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Abstract

We introduce Delayed Streams Modeling (DSM), a flexible formulation for1

streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence2

generation is typically cast in an offline manner: the model consumes the com-3

plete input sequence before generating the first output timestep. DSM instead4

models time-aligned streams with a decoder-only language model. By further-5

more introducing delays between streams, and selectively feeding or sampling6

them, DSM provides streaming inference of arbitrary output sequences, from7

any input combination, making it applicable to many sequence-to-sequence prob-8

lems. In particular, given a text and audio stream, automatic speech recogni-9

tion (ASR) corresponds to the text stream being delayed, while the opposite10

gives a text-to-speech (TTS) model. We perform extensive experiments for these11

two major sequence-to-sequence tasks, showing that DSM provides state-of-the-12

art performance and latency while supporting arbitrary long sequences, being13

even competitive with offline baselines. We demonstrate DSM applications on14

https://delayed-stream-modeling.github.io/.15

1 Introduction16

We are interested in streaming sequence-to-sequence (seq2seq) learning, i.e. predicting an output17

sequence as we process an input sequence synchronously, as opposed to offline seq2seq where18

inputs are recorded entirely before producing the output sequence. The latter class of offline19

models was introduced for a diverse set of tasks such as handwriting recognition (Graves et al.,20

2013), automatic speech recognition (ASR) (Graves et al., 2013) or machine translation (Bahdanau21

et al., 2015; Sutskever et al., 2014), by designing modality-dependent input encoders, typically22

coupled with a text decoder (Hochreiter & Schmidhuber, 1997). Although this asymmetry between23

input processing and output generation facilitated the adoption of this framework in many tasks,24

it also led to a divergence of model architectures across modalities. As an example, a Tacotron25

text-to-speech (TTS) model (Wang et al., 2017) would differ from an ASR model such as LAS (Chan26

et al., 2016).The advent of decoder-only Transformers (Vaswani et al., 2017) for text language27

modeling reduced the gap between input and output processing by allowing a single model to process28

a simple concatenation of tokens. In parallel, neural compression algorithms that can transform29

images (Razavi et al., 2019; Esser et al., 2020) and audio (Zeghidour et al., 2022; Défossez et al.,30

2023) into discrete tokens analogous to text allowed integrating these modalities along text sequences.31

Thus, a decoder-only model can be used for seq2seq tasks such as ASR (Rubenstein et al., 2023),32

TTS (Wang et al., 2023), spoken dialogue (Défossez et al., 2024), visual understanding (Beyer33

et al., 2024) or image generation (Ramesh et al., 2021). Furthermore, inputs and outputs are34

interchangeable in this framework, meaning a single model can be trained for generation in both35

directions: AudioPALM (Rubenstein et al., 2023) performs TTS and ASR, while CM3Leon (Yu et al.,36

2023) provides both image captioning and generation. Yet, a major limitation of these decoder-only37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://delayed-stream-modeling.github.io/


approaches is their incompatibility with streaming. First, their prefix-based formulation requires38

access to the full input sequence before generation, which prevents real-time inference and inherently39

limits the maximum input length. Second, modalities operate at differing framerates: audio or video40

tokens are typically sampled regularly, while text tokens represent linguistic units pronounced over41

varying durations. This prevents applications such as meeting transcription or continuous translation.42

In this work, we present Delayed Streams Modeling (DSM), a framework for streaming sequence-43

to-sequence learning across modalities. DSM uses a decoder-only model to process as many44

parallel token streams as there are I/O sequences. This multistream architecture, introduced45

by Défossez et al. (2024), allows for a synchronous autoregressive modeling of aligned sequences46

which—when coupled with a finite context—provides real-time, streaming generation over infinite47

input sequences. Moreover, by operating at a constant framerate, DSM allows for batching, a feature48

rarely provided by streaming models. The second key component of DSM is the introduction of49

a delay between streams to control the quality/latency trade-off: shifting a sequence B such that50

it is delayed w.r.t. sequence A allows for a better prediction of the former based on the latter. With51

an appropriate masking, a DSM model can be trained to continuously predict any combination52

of output sequences from any combination of input sequences. To illustrate the abilities of the53

DSM framework, we train speech-text models for ASR and TTS. We show how DSM provides a54

state-of-the-art tradeoff between latency—as low as a few hundred milliseconds—and quality, while55

providing long-form synthesis and transcription, along with precise word timestamps that locate56

where they are pronounced. We furthermore introduce delay conditioning which allows controlling57

the quality/latency trade-off at inference time, without retraining a model. We will release our code58

and models, along with an evaluation dataset for long-form dialog TTS.59

2 Related Work60

Streaming Sequence-to-Sequence Learning. Most streaming seq2seq literature has focused on61

speech-to-text tasks, in particular ASR (Li et al., 2021) and translation (Zhang et al., 2024; Barrault62

et al., 2023). Monotonic (Raffel et al., 2017; Chiu & Raffel, 2018) and local (Chiu et al., 2019)63

attention respectively allow for causal attention of outputs with respect to inputs along and handling64

arbitrarily long sequences. A common limitation of streaming models is their incompatibility with65

batching when using an inference policy (Barrault et al., 2023), or the lack of symmetry meaning66

that specific models must be used for speech-to-text (Li et al., 2021) and text-to-speech (Wang et al.,67

