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Abstract

We introduce Delayed Streams Modeling (DSM), a flexible formulation for
streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence
generation is typically cast in an offline manner: the model consumes the com-
plete input sequence before generating the first output timestep. DSM instead
models time-aligned streams with a decoder-only language model. By further-
more introducing delays between streams, and selectively feeding or sampling
them, DSM provides streaming inference of arbitrary output sequences, from
any input combination, making it applicable to many sequence-to-sequence prob-
lems. In particular, given a text and audio stream, automatic speech recogni-
tion (ASR) corresponds to the text stream being delayed, while the opposite
gives a text-to-speech (TTS) model. We perform extensive experiments for these
two major sequence-to-sequence tasks, showing that DSM provides state-of-the-
art performance and latency while supporting arbitrary long sequences, being
even competitive with offline baselines. We demonstrate DSM applications on
https://delayed-stream-modeling.github.io/|

1 Introduction

We are interested in streaming sequence-to-sequence (seq2seq) learning, i.e. predicting an output
sequence as we process an input sequence synchronously, as opposed to offline seq2seq where
inputs are recorded entirely before producing the output sequence. The latter class of offline
models was introduced for a diverse set of tasks such as handwriting recognition (Graves et al.|
2013)), automatic speech recognition (ASR) (Graves et al.,|2013)) or machine translation (Bahdanau
et al.| 2015} [Sutskever et al.| 2014), by designing modality-dependent input encoders, typically
coupled with a text decoder (Hochreiter & Schmidhuber}|1997). Although this asymmetry between
input processing and output generation facilitated the adoption of this framework in many tasks,
it also led to a divergence of model architectures across modalities. As an example, a Tacotron
text-to-speech (TTS) model (Wang et al., [2017) would differ from an ASR model such as LAS (Chan
et al., [2016).The advent of decoder-only Transformers (Vaswani et al., 2017) for text language
modeling reduced the gap between input and output processing by allowing a single model to process
a simple concatenation of tokens. In parallel, neural compression algorithms that can transform
images (Razavi et al., 2019; |[Esser et al.,|2020) and audio (Zeghidour et al.,|[2022; |[Défossez et al.,
2023) into discrete tokens analogous to text allowed integrating these modalities along text sequences.
Thus, a decoder-only model can be used for seq2seq tasks such as ASR (Rubenstein et al.,[2023),
TTS (Wang et al.| 2023), spoken dialogue (Défossez et al., [2024), visual understanding (Beyer
et al., [2024) or image generation (Ramesh et al., 2021). Furthermore, inputs and outputs are
interchangeable in this framework, meaning a single model can be trained for generation in both
directions: AudioPALM (Rubenstein et al.,|[2023) performs TTS and ASR, while CM3Leon (Yu et al.,
2023) provides both image captioning and generation. Yet, a major limitation of these decoder-only
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approaches is their incompatibility with streaming. First, their prefix-based formulation requires
access to the full input sequence before generation, which prevents real-time inference and inherently
limits the maximum input length. Second, modalities operate at differing framerates: audio or video
tokens are typically sampled regularly, while text tokens represent linguistic units pronounced over
varying durations. This prevents applications such as meeting transcription or continuous translation.

In this work, we present Delayed Streams Modeling (DSM), a framework for streaming sequence-
to-sequence learning across modalities. DSM uses a decoder-only model to process as many
parallel token streams as there are I/O sequences. This multistream architecture, introduced
by |Défossez et al. (2024), allows for a synchronous autoregressive modeling of aligned sequences
which—when coupled with a finite context—provides real-time, streaming generation over infinite
input sequences. Moreover, by operating at a constant framerate, DSM allows for batching, a feature
rarely provided by streaming models. The second key component of DSM is the introduction of
a delay between streams to control the quality/latency trade-off: shifting a sequence B such that
it is delayed w.r.t. sequence A allows for a better prediction of the former based on the latter. With
an appropriate masking, a DSM model can be trained to continuously predict any combination
of output sequences from any combination of input sequences. To illustrate the abilities of the
DSM framework, we train speech-text models for ASR and TTS. We show how DSM provides a
state-of-the-art tradeoff between latency—as low as a few hundred milliseconds—and quality, while
providing long-form synthesis and transcription, along with precise word timestamps that locate
where they are pronounced. We furthermore introduce delay conditioning which allows controlling
the quality/latency trade-off at inference time, without retraining a model. We will release our code
and models, along with an evaluation dataset for long-form dialog TTS.

