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Figure 1: The proposed ST-GridPool enhances visual token representations while maintaining com-
putational efficiency in a training-free manner, improving video understanding performance of
widely adopted Video LLMs. Figure 1a illustrates the visual token construction of the standard
Video LLMs and our method. Figure 1b presents the performance improvement of ST-GridPool on
LLaVA-Video and LLaVA-OneVision model across various video understanding tasks.

ABSTRACT

Recent advances in Multimodal Large Language Models (MLLMs) have signif-
icantly advanced video understanding tasks, yet challenges remain in efficiently
compressing visual tokens while preserving spatiotemporal interactions. Existing
methods, such as LLaVA family, utilize simplistic pooling or interpolation tech-
niques that overlook the intricate dynamics of visual tokens. To bridge this gap,
we propose ST-GridPool, a novel training-free visual token enhancement method
designed specifically for Video LLMs. Our approach integrates Pyramid Tem-
poral Gridding (PTG), which captures multi-grained spatiotemporal interactions
through hierarchical temporal gridding, and Norm-based Spatial Pooling (NSP),
which preserves high-information visual regions by leveraging the correlation
between token norms and semantic richness. Extensive experiments on various
benchmarks demonstrate that ST-GridPool consistently enhances performance of
Video LLMs without requiring costly retraining. Our method offers an efficient
and plug-and-play solution for improving visual token representations. Our code
is available in https://anonymous.4open.science/r/ST-GridPool-85BE.

1 INTRODUCTION

Recent advances in Multimodal Large Language Models (MLLMs) have revolutionized multimodal
understanding, delivering breakthroughs in image captioning, cross-modal retrieval, and video rea-
soning (Radford et al., 2021; Li et al., 2023a; Liu et al., 2023; Zhang et al., 2024d). In these models,
the quadratic complexity of self-attention mechanisms poses strict limitations on the input token
length (Keles et al., 2023). However, video understanding inherently requires dense spatiotemporal
analysis across thousands of visual tokens to capture precise motion dynamics and scene evolution
(Xu et al., 2024a). Therefore, it is a pivotal challenge to strengthen visual token representations for
better video understanding within the bounds of token length and computational limitations.
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As shown in Figure 1, existing MLLMs, such as the LLaVA family (Liu et al., 2023; Li et al., 2024a;
Zhang et al., 2024d), typically employ straightforward 2D pooling or interpolation to compress vi-
sual tokens into an appropriate shape. While these approaches are computationally lightweight,
they often overlook the intricate spatiotemporal interactions inherent in visual tokens, leading to
suboptimal performance. To address this problem, recent works like SF-LLaVA (Xu et al., 2024b)
and TS-LLaVA (Qu et al., 2024) have introduced advanced training-free techniques to adapt Image
LLMs for video understanding. These methods have demonstrated significant improvements on Im-
age LLMs, even outperforming earlier Video LLMs (Xu et al., 2024b). However, over the past year,
the rapid evolution of Video LLMs has resulted in remarkable advancements in video understanding,
rendering mere optimizations on Image LLMs insufficient. There is an urgent need for training-free
visual token enhancement strategies specifically for Video LLMs.

To address these challenges, we propose ST-GridPool, a novel training-free visual token enhance-
ment method tailored for Video LLMs, which strategically refines visual tokens across both tempo-
ral and spatial dimensions while maintaining computational efficiency. Our method is composed of
two key components: Pyramid Temporal Gridding and Norm-based Spatial Pooling. In Pyramid
Temporal Gridding (PTG), we design a hierarchical gridding strategy over the temporal dimen-
sion, which grids and updates frame tokens from different segments of varying lengths. PTG en-
ables multi-grained spatiotemporal feature extraction, capturing both short-term dynamics and long-
term context without introducing additional trainable parameters. In Norm-based Spatial Pooling
(NSP), we systematically explore the positive correlation between the token norm and the seman-
tic richness of visual tokens, leveraging this insight to propose a norm-based 2D dynamic pooling
approach. This approach preserves high-norm regions while adaptively compressing low-energy
backgrounds, ensuring that high-information visual regions are prioritized and retained. By inte-
grating this mechanism, we maximize the preservation of semantically meaningful visual details in
the pooling process, significantly enhancing the representation power of the resulting visual tokens.
The proposed ST-GridPool brings both components together to enhance visual token representations,
achieving substantial improvements in video understanding tasks without requiring costly retraining
or architectural modifications. This training-free paradigm offers a plug-and-play enhancement for
existing Video LLMs like LLaVA-Video, demonstrating significant potential for video understand-
ing applications. Our main contributions are summarized as follows:

• We propose the first training-free visual token enhancement method specifically designed
for Video LLMs. By optimizing the visual token compression process, our approach sig-
nificantly improves video understanding performance while maintaining computational ef-
ficiency.

• Our Pyramid Temporal Gridding introduces a hierarchical gridding strategy that captures
multi-grained spatiotemporal interactions across varying temporal lengths. Our Norm-
based Spatial Pooling leverages the positive correlation between token norms and semantic
importance to effectively preserve high-value visual information during token compression.

• We conduct extensive experiments on 6 video understanding datasets using widely
adopted Video LLMs, such as LLaVA-Video. Experimental results demonstrate that our
method achieves consistent performance improvements across multiple models and diverse
datasets.

