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ABSTRACT

Vision-Language-Action (VLA) models have shown promise for embodied intel-
ligence, but they often struggle with long-horizon tasks due to error accumulation
or planning failure. To address these challenges, we propose CortexVLA, a novel
paradigm that bridges cognition and action by leveraging large language model
(LLM) function calling. CortexVLA consists of three modular components: the
Central Cortex, an LLM-based cognitive hub for planning and function calling;
the Visual Cortex, which provides perception through callable vision tools; and
the Motor Cortex, which exposes robotic action control as functions. To improve
robustness and enable recovery from execution errors, we further propose Cortex-
PPO, a reinforcement learning (RL) algorithm that trains Cortex VLA to make op-
timal function calls while supporting failure recovery. We provide theoretical anal-
yses to further demonstrate the soundness and generalization abilities of Cortex-
PPO. Comprehensive experiments demonstrate the effectiveness of Cortex VLA
on ultra-long-horizon tasks. In our main experiment, Cortex VLA achieves an av-
erage success rate of 85.40%. More importantly, it sustains a 72.73% success rate
with an average sub-task length of 11.55 when tackling the most challenging 14
sub-tasks, whereas end-to-end VLA baselines fail beyond 3 or 4 steps. In a flex-
ible manufacturing scenario with 31 sub-tasks, CortexVLA achieves an 81.25%
success rate with an average sub-task length of 26.69, demonstrating strong scal-
ability and adaptability. Codes will be released after publication.

1 INTRODUCTION

Recent advances in vision-language-action (VLA) models (Zitkovich et al., 2023; Wen et al., 2025b)
have driven substantial progress in embodied intelligence. By leveraging the powerful visual-
linguistic representations learned by pretrained vision-language models (VLMs), these generalist
robot manipulation policies are trained to map visual observations and natural language instructions
directly into robotic actions (O’Neill et al., 2024; Zhao et al., 2025a; Liu et al., 2025; Zhou et al.,
2025). Although most VLAs perform well on short tasks after fine-tuning, they often struggle with
long-horizon tasks, frequently leading to incomplete execution or failure (Fan et al., 2025).

The primary reason existing methods struggle with long-horizon tasks is that many ap-
proaches (Zhao et al., 2023; Octo Model Team et al., 2024; Kim et al., 2024) operate strictly un-
der the Markov assumption. When the system state deviates from the training distribution, which
frequently occurs during sequential execution, the models decisions often lead to failure. To mit-
igate this limitation, 7y (Black et al., 2024) leverages the high-level policy model SayCan (Ahn
et al., 2022) to decompose long-horizon tasks into sub-goals. Other works (Wen et al., 2025a;c)
exploit the models inherent capabilities, employing internal reasoning or phase-aware adaptation to
guide execution. However, these end-to-end methods suffer from error accumulation, with small
deviations compounding over long horizons into task failure. In addition, such models typically
require fine-tuning on large collections of continuous sequences, which not only raises the cost of
data acquisition but also makes performance highly sensitive to data quality, leading to significant
instability and difficulty in reproduction. From another perspective, recent hierarchical VLA ar-
chitectures (Zhang et al., 2025; Shi et al., 2025; Gao et al., 2025) have shown improvement on
long-horizon tasks. However, they remain susceptible to errors during planning and task state track-
ing, and their reliance on synthetic or simulated data for training makes them difficult to deploy in
practice. Related works are discussed in Appendix A.
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Meanwhile, research on large language models (LLMs) has shown strong capabilities in tool us-
age (Yao et al., 2023). Several studies (Qin et al., 2023; Liu et al., 2024b; Qian et al., 2025) improve
function calling through better data construction and fine-tuning, enabling open-source models such
as Llama3 (Dubey et al., 2024) and Qwen3 (Yang et al., 2025) to connect with diverse APIs across
a wide range of scenarios. In robotic manipulation, however, high-level cognition of human instruc-
tions and environmental context often fails to translate into reliable action control. This naturally
raises the question: Can we harness the cognitive strengths and function-calling abilities of LLMs
to better bridge the gap between cognition and action in robotic manipulation?

To answer this question, a straightforward strategy is to decouple visual perception and action exe-
cution into distinct tool modules and let an LLM orchestrate their invocation. However, this design
faces critical challenges in long-horizon tasks. As the number of sub-tasks grows, the context length
expands proportionally, making it difficult for the model to distinguish tasks that have already been
finished from pending tasks. It also increases the risk of premature termination due to context limits.
Moreover, when errors occur within a sub-task, the model often struggles to locate mistakes in the
lengthy context and re-execute the sub-task. These issues highlight the need for a new collaborative
paradigm that enables robots to handle long-horizon tasks more effectively.

In this paper, we propose CortexVLA, a novel VLA paradigm that leverages LLMs for natural-
language understanding and function calling to drive visual perception and action control. Our
framework comprises three core components: the Central Cortex, the Visual Cortex, and the
Motor Cortex. The Central Cortex serves as the cognitive hub, receiving user instructions, decom-
posing them into structured task lists, and orchestrating execution through sequential tool calls to
the other two Cortices. To address context-length limitations, it incorporates a task handler that
persistently stores and updates task states, enabling explicit progress tracking and bounded prompt
context. The Visual Cortex provides perception by integrating vision modules (e.g., object detec-
tors, depth sensors) exposed as callable tools. Similarly, the Motor Cortex governs robotic motion
by invoking action modules such as pose predictors, motion planners, and low-level controllers. The
Visual and Motor Cortices share a unified tool library, which enumerates the available functions for
operating their respective modules. Both the library and the underlying modules can be flexibly
replaced to adapt to different application scenarios.

To further expand the ability of CortexVLA, we propose Cortex-PPO, a reinforcement learning
(RL) algorithm tailored for CortexVLA. By introducing a recovery-aware reward and noise injec-
tion, this algorithm not only improves the function calling accuracy of CortexVLA but also equips it
with failure recovery capabilities, substantially enhancing its robustness in executing long-horizon
tasks. We further conduct a theoretical analysis of Cortex-PPO, proving the unbiasedness of noise
injection and establishing an upper bound on cross-environment performance generalization based
on mutual information, which demonstrates its soundness and generalization benefits.

