
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CORTEXVLA: BRIDGING THE GAP BETWEEN COGNI-
TION AND ACTION VIA FUNCTION CALLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models have shown promise for embodied intel-
ligence, but they often struggle with long-horizon tasks due to error accumulation
or planning failure. To address these challenges, we propose CortexVLA, a novel
paradigm that bridges cognition and action by leveraging large language model
(LLM) function calling. CortexVLA consists of three modular components: the
Central Cortex, an LLM-based cognitive hub for planning and function calling;
the Visual Cortex, which provides perception through callable vision tools; and
the Motor Cortex, which exposes robotic action control as functions. To improve
robustness and enable recovery from execution errors, we further propose Cortex-
PPO, a reinforcement learning (RL) algorithm that trains CortexVLA to make op-
timal function calls while supporting failure recovery. We provide theoretical anal-
yses to further demonstrate the soundness and generalization abilities of Cortex-
PPO. Comprehensive experiments demonstrate the effectiveness of CortexVLA
on ultra-long-horizon tasks. In our main experiment, CortexVLA achieves an av-
erage success rate of 85.40%. More importantly, it sustains a 72.73% success rate
with an average sub-task length of 11.55 when tackling the most challenging 14
sub-tasks, whereas end-to-end VLA baselines fail beyond 3 or 4 steps. In a flex-
ible manufacturing scenario with 31 sub-tasks, CortexVLA achieves an 81.25%
success rate with an average sub-task length of 26.69, demonstrating strong scal-
ability and adaptability. Codes will be released after publication.

1 INTRODUCTION

Recent advances in vision-language-action (VLA) models (Zitkovich et al., 2023; Wen et al., 2025b)
have driven substantial progress in embodied intelligence. By leveraging the powerful visual-
linguistic representations learned by pretrained vision-language models (VLMs), these generalist
robot manipulation policies are trained to map visual observations and natural language instructions
directly into robotic actions (O’Neill et al., 2024; Zhao et al., 2025a; Liu et al., 2025; Zhou et al.,
2025). Although most VLAs perform well on short tasks after fine-tuning, they often struggle with
long-horizon tasks, frequently leading to incomplete execution or failure (Fan et al., 2025).

The primary reason existing methods struggle with long-horizon tasks is that many ap-
proaches (Zhao et al., 2023; Octo Model Team et al., 2024; Kim et al., 2024) operate strictly un-
der the Markov assumption. When the system state deviates from the training distribution, which
frequently occurs during sequential execution, the models decisions often lead to failure. To mit-
igate this limitation, π0 (Black et al., 2024) leverages the high-level policy model SayCan (Ahn
et al., 2022) to decompose long-horizon tasks into sub-goals. Other works (Wen et al., 2025a;c)
exploit the models inherent capabilities, employing internal reasoning or phase-aware adaptation to
guide execution. However, these end-to-end methods suffer from error accumulation, with small
deviations compounding over long horizons into task failure. In addition, such models typically
require fine-tuning on large collections of continuous sequences, which not only raises the cost of
data acquisition but also makes performance highly sensitive to data quality, leading to significant
instability and difficulty in reproduction. From another perspective, recent hierarchical VLA ar-
chitectures (Zhang et al., 2025; Shi et al., 2025; Gao et al., 2025) have shown improvement on
long-horizon tasks. However, they remain susceptible to errors during planning and task state track-
ing, and their reliance on synthetic or simulated data for training makes them difficult to deploy in
practice. Related works are discussed in Appendix A.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Meanwhile, research on large language models (LLMs) has shown strong capabilities in tool us-
age (Yao et al., 2023). Several studies (Qin et al., 2023; Liu et al., 2024b; Qian et al., 2025) improve
function calling through better data construction and fine-tuning, enabling open-source models such
as Llama3 (Dubey et al., 2024) and Qwen3 (Yang et al., 2025) to connect with diverse APIs across
a wide range of scenarios. In robotic manipulation, however, high-level cognition of human instruc-
tions and environmental context often fails to translate into reliable action control. This naturally
raises the question: Can we harness the cognitive strengths and function-calling abilities of LLMs
to better bridge the gap between cognition and action in robotic manipulation?

To answer this question, a straightforward strategy is to decouple visual perception and action exe-
cution into distinct tool modules and let an LLM orchestrate their invocation. However, this design
faces critical challenges in long-horizon tasks. As the number of sub-tasks grows, the context length
expands proportionally, making it difficult for the model to distinguish tasks that have already been
finished from pending tasks. It also increases the risk of premature termination due to context limits.
Moreover, when errors occur within a sub-task, the model often struggles to locate mistakes in the
lengthy context and re-execute the sub-task. These issues highlight the need for a new collaborative
paradigm that enables robots to handle long-horizon tasks more effectively.

In this paper, we propose CortexVLA, a novel VLA paradigm that leverages LLMs for natural-
language understanding and function calling to drive visual perception and action control. Our
framework comprises three core components: the Central Cortex, the Visual Cortex, and the
Motor Cortex. The Central Cortex serves as the cognitive hub, receiving user instructions, decom-
posing them into structured task lists, and orchestrating execution through sequential tool calls to
the other two Cortices. To address context-length limitations, it incorporates a task handler that
persistently stores and updates task states, enabling explicit progress tracking and bounded prompt
context. The Visual Cortex provides perception by integrating vision modules (e.g., object detec-
tors, depth sensors) exposed as callable tools. Similarly, the Motor Cortex governs robotic motion
by invoking action modules such as pose predictors, motion planners, and low-level controllers. The
Visual and Motor Cortices share a unified tool library, which enumerates the available functions for
operating their respective modules. Both the library and the underlying modules can be flexibly
replaced to adapt to different application scenarios.

To further expand the ability of CortexVLA, we propose Cortex-PPO, a reinforcement learning
(RL) algorithm tailored for CortexVLA. By introducing a recovery-aware reward and noise injec-
tion, this algorithm not only improves the function calling accuracy of CortexVLA but also equips it
with failure recovery capabilities, substantially enhancing its robustness in executing long-horizon
tasks. We further conduct a theoretical analysis of Cortex-PPO, proving the unbiasedness of noise
injection and establishing an upper bound on cross-environment performance generalization based
on mutual information, which demonstrates its soundness and generalization benefits.

To evaluate CortexVLA, we conducted extensive experiments across diverse scenarios against VLA
baselines. On our main benchmark of ultralong-horizon tasks ranging from 1 to 14 sub-tasks, Cor-
texVLA attains an average success rate of 85.40%, outperforming all baselines. In the hardest
setting with 14 sub-tasks, it maintains a 72.73% success rate with an average sub-task length of
11.55, whereas most baselines fail once the number of sub-tasks reaches 3 or 4. In a flexible manu-
facturing scenario with 31 sub-tasks, CortexVLA achieves an 81.25% success rate with an average
sub-task length of 26.69. Case studies across multiple domains further illustrate its flexibility and
adaptability. Overall, these results indicate high success rates, strong stability, and reproducibility
of CortexVLA. Our contributions are outlined as follows:

• We propose CortexVLA, a novel VLA paradigm that leverages LLMs for high-level planning
and function calling to coordinate vision and action modules. The architecture consists of
a Central Cortex for planning and function calling, a Visual Cortex for perception, and a
Motor Cortex for control.

• We design Cortex-PPO, a RL algorithm that improves the function calling accuracy of Cor-
texVLA and equips CortexVLA with failure recovery ability. We further provide theoretical
analyses that demonstrate its soundness and generalization guarantees.