2017). In contrast, DSM allows for batching and accelerated inference. In the context of this paper,68

this allows DSM to be trained for state-of-the-art ASR or TTS (see Figure 1), as shown in Section 4,69

with its performance being even competitive with offline approaches.70

Multimodal language models. Transformer-based autoregressive models are the current main ap-71

proach to sequence-to-sequence problems. They were introduced by Vaswani et al. (2017) for machine72

translation, and were soon extended to multimodal tasks, such as ASR (Radford et al., 2023) or73

visual understanding (Alayrac et al., 2022), by designing modality-specific encoders. More recently,74

neural codecs have provided compact, discrete representations of images (Esser et al., 2020) and au-75

dio (Zeghidour et al., 2022) that remove the need for modality-specific encoders inside the generative76

model, while providing a symmetrical processing of inputs and outputs which allows performing bidi-77

rectional tasks (e.g. speech-to-text and text-to-speech (Rubenstein et al., 2023)) with a single architec-78

ture. Défossez et al. (2024) introduce a multistream decoder architecture for spoken dialogue, which79

predicts text and audio tokens in a streaming fashion, later applied by Labiausse et al. (2025) to real-80

time speech translation. In this work we extend the approach of Défossez et al. (2024), in order to reach81

state-of-the-art performance on the two most competitive speech-text tasks, namely ASR and TTS.82

Moreover, while (Défossez et al., 2024) and (Labiausse et al., 2025) operate with a delay specified83

before training, we propose delay conditioning for inference-time latency control without retraining.84

3 Method85

Notation. We wish to solve a sequence-to-sequence task between two domains X and Y . Each86

domain consists of sequences of vectors of all possible lengths, e.g.87

X =
[

T2N
{(Xt) 2 RT⇥d}, Y =

[

T 02N
{(Yt0) 2 RT 0⇥d0

}. (1)
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Figure 1: Delayed stream modeling for speech-text tasks. Depending on which stream is delayed
with respect to the other, we solve either an ASR or a TTS task. For TTS, we further need an action
stream for the model to let us know when it is ready to receive a new word.

In the case where either Xt or Yt is discrete-valued, we can use a one-hot representation for it in88

Eq. (1). We assume that we are given a joint probability distribution over the outer product domain89

X ⇥ Y , and that we have the random variables X 2 X and Y 2 Y , along with the joint distribution90

P [X,Y ] = p(X,Y ). (2)
We also introduce T 2 N (resp. T 0) the random variable indicating the length of X (resp. Y ),91

along with the marginals p(X) and p(Y ). For any sequence Z, and index t, we denote Z<t =92

(Z1, . . . , Zt�1), potentially empty if t  0. We similarly define Zt, Z�t, and Z>t.93

Sequence-to-sequence as joint modeling. Let’s assume for this paragraph that X is the set of all94

possible monophonic waveforms sampled at 24 kHz, and Y is made of sequences of one-hot encoded95

vectors over a set of words. Intuitively, we assume there exists a coupling p(X,Y ) such that p(X,Y )96

is high if Y represents the transcription of X , or conversely, if X represents a speech utterance of the97

text given by Y . Formally, the task of ASR corresponds to sampling from the distribution P [Y |X],98

while the task of TTS corresponds to sampling from the distribution P [X|Y ]. Thus, each task can be99

solved by accurately estimating both probability distributions,100

q(X,Y ) ⇡ P [Y |X] , q0(Y,X) ⇡ P [X|Y ] . (3)

For simplicity, we now only focus on estimating P [Y |X], the inverse task being obtained by exchang-101

ing the definition of X and Y . We thus call X the input domain, and Y the output domain.102

Auto-regressive modeling of Y . A good candidate for estimating P [Y |X] is auto-regressive model-103

ing, with a Transformer model (Vaswani et al., 2017), under the extra assumptions that the output104

domain Y can be discretized. Thus, one would estimate105

q(y|X,Y<t) ⇡ P [Yt = y|X,Y<t] . (4)

One can then sample Y auto-regressively, knowing X . Due to the lack of explicit structure between106

the time grid t of X and t0 of Y , one would usually condition on the entirety of X , e.g. when using107

Transformer based models, either by prefixing the entire sequence X before the generation Y , or by108

providing X through cross-attention layers, which is mathematically equivalent. This forbids the use109

of the model in a streaming fashion, as the entire input signal X must be known ahead of time, and110

cannot be extended once the generation of Y has started. Such methods often require explicit and111

manual chunking and stitching operations, which also reduces their ability to be efficiently batched.112

Conversely, aligning X and Y to the same frame rate allows for batched streaming inference.113

Aligning sequences for streaming prediction. We assume that both domains X and Y can share the114

same time grid, e.g. (Xt) 2 RT⇥d and (Yt) 2 RT⇥d0
. We call two such aligned sequences streams.115

Then one can simply model116

qaligned (y|Xt, Y<t) ⇡ P [Yt = y|Xt, Y<t] . (5)
Given X ⇠ p(X), we sample auto-regressively from Eq. (5), with a streaming context X ,117

Ỹ1 ⇠ qaligned

⇣
Ỹ1|X1

⌘
, Ỹt ⇠ qaligned

⇣
Ỹ1|Xt, Ỹ<t

⌘
. (6)
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Figure 2: DSM Architecture. Trans-
former is fed with the streaming input Xt.
After a delay ⌧ , a sampler is fed with the
output of the backbone samples Ỹt. At the
next step, the backbone receives both the
sampled value and next streaming input,
whose embeddings are summed.

Hello, world

Text
tokenizer

[5468, 261] [896]
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Speaker
conditioning
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896
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Figure 3: DSM-TTS inference. The input words
“Hello, world” are tokenized. Until the model action
stream outputs a WORD, it is fed with PAD. Then the
first word’s tokens are fed, including a look-ahead text
stream. Once a delay ⌧ = 5 has accumulated, the model
also outputs the audio.