To evaluate Cortex VLA, we conducted extensive experiments across diverse scenarios against VLA
baselines. On our main benchmark of ultralong-horizon tasks ranging from 1 to 14 sub-tasks, Cor-
texVLA attains an average success rate of 85.40%, outperforming all baselines. In the hardest
setting with 14 sub-tasks, it maintains a 72.73% success rate with an average sub-task length of
11.55, whereas most baselines fail once the number of sub-tasks reaches 3 or 4. In a flexible manu-
facturing scenario with 31 sub-tasks, Cortex VLA achieves an 81.25% success rate with an average
sub-task length of 26.69. Case studies across multiple domains further illustrate its flexibility and
adaptability. Overall, these results indicate high success rates, strong stability, and reproducibility
of CortexVLA. Our contributions are outlined as follows:

* We propose CortexVLA, a novel VLA paradigm that leverages LLMs for high-level planning
and function calling to coordinate vision and action modules. The architecture consists of
a Central Cortex for planning and function calling, a Visual Cortex for perception, and a
Motor Cortex for control.

* We design Cortex-PPO, a RL algorithm that improves the function calling accuracy of Cor-
texVLA and equips CortexVLA with failure recovery ability. We further provide theoretical
analyses that demonstrate its soundness and generalization guarantees.

* We evaluate Cortex VLA through extensive experiments across diverse scenarios, demonstrat-
ing superior performance, adaptability, and robustness on ultralong-horizon tasks compared to
previous VLA baselines.
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Figure 1: The overall architecture and basic working flow of CortexVLA. The functions in the
tool library and the modules in the Visual and Motor Cortices can be replaced to adapt to different
application scenarios.

2 METHODOLOGY

2.1 CORTEXVLA

As shown in Figure 1, CortexVLA is composed of three core components: the Central Cortex,
the Visual Cortex, and the Motor Cortex. The Central Cortex acts as the control hub, receiving
user instructions, maintaining task lists, and orchestrating function calls. The Visual Cortex handles
perception, while the Motor Cortex executes actions. Both the Visual Cortex and the Motor Cortex
share a tool library that contains the available functions. The tool library, along with the perceptual
and motor modules, can be flexibly configured to meet different task requirements. We describe
each component in detail below.

Central Cortex The Central Cortex comprises two LLM-based decision layers and a task handler.
The upper layer is the Planner. It receives user instructions, analyzes them, and generates a struc-
tured task list that is stored by the task handler. The task list enumerates the sub-tasks, allowing
the task handler to track progress and manage updates efficiently. The lower layer is the Allocator.
It is prompted with the current task list, the current context, and the relevant function descriptions
from the tool library. Then, it executes the sequential function calls to engage the Visual Cortex and
the Motor Cortex in solving the first sub-task on the task list. Each time after calling a function,
it receives a function response that provides critical information or indicates whether the function
execution succeeds or fails. If it fails, the Allocator can perform failure recovery according to the
recovery strategies defined in the function descriptions, which is essential for long-horizon tasks
where errors are unavoidable. Once a sub-task is completed, the task handler updates the task list
and provides the updated version to the Allocator. The Allocator can then clear the context without
losing essential information. The implementation details are presented in Appendix D.

Visual Cortex The Visual Cortex handles all vision-related processing and transmission. It typi-
cally connects to external perception devices and incorporates multiple visual modules, which can
be used independently or in combination through functions in the tool library. For instance, in our
main experiment (Section 3.1), the Visual Cortex is connected to a depth camera and equipped with
modules such as Grounding DINO (Liu et al., 2024a), D3RoMa (Wei et al., 2024), and the Segment
Anything Model (SAM) (Kirillov et al., 2023). Grounding DINO is invoked independently for ob-
ject detection, while D*’RoMa and SAM are jointly used for point cloud generation. The outputs of
the Visual Cortex, including RGB images, bounding boxes, and point clouds, are then passed to the
Motor Cortex to guide action execution.

Motor Cortex The Motor Cortex is responsible for executing robotic actions by generating action
sequences that drive the robotic arm to complete tasks. Like the Visual Cortex, it comprises multiple
motor modules that can be invoked independently or in combination through function calls. For
instance, in our main experiment (Section 3.1), which involves grasping operations, we employ
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AnyGrasp (Fang et al., 2023) as the end-effector pose predictor. In other scenarios, such as the
Bartender task (Section 3.2.2), modules like ACT (Zhao et al., 2023) or even VLA models (Black
et al., 2024) can be integrated as motion generators. The generated actions are further processed
by low-level controllers, including inverse kinematics (IK) solvers and obstacle-avoiding motion
planners, to produce executable commands. The Motor Cortex then reports execution outcomes
back to the Central Cortex (Allocator) through function responses, enabling subsequent decision-
making.

2.2 CORTEX-PPO

Equipping CortexVLA with robust scheduling and function call capabilities requires fine-tuning
with specific data. A common approach is to perform supervised fine-tuning (SFT) using Low-
Rank Adaptation (LoRA) (Hu et al., 2022). While SFT enables the model to familiarize itself with
the current scenario and achieve reasonably good function-calling accuracy, it struggles to execute
failure recovery operations effectively when errors occur during sub-tasks. To address this issue, we
propose Cortex-PPO, an RL algorithm for fine-tuning the Cortex VLA to operate correctly in failure
recovery and perform better function calls. Cortex-PPO also enables Cortex VLA to be end-to-end
trained, as discussed in Appendix C.

2.2.1 ALGORITHM DESIGN

We aim to enhance function-calling accuracy while simultaneously learning failure-recovery strate-
gies. To this end, we develop a recovery-aware reward within the PPO (Schulman et al., 2017)
algorithm. We first formalize the problem, then present the reward design, and finally illustrate the
Cortex-PPO algorithm.

Problem Formulation We consider episodic RL for multi-step manipulation tasks specified by
a task description x € X. Ateachstept = 1,--- T, the agent observes s; € S, outputs a
structured function call a; € A, receives reward r; € R, and transitions to s;y1. A trajectory is
7 = {(8¢,a¢,7¢) 1. Since each sub-task involves multiple objects, we decompose 7 into object-
specific sub-trajectories: 7; = {(s;.¢, @i, ri,t)},lfi‘l, where |o;| is the number of steps for object o;.
The agent follows a stochastic policy g (als, z) with reward discounts v € (0, 1].

