
Under review as a conference paper at ICLR 2024

EXPLORING ACTIVE LEARNING IN META-LEARNING:
ENHANCING CONTEXT SET LABELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Most meta-learning methods assume that the (very small) context set used to
establish a new task at test time is passively provided. In some settings, however, it
is feasible to actively select which points to label; the potential gain from a careful
choice is substantial, but the setting requires major differences from typical active
learning setups. We clarify the ways in which active meta-learning can be used
to label a context set, depending on which parts of the meta-learning process use
active learning. Within this framework, we propose a natural algorithm based on
fitting Gaussian mixtures for selecting which points to label; though simple, the
algorithm also has theoretical motivation. The proposed algorithm outperforms
state-of-the-art active learning methods when used with various meta-learning
algorithms across several benchmark datasets.

1 INTRODUCTION

Meta-learning has gained significant prominence as a substitute for traditional “plain” supervised
learning tasks, with the aim to adapt or generalize to new tasks given extremely limited data.
(Hospedales et al. (2022) give a recent survey.) There has been enormous success compared to
learning “from scratch” on each new problem, but could we do even better, with even less data?

One major way to improve data-efficiency in standard supervised learning settings is to move to an
active learning paradigm, where typically a model can request a small number of labels from a pool
of unlabeled data; these are collected, used to further train the model, and the process is repeated.
(Settles (2009) provides a classic overview, and Ren et al. (2021) a more recent survey.)

Although each of these lines of research are quite developed, their combination – active meta-learning
– has seen comparatively little research attention. Given that both focus on improving data efficiency,
it seems very natural to investigate further. How can a meta-learner exploit an active learning setup to
learn the best model possible, using only a very small number of labels in its context sets?

We are aware of two previous attempts at active selection of context sets in meta-learning: Müller
et al. (2022) do so at meta-training time for text classification, while Boney & Ilin (2017) do it at
meta-test time in semi-supervised few-shot image classification with ProtoNet (Snell et al., 2017).
“Active meta-learning” thus means very different things in their procedures; these approaches are also
entirely different from work on active selection of tasks during meta-training (as in Kaddour et al.,
2020; Nikoloska & Simeone, 2022; Kumar et al., 2022). Our first contribution is therefore to clarify
the different ways in which active learning can be applied to meta-learning, for differing purposes.1

We then confirm in extensive experiments that no active learning method for context set selection
seems to significantly help with final predictor quality at meta-training time – aligning with previous
observations by Setlur et al. (2020) and Ni et al. (2021) – but that active learning can substantially
help at meta-test time. In particular, we propose a natural algorithm based on fitting a Gaussian
mixture model to the unlabeled data, using meta-learned feature representations; though the approach
is simple, we also give theoretical motivation. We show that our proposed selection algorithm works
reliably, and often substantially outperforms competitor methods across many different meta-learning
and few-shot learning tasks, across a variety of benchmark datasets and meta-learning algorithms.

1Note that work on meta-learning an active selection criterion for higher-label-budget problems – e.g.
Konyushkova et al., 2017; Fang et al., 2017 – is essentially unrelated.

1

Under review as a conference paper at ICLR 2024

2 META-LEARNING: BACKGROUND AND WHERE TO MAKE IT ACTIVE

We aim to learn a learning algorithm fθ, a function which, given a dataset C consisting of pairs
(x, y) ∈ X × Y , returns g := fθ(C). The function g : X → Ŷ is a classifier, regressor, or so on. We
evaluate the quality of g using a loss function ℓ : Ŷ × Y → R, e.g. the cross-entropy or square loss:

Empirical risk of g on T : Rℓ(g, T) =
1

|T |
∑

(x,y)∈T

ℓ (g(x), y) .

To find the θ which gives the best gs, we assume we have access to distributions Ptrain ,Peval over
tasks D ⊆ X × Y . For each task, we will run fθ on a context set C, then evaluate the quality of
the learned predictor on a disjoint target set T . We call the distribution over possible (C, T) pairs
Pickθ(D).2 For instance, the default choice in passive meta-learning chooses, say, five random points
per class for C and assigns the rest to T , ignoring θ and the x values. Our aim is then roughly:

Meta-training: find θ̂ ≈ argmin
θ

ED∼Ptrain

[
E(C,T)∼Picktrain

θ (D)

[
Rℓtrain

(
fθ(C), T

)]]
. (1)

Many algorithms have been proposed for meta-training; we give a brief overview in Section 2.2.

To compare models based on Peval , we might evaluate with a different loss. For instance, it would be
typical to use the 0-1 loss (corresponding to accuracy) for classification problems.

Meta-testing: evaluate fθ̂ by estimating ED̃∼Peval

[
E(C̃,T̃)∼Pickeval

θ̂
(D̃)

[
Rℓeval

(
fθ̂(C̃), T̃

)]]
. (2)

Finally, in practice, we might want to use a different selection scheme at deployment time. For
instance, in passive meta-learning, one would typically use all available labeled data for context.

Deployment: given a task D̆, find a context set via (C̆, _) ∼ Pickdeploy
θ̂

(D̆) and use fθ(C̆). (3)

2.1 ACTIVE SELECTION OF CONTEXT IN META LEARNING

There are several places where active learning can be applied during meta-learning. In the meta-
training phase (1), we could actively choose tasks D, and/or have Picktrainθ actively select points for
C and/or T . At meta-testing time (2), we could have Pickevalθ actively select points for C̃ and/or T̃ ;
we might also actively choose D̃ to use labels efficiently, similarly to active surveying (Garnett et al.,
2012). At deployment time (3), Pickdeployθ might actively choose a context set C̆ to label.