2 RELATED WORK

2.1 VIDEO LARGE LANGUAGE MODELS

Video Large Language Models (Video LLMs) have emerged as a highly active research area on
leveraging the powerful capabilities of large language models for video understanding. With the
rapid advancement of LLMs, a critical focus has emerged on harnessing their power for nuanced
video analysis. Early efforts primarily adapt existing image-based LLM frameworks to the video
field. VideoChat (Li et al., 2023b) develops an end-to-end chat-centric system by bridging video
foundation models and LLMs via a learnable neural interface. PLLaVA (Xu et al., 2024a) adapts
image-language pre-trained models for video tasks without additional parameters. Recent research
focuses on further enhancing video LLMs from different aspects like cross-modal integration, long-
context modeling, and efficiency optimization. LLaVA-OneVision (Li et al., 2024a) pioneers a
single model architecture that unifies image, multi-image, and video understanding. mPLUG-Owl3
(Ye et al., 2024) introduces hyper attention blocks to efficiently process long image sequences.

2
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Figure 2: Overview of ST-GridPool. The method takes the token sequence T1, · · · ,TN as input and
outputs the pooled token T ↓

1 , · · · ,T
↓
N , which consists of two main components: Pyramid Temporal

Gridding and Norm-based Spatial Pooling.

NVILA (Liu et al., 2024d) adopts a ”scale-then-compress” approach to optimize both accuracy
and efficiency in visual token processing. Based on existing Video LLMs, our approach aims at
constructing efficient yet information-dense visual token representations from massive video data.

2.2 VISUAL TOKEN CONSTRUCTION FOR VIDEO LLM

Visual token construction serves as a critical bridge between raw video data and high-level seman-
tic understanding in Video LLMs. Given the inherent redundancy of video content and the limited
context windows of LLMs, extracting efficient yet informative visual tokens from long video se-
quences is essential for enabling efficient and accurate video understanding and reasoning. Current
visual token construction techniques can be categorized into the following three types. First, single-
frame feature extraction methods (Li et al., 2024a; Zhang et al., 2024d) leverage image-language
models like CLIP to extract keyframe embeddings, followed by spatial downsampling via average
pooling or bilinear interpolation. While computationally lightweight, these methods inherently ne-
glect temporal dynamics and cross-frame dependencies. Second, temporal-aware modeling frame-
works (Maaz et al., 2023; Xu et al., 2024a) integrate spatiotemporal attention layers to aggregate
frame-level features, capturing motion patterns at the cost of quadratic complexity for long videos.
Third, token compression strategies (Liu et al., 2024d) dynamically prune redundant visual tokens
through learnable spatial-temporal aggregation. To summarize, most token construction optimiza-
tions require costly finetuning or model-specific architecture modifications. There remains a lack
of parameter-free visual token enhancement methods designed for Video LLMs which can improve
token informativeness without altering model parameters or increasing inference latency.

3 METHOD

3.1 PROBLEM DEFINITION

Given an input video V with R raw frames, conventional Video LLMs typically select N ≪ R
frames I1, I2, · · · , IN from it via fixed-interval uniform sampling. The selected frames are then
extracted by the vision tower Φ(·), to generate frame tokens T1,T2, · · · ,TN ∈ RH×W×d where
H ×W is the spatial dimension, d is the feature dimension. In long-context scenarios like video
understanding, the raw visual token length N×H×W is usually excessive, posing heavy computa-
tional load and processing challenges for the downstream language model. Therefore, the raw visual
tokens are further reduced by the downsampling function Down(·) to T ↓

1 ,T
↓
2 , · · · ,T

↓
N . The down-

sampled visual tokens are then fed into the language model to generate the final response. In this
process, the downsampling function Down(·) is quite crucial for the visual token representations, as

3
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Figure 3: Illustration of the visual token norm distribution discrepancy between salient object area
and background area. (a) presents some samples with the raw image, the area of top 50% visual
tokens in terms of L2 norm, and the saliency groundtruth / question. (b) plots the density distribution
of L2 token norm among all validation samples from HKU-IS.

it must balance between reducing computational complexity and preserving critical spatiotemporal
information, thereby achieving optimal video understanding performance.

3.2 METHOD OVERVIEW

As illustrated in Figure 2, the proposed ST-GridPool method consists of two components: Pyramid
Temporal Gridding and Norm-based Spatial Pooling. Firstly, Pyramid Temporal Gridding (PTG)
proposes a hierarchical gridding strategy to the temporal dimension, enabling multi-grained spa-
tiotemporal feature extraction by combining and updating frame tokens from segments of varying
lengths. Secondly, Norm-based Spatial Pooling (NSP) designs a norm-based 2D weighted pooling
mechanism that prioritizes high-norm regions during spatial pooling to preserve rich visual seman-
tics. Through the joint operation of these two components, ST-GridPool effectively enhances visual
token representations in a training-free manner, achieving robust video understanding while main-
taining computational efficiency.

3.3 PYRAMID TEMPORAL GRIDDING

Video LLMs like LLaVA-Video often adopt straightforward approaches by uniformly sampling and
concatenating token sequences, implicitly assuming that temporal dynamics in videos are uniform
across scales. However, real-world video content frequently encompasses a spectrum of tempo-
ral granularities, ranging from rapid micro-motions (e.g., hand gestures) to gradual displacements
(e.g., pedestrian walking), which demands a multi-scale temporal modeling strategy. To address
this limitation, we propose the Pyramid Temporal Gridding (PTG), a hierarchical module that par-
titions the video sequence into multiple layers, each corresponding to distinct temporal segment
lengths. PTG generates summary tokens at the end of each segment, enriching the temporal rep-
resentation while maintaining computational efficiency. Given the original visual token sequence
T1,T2, · · · ,TN ∈ RH×W×d, the details of this module are as follows.

