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Abstract

Federated learning has attracted increasing attention in the machine learning community at
the past five years. In this paper, we propose a new cross-silo federated learning algorithm
with fast convergence guarantee to solve the machine learning models with nonsmooth regu-
larizers. To solve this type of problems, we design an inexact federated alternating direction
method of multipliers (ADMM). This method enables each agent to solve a strongly convex
local problem. We introduce a new local termination criterion that can be quickly satisfied
when using efficient solvers such as stochastic variance reduced gradient (SVRG). We prove
that our method has faster convergence than existing methods. Moreover, we show that
our proposed method has sequential convergence guarantees under the Kurdyka-Łojasiewicz
(KL) assumption. We conduct experiments using both synthetic and real datasets to demon-
strate the superiority of our new methods over existing algorithms.

1 Introduction

Federated learning (FL) is an emerging research paradigm in which multiple agents collaborate to solve
a machine learning problem. Cross-silo FL is an important subclass where the participating agents are
pre-defined silos, such as organizations or institutions (e.g., hospitals and banks) (Kairouz et al., 2021a).
Typically, there are around 2-100 agents in this setting. Cross-silo federated learning finds significant appli-
cations in many domains such as medical and healthcare, finance, and manufacturing (Nandury et al., 2021;
Huang et al., 2022; Yang et al., 2019). In a cross-silo federated learning (FL) task, each agent possesses a
specific portion of the data, which they use to train their machine learning model locally. Once the local
training is completed, all agents send their outputs to a central server. The server then aggregates these
outputs and sends an update back to the participating agents.

Most FL works focus on the following federated composite optimization (Kairouz et al., 2021b; McMahan
et al., 2017b; Pathak & Wainwright, 2020).

min
x∈Rn

p∑
i=1

fi(x) + g(x), (1)

where each fi : Rn → R is smooth (probably nonconvex) and Li-smooth, and g : Rn → R ∪ {+∞} is a
proper closed convex regularizer. In machine learning applications, fi is the loss function of the agent i’s local
data sets and g can be ℓ1-regularizer, grouped ℓ1-regularizer, nuclear-norm regularizer (for matrix variable)
(Candès & Recht, 2009; Bao et al., 2022), the indicator function of a convex constraint (Yuan et al., 2021;
Bao et al., 2022), etc. Problem (1) is called the federated composite optimization in Yuan et al. (2021). In
Yuan et al. (2021), the federated dual averaging (FedDualAvg) was proposed as an early attempt to deal
with the nonsmooth g. Bao et al. (2022) proposed a fast federated dual averaging for problem (1) with a
strongly convex f .

Although FedAvg, FedProx, FedDualAvg, and their variants have intuitive approaches to distribute tasks
and aggregate local outputs, they face limitations in both theory and practice. For instance, Braverman et
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Table 1: Comparison in the inner updates of federated splitting methods.
Model Local Termination Criterion Assumptions on ϵti Local Solver Local Complexity
fi g

FedSplit
Pathak & Wainwright (2020) SC 0 ∥xt+1

i − Proxfi(x̃ti)∥ ≤ ϵti ϵti ≤ O(ϵ) GD log(ϵ−1)

FedPD
Zhang et al. (2021) NC 0 E∥∇Li(xt+1

i )∥2 ≤ ϵti ϵti ≤ O(ϵ) GD (SGD) log(ϵ−1) (ϵ−1)

FedDR
Tran-Dinh et al. (2021) NC NS ∥xt+1

i − Proxfi
(x̃ti)∥ ≤ ϵti

1
p

∑p
i=1
∑T
t=0 ϵ

t
i ≤ O(1) - -

∥xt+1
i − Proxfi

(x̃ti)∥ ≤ r∥xt+1
i − xti∥ None - -

FedADMM1
Gong et al. (2022) NC 0 ∥∇Li(xt+1

i )∥2 ≤ ϵti ϵti ≤ O(ϵ) - -

FedADMM2
Zhou & Li (2022) NC 0 ∥∇Li(xt+1

i )∥2 ≤ ϵti ϵt+1
i ≤ νiϵ

t
i; νi ∈ [1/2, 1) - log[(ϵt+1

i )−1]

FedADMM3
Wang et al. (2022) NC NS ∥xt+1

i − Proxfi
(x̃ti)∥ ≤ ϵti

1
p

∑p
i=1
∑T
t=0 ϵ

t
i ≤ O(1) - -

FIAELT(Ours) NC NS Eit∥xt+1
i − Proxfi(x̃ti)∥2 ≤ ri∥xti − Proxfi(x̃ti)∥2 None SVRG O(1)

Table 2: Comparison in the server updates of the federated splitting methods in Table 1. SC = Strongly
Convex, NC = Nonconvex, NS = Nonsmooth. ϵ is the same as in Table 1.

Model Convergence
fi g Gradient Sequence

FedSplit SC 0 - Linear
FedPD NC 0 O(T−1) + ϵ -
FedDR NC NS O(T−1) -

FedADMM1 NC 0 O(T−1) + ϵ -
FedADMM2 NC 0 O(T−1) -
FedADMM3 NC NS O(T−1) -

FIAELT(Ours) NC NS O(T−1) Linear when θ ∈ (0, 1
2 )

al. McMahan et al. (2017a) demonstrated that FedAvg can diverge in certain scenarios. Even when FedAvg
converges, as shown in Pathak & Wainwright (2020), the resulting fixed points may not necessarily be
stationary points of the original problem. Additionally, the analysis in Yuan et al. (2021); Li et al. (2020a);
Reddi et al. (2021) often assumes that the dissimilarity between agents is bounded, which may not hold
in real-world applications. These shortcomings of existing methods motivate the exploration of federated
splitting methods for solving (1). In general, the idea behind splitting methods in federated learning is to
establish a connection between (1) and a constrained problem of the form:

min
X

p∑
i=1

fi(xi) + g(x1) s.t. x1 = x2 = · · · = xp, (2)

where X = (x1, x2, . . . , xp).

Popular splitting methods in federated learning include FedSplit Pathak & Wainwright (2020), FedDR Tran-
Dinh et al. (2021), FedPD Zhang et al. (2021), and ADMM based federated learning methods, Gong et al.
(2022); Zhou & Li (2021); Zhang et al. (2021); Yue et al. (2021); Zhou & Li (2022). FedDR considers nonzero
regularizer g while FedSplit, FedPD, and FedADMM deal with the unregularized case where g = 0, which
can not apply to the applications where regularizers are needed to induce sparse parameters Zou & Hastie
(2005); Yuan et al. (2021) or low rank matrices Candès & Recht (2009); Bao et al. (2022).

At each round t of federated splitting methods, each agent needs to find xt+1
i to approximate the proximal

operator of each fi for the current point x̃ti (denoted as Proxfi
(x̃ti)), via a number of local updates with a

certain termination criterion. However, the number of local updates (defined as local complexity) required
by existing criteria is either unexplored or tends to infinity with an infinitesimal tolerance ϵ as the number
of server updates T increases, as shown in Table 1. Therefore, a more advanced criterion that leads to a
known constant number of more efficient local updates is much desired, which is an important goal of this
work.

Moreover, existing federated splitting methods on nonconvex optimization with nonsmooth regularizer g also
only focus on the convergence rate of the gradient but ignore the convergence of the generated sequences to a
desired critical point. Zhou & Li (2022); Yue et al. (2021) proves that the accumulation point is critical point
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for regularized case (g = 0) but the convergence rate is still unknown. To obtain sequential convergence rate
for nonsmooth regularizer g ̸= 0 is also an important goal of this work.

1.1 Our Contributions

To fulfill the above two goals, we propose a novel splitting method called Federated Inexact ADMM with
Efficient Local Termination (FIAELT) for the nonconvex nonsmooth composed optimization problem (1)
in the context of cross-silo federated learning, based on the equivalence between (1) and an np-dimensional
constrained problem (4). Compared with existing works on federated splitting methods, we summarize our
contributions as follows.

• For the local update of our algorithm, we propose a new criterion Eit∥xt+1
i − Proxfi(x̃ti)∥2 ≤ ri∥xti −

Proxfi(x̃ti)∥2 (see Algorithm 1 for detail) where the tolerance ri ∈ (0, 1) does not need to be infinitesimal
with large number T of communication rounds. Hence, our local complexity can be O(1), which outperforms
existing splitting methods with an unexplored or large number of local updates (see Table 1 for comparison).
At the same time, we keep the state-of-the-art gradient convergence rate O(1/T ) in the server updates (see
Table 2).

• Furthermore, we demonstrate that FIAELT has sequential convergence properties in the deterministic
case. Specifically, we prove that any accumulation point of the sequence generated at the server of FIAELT
is a stationary point of (1). Moreover, we prove that FIAELT achieves global convergence under Kurdyka-
Łojasiewicz (KL) geometry, which covers a wide range of functions in practice. Specifically, the server
updates and the outputs of local servers converge in finitely many communications when the KL exponent α
of the potential function is 0. These sequences converge linearly when α ∈ (0, 1

2 ). These sequences converge
sublinearly when α ∈ ( 1

2 , 1). In the analysis, our proposed new criterion plays a key role. To the best of our
knowledge, FIAELT is the first federated learning method that has sequential convergence rate in nonconvex
nonsmooth settings.

• Finally, we conducted experiments involving the training of fully-connected neural networks. In these
experiments, we compared our method against existing splitting methods as well as other state-of-the-art
Federated methods. The experimental results revealed that our method is competitive and consistently
outperforms the other approaches in terms of training loss, training accuracy, and testing accuracy. These
findings indicate the superior performance and effectiveness of our proposed method in the task of training
fully-connected neural networks.

1.2 Related Work

The literature of federated learning is rich. In this work, we only focus on the splitting methods in federated
learning. A comparison between our method and existing splitting methods is summarized in Table 1.

In Pathak & Wainwright (2020), FedSplit was proposed. It implements the Peaceman-Rachford splitting
method for (2). Pathak & Wainwright (2020) analyzed the proposed method in the case where g = 0 and∑
i fi is strongly convex. Pathak & Wainwright (2020) showed that when the error between the local output

and the Proxfi is under a threshold ϵ, the sequence generated at the server by FedSplit linearly converges
to an inexact solution of (1) up to an error determined by ϵ. They also applied the FedSplit to a strongly
convex majorization of the original problem. In this setting, they showed a complexity of Õ(

√
ϵ) to obtain an

ϵ-optimal function value. However, in general convex settings, it assumes FedSplit locally computes Proxfi
exactly, which is unrealistic when the local server solves large-scale problems.

When g = 0, there are several work on federated ADMM, Zhang et al. (2021); Gong et al. (2022); Zhou & Li
(2022); Elgabli et al. (2022). Gong et al. (2022) proposed FedADMM that randomly selects agents to attend
each round. The ith agent terminates the local iterations when the norm of the local gradient of the current
iterate is under a threshold ϵi. When there is an upper bound ϵ for {ϵi}, they showed FedADMM has a
complexity of O(ϵ−1) + O(ϵ) to reach an ϵ-surrogate stationary point. When fi’s are twice differentiable,
ADMM is applied in designing a second-order FL method in Elgabli et al. (2022). Zhou & Li (2022) proposed
an inexact ADMM for federated learning problems. At round t, the ith agent terminates the local updates
when the norm of the local gradient is under a threshold ϵti. They assume {ϵti}t decreases exponentially, i.e.,
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ϵt+1
i ≤ νiϵ

t
i with νi ∈ [ 1

2 , 1). They showed that the generated sequence accumulates at the stationary point.
By further assuming the accumulation point of the generated sequence is isolated, they show the generated
sequence converges globally. Compared with this work, we do not assume the accumulation point of the
generated sequence to be isolated when we analyze the sequential convergence of our method.

When g ̸= 0, Tran-Dinh et al. (2021) proposed FedDR that applies the Douglas-Rachford (DR) splitting
algorithms for (2). They combined the DR method with randomized block-coordinate strategies and asyn-
chronous implementation. They estimated the complexity of FedDR under different termination criteria for
local updates.The termination criteria in Tran-Dinh et al. (2021) test whether the distance between the prox
of f and its approximation can be bounded by a certain value. However, this distance is unable to check
in practice, especially when we use stochastic gradient methods for local updates. Yue et al. (2021) also
considered the case where g ̸= 0. Specifically, they considered the case when g is the Bregman distance.
Assuming the Hessian of fi’s in (1) being Lipschitz continuous, Yue et al. (2021) showed any accumulation
point of the generated sequence is a stationary point. Yue et al. (2021) also showed the proposed method
has a complexity of O(ϵ−1) to reach an ϵ-stationary point.