• We evaluate CortexVLA through extensive experiments across diverse scenarios, demonstrat-
ing superior performance, adaptability, and robustness on ultralong-horizon tasks compared to
previous VLA baselines.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Central Cortex

function response function responsefunction call

action

camera robotic arm
visual 
observation

Task HandlerPlanner

Allocator

updateuser instruction

process info

task list

(subtasks succeed or fail)

Visual Cortex
operate operate

ControllersControllers

Motor Cortex

VLA (Action Part)

IK Solver

ACT

Grounding DINO SAM

VLA (Vision Part) D3RoMa

Tool Library

lift reset

detect

fetch

movehold Pose Predictor

Figure 1: The overall architecture and basic working flow of CortexVLA. The functions in the
tool library and the modules in the Visual and Motor Cortices can be replaced to adapt to different
application scenarios.

2 METHODOLOGY

2.1 CORTEXVLA

As shown in Figure 1, CortexVLA is composed of three core components: the Central Cortex,
the Visual Cortex, and the Motor Cortex. The Central Cortex acts as the control hub, receiving
user instructions, maintaining task lists, and orchestrating function calls. The Visual Cortex handles
perception, while the Motor Cortex executes actions. Both the Visual Cortex and the Motor Cortex
share a tool library that contains the available functions. The tool library, along with the perceptual
and motor modules, can be flexibly configured to meet different task requirements. We describe
each component in detail below.

Central Cortex The Central Cortex comprises two LLM-based decision layers and a task handler.
The upper layer is the Planner. It receives user instructions, analyzes them, and generates a struc-
tured task list that is stored by the task handler. The task list enumerates the sub-tasks, allowing
the task handler to track progress and manage updates efficiently. The lower layer is the Allocator.
It is prompted with the current task list, the current context, and the relevant function descriptions
from the tool library. Then, it executes the sequential function calls to engage the Visual Cortex and
the Motor Cortex in solving the first sub-task on the task list. Each time after calling a function,
it receives a function response that provides critical information or indicates whether the function
execution succeeds or fails. If it fails, the Allocator can perform failure recovery according to the
recovery strategies defined in the function descriptions, which is essential for long-horizon tasks
where errors are unavoidable. Once a sub-task is completed, the task handler updates the task list
and provides the updated version to the Allocator. The Allocator can then clear the context without
losing essential information. The implementation details are presented in Appendix D.

Visual Cortex The Visual Cortex handles all vision-related processing and transmission. It typi-
cally connects to external perception devices and incorporates multiple visual modules, which can
be used independently or in combination through functions in the tool library. For instance, in our
main experiment (Section 3.1), the Visual Cortex is connected to a depth camera and equipped with
modules such as Grounding DINO (Liu et al., 2024a), D3RoMa (Wei et al., 2024), and the Segment
Anything Model (SAM) (Kirillov et al., 2023). Grounding DINO is invoked independently for ob-
ject detection, while D3RoMa and SAM are jointly used for point cloud generation. The outputs of
the Visual Cortex, including RGB images, bounding boxes, and point clouds, are then passed to the
Motor Cortex to guide action execution.

Motor Cortex The Motor Cortex is responsible for executing robotic actions by generating action
sequences that drive the robotic arm to complete tasks. Like the Visual Cortex, it comprises mul-
tiple motor modules that can be invoked independently or in combination through function calls.
For instance, in our main experiment (Section 3.1), which involves grasping operations, we em-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ploy AnyGrasp (Fang et al., 2023) as the end-effector pose predictor. The generated actions are
further processed by low-level controllers, including inverse kinematics (IK) solvers and obstacle-
avoiding motion planners, to produce executable commands. The Motor Cortex then reports execu-
tion outcomes back to the Central Cortex (Allocator) through function responses, enabling subse-
quent decision-making.

The Visual Cortex and Motor Cortex are not always decoupled. When employing models such as
ACT (Zhao et al., 2023) or end-to-end VLAs, the visual component (e.g., VLM) naturally plays
the role of the Visual Cortex, while the action component (e.g., action expert) serves as the Motor
Cortex. For example, in the Bartender case study (Section 3.2.2), we use ACT as both the Visual
Cortex and Motor Cortex.

2.2 CORTEX-PPO

Equipping CortexVLA with robust scheduling and function call capabilities requires fine-tuning
with specific data. A common approach is to perform supervised fine-tuning (SFT) using Low-
Rank Adaptation (LoRA) (Hu et al., 2022). While SFT enables the model to familiarize itself with
the current scenario and achieve reasonably good function-calling accuracy, it struggles to execute
failure recovery operations effectively when errors occur during sub-tasks. To address this issue, we
propose Cortex-PPO, an RL algorithm for fine-tuning the CortexVLA to operate correctly in failure
recovery and perform better function calls. Cortex-PPO also enables CortexVLA to be end-to-end
trained, as discussed in Appendix C.

2.2.1 ALGORITHM DESIGN

We aim to enhance function-calling accuracy while simultaneously learning failure-recovery strate-
gies. To this end, we develop a recovery-aware reward within the PPO (Schulman et al., 2017)
algorithm. We first formalize the problem, then present the reward design, and finally illustrate the
Cortex-PPO algorithm.

Problem Formulation We consider episodic RL for multi-step manipulation tasks specified by
a task description x ∈ X . At each step t = 1, · · · , T , the agent observes st ∈ S , outputs a
structured function call at ∈ A, receives reward rt ∈ R, and transitions to st+1. A trajectory is
τ = {(st, at, rt)}Tt=1. Since each sub-task involves multiple objects, we decompose τ into object-
specific sub-trajectories: τi = {(si,t, ai,t, ri,t)}|oi|t=1, where |oi| is the number of steps for object oi.
The agent follows a stochastic policy πθ(a|s, x) with reward discounts γ ∈ (0, 1].

Reward Design To stabilize fine-tuning for ultra-long-horizon tasks, we design a bounded,
smooth, recovery-aware reward, Cortex-Reward. Let action correctness be ri,t ∈ {−1,+1}, and
define the failure recovery indicator

ψi,t =

{
1, if ri,t = +1 and a valid recovery is executed,
0, otherwise.

(1)

Set zi,t = ri,t + αψi,t, with α > 0 controls the relative weighting of recovery. We then apply the
hyperbolic tangent tanh to bound and smoothly scale zi,t to (−1, 1), which stabilizes training and
prevents large gradient spikes. To further mitigate reward sparsity and improve cross-environment
generalization, we add independent Gaussian noise εi,t ∼ N (0, σ2), which is independent across
time steps and independent of policy sampling. The final Cortex-Reward is

Ri,t = tanh(κzi,t) + εi,t, (2)

where κ > 0 scales the hyperbolic tangent contraction. For object oi, the reward sequence is
Ri = (Ri,1, . . . , Ri,|oi|).

Cortex-PPO We optimize with PPO (Schulman et al., 2017) using Cortex-Reward as the signal:

LCortex-PPO(θ) = Eτi∼πθold

[ |oi|∑
t=1

min
(
ρi,t(θ)Âi,t, clip(ρi,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)]
, (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where ρi,t(θ) =
πθ(ai,t|si,t)
πθold (ai,t|si,t) . Using Generalized Advantage Estimation (GAE) (Schulman et al.,

2015),

Âi,t =

|oi|−t∑
l=0

(γλ)lδi,t+l, δi,t = Ri,t + γVϕ(si,t+1)− Vϕ(si,t), (4)

with λ ∈ [0, 1] and value function Vϕ. Cortex-PPO integrates recovery-aware rewards with noise in-
jection and serves as a fine-tuning algorithm specifically designed for CortexVLA. We next provide
theoretical analyses of this algorithm.