Reward Design To stabilize fine-tuning for ultra-long-horizon tasks, we design a bounded,
smooth, recovery-aware reward, Cortex-Reward. Let action correctness be r; ; € {—1,+1}, and
define the failure recovery indicator
1, ifr;; = +1 and a valid recovery is executed,
Yig = . (1
0, otherwise.

Set z;; = 14 + atp; 4, with o > 0 controls the relative weighting of recovery. We then apply the
hyperbolic tangent tanh to bound and smoothly scale z; + to (—1, 1), which stabilizes training and
prevents large gradient spikes. To further mitigate reward sparsity and improve cross-environment
generalization, we add independent Gaussian noise ; ; ~ N(0,0?), which is independent across
time steps and independent of policy sampling. The final Cortex-Reward is

R;+ = tanh(kz;¢) + €4 ¢, 2)

where k£ > 0 scales the hyperbolic tangent contraction. For object o;, the reward sequence is
Ri=(Ri1,..., Rio,))-

Cortex-PPO We optimize with PPO (Schulman et al., 2017) using Cortex-Reward as the signal:
|oi]

Leonex2p0(0) = Eromy., [Zmin(pi,t(a)/ii,t,chp(pi,t(e),1e,1+e)21i,t) NG
t=1

o (ai,t|si,t)
Mo (@i t]8i,8) "

where p; +(0) =
2015),

Using Generalized Advantage Estimation (GAE) (Schulman et al.,

Ay = (’Y>\)l5i,t+l, 0it = Rit +vVo(si41) — V(i) 4



Under review as a conference paper at ICLR 2026

with A € [0, 1] and value function V. Cortex-PPO integrates recovery-aware rewards with noise in-
jection and serves as a fine-tuning algorithm specifically designed for CortexVLA. We next provide
theoretical analyses of this algorithm.

2.2.2 THEORETICAL ANALYSES

We focus on analyzing the unbiasedness and the generalization ability of Cortex-PPO. Full proofs
of the theorems are provided in Appendix B.

Assumption 1 (Deterministic critic). The critic Vi (s) is deterministic conditional on the observed

state-action sequence 7; = {(s; 1, ai,t)},‘lel, ie.,
P (Vy(s) € |7i,{is}) =P (Vis(s) € -[7). ©)

This assumption is standard in policy-gradient analysis, since critics are typically trained on ob-
served states and actions only, without depending on additive reward noise.

Theorem 1 (Unbiasedness under additive reward noise). Under the above assumption and the
reward model in Equation 2, for any fixed T;:

1. (Reward) For every t,
E.[R;: | ;] = tanh(kz; ). (6)

2. (GAE) Let A, ; denote the advantage estimate computed from noisy rewards R; 1, and A,?,t the
estimate with noiseless rewards tanh(kz; ;). Then

E.[A;, | 7] = AY,. (7)

3. (Policy Gradient) Set g(6;7) = >, Loi‘ Vologmg(a; s | sit) EM as the empirical GAE-
based policy-gradient estimator. Then, by taking the expectation over the additive noises, we
have

|oi]
E[9(6:7) | 7] = DY Velogmg(aiy | siz) A, = 3°(6;7), (®)
it

where §°(0; 7) denotes the policy-gradient estimator computed with noiseless rewards.

Therefore, the Cortex-Reward in Equation 2 is unbiased. For any object-specific trajectory, the
GAE-based policy-gradient estimator computed with noisy rewards has the same expectation as
with noiseless rewards. More broadly, this unbiasedness holds for any additive zero-mean noise,
regardless of its distribution. As a result, noise injection preserves the validity of the learning signal
and ensures that Cortex-PPO optimizes the same objective as in the noiseless case. We now analyze
its generalization behavior and establish an information-theoretic bound that characterizes cross-
environment performance guarantees.

Let £ denote the distribution over environments, and F ~ y be a random environment drawn from
E. For each e € &, let J. denote the expected return in environment e under policy my, with the
aggregated reward along a trajectory approximately bounded in [a, b]. Let R be the observed reward
under the noisy Cortex-Reward model.

Theorem 2 (Information-Theoretic Bound on Cross-Environment Performance). Let FE be a
random environment drawn from i, and R be the observed reward under the external-noise Cortex-
Reward model. Then the expected absolute performance difference between two independent envi-
ronment samples E, E' satisfies

Epp [ |Je — Jer|] < (b—a)\/2I(E;R), 9)

where I(E; R) denotes the mutual information between the environment index E and the observed
rewards R.

This theorem shows that cross-environment variation in expected returns is controlled by the mu-
tual information I (F; R) between the environment identity and observed rewards. Under the noisy
Cortex-Reward R = f(z;)+¢ withe L (FE, 7), the data-processing inequality (Beaudry & Renner,
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2012) implies I(E; R) = I(E; f(2:) +€) < I(E; f(z;)). Consequently, as the noise variance
grows, I(E; R) is non-increasing and typically strictly decreasing. By Theorem 2, this reduction
in I(E; R) tightens the cross-environment performance bound. This demonstrates that noise in-
jection weakens environment-specific information in rewards, thereby enhancing cross-environment
generalization capabilities and providing a principled mechanism for achieving more robust policy
performance across diverse environments.

3 EXPERIMENTS

3.1 MAIN EXPERIMENT — ULTRA-LONG-HORIZON TASK

The main experiment we designed for examining the effectiveness of Cortex VLA and several base-
line models can be referred to as ultra-long-horizon task. We first provide the task definitions and
metrics of this experiment. Then, we introduce the baselines we selected for evaluation. Finally, we
present the experiment results and analyses.

3.1.1 TASK DEFINITIONS AND METRICS

The ultra-long-horizon task requires models to sequentially locate, grasp, and release multiple tar-
get objects in the exact order specified by user instructions. We use the term ultra-long because
these tasks can, in principle, extend indefinitely, constrained only by hardware, environment, and
time. In our experiment, we set the maximum length to 14 sub-tasks, which already poses a se-
vere challenge for existing methods. Note that a sub-rask here refers to a complete small task, such
as locating, grasping, and releasing an object, rather than a decomposed action. Success in this
experimental setting requires accurate action execution over extended durations, as well as precise
decision-making and consistent task memory. These capabilities are difficult for current methods to
achieve.