Actively selecting D, D̃, T , and/or T̃ is interesting to minimize the label burden (or, possibly,
computational cost) of meta-training (Kaddour et al., 2020; Nikoloska & Simeone, 2022; Kumar
et al., 2022). We assume here, however, that Ptrain and Peval are based on already-labeled datasets.

Instead, we are primarily concerned with the labeling burden at deployment time, and so would like
to actively select C̆ with Pickdeployθ to find the best predictor. To evaluate how well we should expect
our algorithms to perform at this task, we choose Pickevalθ = Pickdeployθ ; thus, we actively select C̃.

Should we expect this to help? Efficient approaches for data selection in meta-learning have not yet
received much research attention. Setlur et al. (2020) suggest that context set diversity is empirically
not particularly helpful for meta-learning, and Ni et al. (2021) show that data augmentation on context
sets is not very useful either. Pezeshkpour et al. (2020) further provide some evidence using label
information that there is not much room to improve few-shot classification with active learning.
Agarwal et al. (2021), however, argue against the previous conclusions by showing that adversarially
selected context sets, at both training and test time, significantly change the performance of few-image
classification. Their approach is not applicable in practice since it requires full label information, but
may suggest there is room to improve meta-learning algorithms with better context sets.

Müller et al. (2022) compare traditional active learning algorithms for few-shot text classification
at training time, i.e. active Picktrainθ , passive Pickevalθ . Boney & Ilin (2017) instead compare active

2We might want to pick points by some deterministic process, in which case Pickθ(D) is a point mass.

2

Under review as a conference paper at ICLR 2024

Figure 1: The meta-training process. Pickθ can be stratified or unstratified, active or passive.

learning algorithms for semi-supervised few-shot image classification inside Pickevalθ , specifically
when fθ is a ProtoNet, with passive Picktrainθ . Both are feasible settings, but as argued above if we are
concerned with performance of our deployed predictor we should use an active Pickevalθ = Pickdeployθ .
One can choose Picktrainθ to be active or not, depending on which learns better predictors; we show
in Appendix J that it seems active Picktrainθ does not help.

Stratification In passive few-shot classification, the Pick functions typically choose context points
according to a stratified sample: for one-shot classification, C contains exactly one point per class.
This is because, if we take a uniform random sample of size N for an N -way classification problem,
C is unlikely to contain all the classes, making classification very difficult. Assuming “nature” gives
a stratified uniform sample, as in nearly all work on few-shot classification, also seems reasonable.

In pool-based active settings, however, it is highly unreasonable to assume that Pickdeployθ can
be stratified (as illustrated on the left side of Figure 1): to do so, we would need to know the
label of every point in D̆, in which case we should simply use all those labels. As we would like
Pickevalθ = Pickdeployθ , eval-time stratification is then not particularly reasonable; even so, we report
such results per the standards of meta-learning. When Pickdeployθ is unstratified (as in the right side
of Figure 1), it is particularly important for the selection criterion to find samples from each class.

Train-time stratification with unstratified evaluation does not leak data labels, and is plausible when
Ptrain and Peval are fully labeled. Since this approach trains fθ in an “easy” setting and evaluates it
in a “hard” one, however, we will see it tends to slightly underperform the fully-unstratified default.

Regression problems are not typically stratified; we do not stratify for our regression experiments.

2.2 RELATED WORK: META-LEARNING ALGORITHMS

Meta-learning algorithms can be divided into several categories; all will be applicable for our active
learning strategies, and we evaluate with at least one representative algorithm per category.

Metric-based methods learn a representation space encoding a “good” similarity, where simple
classifiers work well (Vinyals et al., 2016; Finn et al., 2018; Oreshkin et al., 2018). ProtoNet (Snell
et al., 2017) finds features so that points from each class are close to the prototype feature of the class.

Optimization-based methods use fθ that incorporate optimization, e.g. gradient descent as in
MAML (Finn et al., 2017; Antoniou et al., 2019), which seeks parameters θ (especially a parameter
initialization) such that gradient descent quickly finds a useful model on a new task. ANIL (Raghu
et al., 2020) freezes most of the network and only updates the last layer, while R2D2 (Bertinetto
et al., 2019) and MetaOptNet (Lee et al., 2019b) replace the last layer with a convex problem whose
solution can be differentiated; these approaches can improve both performance and speed.

Model-based methods learn a model that explicitly adapts to new tasks, typically by modeling the
distribution of y from T given its x values and C. The most prominent family of methods is Neural
Processes (NPs) (Garnelo et al., 2018b; Dubois et al., 2020), which encode a context set and estimate

3

Under review as a conference paper at ICLR 2024

task-specific distribution parameters. Conditional (and latent) NPs can have issues with underfitting
(Garnelo et al., 2018a;b), but AttentiveNPs (Kim et al., 2019) and ConvNPs (Gordon et al., 2020) can
be more powerful. These models are more commonly used for regression.

Pre-training methods, such as SimpleShot (Wang et al., 2019) and Baseline++ (Chen et al., 2019),
are based on repeated demonstrations (also Zhang et al., 2021; Goldblum et al., 2020) that simply
pre-training a multi-class model can surpass the performance of commonly used meta-learners.

3 ACTIVE LEARNING

In pool-based active learning, a model requests labels for the most “informative” data points from a
pool of unlabeled data. The key question is how to estimate which data points will be informative.