2 Related Work

Streaming Sequence-to-Sequence Learning. Most streaming seq2seq literature has focused on
speech-to-text tasks, in particular ASR (L1 et al.,|2021) and translation (Zhang et al.,|[2024; Barrault
et al., [2023). Monotonic (Raffel et al., 2017; |(Chiu & Raffel, 2018) and local (Chiu et al., 2019)
attention respectively allow for causal attention of outputs with respect to inputs along and handling
arbitrarily long sequences. A common limitation of streaming models is their incompatibility with
batching when using an inference policy (Barrault et al., [2023)), or the lack of symmetry meaning
that specific models must be used for speech-to-text (L1 et al.,2021) and text-to-speech (Wang et al.|
2017). In contrast, DSM allows for batching and accelerated inference. In the context of this paper,
this allows DSM to be trained for state-of-the-art ASR or TTS (see Figure E]) as shown in Section@,
with its performance being even competitive with offline approaches.

Multimodal language models. Transformer-based autoregressive models are the current main ap-
proach to sequence-to-sequence problems. They were introduced by |Vaswani et al. (2017) for machine
translation, and were soon extended to multimodal tasks, such as ASR (Radford et al.| 2023) or
visual understanding (Alayrac et al.,|[2022), by designing modality-specific encoders. More recently,
neural codecs have provided compact, discrete representations of images (Esser et al.,2020) and au-
dio (Zeghidour et al.| 2022) that remove the need for modality-specific encoders inside the generative
model, while providing a symmetrical processing of inputs and outputs which allows performing bidi-
rectional tasks (e.g. speech-to-text and text-to-speech (Rubenstein et al.,[2023)) with a single architec-
ture. |Défossez et al.|(2024) introduce a multistream decoder architecture for spoken dialogue, which
predicts text and audio tokens in a streaming fashion, later applied by [Labiausse et al. (2025)) to real-
time speech translation. In this work we extend the approach of|Défossez et al. (2024), in order to reach
state-of-the-art performance on the two most competitive speech-text tasks, namely ASR and TTS.
Moreover, while (Défossez et al.,|2024) and (Labiausse et al.,2025) operate with a delay specified
before training, we propose delay conditioning for inference-time latency control without retraining.

3 Method

Notation. We wish to solve a sequence-to-sequence task between two domains X and ). Each
domain consists of sequences of vectors of all possible lengths, e.g.

X=J{xyer™,  y=J{() eRT*} )

TeN T'eN
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Figure 1: Delayed stream modeling for speech-text tasks. Depending on which stream is delayed
with respect to the other, we solve either an ASR or a TTS task. For TTS, we further need an action
stream for the model to let us know when it is ready to receive a new word.

In the case where either X; or Y; is discrete-valued, we can use a one-hot representation for it in
Eq. (I). We assume that we are given a joint probability distribution over the outer product domain
X x ), and that we have the random variables X € X and Y € ), along with the joint distribution

P[X,Y] =p(X,Y). 2)

We also introduce T € N (resp. T”) the random variable indicating the length of X (resp. Y),
along with the marginals p(X) and p(Y’). For any sequence Z, and index ¢, we denote Z.; =
(Z1,...,Z,_1), potentially empty if ¢ < 0. We similarly define Z<;, Z>¢, and Z~,.

Sequence-to-sequence as joint modeling. Let’s assume for this paragraph that X is the set of all
possible monophonic waveforms sampled at 24 kHz, and ) is made of sequences of one-hot encoded
vectors over a set of words. Intuitively, we assume there exists a coupling p(X,Y) such that p(X,Y)
is high if Y represents the transcription of X, or conversely, if X represents a speech utterance of the
text given by Y. Formally, the task of ASR corresponds to sampling from the distribution P [Y|X],
while the task of TTS corresponds to sampling from the distribution P [X'|Y]. Thus, each task can be
solved by accurately estimating both probability distributions,

X, Y)=P[YIX], (Y, X)=P[X|Y]. ©)

For simplicity, we now only focus on estimating IP [Y'| X], the inverse task being obtained by exchang-
ing the definition of X and Y. We thus call X" the input domain, and ) the output domain.