2 Preliminaries

In this paper, we denote Rn the n-dimensional Euclidean space with inner product ⟨·, ·⟩ and Euclidean norm
∥ · ∥. We denote the set of all positive numbers as R++. We denote the distance from a point a to a set A as
d(a,A). For a random variable ξ defined on a probability space (Ξ,Σ, P ), we denote its expectation as Eξ.
Given an event A, the conditional expectation of ξ is denoted as E(ξ|A).

An extended-real-valued function f : Rn → [−∞,∞] is said to be proper if domf = {x ∈ Rn : f(x) < ∞} is
not empty and f never equals −∞. We say a proper function f is closed if it is lower semicontinuous. We
define the indicator function of a closed set A as δA(x), which is zero when x ∈ A and ∞ otherwise.

We define the regular subdifferential of a proper function f : Rn → [−∞,∞] at x ∈ domf as ∂̂f(x) :={
ξ∈Rn:lim infz→x, z ̸=x

f(z)−f(x)−⟨ξ,z−x⟩
∥z−x∥ ≥0

}
The (limiting) subdifferential of f at x ∈ domf is defined as

∂f(x) :=
{
ξ ∈ Rn:∃xk f→x, ξk→ξ with ξk∈ ∂̂f(xk),∀k

}
, where xk f→ x means both xk → x and f(xk) → f(x).

For x ̸∈ domf , we define ∂̂f(x) = ∂f(x) = ∅. We denote dom∂f := {x : ∂f(x) ̸= ∅}. For a differential
function h : Rm × Rn → Rl, we denote ∇xL(x, y) and ∇yL(x, y) as the partial derivatives with respect to x
and y correspondingly. We defined the normal cone of a set A at x as NA(x) := ∂δA(x). For a proper function
f : Rn → [−∞,∞], we denote the proximal operator of f as Proxαf (x) = Arg minz∈Rn

{
f(z) + 1

2α∥z − x∥2} .
Consider a problem min f + g, where f is a smooth function and g is properly closed convex. We say
x is a stationary point of this problem when 0 ∈ ∇f(x) + ∂g(x). We say x is an ε-stationary point if
d2(0,∇f(x) + ∂g(x)) ≤ ε.

We next introduce the KL property used in analyzing the sequential convergence. Let Ψa be defined as the
set of concave functions ψ : [0, a) → [0,∞) satisfying ψ(0) = 0, being continuously differentiable on (0, a),
and satisfying ψ′ > 0 on (0, a).

Definition 1 (Kurdyka-Łojasiewicz property and exponent). A proper closed function f : Rn →
(−∞,∞] is said to satisfy the Kurdyka-Łojasiewicz (KL) property at an x̂ ∈ dom∂f if there are a ∈ (0,∞],
a neighborhood V of x̂ and a φ ∈ Ψa such that for any x ∈ V with f(x̂) < f(x) < f(x̂) + a, it holds that
ψ′(f(x) − f(x̂))dist(0, ∂f(x)) ≥ 1. If f satisfies the KL property at x̂ ∈ dom∂f and ψ can be chosen as
ψ(ν) = a0ν

1−α for some a0 > 0 and α ∈ [0, 1), then we say that f satisfies the KL property at x̂ with
exponent α. A proper closed function f satisfying the KL property with exponent α ∈ [0, 1) at every point in
dom∂f is called a KL function with exponent α.

Functions satisfying KL property includes proper closed semi-algebraic functions, the quadratic loss function
plus possibly nonconvex piecewise linear regularizers Attouch et al. (2010); Li & Pong (2018); Attouch et al.
(2013); Zeng et al. (2021).
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3 Federated Inexact ADMM with Efficient Termination Criterion

We relate the problem (1) to (2). For (2), we view it as the following np-dimensional problem:

min
X∈Rnp

F (X) +G(X), (3)

where X = (x1, x2, . . . , xp) with each xi ∈ Rn, F (X) :=
∑p
i=1 fi(xi) with fi’s in (1), G(X) := g(x1) + δC(X)

with C := {X : x1 = · · · = xp} and g in (1).

The following proposition establishes the relation between (3) and (1).
Proposition 1. If X∗ = (x∗

1, . . . , x
∗
p) is a stationary point of (3), then x∗

1 is a stationary point of (1).
Furthermore, if X = (x1, . . . , xp) is an ε-stationary point of (1), then x1 is a pε-stationary point of (1).

Based on this relation, we consider ADMM to solve (3). Rewrite (3) as the following equivalent problem:

min
X,Y ∈Rnp

F (X) +G(Y ) s. t. X = Y. (4)

The augmented lagrangian function of (4) is defined as:

Lβ(X, Y, Z) := F (X) + G(Y ) + ⟨X − Y, Z⟩ + β

2 ∥X − Y ∥2. (5)

Given a starting point (X0, Y 0, Z0) ∈ Rnp × Rnp × Rnp and τ, β > 0, the ADMM for (3) is as follows:
Xt+1 = arg minX Lβ(X,Y t, Zt),
Zt+1 = Zt + τβ(Xt+1 − Y t),
Y t+1 = arg minY Lβ(Xt+1, Y, Zt+1).

(6)

Now we give an equivalent form of the third equation in (6) as follows.
Proposition 2. Consider (3). Let {(Xt+1, Y t+1, Zt+1)} be generated by (6). Suppose β > maxi Li. Then
the solution of the problem in the third equation of (6) is (y1, . . . , y1) with y1 = Prox 1

βp g
( 1
p

∑p
i=1(xt+1

i +
1
β z

t+1
i ))).

On the other hand, since F (X) in (3) is separable, we can write Lβ(X,Y, Z) in (5) as Lβ(X,Y, Z) =∑p
i=1 Lβ,i(xi, yi, zi), where

Lβ,i(xi, yi, zi) :=fi(xi)+⟨xi−yi, zi⟩+ β

2 ∥xi−yi∥2.

Therefore, the first equality in (6) can be rewritten as xt+1
i =xt+1

i,∗ where

xt+1
i,∗ :=argmin

xi

Lβ,i(xi,yt,zti); i = 1, . . . , p. (7)

In practice, (7) cannot be exactly solved as fi is usually a nonconvex loss function involving large training
data. Hence, existing federated splitting methods inexactly solve (7) up to a certain local criterion. However,
the computational complexities of the local updates required by these criteria are either unexplored or very
large (see Table 1). To solve this limitation, we propose the following criterion.

Eit∥xt+1
i − xt+1

i,⋆ ∥2 ≤ ri∥xti − xt+1
i,⋆ ∥2. (9)

where Eit denotes conditional expectation given the past trajectory {(xsi , ys, zsi ) : s = 0, 1, . . . , t}, and the
tolerance ri ∈ (0, 1) does not need to be arbitrarily small to ensure O(1) local complexity even with stochastic
gradient, as will be shown in the convergence analysis.
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Algorithm 1 Federated Inexact ADMM with Efficient Local Termination (FIAELT) for (1)
1: Input: β, τ > 0, ri > 0, mi ∈ N+, ηi > 0. (x0

i , y
0
i , z

0
i ) and x̄0 = 1

p

∑
i x

0
i , z̄0 = 1

p

∑
i z

0
i for agents

i = 1, . . . , p.
2: for iteration t = 0, 1, . . . , T − 1 do
3: for agent i = 1, . . . , p in parallel do
4: Find xt+1

i to approximately solve:

xt+1
i ≈ min

xi

Lβ,i(xi, yti , zti) := xt+1
i,⋆ . (8)

such that the criterion (9) is satisfied.
Upload ∆xi,t+1 = xt+1

i − xti and ∆zi,t+1 = τβ(xt+1
i − yti) to the server.

5: end for
6: The server calculates x̄t+1 = x̄t+ 1

p

∑
i ∆xi,t+1, z̄t+1 = z̄t+ 1

p

∑p
i=1 ∆zi,t+1 and yt+1 = Prox 1

βp g
(x̄t+1+

1
β z̄

t+1), and broadcasts these variables to each agent.
7: end for

We propose Algorithm 1 that implements the ADMM rule (6) in a federated way, where xt+1
i inexactly solves

(7) with stochastic gradient methods.

When β > L := maxi Li, the local problem (8) is minimizing a strongly convex smooth function that has
Lipscihtz continuous gradient. Hence, using the stochastic method called SVRG in Johnson & Zhang (2013),
we obtain xt+1 that satisfies the following property.
Proposition 3. Consider (1). Set β > L := maxi Li. Let {(xti, yti , zti)} be generated by Algorithm 1. Using
SVRG in Johnson & Zhang (2013) with Option II with frequency mi, learning rate ηi, and initialization xti
for (8), such that

1
ηi(β − Li)(1 − 2ηi(β + Li))mi

+ 2ηi(β + Li)
1 − 2ηi(β + Li)

=: ρi < 1. (10)

Then criterion (9) is satisfied in at most kit = log1/ρi

β+Li

ri(β−Li) iterations of SVRG.
Remark 1. The above proposition shows that fixing any ri ∈ (0, 1), SVRG outputs an inexact solution
of the local subproblem (8) within O(1) steps, independent of the number of communication rounds T . In
contrast, the number of local updates required by other existing federated splitting methods is either unexplored
or increases to infinity with T .
Remark 2. When (9) is deterministic, our subproblem degenerates to minimizing a strongly convex function.
According to the well know results, minimizing a strongly convex function with the simplest gradient descent
method produce a linear convergent sequence of variables. Following the same analysis in the proofs of
Proposition 3, we will have the local complexity of order O(1).

4 Convergence Analysis of Algorithm 1

We analyze the convergence properties of the variablesXt := [xt1; . . . ;xtp], Y t := [yt1; . . . ; ytp], Zt := [zt1; . . . ; ztp]
generated by Algorithm 1. We also denote L := maxi Li, r := maxi ri, Xt+1

∗ := [xt+1
1,∗ ; . . . ;xt+1

p,∗ ] and
W = infX F (X) + infY G(Y ) > −∞ throughout the paper. First, the update rules of Algorithm 1 can be
rewritten into the combined vectors Xt, Y t, Zt as follows.

We first show the following property.
Proposition 4. The update rules in Algorithm 1 satisfy

E∥Xt+1 −Xt+1
⋆ ∥2 ≤ r∥Xt −Xt+1

⋆ ∥2, (11)
Zt+1 = Zt + τβ(Xt+1 − Y t), (12)
Y t+1 = min

Y
Lβ(Xt+1, Y, Zt+1), (13)

6
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With Proposition 4, we can analyze {(Xt, Y t, Zt)} to analyze the convergence properties of Algorithm 1.
For {(Xt, Y t, Zt)}, we have the following theorem that is important in establishing our main convergence
properties.
Proposition 5. Select hyperparameters β ≥ 5L, ri ∈ (0, 0.01], τ ∈ [1/2, 1). Denote Γ := 1−τ

τ , Θ =
2β2 + 4L2, Λ := 4L2. Υ := Θ

τβ
4r

1−2r and δ := 1
4 (β − L) − 2Υ. Define

H(X,Y, Z,X ′, Z ′) := Lβ(X,Y, Z) + Γ
τβ

∥Z − Z ′∥2 + Υ∥X −X ′∥2.

and Ht+1 := EH(Xt+1, Y t+1, Zt+1, Xt, Zt). Then for t ≥ 1, it holds that δ ≥ 0.1L and

Ht+1 ≤Ht−δE∥Xt+1−Xt∥2− β

2E∥Y t+1−Y t∥2. (14)

Hence, the sequence {Ht} converges to some H∗ ≥ W .

Thanks to Proposition 5, we have the following property with respect to the successive changes.
Corollary 1. Consider (1) and let (Xt, Y t, Zt) be defined as in Proposition 4. Suppose assumptions in
Proposition 5 hold. Then limt E∥Xt − Xt+1∥2 = limt E∥Y t+1 − Y t∥2 = limt E∥Zt+1 − Zt∥2 = limE∥Y t −
Xt∥2 = 0.
Remark 3. Corollary 1 together with Propositions 1 and 4 shows that the expectations of successive changes
of {(xt1, . . . , xtp, yt, z1, . . . , z

t
p)} generated by Algorithm 1 also converge to 0.