2.2.2 THEORETICAL ANALYSES

We focus on analyzing the unbiasedness and the generalization ability of Cortex-PPO. Full proofs
of the theorems are provided in Appendix B.
Assumption 1 (Deterministic critic). The critic Vϕ(s) is deterministic conditional on the observed
state-action sequence τ̄i = {(si,t, ai,t)}|oi|t=1, i.e.,

P (Vϕ(s) ∈ ·|τ̄i, {εi,t}) = P (Vϕ(s) ∈ ·|τ̄i) . (5)

This assumption is standard in policy-gradient analysis, since critics are typically trained on ob-
served states and actions only, without depending on additive reward noise.
Theorem 1 (Unbiasedness under additive reward noise). Under the above assumption and the
reward model in Equation 2, for any fixed τ̄i:

1. (Reward) For every t,
Eε[Ri,t | τ̄i] = tanh(κzi,t). (6)

2. (GAE) Let Âi,t denote the advantage estimate computed from noisy rewards Ri,t, and Â0
i,t the

estimate with noiseless rewards tanh(κzi,t). Then

Eε[Âi,t | τ̄i] = Â0
i,t. (7)

3. (Policy Gradient) Set ĝ(θ; τ̄) =
∑

i

∑|oi|
t ∇θ log πθ(ai,t | si,t) Âi,t. as the empirical GAE-

based policy-gradient estimator. Then, by taking the expectation over the additive noises, we
have

Eε

[
ĝ(θ; τ̄) | τ̄

]
=
∑
i

|oi|∑
t

∇θ log πθ(ai,t | si,t) Â0
i,t = ĝ0(θ; τ̄), (8)

where ĝ0(θ; τ̄) denotes the policy-gradient estimator computed with noiseless rewards.

Therefore, the Cortex-Reward in Equation 2 is unbiased. For any object-specific trajectory, the
GAE-based policy-gradient estimator computed with noisy rewards has the same expectation as
with noiseless rewards. More broadly, this unbiasedness holds for any additive zero-mean noise,
regardless of its distribution. As a result, noise injection preserves the validity of the learning signal
and ensures that Cortex-PPO optimizes the same objective as in the noiseless case. We now analyze
its generalization behavior and establish an information-theoretic bound that characterizes cross-
environment performance guarantees.

Let E denote the distribution over environments, and E ∼ µ be a random environment drawn from
E . For each e ∈ E , let Je denote the expected return in environment e under policy πθ, with the
aggregated reward along a trajectory approximately bounded in [a, b]. Let R be the observed reward
under the noisy Cortex-Reward model.
Theorem 2 (Information-Theoretic Bound on Cross-Environment Performance). Let E be a
random environment drawn from µ, and R be the observed reward under the external-noise Cortex-
Reward model. Then the expected absolute performance difference between two independent envi-
ronment samples E,E′ satisfies

EE,E′
[
|JE − JE′ |

]
≤ (b− a)

√
2 I(E;R), (9)

where I(E;R) denotes the mutual information between the environment index E and the observed
rewards R.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This theorem shows that cross-environment variation in expected returns is controlled by the mu-
tual information I(E;R) between the environment identity and observed rewards. Under the noisy
Cortex-Reward R = f(zτ )+ ε with ε ⊥ (E, τ), the data-processing inequality (Beaudry & Renner,
2012) implies I(E;R) = I(E; f(zτ ) + ε) ≤ I(E; f(zτ )). Consequently, as the noise variance
grows, I(E;R) is non-increasing and typically strictly decreasing. By Theorem 2, this reduction
in I(E;R) tightens the cross-environment performance bound. This demonstrates that noise in-
jection weakens environment-specific information in rewards, thereby enhancing cross-environment
generalization capabilities and providing a principled mechanism for achieving more robust policy
performance across diverse environments.

3 EXPERIMENTS

3.1 MAIN EXPERIMENT – ULTRA-LONG-HORIZON TASK

The main experiment we designed for examining the effectiveness of CortexVLA and several base-
line models can be referred to as ultra-long-horizon task. We first provide the task definitions and
metrics of this experiment. Then, we introduce the baselines we selected for evaluation. Finally, we
present the experiment results and analyses.

3.1.1 TASK DEFINITIONS AND METRICS

The ultra-long-horizon task requires models to sequentially locate, grasp, and release multiple tar-
get objects in the exact order specified by user instructions. We use the term ultra-long because
these tasks can, in principle, extend indefinitely, constrained only by hardware, environment, and
time. In our experiment, we set the maximum length to 14 sub-tasks, which already poses a se-
vere challenge for existing methods. Note that a sub-task here refers to a complete small task, such
as locating, grasping, and releasing an object, rather than a decomposed action. Success in this
experimental setting requires accurate action execution over extended durations, as well as precise
decision-making and consistent task memory. These capabilities are difficult for current methods to
achieve.

Concretely, each task starts with a natural-language instruction specifying the required order of
target objects, and the model must follow this sequence precisely. Details of the instruction design
are provided in Appendix E. Given the complexity of these tasks, we evaluate performance with two
metrics: success rate for overall performance and average success length for fine-grained capability.

3.1.2 BASELINES

We evaluate CortexVLA against representative baseline models, grouped into two categories: the
end-to-end methods and the hierarchical methods.

End-to-end methods Octo (Octo Model Team et al., 2024) is a lightweight transformer-based
model that accepts language commands and goal images. OpenVLA (Kim et al., 2024) builds on
a 7B Llama2 (Touvron et al., 2023), integrating DinoV2 (Oquab et al., 2023) and SigLip (Zhai
et al., 2023) for multimodal understanding, with actions expressed as discrete tokens. ACT (Zhao
et al., 2023) targets bimanual manipulation using a Transformer and VAE with Action Chunk and
Temporal Ensemble for precise control. π0 (Black et al., 2024), trained on large-scale teleoperation
data with PaliGemma (Beyer et al., 2024), can handle complex tasks such as cloth folding.

Hierarchical methods RoBridge (Zhang et al., 2025) adopts a three-layer architecture with a
high-level cognitive planner (HCP), an invariant operable representation (IOR), and a guided em-
bodied agent (GEA). The HCP decomposes instructions into primitive actions and generates IOR,
which encodes depth, masks, action types, and constraints. IOR is updated at different frequencies
and serves as input to the GEA, which executes the actions to complete the task. All three layers are
realized by GPT-4o (Hurst et al., 2024). VLA-OS (Gao et al., 2025) provides modular architectures
for action-only (A), integrated (I), and hierarchical (H) paradigms. Specifically for the VLA-OS-H,
it uses the VLM together with planning heads for task planning, and modifies the action head to
an encoder-decoder transformer for policy learning. Note that the action execution parts of these
two methods are either closed-source or difficult to reproduce, so we only evaluate their planning

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1

3

5

7

9

11

1 3 5 7 9 112 4 86 10 12 13 14

Av
g.

 S
uc

ce
ss

 L
en

gt
h

Sub-Task Number

π₀
ACT
OpenVLA
Octo

CortexVLA (Ours)

1

3

5

7

9

11

1 3 5 7 9 112 4 86 10 12 13 14

Av
g.

 S
uc

ce
ss

 L
en

gt
h

Sub-Task Number

RoBridge
CortexVLA (Ours)

VLA-OS

Figure 2: Ultra-long-horizon experiment results (average success length). We compare the Cor-
texVLA with baselines. The upper panel reports results against end-to-end methods, while the lower
panel reports results against hierarchical methods.

Table 1: Ultra-long-horizon experiment results (success rate). The mark “failed” indicates that no
successful trials were observed. Both Octo and OpenVLA achieved no successes in this experiment.

Number of ACT π0 VLA-OS RoBridge CortexVLA CortexVLASub-tasks (w/o Cortex-PPO)

1 80.00% 90.00% 33.33% 93.33% 93.75% 94.12%
2 13.33% 66.67% 33.33% 84.21% 87.50% 90.91%
3 8.00% 45.00% failed 72.22% 85.71% 88.24%
4 failed failed failed 52.63% 85.29% 86.49%
5 failed failed failed 43.47% 84.85% 85.71%
8 failed failed failed failed 83.78% 84.38%

10 failed failed failed failed 77.42% 80.65%
14 failed failed failed failed 58.33% 72.73%

Average 12.67% 25.21% 8.33% 43.23% 82.08% 85.40%

abilities. This assumes perfect action experts for these methods, which gives them extra advantages.
Note that the planning stage of these two methods is not limited to scheduling the order of sub-tasks;
it also requires determining whether each sub-task has been successfully completed.