Auto-regressive modeling of Y. A good candidate for estimating P [Y'| X] is auto-regressive model-
ing, with a Transformer model (Vaswani et al., 2017), under the extra assumptions that the output
domain Y can be discretized. Thus, one would estimate

gyl X, Y<) = P [Yt =y|X, Y<t] . @

One can then sample Y auto-regressively, knowing X . Due to the lack of explicit structure between
the time grid ¢ of X and ¢’ of Y, one would usually condition on the entirety of X, e.g. when using
Transformer based models, either by prefixing the entire sequence X before the generation Y, or by
providing X through cross-attention layers, which is mathematically equivalent. This forbids the use
of the model in a streaming fashion, as the entire input signal X must be known ahead of time, and
cannot be extended once the generation of Y has started. Such methods often require explicit and
manual chunking and stitching operations, which also reduces their ability to be efficiently batched.
Conversely, aligning X and Y to the same frame rate allows for batched streaming inference.

Aligning sequences for streaming prediction. We assume that both domains X and ) can share the

same time grid, e.g. (X;) € R7*? and (V;) € R7*%. We call two such aligned sequences streams.
Then one can simply model

C]aligned (y|X§ta Y<t) ~P D/t = y|X§t7 Y<t} . (5)
Given X ~ p(X), we sample auto-regressively from Eq. (5), with a streaming context X,
}}1 ™~ (aligned (Yl‘Xl) ) ﬁ "~ {aligned <}71|X§t7 Y/<t) . (6)
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Figure 2: DSM Architecture. Trans- Figure 3: DSM-TTS inference. The input words
former is fed with the streaming input X,;. “Hello, world” are tokenized. Until the model action
After a delay 7, a sampler is fed with the stream outputs a WORD, it is fed with PAD. Then the
output of the backbone samples YQ At the first word’s tokens are fed, including a look-ahead text
next step, the backbone receives both the ~ stream. Once a delay 7 = 5 has accumulated, the model
sampled value and next streaming input, also outputs the audio.

whose embeddings are summed.

We would want that given X ~ p(X), then (X,Y) ~ (X,Y), so that in particular P [}7|X] R~
P[Y'| X]. However this needs not be the case unless certain conditions are met.

The importance of causality. In particular, for (X,Y) ~ (X, Y) to be true, Y=, must be independent
of X, knowing X<;. To realize that, one can look at a simple counter-example taking X; ~
B(0.5) independent Bernoulli variables, and Y; = X; ® X;;1 the XOR of X; and X, ;. Clearly
P[Y;| X<, Y<i] ~ B(0.5) for all ¢, yet, given X = (0, 1), one would have

Yl =1 a.s., }71 ~ 8(05)

Thus Y| X and }7|X have different distributions. Intuitively, given that we do not sample X but

teacher-force real-world data, we must ensure that when sampling Y, no future value of X, might
end up in “contradiction” with the value we sampled.

Delaying the output stream. In practice, this is achieved by delaying the output stream Y; by a
number of steps 7 > 0. Thus, we replace Eq. (5)) by

qr (y‘X§t+T7Y<t) %]P[Yt :y‘X§t+T7Y<t]a @)

and define Y7, similarly to the procedure described in Eq. @ Perfect independence is hard to achieve:
in the case of ASR, a named entity might be ambiguous without context, and only future development
in a discussion would resolve this ambiguity. Taking 7 = 7' recovers the prefixing or cross-attention
approaches presented earlier. In practice, there is a trade-off between the level of independence of Y;
with X< 4., and the latency of the method.

Architecture of a DSM. In practice, a DSM, depicted in Figure |2} involves three components: (i) an
auto-regressive backbone, (ii) an input embedder for X and Y into the backbone, and (iii) a sampler
for Y™ conditioned on the output of the backbone. The backbone can be a Transformer architecture,
optionally equipped with cross-attention layers to provide further non-streaming contextual
information. The embedder for X and Y can be learnt embedding tables in the case where both
domains are discrete, which are summed before going into the backbone. On the output side, we mask
the loss on the tokens of X and only compute cross-entropy on Y. Finally, the conditional sampler
can be a linear layer applied to the output of the backbone to derive logits if Y is discrete. It could
also be a flow or diffusion model conditioned on the output of the backbone for the continuous case.

3.1 Representations of the speech and text domains

‘We demonstrate the DSM framework on ASR and TTS, where the two domains are text and audio.

