-free controllable T2S generation with SoundCTM,
we conduct sound intensity control [29, 38]. This task adjusts the dynamics of the generated sound to
match a given target volume line or curve. We follow the experimental protocol from DITTO [29] to
control the decibel (dB) volume line or curve of the generated samples.

Experimental Settings We define f(x0) := w∗20 log 10(RMS(x0)) in Eq. (9), where w represents
the smoothing filter coefficients of a Savitzky-Golay filter [32] with a 1-second context window over

Table 7: Quantitative results of sound intensity control on SoundCTM

of steps zT Loss
γ MSE↓ FADvgg ↓ CLAP ↑optimization guidance

Default 16-step
✗ ✗ 0 231.9 2.08 0.47T2S Generation

1 ✓ ✗ 0 6.57 4.94 0.34
16 ✓ ✗ 0 60.2 3.65 0.38
16 ✓ ✗ 0.2 50.4 3.71 0.41

16 ✗ ✓ 0 18.5 3.04 0.41
16 ✗ ✓ 0.2 14.2 3.58 0.42
16 ✓ ✓ 0 10.7 4.34 0.37

the frame-wise value, and the RMS is the root mean squared energy of the generated sound. The target
condition ycondition is a dB-scale target line or curve. We perform 70 iterations for zT -optimization
following DITTO’s settings. Note that for the loss-based guidance framework, the zT -optimization
is not conducted, which is much efficient. We set γ = 0 for sampling and evaluate the model
performance with student EMA rate µ = 0.999. We use 200 audio-text pairs from the AudioCaps
testset for each of the 6 different types of ycondition as shown in Figure 5 (a) and Figure 7 (a). We
evaluate our framework using the mean squared error (MSE) between the target and obtained ycondition
to measure the accuracy of dynamics control, the FAD between generated samples and the entire
AudioCaps testset, and the CLAP score.

During the SoundCTM’s optimization-based framework, we use Adam [20] with a learning rate of
1.0. We also tested learning rates of 1.0× 10−1, 1.0× 10−2, and 5.0× 10−3 by following DITTO.
However, we cannot obtain better results than the case using 1.0. For the time-dependent learning rate
ρt in SoundCTM’s loss-based guidance framework, we use the overall gradient norm by following
DITTO. We set ν = 1 for 1-step generation with zT -optimization, ν = 2 for both 16-step generation
with zT -optimization and 16-step loss-based guidance, and ω = 3.5 for all the settings. The same
values of ν = 2 and ω = 3.5 are used for the default 16-step T2S generation. For time discretization
in multi-step generation, we use the same scheme as in T2S generation evaluation.

Experimental Results In Table 7, we compare results with various settings for SoundCTM’s
controllable generation framework, as DITTO is not open-sourced. We demonstrate the cases of
using 1). only the optimization, 2). only the loss-based guidance, and 3). the loss-based guidance
after the optimization. We also report the case where we use stochastic sampling (γ = 0.2).

Firstly, overall, both zT -optimization and loss-based guidance frameworks effectively control intensity
as indicated by the MSE results and the intensity curve shown in Figures 5 to 8. However, the FAD
and CLAP scores are worse than those of the default T2S generation case. This is likely due to a
degradation in auditory quality and a shift in the volume-conditioned audio distribution away from
that of the AudioCaps testset.

Except for the MSE of 1-step with zT -optimization case, the loss-based guidance method outperforms
zT -optimization method. Under 16-step cases, the loss-based guidance method shows better results
than those of the optimization-based method across all the metrics. Interestingly, this finding contrasts
with DITTO’s report that the optimization-based method outperforms the guidance-based one in
terms of the MSE [29, Table 3]. The difference can be attributed to the performance improvement
of the loss-based guidance method by using Gθ(zt, ctext, ω, t, 0) instead of ẑ0(zt), which provides a
more accurate estimate of z0|t, resulting in more effective guidance during sampling.

Stochastic sampling (γ = 0.2) did not yield significant performance improvement. Integrating
the loss-based guidance framework with zT -optimization showed the better MSE, consistent with
DITTO’s findings, but resulted in the much worse FAD and CLAP scores compared with only using
the loss-based guidance.

Considering both the qualitative results in Figures 5 to 8 and the quantitative results in Table 7, the
loss-based guidance is the effective strategy for training-free controllable generation with SoundCTM.