3.1 RELATED WORK: EXISTING ACTIVE LEARNING METHODS

Uncertainty-based methods Simple but effective uncertainty-based methods such as maximum
entropy (Wang & Shang, 2014), least confident (Settles, 2009), and margin sampling (Scheffer et al.,
2001) are widely used for active learning. Since they only consider current models’ uncertainty,
active learning strategies that consider expected changes in model parameters (Settles et al., 2007;
Ash et al., 2020) and model outputs (Zhu et al., 2003; Guo & Greiner, 2007; Roy & McCallum, 2001;
Käding et al., 2018; Freytag et al., 2014; Käding et al., 2016; Tan et al., 2021; Mohamadi et al., 2022)
have been also been proposed. However, recent analyses have empirically demonstrated that at least
in certain experimental settings, most active learning methods are not significantly different from one
another (Lang et al., 2021), and may not even improve over random selection (Munjal et al., 2022).

Random Uniformly randomly samples a context set from all the candidate data points.
Entropy Add one point to the context set based on x∗ = argmaxx∈U H(ŷ(x) | x), where U

are the unlabeled candidate data points and H(·) is Shannon entropy (Wang & Shang, 2014).
Other than in Appendix K, we apply this in “batch mode,” i.e. we do not observe points
one-by-one but rather choose the |C| points with the highest “initial” entropy.3

Margin For classification, add one point to C based on x∗ = argminx∈U p1(y|x)− p2(y|x),
where p1 and p2 denote the first and second highest predicted probabilities, respectively (Schef-
fer et al., 2001). We also run this method in “batch mode.”

Although Entropy and Margin are very simple and fast to evaluate, no uncertainty-based method
seems to substantially outperform them on typical active image classification tasks (e.g. Mohamadi
et al., 2022), and we will see that other methods are unlikely to be competitive in low-budget regimes.

Low-budget active learning The limitations of typical active learning approaches may especially
apply in very-low-budget cases, such as those considered in few-shot classification and meta-learning.
In particular, when the “current” model is quite bad, using it to choose points might be counterpro-
ductive. In the one-shot case especially, standard active learning methods simply do not apply.

Recently, several papers have have proposed novel active learning algorithms for these settings; none
of these papers focused on meta-learning, but should be broadly applicable since meta-learning is also
a low-budget setting. Rather than picking e.g. the points about which a model is least certain, these
papers propose to label the “most representative” data points independently of a “current” model.

DPP Determinantal Point Processes (DPPs) can query diverse samples, based on selecting
a subset that maximizes the determinant of a similarity matrix (Bıyık et al., 2019).

Typiclust Run k-means on the unlabeled data points, where k = |C| is the annotation budget.
Select one data point per cluster such that the distance between a data point and its k′ nearest
neighbors is minimized: argminx∈U

∑
x′∈NNk′ (x)∥x− x′∥2 (Hacohen et al., 2022).

3Traditional active learning methods would generally retrain between each step, requiring a back-and-forth
labeling process not needed by the methods discussed shortly. In modern deep learning settings, this is almost
never done due to the expense of retraining; “batch-mode” entropy is still excellent in those settings (Lang et al.,
2021; Mohamadi et al., 2022). Appendix K explores more frequent retraining; the takeaway results are overall
similar to the rest of our experiments.

4

Under review as a conference paper at ICLR 2024

Coreset Greedily select a subset of the unlabeled data points to approximately minimize the
distance from unlabeled data points to their nearest labeled point (Sener & Savarese, 2018).

ProbCover Select data points that roughly maximize the number of unlabeled points within a
distance of τ from any labeled point, where τ is chosen according to a “purity” heuristic (Yehuda
et al., 2022); see Appendix F for more details.

3.2 FEATURES FOR REPRESENTATIVE-SELECTION METHODS

Notions of the “most representative” data points are highly dependent on a reasonable metric of
data similarity. Prior methods operated either on raw data – typically a poor choice for complex
datasets like natural images – or, in semi-supervised settings as in ProbCover and Typiclust, on
SimCLR (Chen et al., 2020) features learned on the unlabeled data.

In metric-based meta-learning, we propose to instead use the current meta-learned representation;
choosing points representative for the features we will use downstream is the natural choice.

In MAML, the most natural equivalent might be features from the empirical neural tangent kernel (Lee
et al., 2019a) of the current initialization network; this approximates what will happen when the
network is trained on C,4 and so is perhaps the best simple understanding of “how this network views
the data.” Even empirical NTKs are often expensive to evaluate, however, and we thus propose to
instead use features from the penultimate layer of the initialization neural net fθ({}), corresponding
to the NTK of a model that only retrains its last layer (as in ANIL, R2D2, and MetaOptNet).

We also use the penultimate-layer reperesentations of fθ({}) for NP-based meta-learning.

Experiments in Appendix I show that this proposal outperforms separate self-supervised features.

3.3 GAUSSIAN MIXTURE SELECTION FOR LOW-BUDGET ACTIVE LEARNING

We propose the following very simple algorithm for low-budget active learning: fit a mixture of k
Gaussians to the unlabeled data features, where k is the label budget, using EM with a k-means
initialization. We use a shared diagonal covariance matrix. Once a mixture is fit, we select the
highest-density point from each component: argminx∈U (x− µj)

TΣ−1(x− µj) for each j ∈ [k].

For metric-based meta-learning, the motivation of this algorithm is clear: we want labeled points that
approximately “cover” the data points. Our notion of a “cover” is somewhat different from that of
Coreset (Sener & Savarese, 2018) or ProbCover (Yehuda et al., 2022); we avoid ProbCover’s need for
a fixed radius, which we show can lead to poor choices (see Appendix F), and are more concerned
with “average” covering (and hence perhaps less sensitive to outliers) than Coreset. The quality of
selected data points from those methods are compared according to a few metrics in Figure 6.