3.1.3 RESULTS AND ANALYSES

From Table 1, we can observe that CortexVLA achieves an average of 85.40% success rate across
the entire experiments, which is more than 3 times higher than π0 and nearly 2 times higher than
planning-only RoBridge. This shows the strong stability of CortexVLA. From Figure 2, we can ob-
serve that as the task instruction length increases, the average success length of CortexVLA grows
almost linearly and consistently approaches the total task length. The average task length of Cor-
texVLA in the hardest setting of 14 sub-tasks is 11.55, which shows a huge gap with baseline meth-
ods. We also calculated the linear regression coefficient k for the CortexVLA results in Figure 2,
obtaining k = 0.8519, which is closer to the ideal value of 1. This indicates that CortexVLA scales
stably with task length and suffers little performance degradation when facing error accumulation.

For the end-to-end baselines, π0 achieves a relatively higher average success rate of 25.21%, but it
fails to perform any successful task once the number of sub-tasks reaches 4 or more. In terms of
average success length, these methods show linear growth only within short horizons, after which
performance plateaus or even declines. For hierarchical methods that only evaluate planning ability,
there still remains a substantial performance gap compared to the full CortexVLA system.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1. drone frame: 1  
2. propeller: 4  
3. flight controller: 1
4. data link: 1
......

Assemble 5 drones. The first drone and the second drones should have a data link module, and the third 
and the fourth drone should have a video link module, and the fifth drone should have no extra modules.Instructions

1. propeller: 4
2. flight controller: 1
3. data link: 1  
--------
......

1. drone frame: 1
2. propeller: 4
3. flight controller: 1
4. data link: 1
......

1. propeller: 4
2. flight controller: 1
3. data link: 1  
--------
......

Real-Time
Camera View

Task List in 
Task Handler

Real-Time
Camera View

Task List in 
Task Handler

1. data link: 1
--------
2. drone frame: 1  
3. propeller: 4
......

1. data link: 1
--------  
2. drone frame: 1
3. propeller: 4
......

1. drone frame: 1
2. propeller: 4
3. flight controller: 1
4. video link: 1
......

1. drone frame: 1
2. propeller: 4
3. flight controller: 1
4. video link: 1
......

Figure 3: Examples of CortexVLA performing flexible manufacturing tasks. The figure shows
real-time camera views during task execution, with the corresponding task lists maintained by the
task handler. Tasks assigned to different drones are separated by dashes. CortexVLA always oper-
ates on the first sub-task in the list: red highlights the sub-task currently being executed, and green
highlights a completed sub-task that will soon be removed or decremented. For clarity, we present
representative examples rather than the full execution sequence.

Table 2: Experiment results of the flexible manufacturing scenario.

Number of Drones Avg. Number of Sub-tasks Avg. Succ. Len. Succ. Rate

1 drone 6 6.00 100.00%
2 drones 13 12.94 94.12%
3 drones 19 17.30 86.96%
5 drones 31 26.69 81.25%

Avg. Succ. Rate 90.58%

The primary reason for the strong performance of CortexVLA lies in its modular coordination mech-
anism and task state memory capability. The former helps prevent error propagation between per-
ception and action, while the latter ensures that each sub-task can be executed independently. Ad-
ditionally, Cortex-PPO equips CortexVLA with error recovery capabilities, further enhancing its
performance (see Table 1). In comparison, end-to-end baselines face challenges in mitigating er-
ror accumulation. And since our experiments included repetitive subtasks, this confused training
for end-to-end methods, further exacerbating performance degradation. While hierarchical base-
line methods only evaluate planning performance, they still exhibit errors during long-horizon task
planning and often fail in progress tracking during execution. Specifically, RoBridge frequently mis-
judges task progress, particularly incorrectly detecting whether the gripper has successfully grasped
an object. VLA-OS-H, in turn, often plans an unnecessary additional object or assigns incorrect
object names to sub-tasks. Furthermore, due to the limited stability and repeatability of baseline
methods, their performance on complex tasks cannot be guaranteed. In contrast, our approach
demonstrates robust stability and straightforward reproducibility.

3.2 CASE STUDIES

To further evaluate the generalization ability and adaptation ability of CortexVLA, we conduct case
studies across different scenarios. Below, we present two representative adaptations, with additional
experiments provided in Appendix F.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

I feel happy now. Give me a cup of Daquiri with ice.
First add rum Then add lime juice Next a little syrup Finally add ice Enjoy your drink!

I want to drink a cup of Long Island Iced Tea, but do not add ice in it.
Then add rum Next lime juice Finally some syrupFirst add vodka Enjoy your drink!

Figure 4: Examples of CortexVLA serving customers as a bartender. Customer requests are
shown in pink, while the decomposed sub-tasks are shown in cyan with corresponding operation
diagrams below. The orange arrows in the diagrams mean adding ingredients, and the blue arrows
mean putting the containers back.

3.2.1 SCENARIO ADAPTATION – FLEXIBLE MANUFACTURING

Flexible manufacturing is a production method that can quickly adapt to changes in product type
or demand. Inspired by this, we design a drone componentsorting task that mimics a common
assembly-line scenario. The VLA must control a robot to sequentially place drone components onto
a conveyor belt according to specified assembly requirements. A typical drone requires a drone
frame, four motors with propellers, and a flight controller. Depending on the configuration, some
drones also require a data link module, a video link module, or both. Even assembling only five
drones involves more than 30 sub-tasks, making this task a substantial challenge for existing VLA
models. To evaluate the generalization ability of CortexVLA, we directly adapt the model from the
main experiment to this scenario, modifying only the prompt without any additional fine-tuning.

We assess performance on instructions for assembling one to five drones, including tasks that com-
bine different drone configurations (see Appendix E). Results are shown in Table 2. CortexVLA
achieves a 90.58% average success rate across all experiments and sustains an 81.25% success rate
with an average success length of 26.69 on the most difficult setting with 31 sub-tasks. These results
highlight CortexVLAs stability and strong generalization ability for ultra-long-horizon tasks across
diverse scenarios. Representative examples are shown in Figure 3.

3.2.2 SCENARIO ADAPTATION – BARTENDER

In this scenario, we adapt CortexVLA to function as a bartender, preparing cocktails based on cus-
tomer requests. To approximate real-world conditions, requests are given as variable natural lan-
guage commands that typically specify only cocktail names and personal preferences (e.g., whether
to add ice or syrup). This setting is particularly challenging because it requires recalling cocktail
recipes while also accommodating individual preferences. Note that cocktail recipes typically have
strict requirements for the order in which ingredients are added.

Figure 4 illustrates examples of CortexVLA making cocktails. The planner of the Central Cortex
decomposes diverse natural language instructions into sequential sub-tasks according to the recipes
and the customers’ preferences. By employing ACT (Zhao et al., 2023) as both the Visual Cortex
and the Motor Cortex, CortexVLA achieves an average success rate of 91.67% in this case study.
These results highlight both the adaptability of CortexVLA to new scenarios and the flexibility of
replacing tool libraries and modules.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 CONCLUSION

In this paper, we introduce CortexVLA, a novel VLA paradigm that bridges the gap between cog-
nition and action through LLM-based function calling. The framework consists of a Central Cortex
for planning and function orchestration, a Visual Cortex for perception, and a Motor Cortex for
control. We further propose Cortex-PPO, a recovery-aware RL algorithm that enhances the capabil-
ities of CortexVLA. Our theoretical analyses establish the soundness and generalization guarantees
of this algorithm. Extensive experiments demonstrate that CortexVLA not only surpasses strong
baselines but also adapts robustly across diverse application scenarios. In the future, we will further
advance the capabilities of the three Cortices and explore broader domains to extend the versatility
of CortexVLA.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide implementation details, including model selection, prompt
design, and fine-tuning details in Appendix D and user instructions in Appendix E. Full training and
inference codes will be released upon the paper acceptance.