As shown in Figure 2, PTG consists of L levels, each corresponding to a specific segment length.
For l-th level (l = 1, 2, ..., L), the segment length is defined as Kl = K · 2l−1, where K is the
base length of Level-1. The input visual tokens are divided into Nl segments, where Nl = ⌈N/Kl⌉.
Therefore, the start frame index for the j-th segment in the l-th level is:

tl,j = (j − 1) ·Kl, j = 1, 2, ..., Nl (1)
Each segment spans the frame range {tl,j , tl,j + 1, ...,min(tl,j + Kl − 1, N − 1)}. For example,
for an input token sequence with the length N = 32, we set the base length K = 8, and number of
levels L = 3, the input sequence will be divided into 3 layers: For Level-1, the sequence is divided
into 4 segments, each with K1 = 8 frames; For Level-2, the sequence is divided into 2 segments,
each with K2 = 16 frames; For Level-3, the sequence is divided into 1 segment, encompassing all
K3 = 32 frames.

For the j-th segment at the l-th layer, a summary token is generated to capture the temporal dynam-
ics. First, m× n frames are uniformly sampled from the segment. The sampling indices are:

{tl,j + k · ⌊Kl/(m · n)⌋}m·n−1
k=0 (2)

4
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The corresponding token grids of these frames are spatially concatenated to form an intermediate
token grid Gl,j :

Gl,j =


Ttl,j+0 Ttl,j+1 · · · Ttl,j+m−1

Ttl,j+m Ttl,j+m+1 · · · Ttl,j+2m−1

...
...

. . .
...

Ttl,j+(n−1)m Ttl,j+(n−1)m+1 · · · Ttl,j+mn−1

 (3)

Here, each Ttl,j+k has a resolution of H ×W , making the resolution of Gl,j mH × nW . Sub-
sequently, bilinear interpolation is applied to resize Gl,j back to the original resolution H × W ,
resulting in the final segment-end token grid Interp(Gl,j) ∈ RH×W×d. The last frame of the seg-
ment is then updated with the generated summary token:

Ttl,j+Kl−1
update←−−− Interp(Gl,j) (4)

By processing all segments across layers, the token sequence is updated to incorporate multi-scale
temporal dynamics, providing a richer representation for downstream tasks. The Pyramid Tempo-
ral Gridding module not only captures fine-grained and coarse-grained temporal interactions but
also ensures computational efficiency, making it a robust foundation for spatiotemporal modeling in
video understanding. The updated token sequence is subsequently passed to the Norm-based Spatial
Pooling module for further refinement.

3.4 NORM-BASED SPATIAL POOLING

Video LLMs, such as LLaVA-Video, often rely on uniform 2D pooling or bilinear interpolation
to downsample visual tokens in the spatial dimension. These methods, however, treat all spatial
tokens equally, disregarding the inherent heterogeneity in their information content. As illustrated
in Figure 3a, a typical image frame is dominated by background regions, while semantically salient
objects occupy only a small fraction of the spatial grid. By applying equal-weighted downsampling,
these critical regions (rich in visual information) are inadequately prioritized, resulting in substantial
information loss and token redundancy. This limitation underscores the need for a more refined
approach to spatial pooling that dynamically weighs tokens based on their semantic importance.

To address the aforementioned challenges, we design a novel spatial pooling method that dynami-
cally prioritizes regions based on their information saliency while preserving critical visual features.
To identify an effective indicator of regional saliency, we conduct experiments on the validation
set of the HKU-IS salient object detection dataset (Li & Yu, 2016). We perform both qualitative
and quantitative analyses to examine the discrepancy in token norms between salient object ar-
eas and background regions, as illustrated in Figure 3. In Figure 3a, we visualize the area of the
top 50% visual tokens in terms of L2 norm alongside the salient object ground truth. The results
clearly demonstrate that regions corresponding to salient objects consistently exhibit high token
norms, while redundant background regions are associated with low token norms. Furthermore, in
Figure 3b, we plot the norm distributions of visual tokens for both background and salient object
regions. The quantitative analysis confirms a significant discrepancy in token norms between these
two regions. This insight helps us to establish token norm as a reliable metric for assessing regional
information saliency.

Inspired by these findings, we introduce Norm-based Spatial Pooling (NSP), a dynamic pooling
mechanism that leverages visual token norms to assign adaptive weights to each spatial location
during the pooling process. By computing these weights based on the L2 norm of visual tokens,
NSP selectively amplifies the representation of high-importance regions, such as salient objects,
while diminishing the influence of low-importance backgrounds. This weighting strategy ensures
that semantically rich visual information is prioritized and preserved, leading to more efficient and
effective token representations. Through this adaptive pooling approach, NSP significantly enhances
Video LLMs to focus on critical regions, ultimately improving the quality of visual token represen-
tations for downstream tasks.