We would want that given X ⇠ p(X), then (X, Ỹ ) ⇠ (X,Y ), so that in particular P
h
Ỹ |X

i
⇡118

P [Y |X]. However this needs not be the case unless certain conditions are met.119

The importance of causality. In particular, for (X, Ỹ ) ⇠ (X,Y ) to be true, Y>t must be independent120

of X>t, knowing Xt. To realize that, one can look at a simple counter-example taking Xt ⇠121

B(0.5) independent Bernoulli variables, and Yt = Xt �Xt+1 the XOR of Xt and Xt+1. Clearly122

P [Yt|Xt, Y<t] ⇠ B(0.5) for all t, yet, given X = (0, 1), one would have123

Y1 = 1 a.s., Ỹ1 ⇠ B(0.5).

Thus Y |X and Ỹ |X have different distributions. Intuitively, given that we do not sample X but124

teacher-force real-world data, we must ensure that when sampling Ỹt, no future value of X>t might125

end up in “contradiction” with the value we sampled.126

Delaying the output stream. In practice, this is achieved by delaying the output stream Yt by a127

number of steps ⌧ > 0. Thus, we replace Eq. (5) by128

q⌧ (y|Xt+⌧ , Y<t) ⇡ P [Yt = y|Xt+⌧ , Y<t] , (7)

and define Ỹ ⌧ , similarly to the procedure described in Eq. 6. Perfect independence is hard to achieve:129

in the case of ASR, a named entity might be ambiguous without context, and only future development130

in a discussion would resolve this ambiguity. Taking ⌧ = T recovers the prefixing or cross-attention131

approaches presented earlier. In practice, there is a trade-off between the level of independence of Yt132

with X>t+⌧ , and the latency of the method.133

Architecture of a DSM. In practice, a DSM, depicted in Figure 2, involves three components: (i) an134

auto-regressive backbone, (ii) an input embedder for X and Y into the backbone, and (iii) a sampler135

for Ỹ ⌧ conditioned on the output of the backbone. The backbone can be a Transformer architecture,136

optionally equipped with cross-attention layers to provide further non-streaming contextual137

information. The embedder for X and Y can be learnt embedding tables in the case where both138

domains are discrete, which are summed before going into the backbone. On the output side, we mask139

the loss on the tokens of X and only compute cross-entropy on Y . Finally, the conditional sampler140

can be a linear layer applied to the output of the backbone to derive logits if Y is discrete. It could141

also be a flow or diffusion model conditioned on the output of the backbone for the continuous case.142

3.1 Representations of the speech and text domains143

We demonstrate the DSM framework on ASR and TTS, where the two domains are text and audio.144

Audio. Given a waveform w 2 Rds·fs with the duration in seconds ds and the sample rate145

fs = 24 kHz, we turn it into a more compact latent space using the Mimi codec (Défossez et al.,146
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2024), giving us a sequence of tensors Zaudio 2 Rds·fr⇥daudio , with a frame rate of fr = 12.5Hz. This147

latent space is discretized with Residual Vector Quantization (Zeghidour et al., 2022) (RVQ), giving us148

a set of Q 2 J1, 32K coarse-to-fine discrete values per time step with cardinality Na=2048, each com-149

ing from one codebook in the RVQ, giving a quantized representation Zq-audio 2 {1, . . . , Na}ds·fr⇥Q.150

Text. We tokenize text using a vocabulary of Nt, specifically trained on speech data transcriptions.151

Two tokens have a special meaning: PAD (indicating the absence of words at this time) and WORD (in-152

dicating the start of a new word) following Défossez et al. (2024). Given a transcript, with word-level153

timestamps, of a waveform of duration ds, its aligned text representation is Z text 2 {1, . . . Nt}ds·fr .154

For each word in the transcript represented by tokens (x1, . . . , xn) 2 {1, . . . , Nt}n and starting at155

s 2 R+ seconds, we define its start index i = floor(s · fr), and store it as Z text
i  WORD, Z text

i+1  x1,156

Z text
i+2  x2, etc. Any step in Z text not assigned by a word token is given the special value PAD.157

3.2 DSM for automatic speech recognition: DSM-ASR158

For ASR, we consider X = Zq-audio and Y = Z text. By predicting the word tokens of Y , we learn to159

transcribe audio, while computing the loss on PAD and WORD tokens trains the model to predict the pre-160

cise boundaries of each word. At inference time, we teacher-force the audio tokens of X and sample161

the full sequence Z text to obtain a transcription along with timestamps with a precision of 80ms (frame162

size). This is allowed by the fact that we apply a constant delay to all words in the sequence, meaning163

we only need to shift the output timestamps back by the same value to recover the true timestamps.164

Deriving aligned speech-text data. We are looking from fine-grained alignment between speech and165

text, however speech datasets are typically aligned at the level of the sentence (Panayotov et al., 2015).166

Conveniently, whisper-timestamped (Louradour, 2023) provides automatic transcriptions with167

word-level timestamps. We rely on these pseudo-labels for the pretraining phase of DSM-ASR. We168

then finetune on a mixture of public datasets with ground-truth transcripts (see details in Section 4.2),169

which pose two challenges. First, the automatic transcriptions extracted by Whisper in pretraining are170

formatted with capitalization and punctuation, but the level of formatting varies a lot between datasets.171

To address this, we train a 300M prefix-LM for automatic formatting, on a dataset of formatted172