Based on Proposition 5, {(Xt, Y t, Zt)} has the following convergence property.
Theorem 1. Select hyper-parameters per Proposition 5 hold and let H∗ be defined as in Proposition 5. Then

T∑
t=0

E∥∇F (Y t+1) + ξt+1∥2 ≤ D
(
∥∇Lβ(X0, Y 0, Z0)∥2 + ∥X0 − Y 0∥2)+D

(
Lβ(X0, Y 0, Z0) −W

)
, (15)

where

D := max{3(L+ β)2 2r
1 − 2r ,

(
L

τβ
+ 1
)2

, (L+ β)2} · max{D1, D2, D3} (16)

with D1 := 2Γ+Θ 8r
1−2r +2

min{δ, 1
2β} , D2 := (1 + Γ) 3(r+1)

(L−β)2 + D1
4

(L−β)2

(
L+β+1

2 + 2τβ(Γ + 1) + Υ + (L−β)2

8

)
, D3 :=

max{3, D12τβ(Γ + 1)}, Γ, Υ and Θ being defined in Proposition 5.

Combining Theorem 1 with Proposition 1 and Proposition 3, we immediately obtain the following convergence
rate of Algorithm 1.
Corollary 2. Select hyperparameters β = 5L, ri = 0.005, τ = 1/2 in Algorithm 1. Then the following
convergence rate holds.

1
1 + T

T∑
t=0

Ed2(0,
∑
i

∇fi(yt+1) + ∂g(yt+1))

≤ pD
(
∥∇Lβ(X0, Y 0, Z0)∥2 + ∥X0 − Y 0∥2)+ pD

(
Lβ(X0, Y 0, Z0) −W

)
.

where D is the one defined in Theorem 1. Furthermore, the criterion (9) can be satisfied by implementing 10
iterations of SVRG Johnson & Zhang (2013) with Option II with frequency mi = 200, learning rate ηi = 1

40L ,
and initialization xti for (8).
Remark 4. Corollary 2 indicates that compared with existing federated methods, we keep the same state-of-
the-art convergence rate O(1/T ) with T being the number of the communication round, while only O(1) local
update steps for the local (8) is required.
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Figure 1: Results on Synthetic-{(0,0), (0.5, 0.5), (1,1)} dataset.

4.1 Sequential Convergence in the Deterministic Case

In this section, we further investigate the convergence of the sequence {(Xt, Y t, Zt)} generated by Algorithm
1 when (9) holds deterministically, i.e., holds without the expectation. We first show the properties of the
set of accumulation points of {(Xt, Y t, Zt, Xt−1, Zt−1)}.
Proposition 6. Consider (1) and let {(Xt, Y t, Zt)} be generated by Algorithm 1 with (9) holding deter-
ministically. Suppose assumptions in Proposition 5 hold. Suppose {(Xt, Y t, Zt)} is bounded. Then any
accumulation point of {Y t} is a stationary point of (3).

Combining Proposition 6 with Proposition 1 and Proposition 2, we immediately have the subsequential
convergence of the sequence generated by FIAELT.
Corollary 3. Let {(xt1, . . . , xtp, yt, zt1, . . . , ztp)} be generated by Algorithm 1 with (9) holding deterministically.
Let (Xt, Y t, Zt) be defined as in Proposition 4. Suppose assumptions in Proposition 6 hold. Then any
accumulation point of {yt} is a stationary point of (1).

Next, we present the convergence rate of (Xt, Y t, Zt).
Theorem 2. Consider (1) and Algorithm 1 with (9) holding deterministically. Let (Xt, Y t, Zt) be defined
as in Proposition 4. Suppose assumptions in Proposition 5 hold. Let H be defined as in Proposition 5 and
suppose H is a KL function with exponent α ∈ [0, 1). Then {(Xt, Y t, Zt)} converges globally. Denoting
(X∗, Y ∗, Z∗) := limt(Xt, Y t, Zt) and dts := ∥(Xt, Y t, Zt)− (X∗, Y ∗, Z∗)∥, then the followings hold. If α = 0,
then {dts} converges finitely. If α ∈ (0, 1

2 ], then there exist b > 0, t1 ∈ N and ρ1 ∈ (0, 1) such that dts ≤ bρt1
for t ≥ t1. If α ∈ ( 1

2 , 1), then there exist t2 and c > 0 such that dts ≤ ct−
1

4α−2 for t ≥ t2.
Remark 5. Proposition 3 and Theorem 2 jointly illustrate that the local outputs {xti}t and the server updates
yt achieve global linear convergence towards a stationary point of (1) when the Kurdyka-Lojasiewicz (KL)
exponent of function H is set to 1

2 . The precise determination of the KL exponent of H is interconnected

8
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Figure 2: Results on FEMNIST dataset.

Figure 3: Results on FEMNIST dataset with L1-norm.

Figure 4: Results of our algorithm on FEMNIST dataset with different learning rates. (L1-norm regularize.)

with another aspect involving the investigation of error bounds, which is beyond the boundaries of the present
paper’s scope. Interested readers are referred to sources such as Attouch et al. (2010); Li & Pong (2018);
Attouch et al. (2013); Zeng et al. (2021) for more deeper insights.

5 Experimental Results

To evaluate the performance of our proposed FIAELT algorithm, we conduct experiments on both realistic
and synthetic datasets. When g = 0 in (1), we compare our algorithm with FedDRTran-Dinh et al. (2021),
FedPD Zhang et al. (2021), FedAvg McMahan et al. (2017b), FedAdmm Zhou & Li (2022). When g = λ∥ ·∥1
for some λ ∈ R++, we compare our algorithm with FedMid Yuan et al. (2021), FedDualAvg Yuan et al. (2021),
and FedDR. Following FedDR Tran-Dinh et al. (2021), we choose the neural network as our model, and the
details are deferred to the supplementary materials. For FedDR, FedPD, we refer to the code provided
in Tran-Dinh et al. (2021), and we also re-implement the FedAdmm based on them. All experiments are
running on the Linux-based server with the configuration: 8xA6000 GPU with 48GB memory each. To be
in accordance with the theoretical analysis, we sample all the clients to perform updates for our algorithm
in each communication round. We pick up hyper-parameters carefully and show the best results for each
algorithm. For evaluation metrics, we use training loss, training accuracy, and test accuracy. Our code is
available at https://anonymous.4open.science/r/FIAELT_TMLR-D6C7/.

Results on synthetic datasets. Following the data generation process on Li et al. (2020a); Tran-Dinh
et al. (2021), we generate three datasets: synthetic-{(0,0), (0.5, 0.5), (1,1)}. All agents perform

9
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updates at each communication round. Our algorithm is compared using synthetic datasets in both iid and
non-iid settings. The performance of five algorithms on non-iid synthetic datasets is shown as Figure 1. Our
algorithm can achieve better results than FedPD, FedAdmm, FedAvg, and FedDR on all three synthetic
datasets.

FEMNIST Cohen et al. (2017); Caldas et al. (2018) dataset is a more complex and federated extended
MNIST. It has 62-class (26 upper-case and 26 lower-case letters, 10 digits) and the data is distributed
to 200 devices. Figure 2 depicts the results of all 5 algorithms on FEMNIST. As it shows, FIAELT can
achieve comparable training accuracy and loss value with FedDR. In comparison with FedAdmm, FedPD,
and FedAvg, FIAELT has a significant improvement in both training accuracy and loss value. Our algorithm
can also work much better with test accuracy than the other 4 algorithms.

Results with the L1 norm. Following FedDR Tran-Dinh et al. (2021), we also consider the composite
setting with g(x) := 0.01∥x∥1 to verify our algorithm by selecting different learning rates and the number of
local SGD epochs. We conduct the experiment on the FEMNIST dataset and we show the results as Figure
3. As we can see from the training loss and training accuracy, FIAELT has competitive efficiency with
FedDR and outperform FedDualAvg and FedMid. In addition, in testing accuracy, FIAELT outperforms all
the other methods. Figure 5 shows how different learning rates affect the performance of our FIAME on the
FEMNIST dataset.

6 Conclusion

In this paper, we propose a federated inexact ADMM with a new local termination criterion. This criterion is
efficient and can be satisfied within iterations unrelated to the communication rounds, particularly when using
stochastic gradient methods as the local solver. Our new method has the best-known complexity while having
efficient local updates. Additionally, we provide proof that the proposed method has sequential convergence
guarantees in the deterministic case. Under KL assumptions, we demonstrate that the whole generated
sequence can converge sublinearly, linearly, or even finitely. Our experiments consistently demonstrate
that the proposed method consistently outperforms state-of-the-art methods, especially in terms of testing
accuracy.
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Dataset Size(Input x FC layer x Output)
Synthetic 60 x 32 x 10
MNIST 784 x 128 x 10
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Table 3: The details of the neural networks in our numerical experiments.

Figure 5: Results of our algorithm on FEMNIST dataset with different learning rates. (L1-norm regularize.)
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A Supplement for Experiment

The details of the training models. For all datasets, we apply neural networks with only Fully-
connected (FC) layers as training models. The size of the models is shown as Table 3. Our code is available
at https://anonymous.4open.science/r/FIAELT-8CC5/.

Hyperparameter choosing. The learning rates are 0.012 for synthetic datasets, and 0.009 for FEMNIST.
For FedPD, FedDR, and FedProx, we follow Tran-Dinh et al. (2021) to select the hyper-parameters, includ-
ing µ for FedProx, η for FedPD, and η, α for FedDR. As for FedMid Yuan et al. (2021) and FedDualAvg Yuan
et al. (2021), we also select the hyper-parameters working best for plotting the performance and comparison.

Additional Results with Different Learning Rates Figure 5 shows how different learning rates affect
the performance of our FIAME on the FEMNIST dataset.
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Figure 6: Results on Synthetic-{(0,0), (0.5, 0.5), (1,1)} dataset.

Figure 7: Results on FEMNIST dataset.

A.1 Additional results comparing FIAME with non-ADMM based FL algorithms

We compare our method with FedAvg Li et al. (2020b), SCAFFOLD Karimireddy et al. (2020), FedSkip
Fan et al. (2022).

Results on synthetic datasets. Following the data generation process on Li et al. (2020a); Tran-Dinh
et al. (2021), we generate three datasets: synthetic-{(0,0), (0.5, 0.5), (1,1)}. All agents perform
updates at each communication round. Our algorithm is compared using synthetic datasets in both iid and
non-iid settings. The performance of 4 algorithms on non-iid synthetic datasets is shown as Figure 6. Our
algorithm can achieve better results than FedAvg, SCAFFOLD, FedSkip on all three synthetic datasets.

Results on FEMNIST dataset. FEMNIST Cohen et al. (2017); Caldas et al. (2018) dataset is a more
complex and federated extended MNIST. It has 62-class (26 upper-case and 26 lower-case letters, 10 digits)
and the data is distributed to 200 devices. Figure 7 depicts the results of all 4 algorithms on FEMNIST. As it
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shows, compared with the other 3 methods, FIAME has a significant improvement in both training accuracy
and loss value. Our algorithm can also work much better with test accuracy than the other 3 algorithms.

B Convergence Analysis of Algorithm 1

Proposition 1. If X∗ = (x∗
1, . . . , x

∗
p) is a stationary point of (3), then x∗

1 is a stationary point of (1).
Furthermore, if X = (x1, . . . , xp) is an ε-stationary point of (1), then x1 is a pε-stationary point of (1).

Proof. Note that

C = {(x1, . . . , xp) : x1 − x2 = 0, x2 − x3 = 0, . . . , xp−1 − xp = 0} .

Using Theorem 6.14 of Rockafellar & Wets (1998), we have

NC =


p−1∑
i=1

λi(0, . . . , 0, 1︸︷︷︸
the ith coordinate

,−1, 0, . . . , 0) : (λ1, . . . , λp−1) ∈ Rp−1

 ,

where 1 is the vector in Rp whose coordinates are all one.

This together with Corollary 10.9, Proposition 10.5 shows that for any Y ∈ dom∂G, ∂G(Y ) can be repre-
setned as(ξ, 0, . . . , 0) +

p−1∑
i=1

λi(0, . . . , 0, 1︸︷︷︸
ith

,−1, 0, . . . , 0) : ξ ∈ ∂g(y1), (λ1, . . . , λp−1) ∈ Rp−1

 . (17)

Suppose Y ∗ = (y∗
1 , . . . , y

∗
p) is a stationary point of (3). Then Y ∗ ∈ dom∂G ⊆ domG. Thus, y∗

1 = · · · = y∗
p .