Specifically, the input to NSP is the visual token sequence T1,T2, · · · ,TN ∈ RH×W×d, derived
from the PTG module. Here, N represents the number of frames, while H , W , and d denote the
height, width, and feature dimension of each token, respectively. The pooling operation employs
a kernel size of (kH , kW ) and a stride of (sH , sW ). For an input visual token Ti, let t denote the

5
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VideoLLaMA2.1-7B 54.9 - 53.1 - 56.8 57.3
LongVA-7B 52.6 - - 68.3 - -
IXC-2.5-7B 55.8 - - - - 69.1
InternVideo2-7B - - 60.0 - - 67.2
Oryx-1.5-7B 58.8 56.3 - 81.8 - 67.6
NVILA-8B 64.2 57.7 - 82.2 69.7 68.1
mPLUG-Owl3-8B 53.5 52.1 - 78.6 - 54.5
Apollo-7B 61.3 58.5 - - 64.9 -

LLaVA-OneVision-7B 58.2 56.5 60.1 79.4 64.2 56.7
+ Ours 59.0 56.7 62.1 79.6 64.4 58.0

(+0.8%) (+0.2%) (+2.0%) (+0.2%) (+0.2%) (+1.3%)
LLaVA-Video-7B 63.3 58.2 57.3 83.2 65.4 58.6
+ Ours 64.2 60.1 57.8 83.8 66.1 59.8

(+0.9%) (+1.9%) (+0.5%) (+0.6%) (+0.7%) (+1.2%)

Table 1: Overall comparison with state-of-the-art methods on long-form and general video under-
standing benchmarks (%). The best performance among all methods is underlined.

sliding window corresponding to the h-th row and w-th column of the output pooled token T↓
i (h,w).

The elements of the sliding window are defined as:

tm,n = Ti(h · sH +m,w · sW + n), (5)

where 0 ≤ m < kH , 0 ≤ n < kW , and h, w represent the spatial indices of the output feature map
T↓

i . For example, in a conventional 2x2 kernel, m = 0, n = 0 represents the token at the upper-left
corner of the kernel window, while m = 1, n = 1 represents the token at the lower-right corner.
For each visual feature tm,n within the sliding window, we first calculate its Lp norm, denoted as
∥tm,n∥p. This norm is then normalized into a weight αm,n using the softmax function, ensuring
that the weights sum to one across the window:

αm,n =
exp(β∥tm,n∥p)∑kH−1

i=0

∑kW−1
j=0 exp(β∥ti,j∥p)

, (6)

where β is a temperature parameter that controls the sharpness of the weight distribution. Finally, the
pooling result for each sliding window is obtained as a weighted summation of the visual features:

T↓
i (h,w) =

kH−1∑
m=0

kW−1∑
n=0

αm,n · tm,n. (7)

During the pooling process, the NSP mechanism leverages the intrinsic relationship between visual
token norms and semantic saliency to dynamically prioritize high-importance regions. By integrat-
ing a softmax-based weighting scheme, NSP adaptively enhances the representation of semantically
rich visual features while suppressing less informative background regions. This approach not only
preserves critical visual details but also maintains computational efficiency, making it a plug-and-
play enhancement for existing Video LLMs. As a result, NSP significantly improves the quality of
visual token representations, enabling more robust and accurate video understanding.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines To validate the effectiveness of the proposed method, we employ two LLaVA family
models as backbones: LLaVA-OneVision-7B (Li et al., 2024a) and LLaVA-Video-7B (Zhang et al.,
2024d). These models serve as the foundation for our evaluation, enabling us to assess the per-
formance improvements brought by our approach in video understanding tasks. Additionally, we

6
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compare against a diverse set of baseline models to ensure a comprehensive analysis. These include
VideoLLaMA2.1-7B (Cheng et al., 2024), LongVA-7B (Zhang et al., 2024c), IXC-2.5-7B (Zhang
et al., 2024b), InternVideo2-7B (Wang et al., 2024), Oryx-1.5-7B (Liu et al., 2024e), NVILA-8B
(Liu et al., 2024d), mPLUG-Owl3-8B (Ye et al., 2024), and Apollo-7B (Zohar et al., 2024). These
models represent state-of-the-art advancements in video and multi-modal understanding, providing
a robust framework for benchmarking our method.
Benchmarks To comprehensively evaluate the proposed method, we conduct experiments on
benchmarks from both Long Video Understanding and General Video Understanding domains. For
Long Video Understanding, we adopt VideoMME (Fu et al., 2024), LongVideoBench (Wu et al.,
2025), and EgoSchema (Mangalam et al., 2024), which focus on capturing temporal dependencies
and reasoning over extended video sequences. These benchmarks are specifically designed to assess
the ability of models to process and interpret long-range visual information. For General Video
Understanding, we utilize NexT-QA (Xiao et al., 2021), TempCompass (Liu et al., 2024c), and
MVBench (Li et al., 2024b). These datasets are widely recognized for their diverse scenarios and
challenging complexity.

4.2 IMPLEMENTATION DETAILS

Our experiments are conducted on NVIDIA L20 GPUs with Ubuntu 22.04. We utilize the lmms-
eval (Zhang et al., 2024a) library for model modification and evaluation. To maintain consistency in
computational load, we ensure identical input frame counts for the visual encoder and token counts
for the LLM with the original models. For the LLaVA-OneVision model, we follow the original
setup to feed 32 frames into the visual encoder, while for the LLaVA-Video model, we adhere to the
original setting of 64 input frames. We employ a spatial pooling strategy with a kernel size and stride
of 2. As for hyperparameter, we set the temperature parameter β = 1 and the norm order p = 2,
optimizing for stable performance across diverse video understanding tasks. This setup allowed
us to validate the efficacy of our proposed methods while maintaining computational fairness in
comparative evaluations.