Concretely, each task starts with a natural-language instruction specifying the required order of
target objects, and the model must follow this sequence precisely. Details of the instruction design
are provided in Appendix E. Given the complexity of these tasks, we evaluate performance with two
metrics: success rate for overall performance and average success length for fine-grained capability.

3.1.2 BASELINES

We evaluate Cortex VLA against representative baseline models, grouped into two categories: the
end-to-end methods and the hierarchical methods.

End-to-end methods Octo (Octo Model Team et al., 2024) is a lightweight transformer-based
model that accepts language commands and goal images. OpenVLA (Kim et al., 2024) builds on
a 7B Llama2 (Touvron et al., 2023), integrating DinoV2 (Oquab et al., 2023) and SigLip (Zhai
et al., 2023) for multimodal understanding, with actions expressed as discrete tokens. ACT (Zhao
et al., 2023) targets bimanual manipulation using a Transformer and VAE with Action Chunk and
Temporal Ensemble for precise control. 7y (Black et al., 2024), trained on large-scale teleoperation
data with PaliGemma (Beyer et al., 2024), can handle complex tasks such as cloth folding.

Hierarchical methods RoBridge (Zhang et al., 2025) adopts a three-layer architecture with a
high-level cognitive planner (HCP), an invariant operable representation (IOR), and a guided em-
bodied agent (GEA). The HCP decomposes instructions into primitive actions and generates IOR,
which encodes depth, masks, action types, and constraints. IOR is updated at different frequencies
and serves as input to the GEA, which executes the actions to complete the task. All three layers are
realized by GPT-4o (Hurst et al., 2024). VLA-OS (Gao et al., 2025) provides modular architectures
for action-only (A), integrated (I), and hierarchical (H) paradigms. Specifically for the VLA-OS-H,
it uses the VLM together with planning heads for task planning, and modifies the action head to an
encoder-decoder transformer for policy learning. Note that the action execution parts of these two
methods are difficult to reproduce, so we only evaluate their planning abilities. This assumes perfect
action experts for these methods, which gives them extra advantages.
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Figure 2: Ultra-long-horizon experiment results (average success length). We compare the Cor-
tex VLA with baselines. The upper panel reports results against end-to-end methods, while the lower
panel reports results against hierarchical methods.

Table 1: Ultra-long-horizon experiment results (success rate). The mark “failed” indicates that no
successful trials were observed. Both Octo and OpenVLA achieved no successes in this experiment.

Number of CortexVLA

Sub-tasks ACT o) VLA-OS RoBridge (wlo Cortex-PPO) CortexVLA
1 80.00% 90.00% 33.33% 93.33% 93.75% 94.12%
2 13.33% 66.67% 33.33% 84.21% 87.50% 90.91%
3 8.00% 45.00% failed 72.22% 85.71% 88.24%
4 failed failed failed 52.63% 85.29% 86.49%
5 failed failed failed 43.47% 84.85% 85.71%
8 failed failed failed failed 83.78% 84.38%
10 failed failed failed failed 77.42% 80.65%
14 failed failed failed failed 58.33% 72.73%
Average 12.67% 25.21% 8.33% 43.23% 82.08% 85.40%

3.1.3 RESULTS AND ANALYSES

From Table 1, we can observe that Cortex VLA achieves an average of 85.40% success rate across
the entire experiments, which is more than 3 times higher than 7y and nearly 2 times higher than
planning-only RoBridge. This shows the strong stability of CortexVLA. From Figure 2, we can ob-
serve that as the task instruction length increases, the average success length of CortexVLA grows
almost linearly and consistently approaches the total task length. The average task length of Cor-
texVLA in the hardest setting of 14 sub-tasks is 11.55, which shows a huge gap with baseline meth-
ods. We also calculated the linear regression coefficient k for the Cortex VLA results in Figure 2,
obtaining k£ = 0.8519, which is closer to the ideal value of 1. This indicates that Cortex VLA scales
stably with task length and suffers little performance degradation when facing error accumulation.

For the end-to-end baselines, 7 achieves a relatively higher average success rate of 25.21%, but it
fails to perform any successful task once the number of sub-tasks reaches 4 or more. In terms of
average success length, these methods show linear growth only within short horizons, after which
performance plateaus or even declines. For hierarchical methods that only evaluate planning ability,
there still remains a substantial performance gap compared to the full Cortex VLA system.

The primary reason for the strong performance of Cortex VLA lies in its modular coordination mech-
anism and task state memory capability. The former helps prevent error propagation between per-
ception and action, while the latter ensures that each sub-task can be executed independently. Ad-
ditionally, Cortex-PPO equips CortexVLA with error recovery capabilities, further enhancing its
performance (see Table 1). In comparison, end-to-end baselines face challenges in mitigating er-
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Figure 3: Examples of CortexVLA performing flexible manufacturing tasks. The figure shows
real-time camera views during task execution, with the corresponding task lists maintained by the
task handler. Tasks assigned to different drones are separated by dashes. CortexVLA always oper-
ates on the first sub-task in the list: red highlights the sub-task currently being executed, and green
highlights a completed sub-task that will soon be removed or decremented. For clarity, we present
representative examples rather than the full execution sequence.

Table 2: Experiment results of the flexible manufacturing scenario.

Number of Drones Avg. Number of Sub-tasks Avg. Succ. Len. Succ. Rate
1 drone 6 6.00 100.00%
2 drones 13 12.94 94.12%
3 drones 19 17.30 86.96%
5 drones 31 26.69 81.25%
Avg. Succ. Rate 90.58 %

ror accumulation. And since our experiments included repetitive subtasks, this confused training
for end-to-end methods, further exacerbating performance degradation. While hierarchical base-
line methods only evaluate planning performance, they still exhibit errors during long-horizon task
planning and often fail in state tracking during execution. Furthermore, due to the limited stability
and repeatability of baseline methods, their performance on complex tasks cannot be guaranteed. In
contrast, our approach demonstrates robust stability and straightforward reproducibility.

3.2 CASE STUDIES

To further evaluate the generalization ability and adaptation ability of CortexVLA, we conduct case
studies across different scenarios. Below, we present two representative adaptations, with additional
experiments provided in Appendix F.