Audio. Given a waveform w € R%fs with the duration in seconds d, and the sample rate
fs = 24kHz, we turn it into a more compact latent space using the Mimi codec (Défossez et al.|
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2024), giving us a sequence of tensors Z24i0 ¢ Rs frxduwdo with a frame rate of f, = 12.5Hz. This
latent space is discretized with Residual Vector Quantization (Zeghidour et al.,|2022) (RVQ), giving us
aset of Q € [1,32] coarse-to-fine discrete values per time step with cardinality N,=2048, each com-
ing from one codebook in the RVQ, giving a quantized representation Z944d° ¢ {1 . . N, }dsfrxQ

Text. We tokenize text using a vocabulary of N, specifically trained on speech data transcriptions.
Two tokens have a special meaning: PAD (indicating the absence of words at this time) and WORD (in-
dicating the start of a new word) following [Défossez et al. (2024). Given a transcript, with word-level
timestamps, of a waveform of duration d, its aligned text representation is Z'** € {1,... N;}%/r,
For each word in the transcript represented by tokens (z1,...,z,) € {1,..., N;}" and starting at
s € R seconds, we define its start index i = floor(s - f,), and store it as Z**' +— WORD, Zi 1,
ZiT < w9, etc. Any step in Z'* not assigned by a word token is given the special value PAD.

3.2 DSM for automatic speech recognition: DSM-ASR

For ASR, we consider X = Z9di© and Y = 7', By predicting the word tokens of Y, we learn to
transcribe audio, while computing the loss on PAD and WORD tokens trains the model to predict the pre-
cise boundaries of each word. At inference time, we teacher-force the audio tokens of X and sample
the full sequence Z'** to obtain a transcription along with timestamps with a precision of 80ms (frame
size). This is allowed by the fact that we apply a constant delay to all words in the sequence, meaning
we only need to shift the output timestamps back by the same value to recover the true timestamps.

Deriving aligned speech-text data. We are looking from fine-grained alignment between speech and
text, however speech datasets are typically aligned at the level of the sentence (Panayotov et al.| 2015).
Conveniently, whisper-timestamped (Louradour,[2023) provides automatic transcriptions with
word-level timestamps. We rely on these pseudo-labels for the pretraining phase of DSM-ASR. We
then finetune on a mixture of public datasets with ground-truth transcripts (see details in Section [4.2),
which pose two challenges. First, the automatic transcriptions extracted by Whisper in pretraining are
formatted with capitalization and punctuation, but the level of formatting varies a lot between datasets.
To address this, we train a 300M prefix-LM for automatic formatting, on a dataset of formatted
Whisper transcripts. A second challenge is that these ground-truth transcripts do not have word-level
alignment. We derive those by producing pseudo-transcripts with Whisper, and reconciling them
with the formatted transcript using a Dynamic Time Warping algorithm (Giorgino, 2009).

Delay conditioning for inference-time control. As shown in Section|4.3.1| transcription quality is
heavily dependent on the delay between audio and text. Thus, training DSM-ASR with a fixed delay
requires choosing a latency/quality trade-off beforehand, and retraining a new model for each delay,
despite the training task remaining fundamentally the same. To instead control this trade-off at infer-
ence, we train DSM-ASR over random delays, sampled for each sequence. The model is additionally
conditioned on a cosine embedding (Vaswanti et al.,|2017) of the delay (expressed in milliseconds),
added to the inputs. Experiments in Section[4.3.1/show that this delay conditioning performs at least as
well as models with a fixed delay, and that the effective delay precisely respects the conditioning value.

3.3 DSM for text-to-speech

We further apply DSM to TTS, taking X = Z& Y = Z%adio We yse a stream delay of 2s (or 25
steps) on the output audio. For sampling along the ) dimension in Z9%°, we use a RQ-Transformer
as a sampler (Lee et al., [2022; |Défossez et al., 2024), i.e. a smaller Transformer conditioned on
the output of the backbone at each timestep and performing autoregressive modeling along the )
dimension. All the backbone inputs (generated audio tokens and next word token input) are fed
through learnt embeddings and summed. We are confronted with the problem that the input domain is
no longer plain text, but text properly padded for time alignment. While at train time we can teacher-
force the ground-truth padded text, this is not the case for a novel text to synthesize at inference time.

Action output stream. We add an extra stream to the TTS outputs, whose goal is to predict whether
the next input text token will be a WORD token or not. This special input token indicates that a new word
is starting, and that its tokens are going to follow as inputs. This extra stream controls an inference-
time action: when predicted by the model, we will feed as input the text tokens for the next word over
the next time steps. While these are being fed, the model is not allowed to output another WORD action.
The action output stream is not fed back into the model as it is redundant with the text stream input.
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Table 1: Short-form ASR performance. We report Word Error Rates (WER, %) for DSM-ASR and
selected non-streaming baselines from the OpenASR leaderboard, along with streaming baselines.
MODEL AVG. | AMI  EARNINGS22 GIGASPEECH LS CLEAN LS OTHER SPGISPEECH TED-LIUM  VOXPOPULI