On ANIL and MetaOptNet: since |C| is at most, say, 50 (in 10-way 5-shot) and the feature dimension
is typically hundreds, ANIL becomes approximately the same multiclass max-margin separator
obtained by (unregularized) MetaOptNet.5 Intuitively, as |C| grows, the means of an isotropic
Gaussian mixture converge to roughly a covering set for the dataset U , and the max-margin separator
of a set cover for U will be similar to the max-margin separator for all of the data. Even in various
cases when |C| ≪ |U|, choosing the means yields a max-margin separator that generalizes well.

Figure 4 in Appendix A illustrates that, if class-conditional data distributions are isotropic Gaussians
with the same covariance matrices, labeling the cluster centers can be far preferable to labeling a
random point from each cluster. This is backed up by the following result in a particular simple case:
Proposition 1. Suppose Y ∼ Uniform([N]), and X | (Y = y) ∼ N (µy, σ

2I), where the µi are
orthonormal. Then the max-margin separator (4) on {(µi, i)}Ni=1 is Bayes-optimal for Y | (X = x).

For more general settings, we argue that GMM is still a good method based on being an efficient set
cover, as shown in Figure 5 in Appendix A along with the proof for Proposition 1.

4Theoretical results about the NTK technically depend on a random initialization, which is not the case here.
Mohamadi et al. (2022) provide some assurance in that if the initialization were obtained by gradient descent on
some dataset, the results would still hold, but MAML finds initial parameters differently.

5For reasonable distributions and networks, C is almost surely linear separable; thus ANIL, which is gradient
descent for logistic regression, will converge to the multiclass max-margin separator (Soudry et al., 2018).

5

Under review as a conference paper at ICLR 2024

Very-low-budget regime Active learning based on Gaussian mixtures is not new in itself. Closely-
related methods such as k-means, k-means++ or k-medoids have been used as sole selection al-
gorithms (Aghaee et al., 2016; Voevodski et al., 2012) or in combination with uncertainty-based
methods (Nguyen & Smeulders, 2004; Donmez et al., 2007; Ash et al., 2020; Hacohen et al., 2022).
Some recent work (Boney & Ilin, 2017) including DPP (Bıyık et al., 2019) and Coreset (Sener &
Savarese, 2018) show significant improvements over GMM-based baselines. These trends, however,
do not seem to hold true in very-low-budget regimes such as meta-learning. As shown in Figure 2,
GMM matches or outperforms other low-budget methods with very small numbers of labels for
standard image classification tasks; the following section shows that GMM provides substantial
improvements in meta-learning.

5 10 15 20 25 30 35 40 45 50
Number of labeled data

15

20

25

30

A
cc

(%
)

ProbCover

GMM

Typiclust

Coreset

(a) CIFAR10

5 10 15 20 25 30 35 40
Number of labeled data

20

30

40

50

60

70

A
cc

(%
)

ProbCover

GMM

Typiclust

Coreset

(b) MNIST

5 10 15 20 25 30 35 40 45 50
Number of labeled data

8

10

12

14

16

18

A
cc

(%
)

ProbCover

GMM

Typiclust

Coreset

(c) SVHN

Figure 2: Low-budget active learning methods on image classification with very low budget. Mean
and standard error of accuracy for three sets of SimCLR features, three runs per features.

4 ACTIVE META-LEARNING EXPERIMENTS

We now compare various active learning methods for variants of active meta learning as defined in
Section 2.1, on both classification tasks (in Sections 4.1 and 4.2) and regression (in Section 4.3).

4.1 FEW-SHOT IMAGE CLASSIFICATION

We use four popular few-shot image classification benchmark datasets. MiniImageNet (Vinyals et al.,
2016; Ravi & Larochelle, 2017) consists of 60 000 images sampled from ImageNet (Deng et al., 2009),
with 64 train classes, 16 validation, and 20 test. Each class has 600 images. TieredImageNet (Ren
et al., 2018) is a much larger subset of ImageNet; it consists of 34 super-classes, each containing
10 to 30 sub-classes. There are 20 train super-classes, 6 validation, and 8 test. FC100 (Oreshkin
et al., 2018) is a subset of CIFAR100 (Krizhevsky, 2009), with 60 train classes, 20 validation, and 20
test. It is designed to minimize the overlap between the splits. CUB (Wah et al., 2011; Hilliard et al.,
2018) consists of 200 classes of bird images, with 140 train classes, 30 validation, and 30 test.

We validate whether our active learning methods work across various types of meta-learning algo-
rithms. We run6 metric-based: ProtoNet (Snell et al., 2017), optimization-based: MAML (Finn
et al., 2017), ANIL (Raghu et al., 2020), and MetaOpt(Lee et al., 2019b), as well as pre-training-
based: Baseline++ (Chen et al., 2019) and SimpleShot (Wang et al., 2019).7We vary the backbone to
demonstrate robustness: for instance, we use 4 convolutional blocks for MAML and ProtoNet, and
ResNet10 (He et al., 2016) for Baseline++. As typical in few-shot classification, we report means and
95% confidence intervals for test accuracy from a single model, based on 600 meta-test samples.

We use the meta-learner’s features as proposed in Section 3.2 for all methods; experiments in
Appendix I confirm that they outperform contrastive learning of features on the meta-training set.

6We reproduce ProtoNet, MAML, and ANIL models using the Learn2Learn library (Arnold et al., 2020); for
MetaOptNet, Baseline++, and SimpleShot, we used the original repositories provided by the authors.