3.2.1 SCENARIO ADAPTATION — FLEXIBLE MANUFACTURING

Flexible manufacturing is a production method that can quickly adapt to changes in product type
or demand. Inspired by this, we design a drone componentsorting task that mimics a common
assembly-line scenario. The VLA must control a robot to sequentially place drone components onto
a conveyor belt according to specified assembly requirements. A typical drone requires a drone
frame, four motors with propellers, and a flight controller. Depending on the configuration, some
drones also require a data link module, a video link module, or both. Even assembling only five
drones involves more than 30 sub-tasks, making this task a substantial challenge for existing VLA
models. To evaluate the generalization ability of CortexVLA, we directly adapt the model from the
main experiment to this scenario, modifying only the prompt without any additional fine-tuning.
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Py I feel happy now. Give me a cup of Daquiri with ice.
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gecry
%MMMM

I want to drink a cup of Long Island Iced Tea, but do not add ice in it.

év First add Then add rum Next lime juice Finally some syrup Enjoy your drink!

Figure 4: Examples of CortexVLA serving customers as a bartender. Customer requests are
shown in pink, while the decomposed sub-tasks are shown in cyan with corresponding operation
diagrams below. The orange arrows in the diagrams mean adding ingredients, and the blue arrows
mean putting the containers back.

We assess performance on instructions for assembling one to five drones, including tasks that com-
bine different drone configurations (see Appendix E). Results are shown in Table 2. CortexVLA
achieves a 90.58% average success rate across all experiments and sustains an 81.25% success rate
with an average success length of 26.69 on the most difficult setting with 31 sub-tasks. These results
highlight Cortex VLAsS stability and strong generalization ability for ultra-long-horizon tasks across
diverse scenarios. Representative examples are shown in Figure 3.

3.2.2 SCENARIO ADAPTATION — BARTENDER

In this scenario, we adapt Cortex VLA to function as a bartender, preparing cocktails based on cus-
tomer requests. To approximate real-world conditions, requests are given as variable natural lan-
guage commands that typically specify only cocktail names and personal preferences (e.g., whether
to add ice or syrup). This setting is particularly challenging because it requires recalling cocktail
recipes while also accommodating individual preferences. Note that cocktail recipes typically have
strict requirements for the order in which ingredients are added.

Figure 4 illustrates examples of Cortex VLA making cocktails. The planner of the Central Cortex
decomposes diverse natural language instructions into sequential sub-tasks according to the recipes
and the customers’ preferences. By employing ACT (Zhao et al., 2023) as one of the motor modules
in the Motor Cortex, CortexVLA achieves an average success rate of 91.67% in this case study.
These results highlight both the adaptability of CortexVLA to new scenarios and the flexibility of
replacing tool libraries and modules.

4 CONCLUSION

In this paper, we introduce CortexVLA, a novel VLA paradigm that bridges the gap between cog-
nition and action through LLM-based function calling. The framework consists of a Central Cortex
for planning and function orchestration, a Visual Cortex for perception, and a Motor Cortex for
control. We further propose Cortex-PPO, a recovery-aware RL algorithm that enhances the capabil-
ities of Cortex VLA. Our theoretical analyses establish the soundness and generalization guarantees
of this algorithm. Extensive experiments demonstrate that CortexVLA not only surpasses strong
baselines but also adapts robustly across diverse application scenarios. In the future, we will further
advance the capabilities of the three Cortices and explore broader domains to extend the versatility
of CortexVLA.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide implementation details, including model selection, prompt
design, and fine-tuning details in Appendix D and user instructions in Appendix E. Full training and
inference codes will be released upon the paper acceptance.
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A RELATED WORK

Vision-Language-Action Models Recent explorations in the field of robotic manipulation have
made significant progress (Zhao et al., 2023; Brohan et al., 2022; Fu et al., 2024), with the VLA
model emerging as a promising direction. (Black et al., 2024; Kim et al., 2024; Octo Model Team
et al., 2024; Zitkovich et al., 2023; Wen et al., 2025b;a; Zhou et al., 2025; Zhao et al., 2025a; Zhang
et al., 2024; Zhen et al., 2024; Belkhale et al., 2024; Zheng et al., 2024; Zhao et al., 2025b; Chen
et al., 2025; Fan et al., 2025; Chen et al., 2025; Li et al., 2025; Wang et al., 2025; Physical Intelli-
gence et al., 2025; Zhai et al., 2025). Most approaches leverage pretrained VLMs to process mul-
timodal information, further training them on large-scale robotic datasets (O’Neill et al., 2024; Bu
et al.,, 2025; Walke et al., 2023; Lee et al., 2020; Zhu et al., 2022) to generate action outputs. How-
ever, these models generally follow a Markov decision-making paradigm, which limits their ability
to solve complex long-horizon tasks. They often encounter decision bottlenecks when repetitive or
similar actions are required, and collecting continuous operational data for long-horizon tasks is both
time-consuming and prone to errors, with failures accumulating over time. Although hierarchical
VLA architectures (Zhang et al., 2025; Shi et al., 2025; Gao et al., 2025) have shown improvements
in long-horizon task execution, they still suffer from imprecise planning, limited task-state tracking,
or heavy reliance on synthetic training data. In contrast, our approach introduces robust planning and
memory mechanisms that sustain high success rates even in extremely long-horizon tasks. Further-
more, it supports seamless integration with both traditional algorithms and VLA models, featuring
hot-swappable modularity that allows new skills to be added or replaced with minimal overhead.

Function Calling Studies Integrating external tools can expand the capability boundaries of
LLMs, enabling them to address specialized and high-precision tasks (Qin et al., 2023; Liu et al.,
2024b). Remarkably, with only tool descriptions and usage examples provided in prompts, LLMs
can already invoke tools without fine-tuning (Yao et al., 2023; Ruan et al., 2023; Hsieh et al., 2023).
Among these, the well-known ReAct (Yao et al., 2023) method enables LLMs to solve complex
tasks through alternating cycles of reasoning and action. However, due to the high dependence of
such methods on the model’s initial capabilities, their effectiveness and scope of application are lim-
ited. Further explorations achieve remarkable improvements through fine-tuning on tool-oriented
datasets, which allows LLMs to perform reliably even in scenarios requiring complex planning or
the use of unfamiliar tools (Liu et al., 2024b; Schick et al., 2023; Tang et al., 2023; Patil et al.,
2024; Qin et al., 2023; Abdelaziz et al., 2024; Liu et al., 2024c). Among these, ToolACE (Liu et al.,
2024b) implements an automated data pipeline for function calls to overcome the limitations of re-
lying on existing APIs. Building on these advances, our approach fully exploits the function-calling
capabilities of LLMs to bridge vision and action, thereby enabling more flexible and robust robotic
intelligence.