Non-streaming

WHISPER MEDIUM.EN 8.1 16.7 12.6 11.0 3.0 59 3.3 4.1 9.6
WHISPER LARGE-V3 7.5 16.0 11.3 10.0 2.0 3.9 2.9 3.9 9.5
CRISPERWHISPER 6.7 8.7 12.9 10.2 1.8 4.0 2.7 3.2 9.8
CANARY-FLASH 6.4 13.1 12.8 9.9 1.5 2.9 2.0 3.1 5.6
PHI-4 MULTIMODAL 6.1 11.5 10.5 9.8 1.7 3.8 3.1 2.9 5.9
PARAKEET-TDT-v2 6.1 11.2 11.2 9.7 1.7 3.2 22 3.4 6.0
Streaming

WHISPER MEDIUM.EN 9.0 22.1 13.4 10.4 3.0 6.2 3.7 4.7 8.6
WHISPER LARGE-V3 9.4 18.4 11.0 10.0 8.4 12.6 3 3.8

DSM-ASR 6.3 | 11.7 10.6 9.7 1.7 4.3 34

Lookahead second text stream. The action stream allows the model to predict the next word
position, although the model has no knowledge of its content for making that decision. The delay
between text and audio only provides context for the audio generation, however, the decision on
where to insert pauses and words has no such context. Given a sequence of words mj, ms, ..., the
lookahead text stream feeds the tokens of the words m,; to the backbone while the primary text
feed contains the tokens of words m;;.

Speaker conditioning. We provide speaker embeddings for up to 5 speakers. Each speaker is
represented by a 10s audio extract of the same speaker outside of the training segment. Speakers
are identified using the diarization tool Pyannote (Bredin| [2023). One speaker is elected the main
speaker. When a turn of the main speaker starts, its first word is prefixed with a special MAIN token,
while when any other speaker turn starts, it is prefixed with OTHER. This allows us to generate dialogs
with control over change of turns and speaker voices. Each speaker audio extract is encoded with
a copy of the Mimi encoder, whose Transformer is fine tuned along with the main TTS model, while
convolution layers are kept frozen for stability. We concatenate all the speaker embeddings, sum them
with an absolute positional embedding (Vaswani et al., 2017), and feed them through cross-attention
layers to the backbone. An overview of the whole DSM-TTS inference process is shown in Figure[3]

4 Experiments

4.1 Architectural hyperparameters

We use a Transformer (Vaswani et al., |2017) backbone with RoPE positional encoding (Su et al.}
2024). For the DSM-TTS experiments, we use a 1B parameters backbone with a 2048 dimension
latent space, GLU feed-forward units, 16 layers, and 16 heads of attention. The DSM-ASR uses a 3B
parameters backbone, with 2048 dimensions, 48 layers, and 32 attention heads, and a linear to predict
the logits over the text vocabulary, with a cardinality N = 4000, trained for English only. The
model uses a variable delay 7 which is sampled per batch item in a range of [0.25, 4]s (Section .
The TTS model also receives the speaker embedding through cross-attention. The sampler is a
Transformer along the codebook () dimension described in Section with no context over the
time axis, with a dimension of 1024, 6 layers for each codebook, with a linear layer to estimate the
logits. The text tokenizer is trained on bilingual French/English data, with a cardinality N;* = 8000.
The model uses a delay 7 of 2s, or 25 steps, and a lookahead stream with [ = 2 (Section M We
use AdamW (Loshchilov & Hutter,2019), a cosine learning rate schedule with linear warmup, with
an initial rate of 2 - 10~ % for the TTS, and 4 - 10~ for the ASR, and a weight decay of 0.1.

4.2 Training protocol

Pretraining. We use an audio collection of 2.5 million hours of publicly available audio content
in English, and French transcribed with whisper-timestamped. Given the synthetic nature of text
transcripts, this phase amounts to hard distillation of whisper-timestamped. We train DSM-ASR
on random 90s segments for 1.6M steps, on 48 H100s. DSM-TTS is trained on 120s audio extracts,
on 16 H100s, 250k updates with batch size 64.
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Table 2: Long-form ASR performance. We report Word Error Rates (WER, %) across four long-
form datasets for DSM-ASR and a set of streaming and non-streaming baselines.
MODEL AVG. ‘ TED-LIUM MEANWHILE REV16 EARNINGS21

Non-streaming

DISTIL-LARGE V2 8.7 ‘ 3.7 7.8 12.2 11.2

WHISPER-LARGE-V2 9.0 4.4 6.3 13.6 11.8
Streaming

WHISPER MEDIUM.EN 9.0 ‘ 3.9 6.7 13.0 12.5

WHISPER LARGE-V3 8.1 3.4 6.1 11.4 11.4

DSM-ASR 7.9 ‘ 2.9 5.7 12.3 10.6

Finetuning (DSM-ASR). We then finetune the model on a collection of public datasets with
ground-truth transcripts, described in Appendix [A.T|and totaling 24 hours. This training stage lasts
for 100k updates with batches of 128 examples, using 16 H100s.