7We do not run a model-based method on this case, though we will in Section 4.3; most variants do not work
well conditioning on images, and the ones that do are far less commonly applied in these contexts.

6

Under review as a conference paper at ICLR 2024

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 36.73 ± 0.18 31.27±0.21 31.40 ± 0.41 47.98±0.18 42.83 ± 0.20 44.00 ± 0.21

Entropy 33.67 ± 0.16 29.82 ± 0.20 30.01 ± 0.20 44.64 ± 0.17 38.39 ± 0.22 38.36 ± 0.25

Margin 34.28 ± 0.18 29.74 ± 0.20 28.99 ± 0.20 45.31 ± 0.17 39.65 ± 0.21 38.13 ± 0.24

DPP 36.20 ± 0.18 31.34 ± 0.20 31.09 ± 0.20 47.53 ± 0.17 43.69±0.20 44.19±0.20

Coreset 35.79 ± 0.17 30.31 ± 0.20 31.57±0.18 43.08 ± 0.40 41.56 ± 0.20 41.79 ± 0.22

Typiclust 46.01±0.16 30.96 ± 0.19 30.61 ± 0.21 47.54 ± 0.17 43.61 ± 0.18 44.03 ± 0.21

ProbCover 48.66±0.16 32.86±0.22 33.58±0.19 51.11±0.17 44.20±0.23 44.40±0.24

GMM (Ours) 50.22±0.18 34.23±0.23 35.03±0.23 54.76±0.17 46.30±0.21 47.03±0.20

Table 1: 5-Way K-Shot classification on FC100 with ProtoNet, with Picktrainθ random. The first,
second, third best results for each setting are marked in this and all other results tables.

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 47.93 ± 0.20 28.16 ± 0.17 34.85 ± 0.19 64.16±0.18 53.54±0.20 58.84±0.20

Entropy 48.16 ± 0.20 25.56 ± 0.14 30.44 ± 0.17 61.22 ± 0.20 34.36 ± 0.23 39.57 ± 0.26

Margin 48.31 ± 0.20 28.32 ± 0.16 30.83 ± 0.17 63.73 ± 0.18 49.24 ± 0.22 53.92 ± 0.22

DPP 48.96 ± 0.21 28.90±0.17 36.44±0.19 64.15 ± 0.18 54.18±0.20 57.86±0.19

Coreset 47.74 ± 0.20 29.19±0.18 33.71 ± 0.18 61.28 ± 0.18 30.98 ± 0.19 45.74 ± 0.23

Typiclust 55.65±0.18 27.45 ± 0.17 35.46 ± 0.18 64.16±0.18 46.70 ± 0.21 57.83 ± 0.21

ProbCover 52.07±0.17 23.34 ± 0.11 37.29±0.18 64.66±0.18 40.01 ± 0.21 45.32 ± 0.22

GMM (Ours) 58.82±0.24 33.34±0.24 37.68±0.19 67.18±0.18 54.35±0.20 59.05±0.20

Table 2: 5-Way K-Shot classification on MiniImageNet with MAML, with Picktrainθ random.

Additionally, in the main body we only present results where Picktrainθ is random; Appendix J
demonstrates that, in our setup, active learning at train time is actually mildly harmful to overall
performance, which aligns with the observations in Ni et al. (2021) and Setlur et al. (2020).

For metric-based methods, Table 1 shows results for ProtoNet on FC100. The simple GMM method
significantly outperforms the other active learning strategies on all problem variants considered here.
As previously reported (Hacohen et al., 2022; Yehuda et al., 2022), uncertainty-based methods are
significantly worse than random selection in this low-budget regime.

For optimization-based, Table 2 shows results with MAML on MiniImageNet. Similar to Table 1,
GMM again significantly outperforms the other strategies in most cases. The performance of
ProbCover is sometimes much lower than other methods due to its radius parameter, which is very
difficult to tune, with the best choice changing dramatically depending on the sub-task even though
Yehuda et al. (2022) proposed to fix this parameter per dataset (see Appendix F for more). Results for
ANIL on TieredImageNet and MetaOptNet on FC100 are provided in Appendix G.

For pre-training-based methods, we compare active learning strategies with Baseline++ on the CUB
dataset in Table 3, seeing that the proposed method is again usually by far the best, though in one
five-shot case it essentially ties DPP. As these methods do not follow the meta-training process in (1),
train-time stratification is not applicable. Appendix G shows results for SimpleShot.

Comparison between active learning methods. Figure 3 (left) visualizes context set selection
using t-SNE (van der Maaten & Hinton, 2008) for one 5-way, 1-shot, unstratified task. It is vital to
select one sample from each class; only GMM does so here. Figure 3 (right) summarizes behavior
across many tasks; while not perfect, GMM does a much better job of selecting distinct classes.

Entropy and Margin are typically far worse than random. So is Coreset, agreeing with prior
observations (Ash et al., 2020; Hacohen et al., 2022; Yehuda et al., 2022); this may be because of
issues with the greedy algorithm and/or sensitivity to outliers. Typiclust tends to pick points which,
while dense according to its “typicality measure,” are far from cluster centers; this may be helpful in
traditional active learning, but seems to hurt here. DPP is often better than random, but only barely;
diverse selections may not necessarily lead to representative selections.

7

Under review as a conference paper at ICLR 2024

Pickeval
θ

1-Shot 5-Shot
Test strat. Test unstrat. Test strat. Test unstrat.