Whisper transcripts. A second challenge is that these ground-truth transcripts do not have word-level173

alignment. We derive those by producing pseudo-transcripts with Whisper, and reconciling them174

with the formatted transcript using a Dynamic Time Warping algorithm (Giorgino, 2009).175

Delay conditioning for inference-time control. As shown in Section 4.3.1, transcription quality is176

heavily dependent on the delay between audio and text. Thus, training DSM-ASR with a fixed delay177

requires choosing a latency/quality trade-off beforehand, and retraining a new model for each delay,178

despite the training task remaining fundamentally the same. To instead control this trade-off at infer-179

ence, we train DSM-ASR over random delays, sampled for each sequence. The model is additionally180

conditioned on a cosine embedding (Vaswani et al., 2017) of the delay (expressed in milliseconds),181

added to the inputs. Experiments in Section 4.3.1 show that this delay conditioning performs at least as182

well as models with a fixed delay, and that the effective delay precisely respects the conditioning value.183

3.3 DSM for text-to-speech184

We further apply DSM to TTS, taking X = Z text, Y = Zq-audio. We use a stream delay of 2s (or 25185

steps) on the output audio. For sampling along the Q dimension in Zq-audio, we use a RQ-Transformer186

as a sampler (Lee et al., 2022; Défossez et al., 2024), i.e. a smaller Transformer conditioned on187

the output of the backbone at each timestep and performing autoregressive modeling along the Q188

dimension. All the backbone inputs (generated audio tokens and next word token input) are fed189

through learnt embeddings and summed. We are confronted with the problem that the input domain is190

no longer plain text, but text properly padded for time alignment. While at train time we can teacher-191

force the ground-truth padded text, this is not the case for a novel text to synthesize at inference time.192

Action output stream. We add an extra stream to the TTS outputs, whose goal is to predict whether193

the next input text token will be a WORD token or not. This special input token indicates that a new word194

is starting, and that its tokens are going to follow as inputs. This extra stream controls an inference-195

time action: when predicted by the model, we will feed as input the text tokens for the next word over196

the next time steps. While these are being fed, the model is not allowed to output another WORD action.197

The action output stream is not fed back into the model as it is redundant with the text stream input.198
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Table 1: Short-form ASR performance. We report Word Error Rates (WER, %) for DSM-ASR and
selected non-streaming baselines from the OpenASR leaderboard, along with streaming baselines.

MODEL AVG. AMI EARNINGS22 GIGASPEECH LS CLEAN LS OTHER SPGISPEECH TED-LIUM VOXPOPULI

Non-streaming

WHISPER MEDIUM.EN 8.1 16.7 12.6 11.0 3.0 5.9 3.3 4.1 9.6
WHISPER LARGE-V3 7.5 16.0 11.3 10.0 2.0 3.9 2.9 3.9 9.5
CRISPERWHISPER 6.7 8.7 12.9 10.2 1.8 4.0 2.7 3.2 9.8
CANARY-FLASH 6.4 13.1 12.8 9.9 1.5 2.9 2.0 3.1 5.6
PHI-4 MULTIMODAL 6.1 11.5 10.5 9.8 1.7 3.8 3.1 2.9 5.9
PARAKEET-TDT-V2 6.1 11.2 11.2 9.7 1.7 3.2 2.2 3.4 6.0

Streaming

WHISPER MEDIUM.EN 9.0 22.1 13.4 10.4 3.0 6.2 3.7 4.7 8.6
WHISPER LARGE-V3 9.4 18.4 11.0 10.0 8.4 12.6 3.2 3.8 7.9
DSM-ASR 6.3 11.7 10.6 9.7 1.7 4.3 2.0 3.4 6.8

Lookahead second text stream. The action stream allows the model to predict the next word199

position, although the model has no knowledge of its content for making that decision. The delay200

between text and audio only provides context for the audio generation, however, the decision on201

where to insert pauses and words has no such context. Given a sequence of words m1,m2, . . ., the202

lookahead text stream feeds the tokens of the words mi+l to the backbone while the primary text203

feed contains the tokens of words mi.204

Speaker conditioning. We provide speaker embeddings for up to 5 speakers. Each speaker is205

represented by a 10s audio extract of the same speaker outside of the training segment. Speakers206

are identified using the diarization tool Pyannote (Bredin, 2023). One speaker is elected the main207

speaker. When a turn of the main speaker starts, its first word is prefixed with a special MAIN token,208

while when any other speaker turn starts, it is prefixed with OTHER. This allows us to generate dialogs209

with control over change of turns and speaker voices. Each speaker audio extract is encoded with210

a copy of the Mimi encoder, whose Transformer is fine tuned along with the main TTS model, while211

convolution layers are kept frozen for stability. We concatenate all the speaker embeddings, sum them212

with an absolute positional embedding (Vaswani et al., 2017), and feed them through cross-attention213

layers to the backbone. An overview of the whole DSM-TTS inference process is shown in Figure 3.214

4 Experiments215

4.1 Architectural hyperparameters216

We use a Transformer (Vaswani et al., 2017) backbone with RoPE positional encoding (Su et al.,217

2024). For the DSM-TTS experiments, we use a 1B parameters backbone with a 2048 dimension218

latent space, GLU feed-forward units, 16 layers, and 16 heads of attention. The DSM-ASR uses a 3B219

parameters backbone, with 2048 dimensions, 48 layers, and 32 attention heads, and a linear to predict220

the logits over the text vocabulary, with a cardinality N asr
t = 4000, trained for English only. The221

model uses a variable delay ⌧ which is sampled per batch item in a range of [0.25, 4]s (Section 3.2).222

The TTS model also receives the speaker embedding through cross-attention. The sampler is a223