We then adapt the model to long-form inputs, which most public datasets lack, by constructing a
long-form mixture described in Appendix We run this stage for DSM-ASR for 25k updates with
batch size 32, using 16 H100s.

4.3 Automatic Speech Recognition

We evaluate DSM-ASR (with a default delay of 2.5s) in terms of transcription quality, latency, and
timestamps precision. We consider short-form transcription (shorter than 30s), as it is the focus of the
OpenASR Leaderboard (Srivastav et al.,|2023). We also look at streaming inference for long-form
transcription (up to 2 hours).

Baselines. We benchmark DSM-ASR against leading models of the OpenASR Leaderboard,
including Whisper (Radford et al.,|2023), Canary-Flash (Zelasko et al.,|2025), Phi-4 Multimodal
Instruct (Abouelenin et al., [2025) and Parakeet (Xu et al.,[2023). Notably, all these models perform
non-streaming ASR, as they require access to the full input sequence. We thus also include a
streaming variant of Whisper (Machacek et al., |2023), with a delay of 2.5s for a fair comparison.
For long-form transcription, we add the Distil-Whisper (Gandhi et al.,|2023) variant.

Transcription quality. We report micro-averaged Word Error Rate (WER), which avoids over-
emphasizing short sequences, and is the standard computation used in the OpenASR Leaderboard, of
which we use the official evaluation codebase.|'| Throughout this Section, we use Whisper normalizer
for English (Radford et al., 2023).

Latency. We evaluate the latency of streaming models as the average delay between the real
timestamp of a word, and the time when this word is transcribed in the output. In the absence of
ground-truth timestamps, we use pseudo-timestamps on Librispeech test-clean (Panayotov et al.,
2015) provided by |[Lugosch et al.|(2019). These timestamps were obtained by Montreal Forced
Aligner (McAuliffe et al., 2025), and use them as reference.

Timestamps. See Appendix|C|for a complete description.

4.3.1 ASR Results

Short-form transcription. Table 1| shows that DSM-ASR is significantly better than streaming base-
lines, and even competitive with the best, non-streaming models of the OpenASR Leaderboard. With
an average WER of 6.3%—while 6.1% being the current best score of the leaderboard—DSM-ASR
is remarkably the only streaming model among top ASR systems. In Appendix [C] we see that, in
terms of timestamp precision, DSM-ASR performs significantly better than Whisper Large-v3 while
somewhat underperforming CrisperWhisper, though with a better WER.

Long-form transcription. Table [2 reports WER values across 4 long-form datasets with
sequences up to 2 hours: TED-LIUM (Hernandez et al.,|2018), Meanwhile (Radford et al.,|2023),
Rev16 (Radford et al.,2023), and Earnings21 (Rio et al.|[2021). We see that DSM-ASR outperforms
both streaming and non-streaming baselines.

"https://github.com/huggingface/open_asr_leaderboard
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Figure 4: ASR WER and throughput vs. delay. Word Error Rate (WER, %) (left) and throughput
(right) in function of the delay. Throughput is the product between Real-Time Factor and batch size.

Table 3: Long-form TTS WER. We compare open-source and closed-source baselines. Short-form
inference is ran with a short context. ElevenLabs is evaluated on a limited subset due to its cost.
‘ WER ENGLISH (%) ({)

WER FRENCH (%) (])
AVG. | DIALOGS MONOLOGUES | AVG. | DIALOGS  MONOLOGUES

MODEL

Short-form inference
DIA 6.7 7.8 5.7 24.9 22.4 27.3
CcSM 4.7 3.9 5.4 - -
ORPHEUS 7.1 3.8 10.5

Long-form inference
CSM 15.5 15.7 15.4 - -
DSM-TTS (OURS) 3.6 2.8 4.3 6.4 3.7 9.1