4.3 COMPARISON STUDY

Comparison with SOTA We first present the overall results across all datasets in Table 1, which
reveals the following key observations: (1) When integrated with the original LLaVA-OneVision
and LLaVA-Video models, our proposed method achieves consistent performance improvements
across all evaluated datasets. (2) The ST-GridPool mechanism significantly enhances long-term
video understanding, enabling our method to surpass existing 7B models on long-form benchmarks
like VideoMME, LongVideoBench, and Egoschema (3) Our method consistently demonstrates com-
petitive or leading performance in general video understanding tasks. For example, LLaVA-Video
achieves 66.1% on TempCompass, making it closer to SOTA performance of NVILA-8B. These ad-
vancements highlight the adaptability of our approach across diverse video understanding scenarios
while maintaining the training-free advantage and efficient computational load.
Comparison with Token Reduction Methods To further evaluate the effectiveness of our pro-
posed method as an efficient visual token compression strategy, we compare it directly with sev-
eral leading token reduction methods. As shown in Table 4, the experiments are performed on the
LLaVA-Video-7B model using two different token budgets: 50% and 30%. The performance of each
method is evaluated on three long-video understanding benchmarks. (1) With the 50% token budget,
our method shows highly competitive performance. It achieves the highest scores on the L.V.Bench
and EgoSchema datasets, and its performance on VideoMME is comparable to the best-performing
method, FrameFusion. (2) The advantages of our method become more evident under the stricter
30% token budget, which involves a higher compression rate. Under these conditions, our method
achieves the best performance on all three benchmarks, outperforming all other methods. (3) In
summary, our proposed method performs well in standard compression scenarios and is also highly
robust under high-compression (low-budget) conditions. This indicates that our approach can more
effectively identify and preserve the key information crucial for video understanding, especially
when the token budget is highly limited.

4.4 ABLATION STUDY

Effectiveness of Different Components To validate the effectiveness of individual components
in our method, we conduct ablation studies on two key components: Norm-based Spatial Pool-
ing (NSP) and Pyramid Temporal Gridding (PTG). As shown in Table 3, three key observations
emerge: (1) The full integration of NSP and PTG achieves optimal performance, showing consistent
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Method VideoMME L.V.Bench EgoSchema
Upper Bound (Full Tokens)

LLaVA-Video 63.3 58.2 57.3

Token Budget Ratio: 30%
FastV 59.3 53.5 51.3
PruMerge 59.9 54.7 50.9
FasterVLM 60.1 55.8 52.6
VisionZip 58.3 53.2 53.0
FrameFusion 61.3 56.0 53.0
Ours 62.0 58.1 56.0

Token Budget Ratio: 50%
FastV 62.2 55.7 54.7
PruMerge 61.3 56.9 54.6
FasterVLM 61.7 56.4 56.2
VisionZip 60.6 56.8 54.2
FrameFusion 62.6 57.6 55.8
Ours 62.5 58.9 57.1

Table 2: Comparison with token reduction baselines on LLaVA-Video-7B (%).

Model VideoMME LongV.Bench MVBench
Baseline 63.3 58.2 58.6
Ours w/o NSP 63.8 59.2 59.1
Ours w/o PTG 63.6 59.8 58.8
Ours 64.2 60.1 59.8

Table 3: Ablation results of different components (%).

gains over both standalone components. This demonstrates their complementary roles in optimizing
spatiotemporal token downsampling for video understanding. (2) Removing PTG (Ours w/o PTG)
results in a performance drop, demonstrating its role in improving temporal feature aggregation. The
absence of NSP (Ours w/o NSP) also leads to reduced performance, highlighting its contribution to
optimizing spatial feature representation. (3) While baseline modifications with single components
improve performance, their isolated effects remain suboptimal. Our unified framework leverages
NSP for spatial saliency alignment and PTG for multiscale temporal reasoning, establishing their
joint necessity for achieving state-of-the-art results.

Impact of β and Lp We analyze two critical hyperparameters in the Norm-aware Spatial Pooling
(NSP) module: the temperature coefficient β and the norm order p of Lp. To evaluate their impact,
we conduct experiments on the LLaVA-Video backbone with varying β = {0.01, 0.1, 1, 5, 10} and
p = {1, 2, 3}, and summarize results on VideoMME and LongVideoBench in Figure 4. Some
observations can be made as follows: (1) Performance first rises and then declines with increasing
β: Optimal results are achieved at β = 1, while extreme values (e.g., β = 5 or β = 10) degrade
accuracy, likely due to over-smoothing or unstable feature activation. (2) Increasing p beyond 2 leads
to gradual performance degradation. The L2-norm achieves the highest scores across both datasets,
balancing spatial sparsity and feature discriminability. (3) Despite sensitivity to extreme β or p
values, our method shows consistent trends across different datasets. Variations within experiments
yield subtle performance fluctuations, highlighting its robustness. The interplay between β and Lp

reveals a delicate balance: β = 1 ensures appropriate sharpness in activation distributions, while
L2-norm optimally aggregates spatial features without over-sparsity.