Transformer along the codebook Q dimension described in Section 3.1, with no context over the224

time axis, with a dimension of 1024, 6 layers for each codebook, with a linear layer to estimate the225

logits. The text tokenizer is trained on bilingual French/English data, with a cardinality N tts
t = 8000.226

The model uses a delay ⌧ of 2s, or 25 steps, and a lookahead stream with l = 2 (Section 3.3). We227

use AdamW (Loshchilov & Hutter, 2019), a cosine learning rate schedule with linear warmup, with228

an initial rate of 2 · 10�4 for the TTS, and 4 · 10�4 for the ASR, and a weight decay of 0.1.229

4.2 Training protocol230

Pretraining. We use an audio collection of 2.5 million hours of publicly available audio content231

in English, and French transcribed with whisper-timestamped. Given the synthetic nature of text232

transcripts, this phase amounts to hard distillation of whisper-timestamped. We train DSM-ASR233

on random 90s segments for 1.6M steps, on 48 H100s. DSM-TTS is trained on 120s audio extracts,234

on 16 H100s, 250k updates with batch size 64.235
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Table 2: Long-form ASR performance. We report Word Error Rates (WER, %) across four long-
form datasets for DSM-ASR and a set of streaming and non-streaming baselines.

MODEL AVG. TED-LIUM MEANWHILE REV16 EARNINGS21

Non-streaming

DISTIL-LARGE V2 8.7 3.7 7.8 12.2 11.2
WHISPER-LARGE-V2 9.0 4.4 6.3 13.6 11.8

Streaming

WHISPER MEDIUM.EN 9.0 3.9 6.7 13.0 12.5
WHISPER LARGE-V3 8.1 3.4 6.1 11.4 11.4

DSM-ASR 7.9 2.9 5.7 12.3 10.6

Finetuning (DSM-ASR). We then finetune the model on a collection of public datasets with236

ground-truth transcripts, described in Appendix A.1 and totaling 24 hours. This training stage lasts237

for 100k updates with batches of 128 examples, using 16 H100s.238

We then adapt the model to long-form inputs, which most public datasets lack, by constructing a239

long-form mixture described in Appendix A.2. We run this stage for DSM-ASR for 25k updates with240

batch size 32, using 16 H100s.241

4.3 Automatic Speech Recognition242

We evaluate DSM-ASR (with a default delay of 2.5s) in terms of transcription quality, latency, and243

timestamps precision. We consider short-form transcription (shorter than 30s), as it is the focus of the244

OpenASR Leaderboard (Srivastav et al., 2023). We also look at streaming inference for long-form245

transcription (up to 2 hours).246

Baselines. We benchmark DSM-ASR against leading models of the OpenASR Leaderboard,247

including Whisper (Radford et al., 2023), Canary-Flash (Zelasko et al., 2025), Phi-4 Multimodal248

Instruct (Abouelenin et al., 2025) and Parakeet (Xu et al., 2023). Notably, all these models perform249

non-streaming ASR, as they require access to the full input sequence. We thus also include a250

streaming variant of Whisper (Macháček et al., 2023), with a delay of 2.5s for a fair comparison.251

For long-form transcription, we add the Distil-Whisper (Gandhi et al., 2023) variant.252

Transcription quality. We report micro-averaged Word Error Rate (WER), which avoids over-253

emphasizing short sequences, and is the standard computation used in the OpenASR Leaderboard, of254

which we use the official evaluation codebase. 1 Throughout this Section, we use Whisper normalizer255

for English (Radford et al., 2023).256

Latency. We evaluate the latency of streaming models as the average delay between the real257

timestamp of a word, and the time when this word is transcribed in the output. In the absence of258

ground-truth timestamps, we use pseudo-timestamps on Librispeech test-clean (Panayotov et al.,259

2015) provided by Lugosch et al. (2019). These timestamps were obtained by Montreal Forced260

Aligner (McAuliffe et al., 2025), and use them as reference.261

Timestamps. See Appendix C for a complete description.262

4.3.1 ASR Results263

Short-form transcription. Table 1 shows that DSM-ASR is significantly better than streaming base-264

lines, and even competitive with the best, non-streaming models of the OpenASR Leaderboard. With265

an average WER of 6.3%—while 6.1% being the current best score of the leaderboard—DSM-ASR266

is remarkably the only streaming model among top ASR systems. In Appendix C, we see that, in267

terms of timestamp precision, DSM-ASR performs significantly better than Whisper Large-v3 while268

somewhat underperforming CrisperWhisper, though with a better WER.269

Long-form transcription. Table 2 reports WER values across 4 long-form datasets with270

sequences up to 2 hours: TED-LIUM (Hernandez et al., 2018), Meanwhile (Radford et al., 2023),271

Rev16 (Radford et al., 2023), and Earnings21 (Rio et al., 2021). We see that DSM-ASR outperforms272

both streaming and non-streaming baselines.273

1https://github.com/huggingface/open_asr_leaderboard
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Figure 4: ASR WER and throughput vs. delay. Word Error Rate (WER, %) (left) and throughput
(right) in function of the delay. Throughput is the product between Real-Time Factor and batch size.

Table 3: Long-form TTS WER. We compare open-source and closed-source baselines. Short-form
inference is ran with a short context. ElevenLabs is evaluated on a limited subset due to its cost.