In addition, it holds that

0 ∈ ∇F (Y ∗) + ∂G(Y ∗)

= (∇f1(y∗), . . . ,∇fp(y∗)) + (∂g(y∗
1), 0, . . . , 0) +

p∑
i=1

λi(0, . . . , 0, 1︸︷︷︸
ith

,−1, 0, . . . , 0), (18)

where the second equality uses (17) together with Exercise 8.8 and Proposition 10.5 of Rockafellar & Wets
(1998). The above relation is equivalent to

0 ∈ ∇f1(y∗) + ∂g(y∗
1) + λ11

0 = ∇f2 − λ11 + λ21

...
0 = ∇fp−1 − λp−21 + λp−11
0 = ∇fp(y∗) − λp−11.

(19)

Substituting λ1 in (19) using the rest equality in the above relation, we have that

0 ∈
∑
i

∇fi(y∗) + ∂g(y∗
1).

Thus y∗ is a stationary point of (1).

Now, suppose Y = (y1, . . . , yp) is a ε-stationary point of (3). Then Y ∈ dom∂G ⊆ domG. Thus, y1 = · · · = yp
and

ε ≥ d2(0,∇F (Y ) + ∂G(Y )). (20)
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Using (17) and Proposition 10.5 of Rockafellar & Wets (1998), we have that

d2(0,∇F (Y ) + ∂G(Y ))

= min
ξ∈∂g(y1),λ∈Rp−1

∥∇f1(y1) + ξ + λ11∥2 +
p−2∑
i=2

∥∇f1(y1) + λi1 − λi−11∥2

+ ∥∇fp(y1) − λp−11∥2

≥ min
ξ∈∂g(y1),λ∈Rp−1

1
p

∥
∑
i

∇fi(y1) + ξ∥2∥2 = min
ξ∈∂g(y1)

1
p

∥
∑
i

∇fi(y1) + ξ∥2∥2

= 1
p
d2(0,

∑
i

∇fi(y1) + ∂g(y1)).

(21)

This together with (20) shows that y1 is a pε-stationary point.

B.1 Proofs of Proposition 2

The problem in updating Y t+1 in (6) is a constrained problem:

min
Y

g(y1) +
〈
Zt, Xt+1 − Y

〉
+ β

2 ∥Xt+1 − Y ∥2

s.t. y2 = y3 = · · · = yp = y1.
(22)

Since β > L, the objective in the above problem is strongly convex. Thus, there exists a unique solution
(y1, y2, . . . , yp) to (22). Denote the Lagrange multiplier for the above problem as W = (w1, w2, . . . , wp).
Then the Karush–Kuhn–Tucker condition for the above problem is

0 ∈ ∂g(y1) − zt+1
1 − β(xt+1

1 − y1) −
p∑
i=2

wi (23)

0 = −zt+1
i + wi − β(xt+1

i − yi), i = 2, . . . , p (24)
yi = y1, i = 2, . . . , p. (25)

Combining (24) with (25) gives
p∑
i=2

wi = β

p∑
i=2

(xt+1
i − yi) +

p∑
i=2

zt+1
i = β

p∑
i=2

xt+1
i − (p− 1)βy1 +

p∑
i=2

zt+1
i .

This together with (23) shows that

β

p∑
i=2

xt+1
i − (p− 1)βy1 +

p∑
i=2

zt+1
i + zt+1

1 + βxt+1
1 ∈ ∂g(y1) + βy1,

which is equivalent to

1
p

p∑
i=1

(xt+1
i + 1

β
zt+1
i ) ∈ 1

βp
∂g(y1) + y1.

This implies that y1 ∈ Prox 1
βp g

( 1
p

∑p
i=1(xt+1

i + 1
β z

t+1
i )). Recalling (25), we deduce that the solution of the

problem in the third equation of (6) is (y1, . . . , y1) with y1 = Prox 1
βp g

( 1
p

∑p
i=1(xt+1

i + 1
β z

t+1
i ))).

Proposition 3. Consider (1). Set β > L := maxi Li. Let {(xti, yti , zti)} be generated by Algorithm 1. Using
SVRG in Johnson & Zhang (2013) with Option II with frequency mi, learning rate ηi, and initialization xti
for (8), such that

1
ηi(β − Li)(1 − 2ηi(β + Li))mi

+ 2ηi(β + Li)
1 − 2ηi(β + Li)

=: ρi < 1. (10)

Then criterion (9) is satisfied in at most kit = log1/ρi

β+Li

ri(β−Li) iterations of SVRG.
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Proof. Note that L(x, yti , zti) is strongly convex with modulos β−Li and ∇L(x, yti , zti) is Lipschitz continuous
with modulos Li + β. Let ρi := 1

(β−Li)η(1−2ηi(β+Li))mi
+ 2ηi(β+Li)

1−2ηi(β+Li) , where mi and ηi is the frequency and
learning rate in SVRG respectively. Using Theorem 1 of Johnson & Zhang (2013), there exists large m such
that

EtiLβ,i(xt+1
i , yt, zti) − Lβ,i(xt+1

i,⋆ , y
t, zti) ≤ ρkt

i

(
Lβ,i(xti, yt, zti)−Lβ,i(xt+1

i,⋆ , y
t, zti)

)
(26)

Combing this with the strong convexity of L(x, yti , zti) and the Lipschitz continuity of ∇L(x, yti , zti), we have
that

Eti∥xt+1
i − xt+1

i,⋆ ∥2 ≤ β + Li
β − Li

ρkt
i ∥xti − xt+1

i,⋆ ∥2 ≤ ri∥xti − xt+1
i,⋆ ∥2, (27)

where the second inequality is based on β+Li

β−Li
ρkt
i ≤ ri. This completes the proof.

C Proof for Convergence Analysis

To prove the results in Section Convergence Analysis of Algorithm 1, we first present the following well
known facts for strongly convex functions, see Theorem 2 in Karimi et al. (2016) for example.
Proposition 7. Let f : Rn → R be a strongly convex function with modulus µ. Suppose in addition that
f is smooth and has Lipschitz continuous gradient with modulus L. Then there exists unique minimizer x∗

that minimize f and it holds that

∥∇f(x)∥2 ≥ 2µ (f(x) − f(x∗)) ≥ µ2∥x− x∗∥2.

Proposition 2. Consider (3). Let {(Xt+1, Y t+1, Zt+1)} be generated by (6). Suppose β > maxi Li. Then
the solution of the problem in the third equation of (6) is (y1, . . . , y1) with y1 = Prox 1

βp g
( 1
p

∑p
i=1(xt+1

i +
1
β z

t+1
i ))).

The second and third relation in this proposition are obvious. We only need show that Xt satisfies (11).
Using (9) and the definition that r = maxi r, we have

Eti∥xt+1
i − xt+1

i,⋆ ∥2 ≤ ri∥xti − xt+1
i,⋆ ∥2 ≤ r∥xti − xt+1

i,⋆ ∥2,

summing i = 1, . . . , p, we obtain (11).

C.1 Details and proofs of Proposition 5

Before proving Proposition 5, we first present several properties of the problem:

min
X

Lβ(X,Y t, Zt), (28)

where Y t and zt are defined as in Proposition 4.
Proposition 8. Consider (1). Let (Xt, Y t, Zt) be defined as in Proposition 4. Let β ≥

∑
i Li. Denote

Xt+1
⋆ := minX Lβ(X,Y t, Zt+1).1 Then the following statements hold:

(i) Denote et+1 = Xt+1 −Xt+1
⋆ . Then there exists ξt+1 ∈ ∂G(Y t+1) such that

0 = ∇F (Xt+1
⋆ ) + Zt + β(Xt+1

⋆ − Y t) ⇔ −Zt − β(Xt+1 − et+1 − Y t) = ∇F (Xt+1
⋆ ) (29)

and
0 = ξt+1 − Zt+1 − β(Xt+1 − Y t+1) (30)

(ii) It holds that

Zt+1 = (1 − τ)Zt + βτet+1 + τ∇F (Xt+1
⋆ ) (31)

1The existence and uniqueness of Xt+1
⋆ are thanks to β ≥ maxi Li and Proposition 7.
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(iii) Let r = maxi ri. It holds that

E∥et∥2 ≤ 2r
1 − 2rE∥xt − xt−1∥2 (32)

Proof. (i) follows from the first optimality condition of (28) and (13). Combining (29) with (12), we have
that

− Zt − 1
τ

(Zt+1 − Zt) + βet+1 = −Zt − β(Xt+1 − et+1 − Y t) = ∇F (Xt+1
⋆ ).

⇔Zt+1 = (1 − τ)Zt + βτet+1 + τ∇F (Xt+1
⋆ ).

Now, we bound E∥et∥2. Denote eti := xti − xti∗. Then using (27), we have that

Et−1∥eti∥2 ≤ ri∥xt−1
i − xti∗∥2 ≤ 2ri(∥xti − xt−1

i ∥2 + ∥eti∥2).

where c′
i := β+Li

β−Li
. Denote c′ = maxi c′

i, ρ := maxi ρi and kt := maxi kit, r = maxi ri. Summing both sides of
the above inequality from i = 1, . . . , p, we obtain that

Et−1∥et∥2 ≤ 2r(∥xt − xt−1∥2 + Et−1∥et∥2).

Taking expectation on both sides over all randomness and rearranging the above inequality we obtain (32).

Now, we are ready to prove Proposition 5.
Proposition 5. Select hyperparameters β ≥ 5L, ri ∈ (0, 0.01], τ ∈ [1/2, 1). Denote Γ := 1−τ

τ , Θ =
2β2 + 4L2, Λ := 4L2. Υ := Θ

τβ
4r

1−2r and δ := 1
4 (β − L) − 2Υ. Define

H(X,Y, Z,X ′, Z ′) := Lβ(X,Y, Z) + Γ
τβ

∥Z − Z ′∥2 + Υ∥X −X ′∥2.

and Ht+1 := EH(Xt+1, Y t+1, Zt+1, Xt, Zt). Then for t ≥ 1, it holds that δ ≥ 0.1L and

Ht+1 ≤Ht−δE∥Xt+1−Xt∥2− β

2E∥Y t+1−Y t∥2. (14)

Hence, the sequence {Ht} converges to some H∗ ≥ W .

Proof. Note that

EtLβ(Xt+1, Y t, Zt) − Lβ(Xt, Y t, Zt) = Lβ(Xt+1, Y t, Zt) − Lβ(Xt+1
⋆ , Y t, Zt) + Lβ(Xt+1

⋆ , Y t, Zt) − Lβ(Xt, Y t, Zt)
≤ ρkt

(
Lβ(Xt, Y t, Zt) − Lβ(Xt+1

⋆ , Y t, Zt)
)

+ Lβ(Xt+1
⋆ , Y t, Zt) − Lβ(Xt, Y t, Zt)

≤ ρkt
(
Lβ(Xt, Y t, Zt) − Lβ(Xt+1

⋆ , Y t, Zt)
)

− β − L

2 ∥Xt −Xt+1
⋆ ∥2

≤ ρkt
(
Lβ(Xt, Y t, Zt) − Lβ(Xt+1

⋆ , Y t, Zt)
)

− β − L

4 Et∥Xt −Xt+1∥2 + β − L

2 Et∥Xt+1 −Xt+1
⋆ ∥2

≤ ρkt
β + L

2 ∥Xt −Xt+1
⋆ ∥2 − β − L

4 Et∥Xt −Xt+1∥2 + β − L

2 Et∥et+1∥2,

(33)

where the first inequality makes use of (26), the second inequality is because Lβ(X,Y t, Zt) is strongly
convex with modulus β − maxi Li and Xt+1

⋆ is the minimizer of minX Lβ(X,Y t, Zt), the third inequality
uses Young’s inequality, the last inequality uses the Lipschitz continuity of ∇XLβ(X,Y t, Zt).
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Using the fact that ∥Xt −Xt+1
⋆ ∥2 ≤ 2Et∥Xt −Xt+1∥2 + 2Et∥et+1∥2, (33) can be further passed to

EtLβ(Xt+1, Y t, Zt) − Lβ(Xt, Y t, Zt)

≤ 2ρkt
β + L

2 Et∥Xt −Xt+1∥2 + 2ρkt
β + L

2 Et∥et+1∥2 − β − L

4 Et∥Xt −Xt+1∥2 + β − L

2 Et∥et+1∥2

=
(

2ρkt
β + L

2 − β − L

4

)
Et∥Xt −Xt+1∥2 +

(
2ρkt

β + L

2 + β − L

2

)
Et∥et+1∥2

≤
(

2ρkt
β + L

2 − β − L

4 +
(

2ρkt
β + L

2 + β − L

2

)
2r

1 − 2r

)
Et∥Xt −Xt+1∥2

=
(

ρkt

1 − 2r (β + L) −
(

1
4 − r

1 − 2r

)
(β − L)

)
Et∥Xt −Xt+1∥2

(34)

where the second inequality uses (32).