B DETAILS OF CORTEX-PPO AND THEORETICAL ANALYSES

B.1 UNBIASEDNESS UNDER ADDITIVE REWARD NOISE

We restate Theorem 1 and provide its proof here.

Theorem 3 (Restatement of Theorem 1). Under the Assumption I and the reward model in Equa-
tion 2, for any fixed 7;:

1. (Reward) For every t,
E.[R; | ;] = tanh(kz; ). (10)

2. (GAE) Let f/l\u denote the advantage estimate computed from noisy rewards R; ;, and Eg’t the
estimate with noiseless rewards tanh(kz; ;). Then

E.[A;, | 7] = AY,. (11)

3. (Policy Gradient) Set g(6;7) = >, Elto"" Vologmg(aiy | Sit) E” as the empirical GAE-
based policy-gradient estimator. Then, by taking the expectation over the additive noises, we
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have
|O’L‘

E.[§(6;7) | 7] ZZV@logm (@i | si0) A2, = G°(6;7), (12)
where §°(0; 7) denotes the pohcy-gradlent estimator computed with noiseless rewards.

Proof. 1. (Reward) Taking conditional expectation and using linearity of expectation together
with Efe; ¢] = 0, we obtain

Ec[Ri¢ | i) = Ectanh(kz;¢) 4+ €44 | 7] = tanh(kz; o) + Eces e | 73] = tanh(kz;¢). (13)

2. (GAE) Consider the GAE computed from cortex-reward, its conditional expectation given the
stateaction sequence 7; is

lo;|—t
EE[A\Z’J | 7] = ]Ee{ Z (YA G 440 ‘ 77'1}
=0
loi|—t
= Z (YA Ee[6s 044 | 7]
=0
loi|—t
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J|—t

o
S

Il
(]

()" ((tanh(kzi01.) + WV (s1041) = Volsire)
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3. (Policy gradient) Conditional on 7, the score function Vg log mg(a; . | ;) is deterministic.
Therefore,
E.[9(6;7) | 7] = {sz(glogwa alt\s”) 7"}
=" Vologmg(ais | si)EelAsy | 7]
it
=3 Vologmo(ais | sis)Ec[Aiy | 7]
Pt
= Z Z Vologmo(aiy | sit) A .
it

=73%(6; 7). (15)

O

B.2 INFORMATION-THEORETIC GENERALIZATION ANALYSIS OF EXTERNAL CORTEX NOISE

We first expand all notation and definitions, and then provide a complete proof of Theorem 2.

Let £ denote the distribution over environments, and for each e € &, let 7 be a trajectory sampled
according to policy 7y with distribution p. (7). Consider the external-noise cortex-reward defined
by

R |7 ~ N(tanh(kz,),0?%), (16)
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where z, denotes the task-specific signal aggregated along 7, x > 0 is a scaling parameter, and o
is the variance of the additive Gaussian noise. The marginal reward distribution in environment e is

po(R) = [ p(r)p(R| 7)dr, a7
and the overall marginal across environments is
p(B) = [ ue)pe(B) de (18)

where p(e) represents the environment distribution.
The expected return in environment e is defined as

Je = ETN;DC,RNP(R\T) [R(T)]a (19)
where R(7) denotes the aggregated reward along 7 and is approximately bounded, i.e., with high

probability R(7) € [a, b] for small o2 > 0.

Theorem 4 (Restatement of Theorem 2). Let E be a random environment drawn from p, and R
be the observed reward under the external-noise Cortex-Reward model. Then the expected absolute
performance difference between two independent environment samples E | E' satisfies

Egp [|Je — Jer|] < (b—a)V/21(E;R), (20)

where I(E; R) denotes the mutual information between the environment index E and the observed
rewards R.

Proof. For any pair of environments e, ¢/, we have

o= Ju| = \ [ B weB) — po ) R

/\R )~ o) — po(B) R
- a) TV(pe(R),pe/ (R))7 (21)

where TV (p, ¢ 1 [Ip(R (R)| dR denotes the total variation distance. Introducing the
marginal reward dlStI‘lbuthH across envrronments Applying the triangle inequality for total variation
gives

TV (pe(R), per (R)) < TV (pe(R), p(R)) + TV (per (R), p(R)). (22)

By Pinsker’s inequality (Cover & Thomas, 2006), TV (p, q) < 1/ 3Dxxr(p||q). which implies

|J—J<<—a<¢ Dia e B)IDUE) + | Dra o ()l >>>. @)

Taking the expectation over independent environments F, E’/ ~ pu and using the linearity of expec-
tation, we obtain

1
Ep.pll/e — Je|] <2(b—a)Ep \/2DKL(pE(R)||p(R)) (24)
Applying Jensen’s inequality to the concave square-root function yields
1 1
Ex ||/ S Dratpe(BI() | < |/ Es D tpe (R ()L @5
Finally, by the definition of mutual information,
I(E; R) = Eg [Dkv(pe(R)|p(R))], (26)
we conclude that
Epp(lJe — Jerll < (b—a)V2I(E;R), (27)
which completes the proof. O
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C END-TO-END RL FOR TRAINING CORTEXVLA

The modular design of Cortex VLA can largely improve the generalizability and interpretability over
previous VLA models. However, this may restrict the flexibility of CortexVLA if it cannot be end-
to-end trained. To overcome this limitation, we propose an end-to-end RL method, improved from
the policy gradient method. The gradient of the proposed method can be written as follows:

T
g= E[Z AV log mg(at|st)]
t=0
T
= E[Z AV log TG ,ction (at|5t7 Ocentral)ﬂ-ecemm] (Ocentra1|5t)]
t=0
T
= E[Z AV (10g TG ction (at|5ta OcenLral) + log 70O central (Ocentral‘st))] (28)
t=0

where A; is the advantage, 0,c0n is the Motor Cortex’s model’s parameter, a; is the model’s action
output, Ocengrar 1S the Central Cortex’s output, Oeenirar 1S the Central Cortex’s parameter. By this for-
mulation, we are able to train the Cortex VLA end-to-end. Besides, by this formulation, we can also
incorporate other existing real-world robotics reinforcement learning implementations for training
the Motor Cortex (Luo et al., 2024). This can further enable our framework for dexterous manipu-
lations and demonstrates the extendability of the proposed framework.