Random 68.44± 0.92 51.03± 0.88 82.66± 0.56 79.57 ± 0.67
Entropy 66.33± 0.91 45.31± 0.89 80.97± 0.60 78.33± 0.72

Margin 68.65± 0.90 50.48± 0.94 82.29 ± 0.64 71.07± 0.83

DPP 71.53 ± 0.89 54.38± 0.92 82.81 ± 0.55 78.62 ± 0.76
Coreset 69.01± 0.91 56.22 ± 0.94 82.07± 0.55 76.35± 0.74

Typiclust 70.58± 0.81 29.80± 0.32 74.86± 0.81 70.00± 0.92

ProbCover 78.11 ± 0.69 55.09 ± 0.98 78.59± 0.64 65.71± 0.97

GMM (Ours) 79.98 ± 0.60 59.55 ± 0.87 82.55 ± 0.58 82.68 ± 0.57

Table 3: 5-Way K-Shot classification on CUB with Baseline++, with Picktrainθ random.

Figure 3: Left. t-SNE visualization of unlabeled points of one 5-way, 1-shot, unstratified MiniIm-
ageNet task. Stars denote selected context points using each method. Right. Distributions of the
number of classes selected in each C̃ by ProtoNet on MiniImageNet among 600 meta-test cases, along
with the mean empirical entropy of y from C̃. The higher the value is, the more diverse classes an
active learning method selects; log 5 ≈ 1.6 would be perfect.

ProbCover manages to cover the feature space well, and is usually second-best. However, its “hard”
radius causes issues; it may be preferable to use a smoother notion, as in GMM. The “purity” heuristic
to choose a radius δ also does not seem to align well with performance for meta-learning, as shown in
Appendix F. More analysis for the poor performance of other methods are provided in Appendix N.

GMM, by contrast, provides robust performance without introducing significant new hyperpameters.8

“Soft” k-means would be a special case of GMM with a spherical covariance. For some cases,
standard k-means performs about the same as the GMM, but the GMM is occasionally much better:
for Baseline++ on CUB, GMM outperforms k-means by 3.95 points for 5-way 1-shot and 11.79 for
5-shot. We provide a more thorough comparison to k-means in Appendix E.

4.2 CROSS-DOMAIN ACTIVE META-LEARNING

Cross-domain learning, where Ptrain is “fundamentally different” from Peval , is typically more
difficult than “in-domain" meta-learning. We use a ResNet18 (He et al., 2016) pretrained with
standard supervised learning on ImageNet, and meta-test on CUB and Places (Zhou et al., 2017),

8We did not significantly tune the k-means or EM optimization parameters from standard defaults.

8

Under review as a conference paper at ICLR 2024

Pickeval
θ

P eval on Places P eval on CUB
1-Shot 5-Shot 1-Shot 5-Shot

Random 44.28± 1.93 77.92± 1.70 49.93± 0.92 84.38 ± 0.72
Entropy 36.12± 1.25 57.79± 2.93 41.85± 0.99 71.15± 0.99

Margin 43.31± 1.97 73.65± 1.94 48.04± 0.98 78.84± 0.92

DPP 46.76± 2.29 78.36 ± 1.89 51.41 ± 0.90 84.19 ± 0.72
Coreset 50.03 ± 0.93 65.20± 2.77 50.77± 0.95 81.80± 0.81

Typiclust 43.76± 1.98 77.57 ± 1.84 43.39± 1.03 50.69± 1.08

ProbCover 47.93 ± 1.08 59.08± 2.50 62.13 ± 1.08 69.80± 1.16

GMM (Ours) 60.01 ± 0.86 86.45 ± 1.42 59.87 ± 0.86 85.49 ± 0.67

Table 4: Cross-domain meta-learning tasks using a ResNet18 pre-trained on ImageNet.

Active Strategy Sine func. (3-Shots)
Distractor (2-Shots) ShapeNet1D (2-Shots)
IC CC IC CC

Random 24.17± 0.43 18.91± 2.13 25.79± 2.17 16.52± 1.08 19.07± 1.30

DPP 23.19 ± 0.51 18.08 ± 2.12 19.68 ± 1.92 11.83 ± 0.85 13.68 ± 0.93
Coreset 31.36± 0.48 19.58 ± 1.95 24.08 ± 2.19 11.39 ± 0.91 13.05 ± 1.18

Typiclust 21.59 ± 0.40 20.27± 2.15 24.96± 2.68 12.54± 1.08 14.58± 1.24

ProbCover 29.36± 0.49 21.96± 2.45 25.25± 2.78 12.31± 0.85 13.95± 1.08

GMM (Ours) 18.09 ± 0.38 17.95 ± 2.05 22.03 ± 2.42 10.78 ± 0.72 12.35 ± 0.97

Table 5: Meta-learning for regression on a toy dataset and two pose estimation datasets for
Intra-Category (IC) and Cross-Category (CC). Sine func. and Distractor use mean squared error,
ShapeNet1D uses cosine-sine-distance; lower values are better for each.

which contains images of “places” such as restaurants. As used for cross-domain meta-learning by
Oh et al. (2022), it contains 16 classes with an average of 1,715 images each. As the model is not
meta-trained, train stratification is not relevant; we show results in Table 4 only for unstratified test
sets. GMM is again the clear overall winner; all other methods are often worse than random.

4.3 ACTIVE META-LEARNING FOR REGRESSION

Each sinusoidal function (Finn et al., 2017) has task y = a sin(x+ p), where a ∼ Unif(0.1, 5) is
the amplitude, and p ∼ Unif(0, π) is the phase of sine functions; we use MAML for this dataset.