WER ENGLISH (%) (#) WER FRENCH (%) (#)
MODEL AVG. DIALOGS MONOLOGUES AVG. DIALOGS MONOLOGUES

Short-form inference

DIA 6.7 7.8 5.7 24.9 22.4 27.3
CSM 4.7 3.9 5.4 - - -
ORPHEUS 7.1 3.8 10.5 - - -

Long-form inference

CSM 15.5 15.7 15.4 - - -
DSM-TTS (OURS) 3.6 2.8 4.3 6.4 3.7 9.1

Long-form inference, small subset

DSM-TTS (OURS) 7.5 10.4 4.5 8.1 8.9 7.4
11LABS FLASH V2.5 2.5 1.0 4.0 4.5 4.1 4.9
11LABS MULTILINGUAL V2 2.1 1.0 3.1 2.9 2.8 3.0

Delay conditioning and latency. Figure 4 (left) compares the WER obtained for DSM-ASR with274

and without delay conditioning, along with Whisper-Streaming. We observe that the delay of275

Whisper-Streaming has a large variance, while DSM-ASR has a precision of ⇠300ms around its276

target delay. Interestingly, training a single DSM-ASR model with delay conditioning outperforms277

fixed delay variants. Figure 4 (right) shows the throughput on an H100 GPU: DSM-ASR can process278

400 sequences simultaneously while being real-time and its throughput is independent of the delay.279

This is unlike Whisper-Streaming which reduces its delay by re-evaluating the partial input sequence280

more frequently, increasing the computational cost. Combined with the fact that Whisper-Streaming281

does not allow for batching, this results in a 100x lower throughput than that of DSM-ASR.282

4.4 Text-To-Speech experiments283

Evaluation datasets. We collect a novel dataset for long-form TTS evaluation in English and French.284

We first use news articles from the NTREX-128 (Federmann et al., 2022) text dataset, given 123285

monologues per language. To evaluate controllable dialog capabilities, we use 110 synthetic scripts286

per language generated by a LLM, spanning three categories: daily life, technical, and number-heavy287

discussions. For voice conditioning, we use samples from the test set of VCTK (Yamagishi et al.,288

2019) for English, and from the test and valid sets of CML (Oliveira et al., 2023) for French. We289

provide examples and more details in the Appendix B, and we will release this dataset.290

Metrics. We evaluate the per-document WER, using text normalization from Whisper (Radford291

et al., 2023). We collect subjective metrics covering both the speaker similarity to the conditioning292

and overall speech quality, see Appendix A for more details.293

Baselines. We compare to open-source models Dia, Orpheus, and CSM, as well as the closed-source294

ElevenLabs API.2 Dia and ElevenLabs support French and English, while Orpheus and CSM only295

support English. Dia, Orpheus and CSM can be speaker-conditioned through prefixing, with Dia296

2Available at nari-labs/dia, canopyai/Orpheus-TTS, SesameAILabs/csm and elevenlabs.io.

8

https://github.com/nari-labs/dia
https://github.com/canopyai/Orpheus-TTS
https://github.com/SesameAILabs/csm
https://elevenlabs.io/


Table 4: Subjective evaluations on TTS. We compare with baselines over two axes through human
evaluations: speech quality, measured as MUSHRA scores (1–100, along with std. of the mean), and
speaker-similarity win-rates, summarized as ELO scores (with 95% confidence intervals).

ENGLISH FRENCH
MODEL QUALITY (") SPK. SIM. (") QUALITY(") SPK. SIM.(")

DIA 52.9 ± 2.0 1930.0 ± 22.6 30.0 ± 2.0 1578.7 ± 53.8
CSM 43.0 ± 1.4 2056.0 ± 18.6 - -
ORPHEUS 33.7 ± 1.8 1820.5 ± 32.7 - -
DSM-TTS (OURS) 50.5 ± 1.8 2066.9 ± 22.8 52.1 ± 1.6 2078.5 ± 18.0
11LABS FLASH V2.5 64.1 ± 1.7 1977.8 ± 22.6 65.7 ± 1.8 1926.0 ± 15.7
11LABS MULTILINGUAL V2 61.3 ± 1.8 2067.4 ± 23.5 68.7 ± 1.6 2099.3 ± 17.8

Table 5: TTS: Latency and throughput. We compare the inference performance of DSM-TTS and
selected baselines. Real-Time Factor (RTF) is higher than 1 if the model can produce audio in real
time. Throughput is the product between Real-Time-factor and batch size.

MODEL MODEL SIZE LATENCY (MS)(#) RTF(") THROUGHPUT(")

DIA 1.6B - 0.7 0.7
CSM 1.5B - 1.0 1.0
ORPHEUS 3.8B - 0.7 0.7
DSM-TTS B.S.=1 3.7B 185 2.7 2.7
DSM-TTS B.S.=32 3.7B 560 2.1 67.4
DSM-TTS B.S.=64 3.7B 708 1.7 111.3

and CSM supporting dialogs. For Orpheus and ElevenLabs, dialogs are emulated by concatenating297

single-speaker turns. Details of how baselines are evaluated are provided in Appendix E.298

4.4.1 TTS Results299

Main results. As seen in Table 3, our approach provides the lowest WER across all languages for300

both monologues and dialogs. Our method is the only one to run long-form inference across all cases,301

CSM showing strong degradation when running with longer sequences, Dia only being trained for302

20s output, and ElevenLab requiring per-turn generation for dialogs. In terms of subjective results,303

our model is on par with the commercial ElevenLab models for speaker similarity, outperforming all304

existing methods. In quality, it is equivalent to the best open-source baseline for English and much305

better for French, while lagging behind commercial models. Note that we kept all methods with their306

original sample-rate (e.g. 44.1kHz for ElevenLab) which contributes to the difference.307