Next, using (12), we have

Lβ(Xt+1, Y t, Zt+1) − Lβ(Xt+1, Y t, Zt) = 1
τβ

∥Zt+1 − Zt∥2 (35)

When τ ∈ (0, 1), combining (31) and the convexity of ∥ · ∥2, we have that

∥Zt+1 − Zt∥2 ≤ (1 − τ)∥Zt − Zt−1∥2 + τ∥β(et+1 − et) + ∇(F (Xt+1
⋆ ) − F (Xt

⋆))∥2

≤ (1 − τ)∥Zt − Zt−1∥2 + 2τβ2∥et+1 − et∥2 + 2τ∥∇(F (Xt+1
⋆ ) − F (Xt

⋆))∥2

≤ (1 − τ)∥Zt − Zt−1∥2 + 2τβ2∥et+1 − et∥2 + 2τL2∥Xt+1
⋆ −Xt

⋆∥2,

where the second inequality uses the Young’s inequality for product, and the last inequality uses the Lipschitz
continuity of ∇F . Rearranging the above inequality, we have that

∥Zt+1 − Zt∥2

≤ 1 − τ

τ

(
∥Zt − Zt−1∥2 − ∥Zt+1 − Zt∥2)+ 2β2∥et+1 − et∥2 + 2L2∥Xt+1

⋆ −Xt
⋆∥2

≤ 1 − τ

τ

(
∥Zt − Zt−1∥2 − ∥Zt+1 − Zt∥2)+ 2β2∥et+1 − et∥2

+ 2L2 ((1 + κ2)∥Xt+1 −Xt∥2 + (1 + κ−2)∥et+1 − et∥2)
= 1 − τ

τ

(
∥Zt − Zt−1∥2 − ∥Zt+1 − Zt∥2)+

(
2β2 + 4L2) ∥et+1 − et∥2

+ 4L2∥Xt+1 −Xt∥2,

(36)

where κ > 0 and the last inequality uses the definition of et+1 and Young’s inequality for products.

Using the definition of Γ, Θ and Λ, (36) becomes∥∥Zt+1 − Zt
∥∥2 ≤Γ

(
∥Zt−1 − Zt∥2 − ∥Zt+1 − Zt∥2)+ Θ∥et − et+1∥2 + Λ

∥∥Xt −Xt+1∥∥2
. (37)

Now, combining (34), (35) and (37), we obtain that

EtLβ(Xt+1, Y t, Zt+1)

≤ Lβ(Xt, Y t, Zt) +
(

ρkt

1 − 2r (β + L) −
(

1
4 − r

1 − 2r

)
(β − L)

)
Et∥Xt −Xt+1∥2

+ Γ
τβ

(
∥Zt−1 − Zt∥2 − Et∥Zt+1 − Zt∥2)+ Θ

τβ
Et∥et − et+1∥2 + Λ

τβ
Et
∥∥Xt −Xt+1∥∥2

= Lβ(Xt, Y t, Zt) +
(

ρkt

1 − 2r (β + L) −
(

1
4 − r

1 − 2r

)
(β − L)

)
∥Xt −Xt+1∥2

+ Γ
τβ

(
∥Zt−1 − Zt∥2 − Et∥Zt+1 − Zt∥2)+ Θ

τβ
Et∥et − et+1∥2.
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Taking expectations with respect to X t, the above inequality implies

ELβ(Xt+1, Y t, Zt+1) ≤ ELβ(Xt, Y t, Zt)

+
(

ρkt

1 − 2r (β + L) −
(

1
4 − r

1 − 2r

)
(β − L)

)
E∥Xt −Xt+1∥2

+ Γ
τβ

(
E∥Zt−1 − Zt∥2 − E∥Zt+1 − Zt∥2)+ Θ

τβ
E∥et − et+1∥2.

(38)

Combining (32) with (38), we obtain that

ELβ(Xt+1, Y t, Zt+1) ≤ ELβ(Xt, Y t, Zt)

+
(

ρkt

1 − 2r (β + L) −
(

1
4 − r

1 − 2r

)
(β − L)

)
E∥Xt −Xt+1∥2

+ Γ
τβ

(
E∥Zt−1 − Zt∥2 − E∥Zt+1 − Zt∥2)

+ Θ
τβ

4r
1 − 2rE∥Xt −Xt−1∥2 + Θ

τβ

4r
1 − 2rE∥Xt −Xt+1∥2.

(39)

Recall that kt = mini kit, L = maxi Li, ρ = maxi ρi, r = maxi ri and kit satisfies β+L
β−Lρ

kt
i ≤ ri. This implies

ρkt ≤ β − L

β + L
r.

This together with (39) shows that

ELβ(Xt+1, Y t, Zt+1) ≤ ELβ(Xt, Y t, Zt) − 1
4(β − L)E∥Xt −Xt+1∥2

+ Γ
τβ

(
E∥Zt−1 − Zt∥2 − E∥Zt+1 − Zt∥2)+ Θ

τβ

4r
1 − 2r︸ ︷︷ ︸
Υ

E∥Xt −Xt−1∥2 + Θ
τβ

4r
1 − 2rE∥Xt −Xt+1∥2. (40)

Finally, using the definition of δ and Υ, (40) further implies

ELβ(Xt+1, Y t, Zt+1)
≤ ELβ(Xt, Y t, Zt) − δE∥Xt −Xt+1∥2

+ Γ
τβ

(
E∥Zt−1 − Zt∥2 − E∥Zt+1 − Zt∥2)

+ Υ
(
E∥Xt −Xt−1∥2 − E∥Xt+1 −Xt∥2) .

(41)

Next, noting that Y t+1 is the minimizer of (13) which is β-strongly convex, it holds that

ELβ(Xt+1, Y t+1, Zt+1) ≤ ELβ(Xt+1, Y t, Zt+1) − β

2E∥Y t+1 − Y t∥2. (42)

Summing (42) and (41), we have that

ELβ(Xt+1, Y t+1, Zt+1)

≤ ELβ(Xt, Y t, Zt) − δE∥Xt −Xt+1∥2 + Γ
τβ

(
E∥Zt−1 − Zt∥2 − E∥Zt+1 − Zt∥2)

+ Υ
(
E∥Xt −Xt−1∥2 − E∥Xt+1 −Xt∥2)− β

2E∥Y t+1 − Y t∥2.

Rearranging the above inequality and recalling the definition of H(X,Y, Z,X ′, Z ′), we have that

EH(Xt+1, Y t+1, Zt+1, Xt, Zt)

≤ EH(Xt, Y t, Zt, Xt−1, Zt−1) − δE∥Xt −Xt+1∥2 − β

2E∥Y t+1 − Y t∥2.
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Now we prove {Ht} is convergent. Inequality (14) implies that {Ht} is nonincreasing. Since F and G are
bounded from below, we denote W = inf F + inf G . Now we show that Ht ≥ W for all t. Suppose to the
contrary that there exists t0 such that Ht0 < W . Since (14) implies Ht is nonincreasing, it hold that

T∑
t=1

(Ht −W ) ≤
t0−1∑
t=1

(Ht −W ) + (T − t0 + 1)(Ht0 −W ).

Thus

lim
T→∞

T∑
t=1

(Ht −W ) = −∞. (43)

On the other hand, using (41), for t ≥ 1, it holds that

Ht −W ≥ EH(Xt+1, Y t+1, Zt+1, Xt, Zt) −W
(a)
≥ ELβ(Xt+1, Y t, Zt+1) −W

≥ EF (Xt+1) +G(Y t) +
〈
Xt+1 − Y t, Zt+1〉−W

≥ E
〈
Xt+1 − Y t, Zt+1〉 (b)= 1

τβ
E
〈
Zt+1 − Zt, Zt+1〉 = 1

τβ

(
E∥Zt+1∥2 − E∥Zt∥2 + E∥Zt+1 − Zt∥2)

≥ 1
τβ

(E∥Zt+1∥2 − E∥Zt∥2).

where (a) makes use of the definition of Ht and Lβ , (b) uses (12). Summing the above inequality from t = 0
to T and take T to the infinity, we have that

lim
T→∞

T∑
t=1

(Ht −W ) ≥ lim
T→∞

T∑
t=1

1
τβ

(∥Zt+1∥2 − ∥Zt∥2)

= 1
τβ

lim
T→∞

(E∥ZT+1∥2 − E∥Z0∥2) ≥ − 1
τβ

∥Z0∥2 > −∞,

which contradicts with (43). Therefore, Ht is bounded from below. This together with (14) gives that {Ht}
is convergent.

C.2 Details and proofs of Corollary 1

Thanks to Proposition 5, we have the following properties with respect to the successive changes.
Corollary 4. Consider (1) and let (Xt, Y t, Zt) be defined as in Proposition 4. Suppose assumptions in
Proposition 5 hold. Then the following statements hold.

(i) It holds that

T∑
t=0

E∥Xt −Xt+1∥2 +
T∑
t=0

E∥Y t+1 − Y t∥2 ≤ Lβ(X0, Y 0, Z0) + C −H∗

min{δ, β2 }
. (44)

and
T∑
t=0

E∥Zt − Zt+1∥2 ≤ (1 + Γ) 3(r + 1)
(L− β)2 ∥∇Lβ(X0, Y 0, Z0)∥2 + 3∥X0 − Y 0∥2

+ 2
(

Γ + 2Θ 2r
1 − 2r

)
Lβ(X0, Y 0, Z0) + C −W

min{δ, β2 }
,

(45)

where C := 2τβ(Γ + 1)∥X0 −Y 0∥2 + 4
(L−β)2

(
L+β+1

2 + 2τβ(Γ + 1) + Υ + (L−β)2

8

)
∥∇XLβ(X0, Y 0, Z0)∥2.

with Θ and Γ being defined as in Proposition 5.
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(ii) It holds that

lim
t

E∥Xt −Xt+1∥2 = lim
t

E∥Y t+1 − Y t∥2 = lim
t

E∥Zt+1 − Zt∥2 = lim
t

E∥Y t −Xt∥2 = 0. (46)

Proof. Summing (14) from t = 1 to T , it holds that

HT ≤ H1 − δ

T∑
t=1

E∥Xt −Xt+1∥2 − β

2

T∑
t=1

E∥Y t+1 − Y t∥2

≤ H1 − δ

T−1∑
t=1

E∥Xt −Xt+1∥2 − β

2

T−1∑
t=1

E∥Y t+1 − Y t∥2

(47)

Now we bound H1. Note that

H1 = ELβ(X1, Y 1, Z1) + Γ
τβ

E∥Z1 − Z0∥2 + ΥE∥X1 −X0∥2

(i)
≤ ELβ(X1, Y 0, Z1) + Γ

τβ
E∥Z1 − Z0∥2 + ΥE∥X1 −X0∥2

(ii)
≤ ELβ(X1, Y 0, Z0) + Γ + 1

τβ
E∥Z1 − Z0∥2 + ΥE∥X1 −X0∥2

(iii)
≤ E

(
Lβ(X0, Y 0, Z0) + ∇XLβ(X0, Y 0, Z0)⊤(X1 −X0)

+ L+ β

2 ∥X1 −X0∥2
)

+ τβ(Γ + 1)E∥X1 − Y 0∥2 + ΥE∥X1 −X0∥2

≤ Lβ(X0, Y 0, Z0) + 1
2∥∇XLβ(X0, Y 0, Z0)∥2 + 2τβ(Γ + 1)∥X0 − Y 0∥2

+
(L+ β + 1

2 + 2τβ(Γ + 1) + Υ
)
E∥X1 −X0∥2

(iv)
≤ Lβ(X0, Y 0, Z0) + 2τβ(Γ + 1)∥X0 − Y 0∥2

+ 4
(L− β)2

(L+ β + 1
2 + 2τβ(Γ + 1) + Υ + (L− β)2

8

)
∥∇XLβ(X0, Y 0, Z0)∥2, (48)

where (i) uses (42), (ii) uses (35), (iii) uses the property that Lβ(X,Y, ·) is (L + β)-smooth, and (iv) uses
the following inequality.