REFERENCES

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumaravel, Matthew Stallone,
Rameswar Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, Chulaka Gunasekara, et al. Granite-
function calling model: Introducing function calling abilities via multi-task learning of granular
tasks. arXiv preprint arXiv:2407.00121, 2024.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Normand J. Beaudry and Renato Renner. An intuitive proof of the data processing inequality. arXiv
preprint arXiv:1107.0740, 2012.

Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. arXiv
preprint arXiv:2403.01823, 2024.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

Peng Chen, Pi Bu, Yingyao Wang, Xinyi Wang, Ziming Wang, Jie Guo, Yingxiu Zhao, Qi Zhu, Jun
Song, Siran Yang, et al. Combatvla: An efficient vision-language-action model for combat tasks
in 3d action role-playing games. arXiv preprint arXiv:2503.09527, 2025.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, Hoboken, NJ, 2nd
edition, 2006.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yiguo Fan, Pengxiang Ding, Shuanghao Bai, Xinyang Tong, Yuyang Zhu, Hongchao Lu, Fengqi
Dai, Wei Zhao, Yang Liu, Siteng Huang, et al. Long-vla: Unleashing long-horizon capability of
vision language action model for robot manipulation. arXiv preprint arXiv:2508.19958, 2025.

Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu,
Yichen Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and tem-
poral domains. IEEE Transactions on Robotics, 39(5):3929–3945, 2023.

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

Chongkai Gao, Zixuan Liu, Zhenghao Chi, Junshan Huang, Xin Fei, Yiwen Hou, Yuxuan Zhang,
Yudi Lin, Zhirui Fang, Zeyu Jiang, et al. Vla-os: Structuring and dissecting planning representa-
tions and paradigms in vision-language-action models. arXiv preprint arXiv:2506.17561, 2025.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee,
Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large
language models. arXiv preprint arXiv:2308.00675, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Michelle A Lee, Yuke Zhu, Peter Zachares, Matthew Tan, Krishnan Srinivasan, Silvio Savarese,
Li Fei-Fei, Animesh Garg, and Jeannette Bohg. Making sense of vision and touch: Learning
multimodal representations for contact-rich tasks. IEEE Transactions on Robotics, 36(3):582–
596, 2020.

Jinming Li, Yichen Zhu, Zhibin Tang, Junjie Wen, Minjie Zhu, Xiaoyu Liu, Chengmeng Li, Ran
Cheng, Yaxin Peng, Yan Peng, and Feifei Feng. Coa-vla: Improving vision-language-action
models via visual-textual chain-of-affordance. arXiv preprint arXiv:2412.20451, 2025.

Jiaming Liu, Hao Chen, Pengju An, Zhuoyang Liu, Renrui Zhang, Chenyang Gu, Xiaoqi Li, Ziyu
Guo, Sixiang Chen, Mengzhen Liu, et al. Hybridvla: Collaborative diffusion and autoregression
in a unified vision-language-action model. arXiv preprint arXiv:2503.10631, 2025.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. In European conference on computer vision, pp. 38–55. Springer,
2024a.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024b.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
function-calling datasets. Advances in Neural Information Processing Systems, 37:54463–54482,
2024c.

Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation
via human-in-the-loop reinforcement learning, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. Advances in Neural Information Processing Systems, 37:126544–
126565, 2024.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0.5: a vision-language-action
model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Hangyu Mao, Ziyue Li, Xingyu
Zeng, Rui Zhao, et al. Tptu: Task planning and tool usage of large language model-based ai
agents. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, et al. Hi robot: Open-ended instruction
following with hierarchical vision-language-action models. arXiv preprint arXiv:2502.19417,
2025.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset
for robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yating Wang, Haoyi Zhu, Mingyu Liu, Jiange Yang, Hao-Shu Fang, and Tong He. Vq-vla: Improv-
ing vision-language-action models via scaling vector-quantized action tokenizers. arXiv preprint
arXiv:2507.01016, 2025.

Songlin Wei, Haoran Geng, Jiayi Chen, Congyue Deng, Cui Wenbo, Chengyang Zhao, Xiaomeng
Fang, Leonidas Guibas, and He Wang. D3roma: Disparity diffusion-based depth sensing for
material-agnostic robotic manipulation. In 8th Annual Conference on Robot Learning, 2024.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025a.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. IEEE Robotics and Automation Letters, 2025b.

Junjie Wen, Yichen Zhu, Minjie Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Xiaoyu Liu, Chaomin
Shen, Yaxin Peng, and Feifei Feng. Diffusionvla: Scaling robot foundation models via unified
diffusion and autoregression. In Forty-second International Conference on Machine Learning,
2025c.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Andy Zhai, Brae Liu, Bruno Fang, Chalse Cai, Ellie Ma, Ethan Yin, Hao Wang, Hugo Zhou,
James Wang, Lights Shi, et al. Igniting vlms toward the embodied space. arXiv preprint
arXiv:2509.11766, 2025.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Kaidong Zhang, Rongtao Xu, Pengzhen Ren, Junfan Lin, Hefeng Wu, Liang Lin, and Xiaodan
Liang. Robridge: A hierarchical architecture bridging cognition and execution for general robotic
manipulation. arXiv preprint arXiv:2505.01709, 2025.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
arXiv preprint arXiv:2411.19309, 2024.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
language-action models. In Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, pp. 1702–1713, 2025a.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Wei Zhao, Pengxiang Ding, Min Zhang, Zhefei Gong, Shuanghao Bai, Han Zhao, and Donglin
Wang. Vlas: Vision-language-action model with speech instructions for customized robot manip-
ulation. arXiv preprint arXiv:2502.13508, 2025b.

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and
Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. arXiv preprint
arXiv:2403.09631, 2024.

Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
awareness for generalist robotic policies. arXiv preprint arXiv:2412.10345, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng, Ran
Cheng, Yaxin Peng, Chaomin Shen, et al. Chatvla: Unified multimodal understanding and robot
control with vision-language-action model. arXiv preprint arXiv:2502.14420, 2025.

Yifeng Zhu, Abhishek Joshi, Peter Stone, and Yuke Zhu. Viola: Object-centric imitation learning
for vision-based robot manipulation. In 6th Annual Conference on Robot Learning, 2022.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Vision-Language-Action Models Recent explorations in the field of robotic manipulation have
made significant progress (Zhao et al., 2023; Brohan et al., 2022; Fu et al., 2024), with the VLA
model emerging as a promising direction. (Black et al., 2024; Kim et al., 2024; Octo Model Team
et al., 2024; Zitkovich et al., 2023; Wen et al., 2025b;a; Zhou et al., 2025; Zhao et al., 2025a; Zhang
et al., 2024; Zhen et al., 2024; Belkhale et al., 2024; Zheng et al., 2024; Zhao et al., 2025b; Chen
et al., 2025; Fan et al., 2025; Chen et al., 2025; Li et al., 2025; Wang et al., 2025; Physical Intelli-
gence et al., 2025; Zhai et al., 2025). Most approaches leverage pretrained VLMs to process mul-
timodal information, further training them on large-scale robotic datasets (O’Neill et al., 2024; Bu
et al., 2025; Walke et al., 2023; Lee et al., 2020; Zhu et al., 2022) to generate action outputs. How-
ever, these models generally follow a Markov decision-making paradigm, which limits their ability
to solve complex long-horizon tasks. They often encounter decision bottlenecks when repetitive or
similar actions are required, and collecting continuous operational data for long-horizon tasks is both
time-consuming and prone to errors, with failures accumulating over time. Although hierarchical
VLA architectures (Zhang et al., 2025; Shi et al., 2025; Gao et al., 2025) have shown improvements
in long-horizon task execution, they still suffer from imprecise planning, limited task-state tracking,
or heavy reliance on synthetic training data. In contrast, our approach introduces robust planning and
memory mechanisms that sustain high success rates even in extremely long-horizon tasks. Further-
more, it supports seamless integration with both traditional algorithms and VLA models, featuring
hot-swappable modularity that allows new skills to be added or replaced with minimal overhead.