4.5 COMPUTATIONAL COST ANALYSIS

We analyzed the computational efficiency of ST-GridPool under a strict 30% token budget. The ex-
periments compare our method against the baseline LLaVA-Video-7B model in terms of inference
time and peak GPU memory usage when processing different numbers of input frames. As shown
in Fig. 5, our method achieves a dual optimization in computational efficiency. For inference time
(left figure), ST-GridPool demonstrates a significant advantage, and the savings become more pro-
nounced as the number of input frames increases. For GPU memory usage (right figure), our method
also outperforms the baseline, consistently saving peak memory. In summary, ST-GridPool not only
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Figure 4: Ablation study results for different values of temperature β and norm order p.

Figure 5: Computational cost comparison between our method and the baseline LLaVA-Video
model in inference time and GPU memory usage under a 30% token budget.

enhances video understanding performance but also substantially reduces both inference time and
memory usage, proving its value as a highly efficient enhancement solution.

4.6 QUALITATIVE ANALYSIS OF EXAMPLES

A man wearing a suit and a purple tie is walking on a concrete road surrounded by trees and parked cars. He has short hair and is holding a piece of 
white paper in his hand. What other scenes did this man appear in?

In front of a blue backdrop with the British flag.In a library with a brown bookshelf full of books, in front of a green desk.

············

LLaVA-Video LLaVA-Video + Ours

Figure 6: Response examples of LLaVA-Video with and w/o Ours from LongVideoBench dataset.

We conduct a qualitative analysis using diverse samples from the LongVideoBench dataset to eval-
uate the performance of our method in fine-grained video understanding tasks. As illustrated in Fig-
ure 6, when processing long videos, our method effectively captures and correlates distant spatio-
temporal information, enabling a holistic understanding of extended events. These observations
highlight our method’s ability to handle both short-term spatial reasoning and long-term temporal
reasoning. By integrating multi-scale temporal gridding and adaptive spatial pooling, our approach
achieves robustness and precision in complex video understanding scenarios. Such capabilities are
crucial for applications requiring detailed analysis of dynamic and prolonged activities.

5 CONCLUSION

In this paper, we presented ST-GridPool, a training-free visual token enhancement method tailored
for Video LLMs, which optimizes spatiotemporal token compression through Pyramid Temporal
Gridding (PTG) and Norm-based Spatial Pooling (NSP). By capturing multi-grained temporal dy-
namics and preserving high-information spatial regions, our method significantly enhances video
understanding performance across multiple datasets and models, including LLaVA-Video, without
requiring retraining. ST-GridPool offers a scalable and efficient solution for improving visual token
representations, demonstrating potential as a plug-and-play enhancement for existing Video LLMs.
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A COMPARISON WITH TOKEN REDUCTION METHODS

Method VideoMME L.V.Bench EgoSchema
Upper Bound (Full Tokens)

NVILA 61.5 56.3 52.9

Token Reduction Ratio: 30%
FastV 57.9 53.0 49.7
PruMerge 58.2 53.4 47.5
FasterVLM 60.1 53.0 49.3
VisionZip 59.1 50.9 48.9
FrameFusion 58.8 54.9 51.3
Ours 59.9 54.6 52.0

Token Reduction Ratio: 50%
FastV 58.9 53.9 50.2
PruMerge 57.6 53.9 48.9
FasterVLM 60.8 53.0 50.5
VisionZip 60.5 54.4 50.3
FrameFusion 59.4 54.8 52.6
Ours 61.4 55.6 53.1

Table 4: Comparison with token reduction baselines on NVILA-Video-8B with 64 input frames (%).

To validate our token reduction method, we conducted experiments on the NVILA-Video-8B model
with token reduction ratios of 30% and 50%, evaluating performance on three long-video bench-
marks (VideoMME, LongVideoBench, and EgoSchema). To ensure a fair comparison of computa-
tional efficiency and resource usage with LLaVA-Video-7B, we establish a consistent setup by also
setting the input frame count for NVILA to 64. The results in Table 4 demonstrate our method’s
superior performance. At a 30% reduction, our approach is highly competitive and achieves the top
score on EgoSchema. Its advantage becomes even more pronounced at a 50% reduction, where our
method ranks first across all three benchmarks. Notably, at this high compression rate, our method’s
performance not only comes remarkably close to the full-token upper bound but even surpasses it
on the EgoSchema benchmark. This strongly validates the effectiveness and generalizability of our
approach, proving it can significantly reduce computational cost while maintaining, and in some
cases even exceeding, the performance of the original full-token model.

B COMPARISON WITH ALTERNATIVES

We further compare our method with training-free alternative approaches, including IG-VLM (Kim
et al., 2024), SF-LLaVA (Xu et al., 2024b), and TS-LLaVA (Qu et al., 2024). While these methods
have shown promising results on image-language models like LLaVA-Next (Liu et al., 2024a), we
adapt them to LLaVA-Video model under fair experimental settings: adjusting parameters to main-
tain identical input frames and token counts as the original models. As shown in Table 5, our analysis
reveals two key findings: (1) Directly transplanting these image-focused methods to video-language
models yields unsatisfactory outcomes. SF-LLaVA and TS-LLaVA achieve limited improvements
on specific datasets, but their overall performance remains unstable and non-substantive. Notably,
applying IG-VLM alone leads to significant performance degradation. (2) Our method achieves
the most substantial gains across all metrics, outperforming all alternatives with improvements on
VideoMME, LongVideoBench, and MVBench respectively compared to the original baseline. This
demonstrates the unique effectiveness of our approach in aligning visual-language reasoning pat-
terns for video understanding tasks.
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Model VideoMME LongV.Bench MVBench

Baseline 63.3 58.2 58.6
+ IG-VLM 60.6 55.9 54.2
+ SF-LLaVA 63.4 58.9 58.9
+ TS-LLaVA 63.8 59.6 57.1
+ Ours 64.2 60.1 59.8

Table 5: Comparison with training-free alternative methods on the LLaVA-Video-7B baseline (%).