We evaluated this end-to-end algorithm on dexterous manipulation. With 7 as the Motor Cortex,
CortexVLA achieved a 53.85% success rate without end-to-end training. After end-to-end training,
the success rate increased to 69.23%, indicating a substantial improvement. These results demon-
strate that CortexVLA can be trained end-to-end.

D IMPLEMENTATION DETAILS

In this section, we present the implementation details of the CortexVLA, including the model selec-
tion, prompt design, and SFT details.

D.1 MODEL SELECTION

As mentioned in Section 2.1, the Central Cortex contains two LLM-based decision layers, the Plan-
ner and the Allocator. For the Planner, its primary role is to understand user instructions and
generate a task list. There are numerous model options available. Based on our current exploration,
the smallest viable model is Qwen3-0.6B (requiring some fine-tuning). However, due to its limited
parameters, it struggles to comprehend more complex instructions. For handling more sophisticated
instructions, larger models such as GPT-40 can be used to generate task lists more reliably. The
Allocator is implemented with Qwen3-8B, which offers strong natural language understanding and
tool invocation capabilities while maintaining a parameter scale that is still practical for fine-tuning.

D.2 PROMPTING TEMPLATES

We present the example of system prompts for guiding the Planner and the Allocator in Figure 5
and Figure 6, respectively.

D.3 SFT DETAILS

We fine-tuned the Allocator in Cortex VLA using LoRA on our self-generated function-call training
data. The LoRA configuration employed a LoRA rank of 16, = 32, and dropout set as 0.1.
Training was performed with a batch size of 4, a learning rate of 5 x 10~°, and one epoch is enough.
A linear learning-rate scheduler with 10% warmup steps was applied.
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You are a helpful assistant in a drone manufacturing factory.

To assemble a drone, one drone frame and four propellers is always necessary, and the optional modules
are a flight controller, a data link and a video link.

You need to make a task list according to user's assembling requirements.

To make a task list, you need to add all modules a drone needs as a subtask, and then add the modules
for the next drone as the next task. Add drone id before the task list for each drone.

Note, all the tasks are in order, never merge two operation numbers when there is any other object
between them. Do not add blank line or extra lines in the task list.

Always output the full task list at once.

For example:

User Instruction: Assemble a drone with a flight controller and a data link

Your output:

1. drone frame: 1

2. propeller: 4

3. flight controller: 1

4. data link: 1

User Instruction: Assemble a drone with a video link, and another drone without any extra modules, and
a third one with a data link and a video link
Your output:

1. drone frame: 1

2. propeller: 4

3. video link: 1

4. drone frame: 1

5. propeller: 4

6. drone frame: 1

7. propeller: 4

8. data link: 1

9. video link: 1

Figure 5: Example of the system prompt for the Planner.

You are a helpful assistant.
Your have to use the provided tools to complete the given tasks.

# General Rules

1. You must only call one function per step. Do not combine multiple function calls in the same step.

2. If a function execution fails, follow its restart policy exactly as specified in its description.

3. If you get a prompt like "All Done" or "Nothing remain to do" that indicates the task is finished,

you must stop immediately and reply with: 'All Done'.

4. You should always follow the task list given after "Task remain to do:". The list is strictly ordered.
You must execute tasks in order without skipping or reordering. If multiple tasks remain, only focus on
the first task at each step.

# Tools
You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:

<tools>
{"type": "function", "function": {"name": <func_1>, "description": <desc_1>, "parameters": <param 1>}
{"type": "function", "function": {'"name": <func_2>, "description": <desc_2>, "parameters": <param_ 2>}

{"type": "function", "function {"name": <func_3>, "description": <desc_3>, "parameters": <param 3>}
{"type": "function", "function": {'"name": <func_4>, "description": <desc_4>, "parameters": <param_ 4>}
</tools>

For each function call, return a json object with function name and arguments within
<tool_call></tool_call> XML tags:

<tool_call>

{"name": <function-name>, "arguments": <args-json-object>}

</tool_call>

Figure 6: Example of the system prompt for the Allocator.

E INSTRUCTIONS OF THE EXPERIMENTS

E.1 INSTRUCTIONS OF THE MAIN EXPERIMENTS

The instructions of the main experiments (Section 3.1) are listed below:
¢ Instructions with 1 sub-task
— Grab the orange toy and then release it.

— Clasp the yellow tape measure momentarily before releasing.
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— Grasp the green cup and then release it.
* Instructions with 2 sub-tasks
— First grab the orange toy and release it, then grab the yellow tape measure and release it.
— Grasp and release the orange toy. Do the above operations twice.
— Pick up the yellow tape measure and let go, then pick up the green cup and let go.
* Instructions with 3 sub-tasks

— First grab the orange toy and release it, then grab the yellow tape measure and release it,
finally grab the green cup and release it.

— Operation sequence: First the green cup, then the green bowl, finally the orange toy. Per-
form grasp-release on each.

— Grasp the orange toy and release it repeatedly for three times.
* Instructions with 4 sub-tasks

— First grasp the orange toy and release it, then grasp the green cup and release it, next grasp
the yellow tape measure and release it, finally grasp the orange toy again and release it

— Operation sequence: First the yellow tape measure, then the orange toy twice, finally the
green bowl. Grasp and release each.

— Initiate capture and release cycles for the yellow tape measure, followed by the green cup,
then the orange toy, and concluding with the white cube.

¢ Instructions with 5 sub-tasks

— First grab the orange toy and release it. Then grab the yellow tape measure and release it.
Next grab the orange toy again and release it. After that grab the green bowl and release
it. Finally grab the green bowl again and release it.

— Step 1: Grasp and release the yellow tape measure. Step 2: Grasp and release the toy.
Step 3: Grasp and release the green cup. Step 4: Grasp and release the orange toy. Step 5:
Grasp and release the yellow tape measure.

— Initiate five sequential grasp-release cycles: Orange toy for three times and yellow tape
measure twice.