E∥X1 −X0∥2 ≤ 2E∥X1 −X1
∗∥2 + 2E∥X0 −X1

∗∥2

≤ 4E∥X0 −X1
∗∥2

≤ 4
(L− β)2 ∥∇XLβ(X0, Y 0, Z0)∥2

Thus, summing (47) and (48), we have

HT ≤ Lβ(X0, Y 0, Z0) + C

− δ

T∑
t=1

E∥Xt −Xt+1∥2 − β

2

T∑
t=1

E∥Y t+1 − Y t∥2

≤ H1 − δ

T−1∑
t=1

E∥Xt −Xt+1∥2 − β

2

T−1∑
t=1

E∥Y t+1 − Y t∥2.

Rearranging the above inequality, we have that

δ

T−1∑
t=1

E∥Xt −Xt+1∥2 + β

2

T−1∑
t=1

E∥Y t+1 − Y t∥2

≤ Lβ(X0, Y 0, Z0) + C −HT ≤ Lβ(X0, Y 0, Z0) + C −H∗,

(49)
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where the second inequality is because {Ht} is nonincreasing and convergent. This implies (44).

Taking T in the above inequality to infinity, we deduce that

δ

∞∑
t=0

E∥Xt −Xt+1∥2 + β

2

∞∑
t=0

E∥Y t+1 − Y t∥2 < ∞.

where the last inequality is because {Ht} is convergent. Therefore, we have {E∥Xt − Xt+1∥2}, and
limt E∥Y t+1 − Y t∥2 are summable and

lim
t

E∥Xt −Xt+1∥2 = lim
t

E∥Y t+1 − Y t∥2 = 0. (50)

In addition, summing (37) from t = 1 to T , we have that

T∑
t=0

E∥Zt − Zt+1∥2

≤ (1 + Γ)∥Z0 − Z1∥2 + Θ
T∑
t=1

E∥et − et+1∥2 + Γ
T∑
t=1

E∥Xt −Xt+1∥2

≤ (1 + Γ)∥Z0 − Z1∥2 + 2Θ 2r
1 − 2r

T∑
t=1

E∥Xt −Xt−1∥2+(Γ + 2Θ 2r
1 − 2r )

T∑
t=0

E∥Xt−Xt+1∥2

≤ (1 + Γ)∥Z0 − Z1∥2 + 2
(

Γ + 2Θ 2r
1 − 2r

) T∑
t=0

E∥Xt −Xt+1∥2

≤ (1 + Γ)∥Z0 − Z1∥2 + 2
(

Γ + 2Θ 2r
1 − 2r

)
Lβ(X0, Y 0, Z0) + C −H∗

min{δ, β2 }
,

(51)

where the second inequality uses (32). Recall the definition of Z1, we have that

E∥Z1 − Z0∥2 = E∥X1 − Y 0∥2 ≤ 3E∥X1 −X1
⋆∥2 + 3∥X1

⋆ −X0∥2 + 3∥X0 − Y 0∥2

≤ 3r∥X0 −X1
⋆∥2 + 3∥X1

⋆ −X0∥2 + 3∥X1
⋆ − Y 0∥2

≤ 3(r + 1)
(L− β)2 ∥∇Lβ(X0, Y 0, Z0)∥2 + 3∥X0 − Y 0∥2.

This together with (51) gives

T∑
t=0

E∥Zt − Zt+1∥2 ≤ (1 + Γ) 3(r + 1)
(L− β)2 ∥∇Lβ(X0, Y 0, Z0)∥2 + 3∥X0 − Y 0∥2

+ 2
(

Γ + 2Θ 2r
1 − 2r

)
Lβ(X0, Y 0, Z0) + C −H∗

min{δ, β2 }
.

(52)

Taking T in the above inequality to infinity we deduce that {E∥Zt − Zt+1∥2} is summable and using (12),
we have that

limE∥Y t −Xt+1∥2 = lim
t

E∥Zt − Zt+1∥2 = 0.

This together with (50) gives that

limE∥Y t −Xt∥2 = 0.

23



Under review as submission to TMLR

C.3 Details and proofs of Theorem 1

Here, we prove Theorem 1.
Theorem 3. Consider (1). Let {(xt1, . . . , xtp, yt, zt1, . . . , ztp} be generated by Algorithm 1. Let (Xt, Y t, Zt) be
defined as in Proposition 4. Suppose assumptions in Proposition 5 hold. Then the following statements hold.

(i) There exists E > 0 such that

∥∇F (Y t+1) + ξt+1∥ ≤ E
(
∥Xt+1 −Xt∥ + ∥Zt+1 − Zt∥ + ∥Y t − Y t+1∥

)
. (53)

where ξt+1 ∈ ∂F (Y t+1).

(ii) It holds that

1
1 + T

T∑
t=0

Ed2(0,∇F (Y t+1) + ∂G(Y t+1))

≤ 1
T + 1R

(
(1 + Γ) 3(r + 1)

(L− β)2 ∥∇Lβ(X0, Y 0, Z0)∥2 + 3∥X0 − Y 0∥2
)

+ 1
T + 1R

(
2Γ + Θ 8r

1 − 2r + 2
)
Lβ(X0, Y 0, Z0) + C −H∗

min{δ, β2 }
,

where Γ and Θ are defined in Proposition 5, H∗ and C is defined in Proposition 5 and Corollary 4
respectively, R := max{3(L+ β)2 2r

1−2r ,
(
L
τβ + 1

)2
, (L+ β)2}.

Proof. Using (29), it hold that

0 = ∇F (Y t+1) + ∇F (Xt+1
⋆ ) − ∇F (Y t+1) + Zt + β(Xt+1

⋆ − Y t).

Summing this with (30), we have that

0 = ∇F (Y t+1) + ξt+1 + ∇F (Xt+1
⋆ ) − ∇F (Y t+1) + Zt − Zt+1 + β(Xt+1

⋆ −Xt+1) − β(Y t+1 − Y t).

This implies that

∥∇F (Y t+1) + ξt+1∥
≤ ∥∇F (Xt+1

⋆ ) − ∇F (Y t+1)∥ + ∥Zt − Zt+1∥ + β∥Xt+1
⋆ −Xt+1∥ + β∥Y t+1 − Y t∥

≤ L∥Xt+1
⋆ − Y t+1∥ + ∥Zt − Zt+1∥ + β∥Xt+1

⋆ −Xt+1∥ + β∥Y t+1 − Y t∥
≤ L∥Xt+1

⋆ −Xt+1∥ + L∥Xt+1 − Y t∥ + (L+ β)∥Y t − Y t+1∥ + ∥Zt − Zt+1∥
+ β∥Xt+1

⋆ −Xt+1∥

= (L+ β)∥Xt+1
⋆ −Xt+1∥ +

(
L

τβ
+ 1
)

∥Zt+1 − Zt∥ + (L+ β)∥Y t − Y t+1∥,

(54)

where the last equality uses (12). Using (32), we have that E∥Xt+1
⋆ − Xt+1∥2 ≤

√
2r

1−2rE∥Xt+1 − Xt∥2.
Using this, (54) can be further passed to

E∥∇F (Y t+1) + ξt+1∥2 ≤ (L+ β)
√

2r
1 − 2r3E∥Xt+1 −Xt∥2 +

(
L

τβ
+ 1
)

3E∥Zt+1 − Zt∥2

+ (L+ β)3E∥Y t − Y t+1∥2.

This together with Cauchy-Schwarz inequality, we have that

E∥∇F (Y t+1) + ξt+1∥2 ≤ 3(L+ β)2 2r
1 − 2rE∥Xt+1 −Xt∥2 +

(
L

τβ
+ 1
)2

E∥Zt+1 − Zt∥2

+ (L+ β)2E∥Y t − Y t+1∥2.

(55)
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This proves (53).

Summing the above inequality from t = 0 to T , it holds that

T∑
t=0

E∥∇F (Y t+1) + ξt+1∥2

≤ 3(L+ β)2 2r
1 − 2r

T∑
t=0

E∥Xt+1 −Xt∥2 +
(
L

τβ
+ 1
)2 T∑

t=0
E∥Zt+1 − Zt∥2

+ (L+ β)2
T∑
t=0

E∥Y t − Y t+1∥2

≤ max{3(L+ β)2 2r
1 − 2r ,

(
L

τβ
+ 1
)2

, (L+ β)2}

·

(
T∑
t=0

E∥Xt+1 −Xt∥2 + ∥Y t − Y t+1∥2 + ∥Zt+1 − Zt∥2

)

≤ max{3(L+ β)2 2r
1 − 2r ,

(
L

τβ
+ 1
)2

, (L+ β)2}

·

(
(1 + Γ) 3(r + 1)

(L− β)2 ∥∇Lβ(X0, Y 0, Z0)∥2 + 3∥X0 − Y 0∥2 +
(

2Γ + Θ 8r
1 − 2r + 2

)
Lβ(X0, Y 0, Z0) + C −H∗

min{δ, β2 }

)
,

where C := 2τβ(Γ + 1)∥X0 − Y 0∥2 + 4
(L−β)2

(
L+β+1

2 + 2τβ(Γ + 1) + Υ + (L−β)2

8

)
· ∥∇XLβ(X0, Y 0, Z0)∥2,

the last inequality uses (44) and (45). Dividing both sides with T + 1 and recalling ξt+1 ∈ ∂G(Y t+1), we
have the conclusion. Grouping the constants of ∥X0 − Y 0∥2, ∥∇XLβ(X0, Y 0, Z0)∥2, Lβ(X0, Y 0, Z0), we
have that

T∑
t=0

E∥∇F (Y t+1) + ξt+1∥2

≤ D
(
∥∇Lβ(X0, Y 0, Z0)∥2 + ∥X0 − Y 0∥2 + Lβ(X0, Y 0, Z0) −W

)
,

(56)

where

D := max{3(L+ β)2 2r
1 − 2r ,

(
L

τβ
+ 1
)2

, (L+ β)2} · max{D1, D2, D3} (57)

with D1 := 2Γ+Θ 8r
1−2r +2

min{δ, 1
2β} , D2 := (1 + Γ) 3(r+1)

(L−β)2 + D1
4

(L−β)2

(
L+β+1

2 + 2τβ(Γ + 1) + Υ + (L−β)2

8

)
, D3 :=

max{3, D12τβ(Γ + 1)}.

C.3.1 Proofs of Proposition 6 and Corollary 3

We provide the detailed version of Proposition 6 as follows.
Proposition 9. Consider (1). Let {(xt1, . . . , xtp, yt, zt1, . . . , ztp} be generated by Algorithm 1. Let (Xt, Y t, Zt)
be defined as in Proposition 4. Suppose assumptions in Proposition 5 hold. Suppose {(Xt, Y t, Zt)} is bounded
and denote the set of accumulation points of {(Xt, Y t, Zt, Xt−1, Zt−1)} as Ω. The following statements hold:

(i) limt d((Xt, Y t, Zt, Xt−1, Zt−1),Ω) = 0.

(ii) Any accumulation point of {Y t} is a stationary point of (1).

(iii) H ≡ H∗ on Ω.
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Proof. For (i), let Y ∗ be an accumulation point of {Y t} with Y ti → Y ∗. Using (29) and (30), there exists
ξti ∈ G(Y ti) such that

0 = ∇F (Xti
⋆ ) + Zti−1 + β(Xti

⋆ − Y ti−1)
= ∇F (Y t) + ∇F (Xti

⋆ ) − ∇F (Y t) + Zti−1 + β(Xti
⋆ − Y ti−1).

and
0 = ξti − Zti − β(Xti − Y ti).

The above relations shows that

0 = ∇F (Y t) + ξti + ∇F (Xti
⋆ ) − ∇F (Y t) + Zti−1 − Zti + β(Xti

⋆ − Y ti−1) − β(Xti − Y ti)
= ∇F (Y t) + ξti + ∇F (Xti

⋆ ) − ∇F (Y t) + τβ(Xti − Y ti−1) + β(Xti
⋆ − Y ti−1) − β(Xti − Y ti)

(58)

where the equality makes uses of (12). Now we show that limi ∥Xt
⋆ − Xt∥ = 0. Using Proposition 7 and

(11), we have that
∥et∥2 = ∥Xt

⋆ −Xt∥2 ≤ 2r
1 − 2r∥Xt −Xt−1∥2.