Function Calling Studies Integrating external tools can expand the capability boundaries of
LLMs, enabling them to address specialized and high-precision tasks (Qin et al., 2023; Liu et al.,
2024b). Remarkably, with only tool descriptions and usage examples provided in prompts, LLMs
can already invoke tools without fine-tuning (Yao et al., 2023; Ruan et al., 2023; Hsieh et al., 2023).
Among these, the well-known ReAct (Yao et al., 2023) method enables LLMs to solve complex
tasks through alternating cycles of reasoning and action. However, due to the high dependence of
such methods on the model’s initial capabilities, their effectiveness and scope of application are lim-
ited. Further explorations achieve remarkable improvements through fine-tuning on tool-oriented
datasets, which allows LLMs to perform reliably even in scenarios requiring complex planning or
the use of unfamiliar tools (Liu et al., 2024b; Schick et al., 2023; Tang et al., 2023; Patil et al.,
2024; Qin et al., 2023; Abdelaziz et al., 2024; Liu et al., 2024c). Among these, ToolACE (Liu et al.,
2024b) implements an automated data pipeline for function calls to overcome the limitations of re-
lying on existing APIs. Building on these advances, our approach fully exploits the function-calling
capabilities of LLMs to bridge vision and action, thereby enabling more flexible and robust robotic
intelligence.

B DETAILS OF CORTEX-PPO AND THEORETICAL ANALYSES

B.1 UNBIASEDNESS UNDER ADDITIVE REWARD NOISE

We restate Theorem 1 and provide its proof here.

Theorem 3 (Restatement of Theorem 1). Under the Assumption 1 and the reward model in Equa-
tion 2, for any fixed τ̄i:

1. (Reward) For every t,
Eε[Ri,t | τ̄i] = tanh(κzi,t). (10)

2. (GAE) Let Âi,t denote the advantage estimate computed from noisy rewards Ri,t, and Â0
i,t the

estimate with noiseless rewards tanh(κzi,t). Then

Eε[Âi,t | τ̄i] = Â0
i,t. (11)

3. (Policy Gradient) Set ĝ(θ; τ̄) =
∑

i

∑|oi|
t ∇θ log πθ(ai,t | si,t) Âi,t. as the empirical GAE-

based policy-gradient estimator. Then, by taking the expectation over the additive noises, we

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

have

Eε

[
ĝ(θ; τ̄) | τ̄

]
=
∑
i

|oi|∑
t

∇θ log πθ(ai,t | si,t) Â0
i,t = ĝ0(θ; τ̄), (12)

where ĝ0(θ; τ̄) denotes the policy-gradient estimator computed with noiseless rewards.

Proof. 1. (Reward) Taking conditional expectation and using linearity of expectation together
with E[εi,t] = 0, we obtain

Eε[Ri,t | τ̄i] = Eε[tanh(κzi,t) + εi,t | τ̄i] = tanh(κzi,t) + Eε[εi,t | τ̄i] = tanh(κzi,t). (13)

2. (GAE) Consider the GAE computed from cortex-reward, its conditional expectation given the
stateaction sequence τ̄i is

Eε[Âi,t | τ̄i] = Eε

[ |oi|−t∑
ℓ=0

(γλ)ℓ δi,t+ℓ

∣∣∣ τ̄i]

=

|oi|−t∑
ℓ=0

(γλ)ℓ Eε[δi,t+ℓ | τ̄i]

=

|oi|−t∑
ℓ=0

(γλ)ℓ Eε[Ri,t+ℓ + γVϕ(si,t+ℓ+1)− Vϕ(si,t+ℓ) | τ̄i]

=

|oi|−t∑
ℓ=0

(γλ)ℓ
(
Eε[Ri,t+ℓ | τ̄i] + γVϕ(si,t+ℓ+1)− Vϕ(si,t+ℓ)

)

=

|oi|−t∑
ℓ=0

(γλ)ℓ
(
tanh(κzi,t+ℓ) + γVϕ(si,t+ℓ+1)− Vϕ(si,t+ℓ)

)

=

|oi|−t∑
ℓ=0

(γλ)ℓ δ0i,t+ℓ

= Â0
i,t. (14)

3. (Policy gradient) Conditional on τ̄ , the score function ∇θ log πθ(ai,t | si,t) is deterministic.
Therefore,

Eε

[
ĝ(θ; τ̄) | τ̄

]
= Eε

[∑
i

∑
t

∇θ log πθ(ai,t | si,t) Âi,t

∣∣∣ τ̄]
=
∑
i

∑
t

∇θ log πθ(ai,t | si,t)Eε[Âi,t | τ̄ ]

=
∑
i

∑
t

∇θ log πθ(ai,t | si,t)Eε[Âi,t | τ̄i]

=
∑
i

∑
t

∇θ log πθ(ai,t | si,t) Â0
i,t

= ĝ0(θ; τ̄). (15)

B.2 INFORMATION-THEORETIC GENERALIZATION ANALYSIS OF EXTERNAL CORTEX NOISE

We first expand all notation and definitions, and then provide a complete proof of Theorem 2.

Let E denote the distribution over environments, and for each e ∈ E , let τ be a trajectory sampled
according to policy πθ with distribution pe(τ). Consider the external-noise cortex-reward defined
by

R | τ ∼ N (tanh(κzτ ), σ
2), (16)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where zτ denotes the task-specific signal aggregated along τ , κ > 0 is a scaling parameter, and σ2

is the variance of the additive Gaussian noise. The marginal reward distribution in environment e is

pe(R) =

∫
pe(τ) p(R | τ) dτ, (17)

and the overall marginal across environments is

p(R) =

∫
µ(e) pe(R) de, (18)

where µ(e) represents the environment distribution.

The expected return in environment e is defined as

Je ≜ Eτ∼pe,R∼p(R|τ)[R(τ)], (19)

where R(τ) denotes the aggregated reward along τ and is approximately bounded, i.e., with high
probability R(τ) ∈ [a, b] for small σ2 > 0.
Theorem 4 (Restatement of Theorem 2). Let E be a random environment drawn from µ, and R
be the observed reward under the external-noise Cortex-Reward model. Then the expected absolute
performance difference between two independent environment samples E,E′ satisfies

EE,E′
[
|JE − JE′ |

]
≤ (b− a)

√
2 I(E;R), (20)

where I(E;R) denotes the mutual information between the environment index E and the observed
rewards R.