Throughput and latency. Our method is easily batchable, leading to gains in throughput while308

staying compatible with real-time generation. As shown in Table 5, on a single H100 the amount of309

audio generated is 100x real-time, more details are provided in Appendix G.310

DSM-ASR and DSM-TTS as a speech interface for LLMs. We combine DSM-ASR, DSM-TTS,311

and Gemma 3 (Gemma Team et al., 2025) into an LLM voice chat application with sub-second latency.312

We provide conversation samples at https://delayed-stream-modeling.github.io/.313

5 Conclusion314

We introduce Delayed Streams Modeling, a flexible framework for streaming sequence-to-sequence315

learning. DSM provides a remarkable trade-off between quality and latency, and an unprecedented316

throughput among streaming models. Focusing on speech-text tasks, DSM-ASR is the first streaming317

ASR model to provide timestamped, formatted transcripts that competes with the top offline models,318

while DSM-TTS is competitive with non-streaming baselines while being the only model providing319

arbitrarily long synthesis. In future work, we will extend DSM to more sequential multimodal tasks.320

Limitations. We acknowledge that streaming naturalistic speech with voice conditioning opens321

up both opportunities in inclusive human-machine interactions and risks of fraudulent impersonation.322

Addressing the latter requires that public access to such technologies is accompanied by proper user323

terms, voice verification mechanisms, and watermarking of generated content. Finally, the need for324

aligned domains reduces the amount of gold-standard ground-truth data that can be used for training.325
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Justification: We do not claim any theorems. However, when introducing the DSM frame-602
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In the case of closed-source models, it may be that access to the model is limited in654

some way (e.g., to registered users), but it should be possible for other researchers655

to have some path to reproducing or verifying the results.656
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5. Open access to data and code657

Question: Does the paper provide open access to the data and code, with sufficient instruc-658

tions to faithfully reproduce the main experimental results, as described in supplemental659

material?660

Answer: [No]661

Justification: Although we will release inference code along with our new TTS evaluation662

dataset, neither is ready at time of submission, hence the no answer.663
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versions (if applicable).681

• Providing as much information as possible in supplemental material (appended to the682
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6. Experimental setting/details684

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-685

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the686

results?687

Answer: [Yes]688

Justification: We provide an extensive description of training datasets and either perform689

evaluation on public benchmarks, or on new datasets that we will release.690
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• The answer NA means that the paper does not include experiments.692

• The experimental setting should be presented in the core of the paper to a level of detail693

that is necessary to appreciate the results and make sense of them.694

• The full details can be provided either with the code, in appendix, or as supplemental695

material.696

7. Experiment statistical significance697

Question: Does the paper report error bars suitably and correctly defined or other appropriate698

information about the statistical significance of the experiments?699

Answer: [Yes]700

Justification: We report error bars for human evaluations of TTS, as well as error bars for701

the latency of ASR models. We do not provide error bars for WERs.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• The authors should answer "Yes" if the results are accompanied by error bars, confi-705

dence intervals, or statistical significance tests, at least for the experiments that support706

the main claims of the paper.707

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for708

example, train/test split, initialization, random drawing of some parameter, or overall709

run with given experimental conditions).710

• The method for calculating the error bars should be explained (closed form formula,711

call to a library function, bootstrap, etc.)712

• The assumptions made should be given (e.g., Normally distributed errors).713

• It should be clear whether the error bar is the standard deviation or the standard error714

of the mean.715

• It is OK to report 1-sigma error bars, but one should state it. The authors should716

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis717

of Normality of errors is not verified.718

• For asymmetric distributions, the authors should be careful not to show in tables or719

figures symmetric error bars that would yield results that are out of range (e.g. negative720

error rates).721

• If error bars are reported in tables or plots, The authors should explain in the text how722

they were calculated and reference the corresponding figures or tables in the text.723

8. Experiments compute resources724

Question: For each experiment, does the paper provide sufficient information on the com-725

puter resources (type of compute workers, memory, time of execution) needed to reproduce726

the experiments?727

Answer: [Yes]728

Justification: We specify the number and type of GPU along with the number of training729

steps and batch size.730

Guidelines:731

• The answer NA means that the paper does not include experiments.732

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,733

or cloud provider, including relevant memory and storage.734

• The paper should provide the amount of compute required for each of the individual735

experimental runs as well as estimate the total compute.736

• The paper should disclose whether the full research project required more compute737

than the experiments reported in the paper (e.g., preliminary or failed experiments that738

didn’t make it into the paper).739

9. Code of ethics740

Question: Does the research conducted in the paper conform, in every respect, with the741

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?742

Answer: [Yes]743

Justification: In particular, the evaluation dataset that we collected is made of textual data744

either original or in the public domain, along with voice samples from public academic745

datasets.746

Guidelines:747

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.748

• If the authors answer No, they should explain the special circumstances that require a749

deviation from the Code of Ethics.750

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-751

eration due to laws or regulations in their jurisdiction).752

10. Broader impacts753

Question: Does the paper discuss both potential positive societal impacts and negative754

societal impacts of the work performed?755

Answer: [Yes]756

Justification: We discuss the risk associated with voice cloning.757

Guidelines:758
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• The answer NA means that there is no societal impact of the work performed.759

• If the authors answer NA or No, they should explain why their work has no societal760

impact or why the paper does not address societal impact.761

• Examples of negative societal impacts include potential malicious or unintended uses762