Distractor and ShapeNet1D are vision regression datasets (Gao et al., 2022); the task is to predict
the position of a specific object in an image ignoring a distractor, or to predict an object’s 1D pose
(azimuth rotation). IC uses objects whose classes were observed during meta-training, while CC has
novel object classes. We use conditional Neural Processes (NP) for Distractor, and attentive NP for
ShapeNet1D. Details are provided in Appendix H.

Table 5 compares active strategies on these datasets; GMM again performs generally the best.

5 DISCUSSION

We have clarified the ways in which active learning can be incorporated into meta-learning. While
active context set selection does not seem to work at meta-training time (Appendix J), it can be
extremely useful at meta-testing/deployment time.

We proposed a surprisingly simple method that substantially outperforms previous proposals. It is
simple and intuitive, and bears some theoretical guarantees in a particular simple situation, though
why it improves so thoroughly over related methods is not yet fully clear.

While we evaluated on a range of methods across many datasets, we focused on convolutional models
for computer vision tasks; although we see no particular reason to expect this, it’s conceivable that
things might behave differently with other types of data and/or models.

9

Under review as a conference paper at ICLR 2024

Reproducibility For each experiment, we listed implementation details of the experiment such as
model, optimizer, batch size, and training iterations, along with the links to publicly available code
we built on, in Appendix B. Anonymous code is provided in the supplementary material. For the
theoretical result, we clearly mentioned conditions and provided a complete proof in Appendix A.

REFERENCES

Mayank Agarwal, Mikhail Yurochkin, and Yuekai Sun. On sensitivity of meta-learning to support
data. NeurIPS, 2021.

Amin Aghaee, Mehrdad Ghadiri, and Mahdieh Soleymani Baghshah. Active distance-based clustering
using k-medoids. In PAKDD, 2016.

Maruan Al-Shedivat, Liam Li, Eric Xing, and Ameet Talwalkar. On data efficiency of meta-learning.
In AISTAT, 2021.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. In ICLR, 2019.

Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas
Zarkias. learn2learn: A library for Meta-Learning research. 2020.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. ICLR, 2020.

Luca Bertinetto, João F. Henriques, Philip H. S. Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. In ICLR, 2019.

Erdem Bıyık, Kenneth Wang, Nima Anari, and Dorsa Sadigh. Batch active learning using determi-
nantal point processes. NeurIPS, 2019.

Rinu Boney and Alexander Ilin. Semi-supervised and active few-shot learning with prototypical
networks. 2017.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An information-rich 3D model repository. 2015.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. 2019.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. JMLR, 2001.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Pinar Donmez, Jaime G Carbonell, and Paul N Bennett. Dual strategy active learning. In ECML,
2007.

Yann Dubois, Jonathan Gordon, and Andrew YK Foong. Neural process family. http:
//yanndubs.github.io/Neural-Process-Family/, 2020.

Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep reinforcement learning
approach. In EMNLP, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In NeurIPS,
2018.

10

http://yanndubs.github.io/Neural-Process-Family/
http://yanndubs.github.io/Neural-Process-Family/

Under review as a conference paper at ICLR 2024

Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting influential examples: Active
learning with expected model output changes. In ECCV, 2014.

Ning Gao, Hanna Ziesche, Ngo Anh Vien, Michael Volpp, and Gerhard Neumann. What matters for
meta-learning vision regression tasks? In CVPR, 2022.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
ICML, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. In ICML Workshop on Theoretical Foundations and Applications
of Deep Generative Models, 2018b.

Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff Schneider, and Richard Mann. Bayesian
optimal active search and surveying. In ICML, 2012.

Guillaume Gautier, Guillermo Polito, Rémi Bardenet, and Michal Valko. DPPy: DPP sampling with
Python. JMLR-MLOSS, 2019. URL https://github.com/guilgautier/DPPy/.

Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, and Tom Goldstein.
Unraveling meta-learning: Understanding feature representations for few-shot tasks. In ICML,
2020.

Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
Richard E Turner. Convolutional conditional neural processes. In ICLR, 2020.

Yuhong Guo and Russell Greiner. Optimistic active-learning using mutual information. In IJCAI,
2007.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies
suit high and low budgets. ICML, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Nathan Hilliard, Lawrence Phillips, Scott Howland, Artëm Yankov, Courtney D Corley, and Nathan O
Hodas. Few-shot learning with metric-agnostic conditional embeddings. 2018.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. PAMI, 44(9):5149–5169, 2022.

Jean Kaddour, Steindór Sæmundsson, and Marc Peter Deisenroth. Probabilistic active meta-learning.
In NeurIPS, 2020.

Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler. Active and continuous
exploration with deep neural networks and expected model output changes. In NeurIPS Workshop
on Continual Learning and Deep Networks, 2016.

Christoph Käding, Erik Rodner, Alexander Freytag, Oliver Mothes, Björn Barz, Joachim Denzler,
and Carl Zeiss AG. Active learning for regression tasks with expected model output changes. In
BMVC, 2018.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In ICLR, 2019.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. In
NeurIPS, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Ramnath Kumar, Tristan Deleu, and Yoshua Bengio. The effect of diversity in meta-learning. 2022.

Adrian Lang, Christoph Mayer, and Radu Timofte. Best practices in pool-based active learning for
image classification. 2021.

11

https://github.com/guilgautier/DPPy/

Under review as a conference paper at ICLR 2024

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In NeurIPS, 2019a.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In CVPR, 2019b.

Mohamad Amin Mohamadi, Wonho Bae, and Danica J. Sutherland. Making look-ahead active
learning strategies feasible with neural tangent kernels. In NeurIPS, 2022.