Long-form inference, small subset

DSM-TTS (OURS) 7.5 10.4 4.5 8.1 7.4
11LABS FLASH V2.5 2.5 1.0 4.0 4.5 4.1 4.9
11LABS MULTILINGUAL V2 2.1 1.0 3.1 2.9 3.0

Delay conditioning and latency. Figure[4 (left) compares the WER obtained for DSM-ASR with
and without delay conditioning, along with Whisper-Streaming. We observe that the delay of
Whisper-Streaming has a large variance, while DSM-ASR has a precision of ~300ms around its
target delay. Interestingly, training a single DSM-ASR model with delay conditioning outperforms
fixed delay variants. Figure [ (right) shows the throughput on an H100 GPU: DSM-ASR can process
400 sequences simultaneously while being real-time and its throughput is independent of the delay.
This is unlike Whisper-Streaming which reduces its delay by re-evaluating the partial input sequence
more frequently, increasing the computational cost. Combined with the fact that Whisper-Streaming
does not allow for batching, this results in a 100x lower throughput than that of DSM-ASR.

4.4 Text-To-Speech experiments

Evaluation datasets. We collect a novel dataset for long-form TTS evaluation in English and French.
We first use news articles from the NTREX-128 (Federmann et al.| [2022) text dataset, given 123
monologues per language. To evaluate controllable dialog capabilities, we use 110 synthetic scripts
per language generated by a LLM, spanning three categories: daily life, technical, and number-heavy
discussions. For voice conditioning, we use samples from the test set of VCTK (Yamagishi et al.|
2019) for English, and from the test and valid sets of CML (Oliveira et al., |2023) for French. We
provide examples and more details in the Appendix B} and we will release this dataset.

Metrics. We evaluate the per-document WER, using text normalization from Whisper (Radford
et al., 2023). We collect subjective metrics covering both the speaker similarity to the conditioning
and overall speech quality, see Appendix[A for more details.

Baselines. We compare to open-source models Dia, Orpheus, and CSM, as well as the closed-source
ElevenLabs API Dia and ElevenLabs support French and English, while Orpheus and CSM only
support English. Dia, Orpheus and CSM can be speaker-conditioned through prefixing, with Dia

?Available at nari-labs/dia, |canopyai/Orpheus-TTS, SesameAlILabs/csm and elevenlabs.iol


https://github.com/nari-labs/dia
https://github.com/canopyai/Orpheus-TTS
https://github.com/SesameAILabs/csm
https://elevenlabs.io/
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Table 4: Subjective evaluations on TTS. We compare with baselines over two axes through human
evaluations: speech quality, measured as MUSHRA scores (1-100, along with std. of the mean), and
speaker-similarity win-rates, summarized as ELO scores (with 95% confidence intervals).

ENGLISH FRENCH

MODEL QUALITY (1) SpK. SIM. (1) QUALITY(T) SPK. SIM.(T)
Dia 52.9 £ 2.0 1930.0 + 22.6 30.0 £ 2.0 1578.7 £ 53.8
CSM 43.0+ 1.4 2056.0 + 18.6 - -
ORPHEUS 33.7+1.8 1820.5 £+ 32.7

DSM-TTS (OURS) 50.5 £ 1.8 2066.9 + 22.8 52.1 +£1.6 2078.5 + 18.0
11LABS FLASH v2.5 64.1+1.7 1977.8 + 22.6 65.7 £ 1.8 1926.0 £+ 15.7
11LABS MULTILINGUAL V2 61.3 +1.8 2067.4 + 23.5 68.7+ 1.6 2099.3 £17.8

Table 5: TTS: Latency and throughput. We compare the inference performance of DSM-TTS and
selected baselines. Real-Time Factor (RTF) is higher than 1 if the model can produce audio in real
time. Throughput is the product between Real-Time-factor and batch size.

MODEL | MODEL SIZE | LATENCY (Ms)({)  RTF(?)  THROUGHPUT(T)
Dia 1.6B - 0.7 0.7
CSM 1.5B - 1.0 1.0
ORPHEUS 3.8B - 0.7 0.7
DSM-TTS B.s.=1 3.7B 185 2.7 2.7
DSM-TTS B.s.=32 3.7B 560 2.1 67.4
DSM-TTS B.s.=64 3.7B 708 1.7 111.3

and CSM supporting dialogs. For Orpheus and ElevenLabs, dialogs are emulated by concatenating
single-speaker turns. Details of how baselines are evaluated are provided in Appendix|[E.