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations763

(e.g., deployment of technologies that could make decisions that unfairly impact specific764

groups), privacy considerations, and security considerations.765

• The conference expects that many papers will be foundational research and not tied766

to particular applications, let alone deployments. However, if there is a direct path to767

any negative applications, the authors should point it out. For example, it is legitimate768

to point out that an improvement in the quality of generative models could be used to769

generate deepfakes for disinformation. On the other hand, it is not needed to point out770

that a generic algorithm for optimizing neural networks could enable people to train771

models that generate Deepfakes faster.772

• The authors should consider possible harms that could arise when the technology is773

being used as intended and functioning correctly, harms that could arise when the774

technology is being used as intended but gives incorrect results, and harms following775

from (intentional or unintentional) misuse of the technology.776

• If there are negative societal impacts, the authors could also discuss possible mitigation777

strategies (e.g., gated release of models, providing defenses in addition to attacks,778

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from779

feedback over time, improving the efficiency and accessibility of ML).780

11. Safeguards781

Question: Does the paper describe safeguards that have been put in place for responsible782

release of data or models that have a high risk for misuse (e.g., pretrained language models,783

image generators, or scraped datasets)?784

Answer: [Yes]785

Justification: We will release a version of TTS without voice cloning.786

Guidelines:787

• The answer NA means that the paper poses no such risks.788

• Released models that have a high risk for misuse or dual-use should be released with789

necessary safeguards to allow for controlled use of the model, for example by requiring790

that users adhere to usage guidelines or restrictions to access the model or implementing791

safety filters.792

• Datasets that have been scraped from the Internet could pose safety risks. The authors793

should describe how they avoided releasing unsafe images.794

• We recognize that providing effective safeguards is challenging, and many papers do795

not require this, but we encourage authors to take this into account and make a best796

faith effort.797

12. Licenses for existing assets798

Question: Are the creators or original owners of assets (e.g., code, data, models), used in799

the paper, properly credited and are the license and terms of use explicitly mentioned and800

properly respected?801

Answer: [Yes]802

Justification: We provide references for all existing datasets that we use, and credit all the803

packages (whisper-timestamped, DTW, OpenASRLeaderboard) used in our experiments.804

Guidelines:805

• The answer NA means that the paper does not use existing assets.806

• The authors should cite the original paper that produced the code package or dataset.807

• The authors should state which version of the asset is used and, if possible, include a808

URL.809

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.810
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• For scraped data from a particular source (e.g., website), the copyright and terms of811

service of that source should be provided.812

• If assets are released, the license, copyright information, and terms of use in the813

package should be provided. For popular datasets, paperswithcode.com/datasets814

has curated licenses for some datasets. Their licensing guide can help determine the815

license of a dataset.816

• For existing datasets that are re-packaged, both the original license and the license of817

the derived asset (if it has changed) should be provided.818

• If this information is not available online, the authors are encouraged to reach out to819

the asset’s creators.820

13. New assets821

Question: Are new assets introduced in the paper well documented and is the documentation822

provided alongside the assets?823

Answer: [Yes]824

Justification: We describe the evaluation dataset in appendix.825

Guidelines:826

• The answer NA means that the paper does not release new assets.827

• Researchers should communicate the details of the dataset/code/model as part of their828

submissions via structured templates. This includes details about training, license,829

limitations, etc.830

• The paper should discuss whether and how consent was obtained from people whose831

asset is used.832

• At submission time, remember to anonymize your assets (if applicable). You can either833

create an anonymized URL or include an anonymized zip file.834

14. Crowdsourcing and research with human subjects835

Question: For crowdsourcing experiments and research with human subjects, does the paper836

include the full text of instructions given to participants and screenshots, if applicable, as837

well as details about compensation (if any)?838

Answer: [Yes]839

Justification: We work with human raters for subjective evalution of TTS using standardized840

protocols such as MUSHRA. Details are provided in the Appendix F.841

Guidelines:842

• The answer NA means that the paper does not involve crowdsourcing nor research with843

human subjects.844

• Including this information in the supplemental material is fine, but if the main contribu-845

tion of the paper involves human subjects, then as much detail as possible should be846

included in the main paper.847

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,848

or other labor should be paid at least the minimum wage in the country of the data849

collector.850

15. Institutional review board (IRB) approvals or equivalent for research with human851

subjects852

Question: Does the paper describe potential risks incurred by study participants, whether853

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)854

approvals (or an equivalent approval/review based on the requirements of your country or855

institution) were obtained?856

Answer: [No]857

Justification: We only ran subjective audio evaluations on generation that are low risk, e.g.858

it contains no unsafe or shocking content. Thus we did not consider it necessary to have859

overview for those studies.860

Guidelines:861
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• The answer NA means that the paper does not involve crowdsourcing nor research with862

human subjects.863

• Depending on the country in which research is conducted, IRB approval (or equivalent)864

may be required for any human subjects research. If you obtained IRB approval, you865

should clearly state this in the paper.866

• We recognize that the procedures for this may vary significantly between institutions867

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the868

guidelines for their institution.869

• For initial submissions, do not include any information that would break anonymity (if870

applicable), such as the institution conducting the review.871

16. Declaration of LLM usage872

Question: Does the paper describe the usage of LLMs if it is an important, original, or873

non-standard component of the core methods in this research? Note that if the LLM is used874

only for writing, editing, or formatting purposes and does not impact the core methodology,875

scientific rigorousness, or originality of the research, declaration is not required.876

Answer: [Yes]877

Justification: we describe how a LLM is used to generate synthetic dialogs for evaluation of878

our models in Section 4.4, and Appendix B.879

Guidelines:880

• The answer NA means that the core method development in this research does not881

involve LLMs as any important, original, or non-standard components.882

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)883

for what should or should not be described.884
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