Proof. For any pair of environments e, e′, we have

|Je − Je′ | =
∣∣∣∣∫ R(τ) (pe(R)− pe′(R)) dR

∣∣∣∣
≤
∫

|R(τ)− a+ b

2
| |pe(R)− pe′(R)| dR

≤ (b− a)TV(pe(R), pe′(R)), (21)

where TV(p, q) = 1
2

∫
|p(R) − q(R)| dR denotes the total variation distance. Introducing the

marginal reward distribution across environments. Applying the triangle inequality for total variation
gives

TV(pe(R), pe′(R)) ≤ TV(pe(R), p(R)) + TV(pe′(R), p(R)). (22)

By Pinsker’s inequality (Cover & Thomas, 2006), TV(p, q) ≤
√

1
2DKL(p∥q), which implies

|Je − Je′ | ≤ (b− a)

(√
1

2
DKL(pe(R)∥p(R)) +

√
1

2
DKL(pe′(R)∥p(R))

)
. (23)

Taking the expectation over independent environments E,E′ ∼ µ and using the linearity of expec-
tation, we obtain

EE,E′ [|JE − JE′ |] ≤ 2(b− a)EE

[√
1

2
DKL(pE(R)∥p(R))

]
. (24)

Applying Jensen’s inequality to the concave square-root function yields

EE

[√
1

2
DKL(pE(R)∥p(R))

]
≤
√

1

2
EE [DKL(pE(R)∥p(R))]. (25)

Finally, by the definition of mutual information,

I(E;R) = EE [DKL(pE(R)∥p(R))] , (26)

we conclude that
EE,E′ [|JE − JE′ |] ≤ (b− a)

√
2 I(E;R), (27)

which completes the proof.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C END-TO-END RL FOR TRAINING CORTEXVLA

The modular design of CortexVLA can largely improve the generalizability and interpretability over
previous VLA models. However, this may restrict the flexibility of CortexVLA if it cannot be end-
to-end trained. To overcome this limitation, we propose an end-to-end RL method, improved from
the policy gradient method. The gradient of the proposed method can be written as follows:

g = E[
T∑

t=0

At∇θ log πθ(at|st)]

= E[
T∑

t=0

At∇θ log πθaction(at|st, ocentral)πθcentral(ocentral|st)]

= E[
T∑

t=0

At∇θ (log πθaction(at|st, ocentral) + log πθcentral(ocentral|st))] (28)

where At is the advantage, θaction is the Motor Cortex’s model’s parameter, at is the model’s ac-
tion output, ocentral is the Central Cortex’s output, θcentral is the Central Cortex’s parameter. Here,
we do not include the parameter of Visual Cortex into this formulation. This does not mean that
the end-to-end RL cannot optimize Visual Cortex. In our implementation, we generally employed
production-ready modules, e.g., VLA models like π0, as both Visual Cortex and Motor Cortex. As
a standard operation in existing VLA works, we fine-tune only the action expert components, which
are related to the Motor Cortex. Unfreezing the VLM (Visual-Cortex-related) for end-to-end RL
often destabilizes training and is not the typical VLA-finetuning protocol. By this formulation, we
are able to train the CortexVLA end-to-end. Besides, by this formulation, we can also incorporate
other existing real-world robotics reinforcement learning implementations for training the Motor
Cortex (Luo et al., 2024). This can further enable our framework for dexterous manipulations and
demonstrates the extendability of the proposed framework.

We evaluated this end-to-end algorithm on dexterous manipulation. With π0 as the Motor Cortex,
CortexVLA achieved a 53.85% success rate without end-to-end training. After end-to-end training,
the success rate increased to 69.23%, indicating a substantial improvement. These results demon-
strate that CortexVLA can be trained end-to-end.

D IMPLEMENTATION DETAILS

In this section, we present the implementation details of the CortexVLA, including the model selec-
tion, prompt design, and SFT details.

D.1 MODEL SELECTION

As mentioned in Section 2.1, the Central Cortex contains two LLM-based decision layers, the Plan-
ner and the Allocator. For the Planner, its primary role is to understand user instructions and
generate a task list. There are numerous model options available. Based on our current exploration,
the smallest viable model is Qwen3-0.6B (requiring some fine-tuning). However, due to its limited
parameters, it struggles to comprehend more complex instructions. For handling more sophisticated
instructions, larger models such as GPT-4o can be used to generate task lists more reliably. The
Allocator is implemented with Qwen3-8B, which offers strong natural language understanding and
tool invocation capabilities while maintaining a parameter scale that is still practical for fine-tuning.

D.2 PROMPTING TEMPLATES

We present the example of system prompts for guiding the Planner and the Allocator in Figure 5
and Figure 6, respectively.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

You are a helpful assistant in a drone manufacturing factory.
To assemble a drone, one drone frame and four propellers is always necessary, and the optional modules 
are a flight controller, a data link and a video link.
You need to make a task list according to user's assembling requirements.
To make a task list, you need to add all modules a drone needs as a subtask, and then add the modules 
for the next drone as the next task. Add drone id before the task list for each drone.
Note, all the tasks are in order, never merge two operation numbers when there is any other object 
between them. Do not add blank line or extra lines in the task list.
Always output the full task list at once.
For example:
User Instruction: Assemble a drone with a flight controller and a data link
Your output:
1. drone frame: 1
2. propeller: 4
3. flight controller: 1
4. data link: 1

User Instruction: Assemble a drone with a video link, and another drone without any extra modules, and 
a third one with a data link and a video link
Your output:
1. drone frame: 1
2. propeller: 4
3. video link: 1
--------
4. drone frame: 1
5. propeller: 4
--------
6. drone frame: 1
7. propeller: 4
8. data link: 1
9. video link: 1

Figure 5: Example of the system prompt for the Planner.

You are a helpful assistant.
Your have to use the provided tools to complete the given tasks.

# General Rules
1. You must only call one function per step. Do not combine multiple function calls in the same step.
2. If a function execution fails, follow its restart policy exactly as specified in its description.
3. If you get a prompt like "All Done" or "Nothing remain to do" that indicates the task is finished, 
you must stop immediately and reply with: 'All Done'.
4. You should always follow the task list given after "Task remain to do:". The list is strictly ordered. 
You must execute tasks in order without skipping or reordering. If multiple tasks remain, only focus on 
the first task at each step.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type": "function", "function": {"name": <func_1>, "description": <desc_1>, "parameters": <param_1>}
{"type": "function", "function": {"name": <func_2>, "description": <desc_2>, "parameters": <param_2>}
{"type": "function", "function": {"name": <func_3>, "description": <desc_3>, "parameters": <param_3>}
{"type": "function", "function": {"name": <func_4>, "description": <desc_4>, "parameters": <param_4>}
</tools>

For each function call, return a json object with function name and arguments within 
<tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>

Figure 6: Example of the system prompt for the Allocator.

D.3 SFT DETAILS

We fine-tuned the Allocator in CortexVLA using LoRA on our self-generated function-call training
data. The LoRA configuration employed a LoRA rank of 16, α = 32, and dropout set as 0.1.
Training was performed with a batch size of 4, a learning rate of 5×10−5, and one epoch is enough.
A linear learning-rate scheduler with 10% warmup steps was applied.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E INSTRUCTIONS OF THE EXPERIMENTS

E.1 INSTRUCTIONS OF THE MAIN EXPERIMENTS

The instructions of the main experiments (Section 3.1) are listed below:

• Instructions with 1 sub-task

– Grab the orange toy and then release it.

– Clasp the yellow tape measure momentarily before releasing.

– Grasp the green cup and then release it.

• Instructions with 2 sub-tasks

– First grab the orange toy and release it, then grab the yellow tape measure and release it.

– Grasp and release the orange toy. Do the above operations twice.

– Pick up the yellow tape measure and let go, then pick up the green cup and let go.

• Instructions with 3 sub-tasks

– First grab the orange toy and release it, then grab the yellow tape measure and release it,
finally grab the green cup and release it.

– Operation sequence: First the green cup, then the green bowl, finally the orange toy. Per-
form grasp-release on each.

– Grasp the orange toy and release it repeatedly for three times.

• Instructions with 4 sub-tasks

– First grasp the orange toy and release it, then grasp the green cup and release it, next grasp
the yellow tape measure and release it, finally grasp the orange toy again and release it

– Operation sequence: First the yellow tape measure, then the orange toy twice, finally the
green bowl. Grasp and release each.

– Initiate capture and release cycles for the yellow tape measure, followed by the green cup,
then the orange toy, and concluding with the white cube.