Since limt ∥Xt −Xt−1∥ = 0, we have that

lim
i

∥Xt
⋆ −Xt∥ = 0. (59)

Next, we show that limi ∥Xt − Y t−1∥ = 0 . Using (12), it holds that∥∥Zt − Zt−1∥∥2

≤ Γ
(
∥Zt−2 − Zt−1∥2 − ∥Zt − Zt−1∥2)+ Θ∥et−1 − et∥2 + Λ

∥∥Xt−1 −Xt
∥∥2

≤ Γ
(
∥Zt−2 − Zt−1∥2 − ∥Zt − Zt−1∥2)+ Θ 4r

1 − 2r∥Xt−1 −Xt−2∥2 + (Λ + 4r
1 − 2r )

∥∥Xt−1 −Xt
∥∥2

where the first inequality uses (37) and the second inequality is due to (32). Summing the above inequality
from t = 1 to T , we have that

T∑
1=1

∥∥Zt − Zt−1∥∥2 ≤ Γ
(
∥Zt1−2 − Zt1−1∥2 − ∥ZtK − ZtK−1∥2)

+ 1
τβ

Θ 4r
1 − 2r

T∑
1=1

∥Xt−1 −Xt−2∥2 + (Λ + 4r
1 − 2r )

T∑
1=1

∥∥Xt−1 −Xt
∥∥2

≤ Γ
(
∥Zt1−2 − Zt1−1∥2 − ∥ZtK − ZtK−1∥2)+ Θ 4r

1 − 2r

K∑
i=1

∥Xt−1 −Xt−2∥2

+ (Λ + 4r
1 − 2r )

K∑
i=1

∥∥Xt−1 −Xt
∥∥2

≤ Γ∥Zt1−2 − Zt1−1∥2 + Θ 4r
1 − 2r

T∑
1=1

∥Xt−1 −Xt−2∥2 + (Λ + 4r
1 − 2r )

T∑
1=1

∥∥Xt−1 −Xt
∥∥2
.

Taking K in the above inequality to infinity and recalling that
∥∥Xt−1 −Xt

∥∥2 is summable, we deduce that∑T
1=1 ∥Zt − Zt−1∥2 < ∞. This together with (12) show that

lim
t

∥Xt − Y t−1∥ = 1
τβ

lim
t

∥Zt − Zt−1∥ = 0. (60)

Next, we show that limt ∥Y t − Y t−1∥ = 0. Using (12) again, we have that

Y t − Y t−1 = Xt+1 −Xt − 1
τβ

(Zt+1 − Zt) − 1
τβ

(Zt − Zt−1).
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This together with the fact that limt ∥Xt−Xt−1∥ = limt ∥Zt−Zt−1∥ = 0 implies that limt ∥Y t−Y t−1∥ = 0.
Since Y ti → Y ∗, combining (59), (60) and (46), we have that

lim
i
Y ti−1 = lim

i
Xti = lim

i
Xti
⋆ = lim

i
Y ti = Y ∗.

This together with the continuity of ∇F , the closedness of ∂G and (58) shows that

0 ∈ ∇F (Y ∗) + ∂G(Y ∗).

This completes the proof.

Now we prove (ii). Fix any (X∗, Y ∗, Z∗, X̄∗, Z̄∗) ∈ Ω. Then there exists {ti}i such that
(Xti , Y ti , Zti , Xti−1, Y ti−1) converges to (X∗, Y ∗, Z∗, X̄∗, Z̄∗). Thanks to Proposition 5 (ii), we know that

H∗ = lim
i
H(Xti , Y ti , Zti , Xti−1, Y ti−1) (61)

and

H(X∗, Y ∗, Z∗, X̄∗, Z̄∗) = Lβ(X∗, Y ∗, Z∗) = F (X∗) +G(Y ∗) + ⟨X∗ − Y ∗, Z∗⟩ + β

2 ∥X∗ − Y ∗∥2. (62)

Since Y t is the minimizer of (13), it holds that

G(Y ti) +
〈
Xti − Y ti , Zti

〉
+ β

2 ∥Xti − Y ti∥2 ≤ G(Y ∗) +
〈
Xti − Y ∗, Zti

〉
+ β

2 ∥Xti − Y ∗∥2.

Taking the above inequality to infinity, we have that

lim sup
i

G(Y ti) + ⟨X∗ − Y ∗, Z∗⟩ + β

2 ∥X∗ − Y ∗∥2

= lim sup
i

G(Y ti) +
〈
Xti − Y ti , Zti

〉
+ β

2 ∥Xti − Y ti∥2

≤ G(Y ∗) + ⟨X∗ − Y ∗, Z∗⟩ + β

2 ∥X∗ − Y ∗∥2.

This together with the closedness of G shows that limiG(Y ti) = G(Y ∗). This together with the continuity
of F , Corollary 4 (ii) and (61) gives that

H∗ = lim
i
H(Xti , Y ti , Zti , Xti−1, Y ti−1)

= F (X∗) +G(Y ∗) + ⟨X∗ − Y ∗, Z∗⟩ + β

2 ∥X∗ − Y ∗∥2 = H(X∗, Y ∗, Z∗, X̄∗, Z̄∗),

where the second equality uses (62).

Corollary 3. Let {(xt1, . . . , xtp, yt, zt1, . . . , ztp)} be generated by Algorithm 1 with (9) holding deterministically.
Let (Xt, Y t, Zt) be defined as in Proposition 4. Suppose assumptions in Proposition 6 hold. Then any
accumulation point of {yt} is a stationary point of (1).

Proof. From Proposition 2, we understand that Y t = (yt, . . . , yt) for any t. Let y∗ be any accumulation
point of yt. Then Y ∗ = (y∗, . . . , y∗) is an accumulation point of {Y t}. Proposition 6 demonstrates that the
Y ∗ is a stationary point of (3). By applying Proposition 1, we deduce that y∗ is a stationary point of (1).

C.3.2 Details and proofs for Theorem 2

To show the global convergence of the generated sequence, we first need to bound the subdifferential of
∂H(Xt+1, Y t+1, Zt+1, Xt, Zt).
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Lemma 1. Consider (1). Let {(xt1, . . . , xtp, yt, zt1, . . . , ztp} be generated by Algorithm 1. Let (Xt, Y t, Zt) be
defined as in Proposition 4. Suppose (9) is satisfied deterministically (satisfied without expectation). Suppose
assumptions in Proposition 5 hold. There exists D > 0 such that

d(0, ∂H(Xt+1, Y t+1, Zt+1, Xt, Zt)) ≤ D
(
∥Xt+1 −Xt∥ + ∥Y t+1 − Y t∥ + ∥Zt+1 − Zt∥

)
.

Proof. Using Exercise 8.8, Proposition 10.5 and Corollary 10.9 of RockWets98, it holds that

∂H(X,Y, Z,X ′, Z ′) ⊇


∇F (X)
∂G(Y )

0
0
0

+


Z + β(X − Y ) + Θ

τβ
16r

1−2r (X −X ′)
−Z − β(X − Y )

X − Y + 2Γ
τβ (Z − Z ′)

− Θ
τβ

16r
1−2r (X −X ′)

− 2Γ
τβ (Z − Z ′).


Thus,

∂H(Xt+1, Y t+1, Zt+1, Xt, Zt)

⊇


∇F (Xt+1) + Zt+1 + β(Xt+1 − Y t+1) + Θ

τβ
16r

1−2r (Xt+1 −Xt)
∂G(Y t+1) − Zt+1 − β(Xt+1 − Y t+1)

Xt+1 − Y t+1 + 2Γ
τβ (Zt+1 − Zt)

− Θ
τβ

16r
1−2r (Xt+1 −Xt)

− 2Γ
τβ (Zt+1 − Zt)



⊇


∇F (Xt+1) + Zt+1 + β(Xt+1 − Y t+1) + Θ

τβ
16r

1−2r (Xt+1 −Xt)
0

Xt+1 − Y t+1 + 2Γ
τβ (Zt+1 − Zt)

− Θ
τβ

16r
1−2r (Xt+1 −Xt)

− 2Γ
τβ (Zt+1 − Zt)



(63)

where the seconde inclusion follows from (30).

Now, we bound each coordinate in the right hand side of the relation. For the first one, we denote At+1 :=
∇F (Xt+1) + Zt+1 + β(Xt+1 − Y t+1) + Θ

τβ
16r

1−2r (Xt+1 −Xt). Using (29), we have that

At+1 ∋ ∇F (Xt+1) − ∇F (Xt+1
⋆ ) + (Zt+1 − Zt)

+ β(Xt+1 − Y t+1 −Xt+1
⋆ + Y t) + Θ

τβ

16r
1 − 2r (Xt+1 −Xt).

Thus, we deduce that d2(0,At+1) is bounded above by

4(L+ β)2∥Xt+1 −Xt+1
⋆ ∥2 + 4∥Zt+1 − Zt∥2 + 4β2∥Y t − Y t+1∥2

+ 4Θ2

τ2β2
64r2

(1 − 2r)2 ∥Xt+1 −Xt∥2 (64)

where we also make use of the Lipscitz continuity of ∇F .

For the third coordinate in (63), using (12), it holds that∥∥∥∥Xt+1 − Y t+1 + 2Γ
τβ

(Zt+1 − Zt)
∥∥∥∥2

=
∥∥∥∥ 1
τβ

(Zt+1 − Zt) + Y t − Y t+1 + 2Γ
τβ

(Zt+1 − Zt)
∥∥∥∥2

≤ 2∥Y t − Y t+1∥2 + (1 + 2Γ)2

τ2β2 ∥Zt+1 − Zt∥2
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This together with (63) and (64), we deduce that

d2(0, ∂H(Xt+1, Y t+1, Zt+1, Xt, Zt))
≤ 4(L+ β)2∥Xt+1 −Xt+1

⋆ ∥2 + 4∥Zt+1 − Zt∥2 + 4β2∥Y t − Y t+1∥2

+ 4Θ2

τ2β2
64 ∗ 4r2

(1 − 2r)2 ∥Xt+1 −Xt∥2 + 2∥Y t − Y t+1∥2 + (1 + 2Γ)2

τ2β2 ∥Zt+1 − Zt)∥2

+ Θ2

τ2β2
64 ∗ 4r2

(1 − 2r)2 ∥Xt+1 −Xt∥2 + 4Γ2

τ2β2 ∥Zt+1 − Zt∥2.

(65)

Note that using 32, we have that

∥Xt+1 −Xt+1
⋆ ∥2 ≤ 2r

1 − 2r∥Xt+1 −Xt∥2. (66)

Combining (65) with (66), we have that

d2(0, ∂H(Xt+1, Y t+1, Zt+1, Xt, Zt))

≤ 4(L+ β)2 2r
1 − 2r∥Xt+1 −Xt∥2 + 4∥Zt+1 − Zt∥2 + 4β2∥Y t − Y t+1∥2

+ 4Θ2

τ2β2
64 ∗ 4r2

(1 − 2r)2 ∥Xt+1 −Xt∥2 + 2∥Y t − Y t+1∥2 + (1 + 2Γ)2

τ2β2 ∥Zt+1 − Zt)∥2

+ Θ2

τ2β2
64 ∗ 4r2

(1 − 2r)2 ∥Xt+1 −Xt∥2 + 4Γ2

τ2β2 ∥Zt+1 − Zt∥2

= D′(∥Xt+1 −Xt∥2 + ∥Y t − Y t+1∥2 + ∥Zt+1 − Zt∥2),

where D is the maximum of the coordinates of ∥Xt+1 −Xt∥2, ∥Y t − Y t+1∥ and ∥Zt+1 − Zt∥2 on the right
hand side of the above inequality. Finally, using the fact that

∑3
i s

2
i ≤ (

∑3
i ai)2 for any a1, a2, a3 ≥ 0, the

above inequality can be further passed to

d2(0, ∂H(Xt+1, Y t+1, Zt+1, Xt, Zt)) ≤ D′(∥Xt+1 −Xt∥ + ∥Y t − Y t+1∥ + ∥Zt+1 − Zt∥).

Taking square root on both sides of the above inequality we have the conclusion.

Now we are ready to prove Theorem 2. In fact, we already show the key properties that will be needed. They
are Proposition 5, Corollary 4, Proposition C.3.1 and Lemma 1. The rest steps are routine. We follow the
proofs in Borwein et al. (2017); Bolte et al. (2014); Li & Pong (2016) and include it only for completeness.
Theorem 2. Consider (1) and Algorithm 1 with (9) holding deterministically. Let (Xt, Y t, Zt) be defined
as in Proposition 4. Suppose assumptions in Proposition 5 hold. Let H be defined as in Proposition 5 and
suppose H is a KL function with exponent α ∈ [0, 1). Then {(Xt, Y t, Zt)} converges globally. Denoting
(X∗, Y ∗, Z∗) := limt(Xt, Y t, Zt) and dts := ∥(Xt, Y t, Zt)− (X∗, Y ∗, Z∗)∥, then the followings hold. If α = 0,
then {dts} converges finitely. If α ∈ (0, 1

2 ], then there exist b > 0, t1 ∈ N and ρ1 ∈ (0, 1) such that dts ≤ bρt1
for t ≥ t1. If α ∈ ( 1

2 , 1), then there exist t2 and c > 0 such that dts ≤ ct−
1

4α−2 for t ≥ t2.