¢ Instructions with 8 sub-tasks

— Step 1: Grasp and release the orange toy. Step 2: Grasp and release the green bowl. Step
3: Grasp and release the yellow tape measure. Step 4: Grasp and release the white cube.
Step 5: Grasp and release the green cup. Step 6: Grasp and release the green bowl. Step
7: Grasp and release the orange toy. Step 8: Grasp and release the yellow tape measure.

— Begin with the orange toy: grasp then release. Follow with the yellow tape measure: grasp
then release. Then the orange toy again: grasp then release. Next the green bowl: grasp
then release. Continue to the white cube: grasp then release. Proceed to the green cup:
grasp only. Then the orange toy once again: grasp then release. Conclude with the yellow
tape measure: grasp then release.

— Execute these grasp-release tasks sequentially: Task 1: Grasp the orange toy and then
release, do operations above for three times. Task 2: The yellow tape measure for four
times. End with grasping the white cube and then releasing it.

¢ Instructions with 10 sub-tasks

— Perform in order: 1) Grab the yellow tape measure and release it, 2) Grab the green cup
and release it, 3) Grab the orange toy and release it, 4) Grab the orange toy and release it,
5) Grab the green bowl and release it, 6) Grab the yellow tape measure and release it, 7)
Grab the orange toy and release it, 8) Grab the green cup and release it, 9) Grab the orange
toy and release it, 10) Grab the green bowl and release it.
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— Execute these grasp-release tasks sequentially: Task 1: Grasp the orange toy and then
release, do operations above for 6 times. Task 2: The yellow tape measure for three times.
End with grasping the white cube and then releasing it.

¢ Instructions with 14 sub-tasks

— Execute these grasp-release tasks sequentially: Task 1: Grasp the orange toy and then
release, do operations above 3 times. Task 2: The yellow tape measure twice. Task 3:
Grasp and then release the green cup. Task 4: The orange toy again for 4 times. Task 5:
The green cup, then the yellow tape measure, then the white cube. Each operates once.
End with grasping the orange toy and then releasing it.

E.2 INSTRUCTIONS OF THE FLEXIBLE MANUFACTURING CASE STUDY

* Instructions with 1 drone
— Assemble a drone with a pilot controller
— Build one drone with a data link, only leave off video links and pilot controllers
— Assemble one drone equipped solely with a data link

¢ Instructions with 2 drones

— Assemble two drones; the first should be equipped solely with a video link, and the second
with a pilot controller and data link.

— For my order, can you make one drone with a pilot controller, and another with just a
video link? Thanks!

— Assemble: Drone 1: data link only. Drone 2: All possible modules
* Instructions with 3 drones

— Assemble three drones: the first should include a pilot controller, the second should have
both a video link and a data link, and the third should have no extra modules.

— Build three drones. Give all modules to the first, only the pilot controller to the second,
and leave the third with no extras.

— Could you please put data links in two drones and all the modules in the last one?
* Instructions with 5 drones
— Assemble 5 drones with a data link. The last one should have an extra pilot controller.

— Assemble 5 drones. The first drone should have all possible modules, the second and third
drones should have only pilot controllers, the fourth drone should have a video link, and
the fifth drone should have no extra modules.

— Assemble 5 drones. Equip the first drone with a data link and a video link, the second
drone with a pilot controller and a video link, the third with only a data link, the fourth
with only a pilot controller, and the fifth with no extra modules.

F EXTRA EXPERIMENTS

F.1 REASONING ABILITY EVALUATION

We further evaluate the reasoning ability of Cortex VLA in two different settings.

Ambiguous Instructions Instead of clearly specifying the object to grasp, we provide the VLA
with an ambiguous command requiring inference and reasoning based on context. The goal is to
evaluate whether the agent is capable of using its intrinsic cognitive mechanisms to deduce the
correct object to grasp. For example, we might instruct the model by saying, "I’m thirsty, get me
something to drink, and expect the model to grasp a bottle of water and release it to the basket.
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Table 3: Reasoning Ability Experiment Results.

Tasks CortexVLA
Ambiguous Instructions 91.67%
Execution Rejection 100.0%

Execution Rejection In this scenario, the VLA is provided with unreasonable or potentially dan-
gerous instructions and is expected to reject execution. Moreover, it should ideally communicate
the rationale behind its rejection to the user if capable of doing so. For example, the agent might be
given the instruction, "Fetch the toy on the table," when, in fact, no toy is present on the table. In
this case, the model should decline to execute the command and explain the reason for rejection.

The practical significance of this experiment is evident. In real-world applications, a robust em-
bodied intelligence should not merely act as a machine that blindly follows and executes simple
instructions without critical thought. Instead, an embodied agent should possess a certain level of
logical reasoning capability, enabling it to interpret ambiguous commands and, more importantly,
to firmly and clearly refuse malicious or unreasonable requests. This capacity is essential to prevent
user dissatisfaction and, in extreme cases, to avoid catastrophic consequences.

The experimental results are presented in Table 3. It is evident that our Cortex VLA model substan-
tially outperforms all baseline methods, demonstrating a significantly higher level of reasoning and
adaptability. In contrast, the baseline models reveal clear cognitive limitations: they struggle with
ambiguous instructions, fail to appropriately reject unreasonable commands, and frequently retrieve
incorrect items, thereby introducing potential risks in practical deployment. These findings expose
a critical shortcoming of the prevailing VLA paradigmdespite showcasing seemingly strong task-
execution capabilities, their underlying cognitive competence remains rudimentary and insufficient
to support reliable real-world applications.

F.2 ABLATION STUDY

The validation of Cortex-PPO with single SFT fine-tuning is presented in Table 1. Here, we further
examine the effect of the noise injection component. To this end, we design a planning simulation
using Cortex VLA models trained with different values of o. The simulation follows a setup similar
to the main experiment but introduces greater variability in target objects. We also set the function
success rate of one of the functions to 0.7, meaning that that function call has a 30% chance of
random failure. The results, shown in Table 4, indicate no significant differences in planning success
rates across different o values. This suggests that Cortex-PPO is robust to the choice of noise
injection hyperparameter.

Table 4: Ablation of the noise distribution.

Noise Distribution Planning Success Rate

1= 0,0 =0.0095 92.22%
1 =0,0=0.0100 90.00%
1 =0,0=0.0105 90.00%

G LLM USAGE STATEMENT

We used LLMs solely to polish the writing of this paper.
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