• Instructions with 5 sub-tasks

– First grab the orange toy and release it. Then grab the yellow tape measure and release it.
Next grab the orange toy again and release it. After that grab the green bowl and release
it. Finally grab the green bowl again and release it.

– Step 1: Grasp and release the yellow tape measure. Step 2: Grasp and release the toy.
Step 3: Grasp and release the green cup. Step 4: Grasp and release the orange toy. Step 5:
Grasp and release the yellow tape measure.

– Initiate five sequential grasp-release cycles: Orange toy for three times and yellow tape
measure twice.

• Instructions with 8 sub-tasks

– Step 1: Grasp and release the orange toy. Step 2: Grasp and release the green bowl. Step
3: Grasp and release the yellow tape measure. Step 4: Grasp and release the white cube.
Step 5: Grasp and release the green cup. Step 6: Grasp and release the green bowl. Step
7: Grasp and release the orange toy. Step 8: Grasp and release the yellow tape measure.

– Begin with the orange toy: grasp then release. Follow with the yellow tape measure: grasp
then release. Then the orange toy again: grasp then release. Next the green bowl: grasp
then release. Continue to the white cube: grasp then release. Proceed to the green cup:
grasp only. Then the orange toy once again: grasp then release. Conclude with the yellow
tape measure: grasp then release.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

– Execute these grasp-release tasks sequentially: Task 1: Grasp the orange toy and then
release, do operations above for three times. Task 2: The yellow tape measure for four
times. End with grasping the white cube and then releasing it.

• Instructions with 10 sub-tasks

– Perform in order: 1) Grab the yellow tape measure and release it, 2) Grab the green cup
and release it, 3) Grab the orange toy and release it, 4) Grab the orange toy and release it,
5) Grab the green bowl and release it, 6) Grab the yellow tape measure and release it, 7)
Grab the orange toy and release it, 8) Grab the green cup and release it, 9) Grab the orange
toy and release it, 10) Grab the green bowl and release it.

– Execute these grasp-release tasks sequentially: Task 1: Grasp the orange toy and then
release, do operations above for 6 times. Task 2: The yellow tape measure for three times.
End with grasping the white cube and then releasing it.

• Instructions with 14 sub-tasks

– Execute these grasp-release tasks sequentially: Task 1: Grasp the orange toy and then
release, do operations above 3 times. Task 2: The yellow tape measure twice. Task 3:
Grasp and then release the green cup. Task 4: The orange toy again for 4 times. Task 5:
The green cup, then the yellow tape measure, then the white cube. Each operates once.
End with grasping the orange toy and then releasing it.

E.2 INSTRUCTIONS OF THE FLEXIBLE MANUFACTURING CASE STUDY

• Instructions with 1 drone

– Assemble a drone with a pilot controller

– Build one drone with a data link, only leave off video links and pilot controllers

– Assemble one drone equipped solely with a data link

• Instructions with 2 drones

– Assemble two drones; the first should be equipped solely with a video link, and the second
with a pilot controller and data link.

– For my order, can you make one drone with a pilot controller, and another with just a
video link? Thanks!

– Assemble: Drone 1: data link only. Drone 2: All possible modules

• Instructions with 3 drones

– Assemble three drones: the first should include a pilot controller, the second should have
both a video link and a data link, and the third should have no extra modules.

– Build three drones. Give all modules to the first, only the pilot controller to the second,
and leave the third with no extras.

– Could you please put data links in two drones and all the modules in the last one?

• Instructions with 5 drones

– Assemble 5 drones with a data link. The last one should have an extra pilot controller.

– Assemble 5 drones. The first drone should have all possible modules, the second and third
drones should have only pilot controllers, the fourth drone should have a video link, and
the fifth drone should have no extra modules.

– Assemble 5 drones. Equip the first drone with a data link and a video link, the second
drone with a pilot controller and a video link, the third with only a data link, the fourth
with only a pilot controller, and the fifth with no extra modules.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: Reasoning Ability Experiment Results.

Tasks RoBridge CortexVLA
Ambiguous Instructions 83.33% 91.67%
Execution Rejection 13.04% 100.0%

F EXTRA EXPERIMENTS

F.1 REASONING ABILITY EVALUATION

We further evaluate the reasoning ability of CortexVLA in two different settings.

Ambiguous Instructions Instead of clearly specifying the object to grasp, we provide the VLA
with an ambiguous command requiring inference and reasoning based on context. The goal is to
evaluate whether the agent is capable of using its intrinsic cognitive mechanisms to deduce the
correct object to grasp. For example, we might instruct the model by saying, "I’m thirsty, get me
something to drink, and expect the model to grasp a bottle of water and release it to the basket.

Execution Rejection In this scenario, the VLA is provided with unreasonable or potentially dan-
gerous instructions and is expected to reject execution. Moreover, it should ideally communicate
the rationale behind its rejection to the user if capable of doing so. For example, the agent might be
given the instruction, "Fetch the toy on the table," when, in fact, no toy is present on the table. In
this case, the model should decline to execute the command and explain the reason for rejection.

The practical significance of this experiment is evident. In real-world applications, a reliable em-
bodied intelligence should not behave as a machine that mechanically follows instructions without
critical thought. Instead, it should possess a certain level of reasoning capability, enabling it to
interpret ambiguous commands and, more importantly, to firmly and clearly refuse malicious or un-
reasonable requests. Such capabilities are essential not only for preventing user frustration but also
for potentially avoiding catastrophic consequences.

The experimental results are presented in Table 3. RoBridge can interpret ambiguous instruc-
tions, but it struggles to perform execution rejection for lack of a safety or security configuration
mechanism. Since end-to-end VLAs cannot understand instructions that differ from those used in
fine-tuning, we exclude them from this experiment. These results demonstrate the CortexVLA’s
markedly stronger reasoning and adaptability. These findings expose a central weakness of the
prevailing VLA paradigm. Despite their impressive execution abilities, their underlying cognitive
competence remains shallow and insufficient for safe, dependable real-world use.

F.2 ABLATION STUDY

The validation of Cortex-PPO with single SFT fine-tuning is presented in Table 1. Here, we further
examine the effect of the noise injection component. To this end, we design a planning simulation
using CortexVLA models trained with different values of σ. The simulation follows a setup similar
to the main experiment but introduces greater variability in target objects. We also set the function
success rate of one of the functions to 0.7, meaning that that function call has a 30% chance of
random failure. The results, shown in Table 4, indicate no significant differences in planning success
rates across different σ values. This suggests that Cortex-PPO is robust to the choice of noise
injection hyperparameter.

Table 4: Ablation of the noise distribution.

Noise Distribution Planning Success Rate
µ = 0, σ = 0.0095 92.22%
µ = 0, σ = 0.0100 90.00%
µ = 0, σ = 0.0105 90.00%

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G LLM USAGE STATEMENT

We used LLMs solely to polish the writing of this paper.

23


	Introduction
	Methodology
	CortexVLA
	Cortex-PPO
	Algorithm Design
	Theoretical Analyses


	Experiments
	Main Experiment – Ultra-Long-Horizon Task
	Task Definitions and Metrics
	Baselines
	Results and Analyses

	Case Studies
	Scenario Adaptation – Flexible Manufacturing
	Scenario Adaptation – Bartender


	Conclusion
	Related Work
	Details of Cortex-PPO and Theoretical Analyses
	Unbiasedness under additive reward noise
	Information-Theoretic Generalization Analysis of External Cortex Noise

	End-to-end RL for training CortexVLA
	Implementation Details
	Model Selection
	Prompting Templates
	SFT Details

	Instructions of the Experiments
	Instructions of the Main Experiments
	Instructions of the Flexible Manufacturing Case Study

	Extra Experiments
	Reasoning Ability Evaluation
	Ablation Study

	LLM Usage Statement