4.4.1 TTS Results

Main results. As seen in Table[3, our approach provides the lowest WER across all languages for
both monologues and dialogs. Our method is the only one to run long-form inference across all cases,
CSM showing strong degradation when running with longer sequences, Dia only being trained for
20s output, and ElevenLab requiring per-turn generation for dialogs. In terms of subjective results,
our model is on par with the commercial ElevenLab models for speaker similarity, outperforming all
existing methods. In quality, it is equivalent to the best open-source baseline for English and much
better for French, while lagging behind commercial models. Note that we kept all methods with their
original sample-rate (e.g. 44.1kHz for ElevenLab) which contributes to the difference.

Throughput and latency. Our method is easily batchable, leading to gains in throughput while
staying compatible with real-time generation. As shown in Table[5] on a single H100 the amount of
audio generated is 100x real-time, more details are provided in Appendix[G.

DSM-ASR and DSM-TTS as a speech interface for LLMs. We combine DSM-ASR, DSM-TTS,
and Gemma 3 (Gemma Team et al.,[2025) into an LLM voice chat application with sub-second latency.
We provide conversation samples at https://delayed-stream-modeling.github.io/.

5 Conclusion

We introduce Delayed Streams Modeling, a flexible framework for streaming sequence-to-sequence
learning. DSM provides a remarkable trade-off between quality and latency, and an unprecedented
throughput among streaming models. Focusing on speech-text tasks, DSM-ASR is the first streaming
ASR model to provide timestamped, formatted transcripts that competes with the top offline models,
while DSM-TTS is competitive with non-streaming baselines while being the only model providing
arbitrarily long synthesis. In future work, we will extend DSM to more sequential multimodal tasks.

Limitations. We acknowledge that streaming naturalistic speech with voice conditioning opens
up both opportunities in inclusive human-machine interactions and risks of fraudulent impersonation.
Addressing the latter requires that public access to such technologies is accompanied by proper user
terms, voice verification mechanisms, and watermarking of generated content. Finally, the need for
aligned domains reduces the amount of gold-standard ground-truth data that can be used for training.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction describe the nature of the technical contribution
and the application results (ASR and TTS).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Due to the limited space, we briefly address limitations in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
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Justification: We do not claim any theorems. However, when introducing the DSM frame-
work in Section [3} we do claim that the conditional independence of Y; with future inputs

X is necessary and sufficient for Y to follow the right distribution. We only show the
necessary direction through a counter example.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our training datasets and hyperparameters, and will release the
exact models used for producing experimental results, along with the codebase to reproduce
our quantitative results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Although we will release inference code along with our new TTS evaluation
dataset, neither is ready at time of submission, hence the no answer.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide an extensive description of training datasets and either perform
evaluation on public benchmarks, or on new datasets that we will release.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars for human evaluations of TTS, as well as error bars for
the latency of ASR models. We do not provide error bars for WERs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the number and type of GPU along with the number of training
steps and batch size.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: In particular, the evaluation dataset that we collected is made of textual data
either original or in the public domain, along with voice samples from public academic
datasets.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the risk associated with voice cloning.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We will release a version of TTS without voice cloning.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide references for all existing datasets that we use, and credit all the
packages (whisper-timestamped, DTW, OpenASRLeaderboard) used in our experiments.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We describe the evaluation dataset in appendix.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We work with human raters for subjective evalution of TTS using standardized
protocols such as MUSHRA. Details are provided in the Appendix [F}

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: We only ran subjective audio evaluations on generation that are low risk, e.g.
it contains no unsafe or shocking content. Thus we did not consider it necessary to have
overview for those studies.

Guidelines:
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862 * The answer NA means that the paper does not involve crowdsourcing nor research with
863 human subjects.

864 * Depending on the country in which research is conducted, IRB approval (or equivalent)
865 may be required for any human subjects research. If you obtained IRB approval, you
866 should clearly state this in the paper.

867 * We recognize that the procedures for this may vary significantly between institutions
868 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
869 guidelines for their institution.

870 * For initial submissions, do not include any information that would break anonymity (if
871 applicable), such as the institution conducting the review.

872 16. Declaration of LLM usage

873 Question: Does the paper describe the usage of LLMs if it is an important, original, or
874 non-standard component of the core methods in this research? Note that if the LLM is used
875 only for writing, editing, or formatting purposes and does not impact the core methodology,
876 scientific rigorousness, or originality of the research, declaration is not required.

877 Answer: [Yes]

878 Justification: we describe how a LLM is used to generate synthetic dialogs for evaluation of
879 our models in Section[4.4] and Appendix B}

880 Guidelines:

881 * The answer NA means that the core method development in this research does not
882 involve LLMs as any important, original, or non-standard components.

883 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
884 for what should or should not be described.
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