Proof. We first show that {(Xt, Y t, Zt)} is convergent. If there exists t0 such that Ht0 = H∗. Since {Ht} is
nonincreasing thanks to (14), we deduce that Ht = H∗ for all t ≥ t0. Using (14) again we have that for all
t ≥ t0, it holds that Xt = Xt−1 = · · · = Xt0−1 and Y t = Y t−1 = · · · = Y t0 . Recalling in (46) we have that
limt(Xt − Y t) = 0, we have that Y t0 = Xt0−1. Thus, Xt+1 − Y t = Y t0 − Xt0−1 = 0 for all t ≥ t0. This
together with (12), we deduce that Zt+1 = Zt = · · · = Zt0 for all t ≥ t0. Therefore, when there exists t0
such that Ht0 = H∗, {(Xt, Y t, Zt)} converge finitely.

Next, we consider the case where Ht > H∗ for all t. Thanks to Proposition C.3.1 (iii), using Lemma 6 of
Bolte et al. (2014), there exists r > 0, a > 0 and ψ ∈ Ψa such that

ψ′(H(X,Y, Z,X ′Z ′) −H∗)d(0, ∂H(X,Y, Z,X ′, Z ′)) ≥ 1
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when d((X,Y, Z,X ′, Z ′),Ω) ≤ r and H∗ < H(X,Y, Z,X ′, Z ′) < H∗ +a. Thanks to Corollary 4 and Theorem
5, we know that there exists t1 such that when t > t1, d((Xt, Y t, Zt, Xt−1, Zt−1),Ω) ≤ r and H∗ <
H(Xt, Y t, Zt, Xt−1, Zt−1) < H∗ + a. Thus, it holds that

ψ′(H((Xt, Y t, Zt, Xt−1, Zt−1) −H∗)d(0, ∂H((Xt, Y t, Zt, Xt−1, Zt−1)) ≥ 1. (67)
Recaling (14), we have that Since ψ is concave, using the above inequality we have that

δ∥Xt+1 −Xt∥2 + β

2 ∥Y t+1 − Y t∥2 ≤ Ht −Ht+1

≤ ψ′(Ht −H∗)d(0, ∂H(Xt, Y t, Zt, Xt−1, Zt−1)) (Ht −Ht+1)
≤ ∆t+1

ψ d(0, ∂H(Xt, Y t, Zt, Xt−1, Zt−1))

(68)

where the second inequality uses (67) and the last inequality uses the concavity of ψ. Using Lemma 1, we
have from (68) that

1
2 min{δ, β2 }

(
∥Xt+1 −Xt∥ + ∥Y t+1 − Y t∥

)2 ≤ min{δ, β2 }
(
∥Xt+1 −Xt∥2 + ∥Y t+1 − Y t∥2)

≤ δ∥Xt+1 −Xt∥2 + β

2 ∥Y t+1 − Y t∥2

≤ ∆t+1
ψ D

(
∥Xt −Xt−1∥ + ∥Y t − Y t−1∥ + ∥Zt − Zt−1∥

) (69)

where the first inequality uses the fact that 1
2 (a+ b)2 ≤ a2 + b2 for any a, b ∈ R.

Now we bound ∥Zt − Zt−1∥. Using (31), we have that

∥Zt+1 − Zt∥ = |1 − τ |∥Zt − Zt−1∥ + βτ∥et+1 − et∥ + τ∥∇F (Xt+1
⋆ ) − ∇F (Xt

⋆)∥
≤ |1 − τ |∥Zt − Zt−1∥ + βτ∥et+1 − et∥ + τL∥Xt+1

⋆ −Xt
⋆∥

≤ |1 − τ |∥Zt − Zt−1∥ + (β + L)τ∥et+1 − et∥ + τL∥Xt+1 −Xt∥

≤ |1 − τ |∥Zt − Zt−1∥ + (β + L)τ 4
(β − L)2 ∥Xt −Xt−1∥ + τL∥Xt+1 −Xt∥

where the second inequality uses the definition of et and last inequality uses (32). Rearranging the above
inequality, it holds that

∥Zt − Zt−1∥ ≤ 1 + |1 − τ |
1 − |1 − τ |

(
∥Zt − Zt−1∥ − ∥Zt − Zt+1∥

)
− ∥Zt − Zt+1∥

+ 2
1 − |1 − τ |

(β + L)τ 4
(β − L)2 ∥Xt −Xt−1∥ + 2

1 − |1 − τ |
τL∥Xt+1 −Xt∥.

Plugging this bound into (69), we have that
1
2 min{δ, β2 }

(
∥Xt+1 −Xt∥ + ∥Y t+1 − Y t∥

)2

≤ ∆t+1
ψ D

(
∥Xt −Xt−1∥ + ∥Y t − Y t−1∥

)
+ ∆t+1

ψ D

(
1 + |1 − τ |
1 − |1 − τ |

(
∥Zt − Zt−1∥ − ∥Zt − Zt+1∥

)
− ∥Zt − Zt+1∥

)
+ ∆t+1

ψ D

(
2(β + L)τ
1 − |1 − τ |

4
(β − L)2 ∥Xt −Xt−1∥ + 2τL

1 − |1 − τ |
∥Xt+1 −Xt∥

)
≤ ∆t+1

ψ DD1
(
∆1
t + ∆2

t

)
,

where
∆t+1
ψ := ψ(Ht −H∗) − ψ(Ht+1 −H∗),

D1 := max{1 + 2(β + L)τ
1 − |1 − τ |

4
(β − L)2 ,

2τL
1 − |1 − τ |

, 1, 1 + |1 − τ |
1 − |1 − τ |

},

∆t := ∥Xt −Xt−1∥ + ∥Xt+1 −Xt∥ + ∥Y t − Y t−1∥,
∆2
t :=

(
∥Zt − Zt−1∥ − ∥Zt − Zt+1∥

)
− ∥Zt − Zt+1∥.
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Rearranging the above inequality and taking square toot on both sides, we obtain that

∥Xt+1 −Xt∥ + ∥Y t+1 − Y t∥ ≤
√

2
min{δ, β2 }

∆t+1
ψ DD1 (∆1

t + ∆2
t )

≤ 2
min{δ, β2 }

∆t+1
ψ DD1 + 1

4
(
∆1
t + ∆2

t

)
where the second inequality uses the fact that

√
ab ≤ 1

2 (a+ b) for any a, b > 0. Recalling the definitions of
∆1
t and ∆2

t , and rearranging the above inequality, we have that

∥Xt+1 −Xt∥ + ∥Y t+1 − Y t∥ ≤
√

2
min{δ, β2 }

∆t+1
ψ DD1∆

≤ 2
min{δ, β2 }

∆t+1
ψ DD1

+ 1
4
(
∥Xt −Xt−1∥ + ∥Xt+1 −Xt∥ + ∥Y t − Y t−1∥

)
+ 1

4
(
∥Zt − Zt−1∥ − ∥Zt − Zt+1∥ − ∥Zt − Zt+1∥

)
Further rearranging the above inequality, we have

1
4∥Xt+1 −Xt∥ + 3

4∥Y t+1 − Y t∥ + 1
4∥Zt − Zt+1∥

≤ 2
min{δ, β2 }

∆t+1
ψ DD1

+ 1
4
(
∥Xt −Xt−1∥ − ∥Xt+1 −Xt∥ + ∥Y t − Y t−1∥ − ∥Y t − Y t+1∥

)
+ 1

4
(
∥Zt − Zt−1∥ − ∥Zt − Zt+1∥

)
.

(70)

Then, denoting ∆t+1 := ∥Xt+1 −Xt∥ + ∥Y t+1 − Y t∥ +D2∥Zt+1 − Zt∥ (70) can be further passed to

1
4∆t+1 ≤ 2

min{δ, β2 }
∆t+1
ψ DD1 + 1

4 (∆t − ∆t+1) (71)

Summing the above inequality from t = t1 + 1 to T , we have that

1
4

T∑
t=t1+1

∆t+1 ≤ 2
min{δ, β2 }

∆t+1
ψ DD1 + 1

4 (∆t1+1 − ∆T+1)

≤ 2
min{δ, β2 }

ψ(Ht −H∗)DD1 + 1
4∆t1+1

where the last inequality uses the fact that ψ > 0. Taking T in the above inequality to infinity, we see that∑∞
t=t1+1 ∆t+1 < ∞. Thus {(Xt, Y t, Zt)} is convergent.

Next, we show the convergence rate of the generated sequence. Denote the limit of (Xt, Y t, Zt) as
(X∗, Y ∗, Z∗). Define St =

∑∞
i=t+1 ∆i. Noting that ∥X∗ − Xt∥ + ∥Y ∗ − Y t∥ + ∥Zt − Z∗∥ ≤

∑∞
i=t ∆i = St,

it suffices to show the convergence rate of St. Using (71), there exists D2 > 0 such that

St =
∞∑
i=t

∆i ≤ D2 (ψ(Ht −H∗) − ψ(Ht+1 −H∗)) + (∆t − ∆t+1)

≤ D2ψ(Ht −H∗) + ∆t = D2ψ(Ht −H∗) + (St−1 − St) .
(72)
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Now we bound ψ(Ht −H∗). From the KL assumption, ψ(w) = cw1−θ with some c >. Thanks to Theorem
5 (ii) and (14), we have from the KL inequality, it holds that

c(1 − θ)d(0, ∂H(Xt, Y t, Zt, Xt−1, Zt−1)) ≥ (Ht −H∗)θ. (73)

Combining this with (1), we have that

c(1 − θ)D(St−1 − St) ≥ (Ht −H∗)θ.

This is equivalent to

c (c(1 − θ)D(St−1 − St))
1−θ

θ ≥ c(Ht −H∗)1−θ = ψ(Ht −H∗).

Using this (72) can be further passed to

St ≤ D3(St−1 − St)
1−θ

θ + (St−1 − St) , (74)

where D3 := D2c (c(1 − θ)D)
1−θ

θ . Now we claim

1. When θ = 0, {(Xt, Y t, Zt)} converges finitely.

2. When θ ∈ (0, 1
2 ], there exist a > 0 and ρ1 ∈ (0, 1) such that St ≤ aρt1.

3. When θ ∈ ( 1
2 , 1), there exists D4 such that St ≤ ct−

1−θ
2θ−1 for large t.

When θ = 0, we claim that there exists t such that Ht = H∗. Suppose to the contrary that Ht > H∗ for all
t. Then, for large t, (73) holds, i.e., d(0, ∂H(Xt, Y t, Zt, Xt−1, Zt−1)) ≥ 1

c(1−θ) > 0. However, thanks to 1
and Corollary 4, we know that limt d(0, ∂H(Xt, Y t, Zt, Xt−1, Zt−1)) = 0, a contradiction. Therefore, there
exists t such that Ht = H∗. From the argument in the beginning of this proof, we see that {(Xt, Y t, Zt)}
converges finitely.

When θ ∈ (0, 1
2 ], we have 1−θ

θ ≥ 1. Thanks to Corollary 4, we know that there exists t2 such that St−St−1 <
1. Thus, (74) can be further passed to St ≤ D3(St−1 − St) + (St−1 − St). This implies that

St ≤ D3 + 1
D3 + 2St−1.

Thus there exist a > 0 and ρ1 ∈ (0, 1) such that St ≤ aρt1.

When θ ∈ ( 1
2 , 1), it holds that 1−θ

θ < 1. From the last case, we know that St − St−1 < 1 when t > t2. Using
(74), we have that St ≤ D3(St−1 − St)

1−θ
θ + (St−1 − St)

1−θ
θ = (D3 + 1) (St−1 − St)

1−θ
θ . This implies that

S
θ

1−θ

t ≤ D
θ

1+θ

3 (St−1 − St).

With this inequality, following the arguments in Theorem 2 of Attouch & Bolte (2009) starting from Equation
(13) in Attouch & Bolte (2009), there exists c > 0 such that St ≤ ct−

1−θ
2θ−1 for large t. Thus, {St} converges

sublinearly.
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