Method VideoMME LongV.Bench MVBench EgoSchema
Image-gridding 58.3 56.3 56.5 56.6
Token-gridding (Ours) 59.0 56.7 58.0 62.1

Table 6: Comparison with image-gridding and token-gridding (ours) on the LLaVA-OneVision-7B
(%).

C ABLATION STUDY ON IMAGE-GRIDDING VS TOKEN-GRIDDING

In Pyramid Temporal Gridding (PTG), we introduce token-level gridding, which diverges from the
image-level gridding employed by previous methods such as IG-VLM (Kim et al., 2024) and TS-
LLaVA (Qu et al., 2024). To examine the performance differences between these approaches, we
conducted experiments using image-gridding, where the PTG module processes information at the
image level, akin to IG-VLM. In contrast, our method applies token-gridding on token represen-
tations. Results are shown in table 6 and table 7, which demonstrate that the token-grid strategy
consistently outperforms the image-grid approach across both LLaVA-OneVision-7B and LLaVA-
Video-7B configurations. This superiority highlights the advantages of fine-grained token-level pro-
cessing, which preserves richer spatio-temporal features and enables more precise modeling of video
dynamics. These findings validate the effectiveness of our token-gridding strategy, showcasing its
ability to enhance performance while maintaining computational efficiency.

D IMPACT OF TEMPORAL GRIDDING CONFIGURATION

We investigate the impact of temporal pyramid configurations in the Pyramid Temporal Gridding
(PTG) module, focusing on two critical design choices: the number of pyramid layers (L) and the
segment length at each layer. In experiments, each layer’s segment length doubles the previous
one (e.g., (8, 16, 32)). Results on VideoMME and LongVideoBench, shown in Figure 7, reveal the
following obsevations: (1) For a fixed L, performance initially improves with increasing maximum
segment length but declines after a threshold, suggesting overly long segments may dilute fine-
grained motion patterns. Medium-length segments balance local detail capture and global temporal
context, whereas excessively long segments introduce noise from irrelevant temporal regions. (2)
Increasing L systematically boosts performance, with the best global results achieved at L = 3
using (8, 16, 32) segments. As L grows from 1 to 3, the ideal maximum segment length increases
from 8 (L = 1) to 32 (L = 3). Deeper pyramids enable hierarchical modeling of multi-scale
temporal dependencies, leveraging shorter segments for local actions and longer ones for macro-
event integration.

E IMPACT OF SPATIAL POOLING SHAPE

We explore the impact of spatial pooling shape (i.e., kernel size) in the Norm-aware Spatial Pool-
ing (NSP) module. Experiments are conducted on the LLaVA-Video backbone with kernel sizes
spanning (1, 1), (2, 2), . . . , (6, 6), and results on VideoMME and LongVideoBench are depicted in
Figure 8. It is observed that both datasets achieve peak performance at a kernel size of (2, 2). Smaller
kernels (1, 1) yield suboptimal results, as overly localized receptive fields fail to capture contextual
spatial relationships, limiting feature aggregation. Performance declines progressively for kernels
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Method VideoMME LongV.Bench MVBench EgoSchema
Image-gridding 62.8 59.0 58.4 57.1
Token-gridding (Ours) 64.2 60.1 59.8 57.8

Table 7: Comparison with image-grid and token-grid (ours) on the LLaVA-Video-7B (%).
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Figure 7: Ablation study results for different values of level L and maximum segment length on
VideoMME and LongVideoBench.

larger than (2, 2), with (6, 6) delivering the lowest scores. This degradation may be caused by the
oversmoothing effect and local structural misalignment of broad receptive fields.