Target Intensity Target Intensity Target Intensity

dB dB dB

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(a) Target intensities

Target Intensity Target Intensity Target Intensity

dB dB dB

Obtained Intensity Obtained Intensity Obtained Intensity

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(b) Default T2S generation

Target Intensity Target Intensity Target Intensity

dB dB dB
Obtained Intensity Obtained Intensity Obtained Intensity

(c) zT -optimization with 1-step generation

Target Intensity Target Intensity Target Intensity

dB dB dB

Obtained Intensity Obtained Intensity Obtained Intensity

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(d) zT -optimization with 16-step generation

Figure 5: Target sound intensities and obtained intensities. We use the same text prompt within
each column and different prompts across different columns. Note that we use 70 iterations for
zT -optimization.

Target Intensity Target Intensity Target Intensity

dB dB dB

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(a) Target intensities

Target Intensity Target Intensity Target Intensity

dB dB dB
Obtained Intensity Obtained Intensity Obtained Intensity

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(b) Loss-based guidance with 16-step generation

Figure 6: Target sound intensities and obtained intensities. We use same text prompts within each
column and different prompt for each different column.

Target Intensity Target Intensity Target Intensity

dB dB dB

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(a) Target intensities

Target IntensityTarget Intensity Target Intensity

dB dBdB
Obtained Intensity Obtained Intensity Obtained Intensity

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(b) Default T2S sound generation

Target IntensityTarget Intensity Target Intensity

dB dBdB

Obtained Intensity Obtained Intensity Obtained Intensity

(c) zT -optimization with 1-step generation

Target IntensityTarget Intensity Target Intensity

dB dBdB

Obtained Intensity Obtained Intensity Obtained Intensity

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(d) zT -optimization with 16-step generation

Figure 7: Target sound intensities and obtained intensities. We use the same text prompt within
each column and different prompts across different columns. Note that we use 70 iterations for
zT -optimization.

Target Intensity Target Intensity Target Intensity

dB dB dB

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(a) Target Intensities

Target IntensityTarget Intensity Target Intensity

dB dBdB

Obtained Intensity Obtained Intensity Obtained Intensity

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Am
pl

itu
de

 (d
B)

Time (s) Time (s) Time (s)

(b) Loss-based guidance with 16-step generation

Figure 8: Target sound intensities and obtained intensities. We use the same text prompt within each
column and different prompts across different columns.

1 Step

2 Step

4 Step

SoundCTM
with deterministic sampling

ConsistencyTTA
w/. stochastic sampling

(*Deterministic sampling is not feasible)

AudioLCM
w/. stochastic sampling

(*Deterministic sampling is not feasible)

(a) Input text prompt: "Thunder claps, and hard rain falls and splashes on surfaces."

1 Step

2 Step

4 Step

SoundCTM
with deterministic sampling

AudioLCM
w/. stochastic sampling

(*Deterministic sampling is not feasible)

ConsistencyTTA
w/. stochastic sampling

(*Deterministic sampling is not feasible)

(b) Input text prompt: "Birds cooing and rustling."

Figure 9: Visualization of spectrograms for generated samples using 16-step, 2-step, and 1-step
generation with ConsistencyTTA [2] and SoundCTM. As ConsistencyTTA, a CD-based model,
inherently does not support deterministic sampling, the content of the generated samples varies when
increasing the number of sampling steps, even when using the same initial noise and text prompts.
This variability makes it challenging for sound creators to control the output. In contrast, SoundCTM
with deterministic sampling (γ = 0) is able to maintain consistent content as the number of sampling
steps increases.

	Introduction
	Preliminary
	SoundCTM
	Teacher's Network as Feature Extractor for Distillation Loss
	CFG Handling for SoundCTM

	Experiments
	Conclusion
	Related Work
	Experimental Details
	Details of T2S Generation

	Additional Experiments on Text-to-Sound Generation Task
	Human Evaluation
	Influence of Architecture Difference for Feature Extractors
	Influence of and for SoundCTM's Sampling
	Preliminary Experiments of Employing Adversarial Loss for Student Training

	Towards Training-free Controllable T2S Generation with SoundCTM
	Methodology
	Training-Free Sound Intensity Control