F FINE-GRAINED MULTI-TASK ANALYSIS ON MVBENCH

Model AA AC AL AP AS CO CI EN ER FA FP MA MC MD OE OI OS ST SC UA Avg.
GPT-4V 72.0 39.0 40.5 63.5 55.5 52.0 11.0 31.0 59.0 46.5 47.5 22.5 12.0 12.0 18.5 59.0 29.5 83.5 45.0 73.5 43.5
Video-ChatGPT (Maaz et al., 2023) 62.0 30.5 20.0 26.0 23.5 33.0 35.5 29.5 26.0 22.5 29.0 39.5 25.5 23.0 54.0 28.0 40.0 31.0 48.5 26.5 32.7
Video-LLaMA (Zhang et al., 2023) 51.0 34.0 22.5 25.5 27.5 40.0 37.0 30.0 21.0 29.0 32.5 32.5 22.5 22.5 48.0 40.5 38.0 43.0 45.5 39.0 34.1
VideoChat (Li et al., 2023b) 56.0 35.0 27.0 26.5 33.5 41.0 36.0 23.5 23.5 33.5 26.5 42.5 20.5 25.5 53.0 40.5 30.0 48.5 46.0 40.5 35.5
PLLaVA (Xu et al., 2024a) 55.5 39.5 26.0 49.0 58.0 53.5 31.0 30.5 48.0 41.0 42.0 52.0 42.0 23.5 56.0 61.0 36.0 82.0 45.0 61.0 46.6
ST-LLM (Liu et al., 2024b) 84.0 36.5 31.0 53.5 66.0 46.5 58.5 34.5 41.5 44.0 44.5 78.5 56.5 42.5 80.5 73.5 38.5 86.5 43.0 58.5 54.9
VideoChat2 (Li et al., 2024b) 83.5 37.0 44.0 58.0 75.5 47.0 72.5 35.0 37.0 50.5 66.5 87.5 64.5 47.5 87.5 74.5 45.0 82.5 51.0 60.5 60.4
LLaVA-OV + Ours 68.0 48.0 55.0 57.5 71.0 71.0 47.0 35.0 52.0 48.0 54.0 71.5 47.0 31.5 57.5 82.5 35.5 94.5 51.5 80.0 58.0
LLaVA-Video + Ours 66.0 53.0 58.5 59.5 72.5 77.0 51.0 28.5 54.5 49.0 55.5 70.0 45.5 39.0 58.5 84.5 40.0 91.5 60.0 81.5 59.8

Table 8: Multi-task analysis results on MVBench (%). The best performance among all methods is
underlined.

To further analyze the fine-grained video understanding capabilities of our method, we present the
detailed performance of compared methods across sub-tasks on the MVBench dataset, as shown in
table 8. Based on the results, the following observations can be made: (1) Our method achieves
comparable performance to the state-of-the-art baseline models, demonstrating its robustness across
a wide range of tasks. (2) Our method substantially outperforms baselines in tasks requiring spatial
localization and temporal granularity, such as Action Localization (AL), Unexpected Action (UA),
Scene Transition (ST), State Change (SC). These improvements highlight the effectiveness of our
proposed Norm-based Spatial Pooling and Pyramid Temporal Gridding in enhancing spatial pre-
cision and temporal granularity. (3) Despite the advancements, our method lags behind SOTA in
tasks requiring long-horizon reasoning or fine-grained motion analysis, highlighting opportunities
to better integrate cross-frame dependencies.

G EXTENSIVE QUALITATIVE ANALYSIS OF EXAMPLES

We illustrate some additional examples from LongVideoBench dataset in fig. 9. Visual comparisons
demonstrate that our method (LLaVA-Video-7B + Ours) significantly outperforms the baseline in
capturing fine-grained spatiotemporal details. One key limitation of baseline models is their inabil-
ity to resolve temporal dependencies, even when all event components are clearly present in the
video. For instance, in the first example, when asked about event sequencing, standard Video LLMs
misorder actions, confusing co-occurrence with causality. Our temporal gridding strategy tackles
this issue by explicitly organizing spatiotemporal tokens into chronological lattices, allowing the
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Figure 8: Ablation study results for different pooling shape on VideoMME and LongVideoBench.

model to accurately disentangle sub-frame temporal relationships. The integration of norm-based
recalibration enhances the model’s ability to localize subtle visual cues. In the second example, the
baseline incorrectly identifies a clothing pattern as “solid blue lines” due to its failure to detect the
faint dashed stitching. In contrast, our method successfully recognizes the discontinuous texture
through normalized feature recalibration. These examples collectively highlight how our method
combines spatial refinement and temporal coherence to achieve narratively consistent and visually
precise video reasoning.

Figure 9: The other output examples of LLaVA-Video model without and with our method on
LongVideoBench dataset.

H CODE APPENDIX

The code for our model is located in the anonymous GitHub repository. Detailed experimental
instructions are provided below. This implementation is based on PyTorch and corresponds to the
ST-GridPool method introduced in our paper Enhancing Visual Token Representations for Video
Large Language Models via Training-free Spatial-Temporal Pooling and Gridding.
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H.1 INSTALLATION

This code is written in Python 3.10 and requires PyTorch 2.2. To run the code, we recommend using
virtual environment like conda. Please run the following commands to set up environment for the
code.

1 conda create --name exp1 python=3.10
2 conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio

==2.2.0 pytorch-cuda=12.1 -c pytorch -c nvidia
3 pip install flash-attn==2.5.0 --no-build-isolation
4 pip install -e .
5 pip install open-clip-torch==2.29.0

H.2 DOWNLOADING PRETRAINED WEIGHTS

Download the pretrained LLaVA-Video-7B checkpoint from here.

H.3 RUNNING EXPERIMENTS

We provide example scripts for reproducing results of our method. Raw logs of experimental results
are put in ’logs/’ directory.

For most datasets, you can get the final scores by replacing $TASK with dataset name and running
the following command:

1 TASK=videomme
2 python -m accelerate.commands.launch \
3 --num_processes=6 \
4 -m lmms_eval \
5 --model llava_video \
6 --model_args pretrained=../model/llava-video,

conv_template=qwen_1_5,model_name=llava_qwen,
max_frames_num=64\

7 --tasks $TASK \
8 --batch_size 1 \
9 --log_samples \

10 --log_samples_suffix llava_video_$TASK \
11 --output_path ./logs/
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