Thomas Müller, Guillermo Pérez-Torró, Angelo Basile, and Marc Franco-Salvador. Active few-shot
learning with fasl. In NLDB, 2022.

Prateek Munjal, Nasir Hayat, Munawar Hayat, Jamshid Sourati, and Shadab Khan. Towards robust
and reproducible active learning using neural networks. In CVPR, 2022.

Hieu T Nguyen and Arnold Smeulders. Active learning using pre-clustering. In ICML, 2004.

Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, and Tom Goldstein. Data augmentation for
meta-learning. In ICML, 2021.

Ivana Nikoloska and Osvaldo Simeone. Bamld: Bayesian active meta-learning by disagreement.
SPAWC, 2022.

Jaehoon Oh, Sungnyun Kim, Namgyu Ho, Jin-Hwa Kim, Hwanjun Song, and Se-Young Yun.
Understanding cross-domain few-shot learning based on domain similarity and few-shot difficulty.
In NeurIPS, 2022.

Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. In NeurIPS, 2018.

Pouya Pezeshkpour, Zhengli Zhao, and Sameer Singh. On the utility of active instance selection for
few-shot learning. In HAMLETS workshop at NeurIPS, 2020.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. In ICLR, 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classification.
In ICLR, 2018.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM Comput. Surv., 54(9), 10 2021.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through monte carlo estimation
of error reduction. In ICML, 2001.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for informa-
tion extraction. In ISIDA, 2001.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. ICLR, 2018.

Amrith Setlur, Oscar Li, and Virginia Smith. Is support set diversity necessary for meta-learning?
2020.

Burr Settles. Active learning literature survey. 2009.

Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. 2007.

Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

12

Under review as a conference paper at ICLR 2024

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. JMLR, 2018.

Wei Tan, Lan Du, and Wray Buntine. Diversity enhanced active learning with strictly proper scoring
rules. 2021.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In NeurIPS, 2016.

Konstantin Voevodski, Maria-Florina Balcan, Heiko Röglin, Shang-Hua Teng, and Yu Xia. Active
clustering of biological sequences. JMLR, 2012.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The Caltech-
UCSD Birds-200-2011 dataset. California Institute of Technology technical report CNS-TR-2011-
001, 2011.

Dan Wang and Yi Shang. A new active labeling method for deep learning. In IJCNN, 2014.

Yan Wang, Wei-Lun Chao, Kilian Q. Weinberger, and Laurens van der Maaten. Simpleshot: Revisiting
nearest-neighbor classification for few-shot learning. 2019.

Ofer Yehuda, Avihu Dekel, Guy Hacohen, and Daphna Weinshall. Active learning through a covering
lens. NeurIPS, 2022.

Xueting Zhang, Debin Meng, Henry Gouk, and Timothy M Hospedales. Shallow bayesian meta
learning for real-world few-shot recognition. In ICCV, 2021.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. PAMI, 2017.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and semi-supervised
learning using gaussian fields and harmonic functions. In ICML Workshops, 2003.

13

Under review as a conference paper at ICLR 2024

A DETAILS FOR MAX-MARGIN MOTIVATION

The following optimization problem is one form of an N -class max-margin problem, i.e. a multi-class
support vector machine (Crammer & Singer, 2001), on a training set {(xi, yi)}mi=1:

min
w1,...,wN

N∑
y=1

∥wy∥2 s.t. ∀i ∈ [m], ∀y′ ̸= yi, w
T
yi
xi ≥ wT

y′xi + 1. (4)

This is a “hard” version of the problem used as a classification head by MetaOptNet (Lee et al.,
2019b), and can be obtained in their framework by taking the penalty parameter C → ∞.

and can be obtained in their framework by taking the penalty parameter C → ∞.

The decision boundaries obtained by small-step-size gradient descent for linear predictors with
cross-entropy loss on separable data converge to those obtained by (4), as shown by Soudry et al.
(2018, Theorem 7), for almost all datasets. Thus, ANIL (Raghu et al., 2020), which uses gradient
descent for linear predictors with cross-entropy loss on separable data, will approximately obtain the
same solution when using enough steps with appropriately small learning rates.

MetaOptNet uses the homogeneous predictors discussed here. We can handle non-homogeneous
linear predictors (wTx+ b instead of just wTx) with the standard trick of adding a constant 1 feature
to each data point. This solution actually does not quite maximize the margin on the original problem,
since it effectively adds b2 to the objective in (4), but ANIL will find exactly this same solution when
using gradient descent on a function with a separate intercept term.

(a) Trained on cluster centers (b) Trained on random points

Figure 4: Decision boundaries using a multiclass SVM (4) trained on a one-shot dataset containing
(a) cluster centers (shown by stars) and (b) randomly selected points (shown by circles).

Figure 4 demonstrates visually that, if the class-conditional data distributions are isotropic Gaussians
with the same covariance matrices, labeling the cluster centers can be far preferable to labeling a
random point from each cluster. This is backed up by the following result in a particular case:

Proposition 1. Suppose Y ∼ Uniform([N]), and X | (Y = y) ∼ N (µy, σ
2I), where the µi are

orthonormal. Then the max-margin separator (4) on {(µi, i)}Ni=1 is Bayes-optimal for Y | (X = x).

Proof. Combine Lemmas 1 and 2 below.

The orthonormal assumption keeps the proof tractable; far more analysis would be needed without it.
With high-dimensional meta-learned features that are well-aligned to the learning problem, however,
it is reasonable to expect that inner products between different classes will be much smaller than the
within-class inner products.

This optimality result can break when the clusters do not share a spherical covariance; consider
Figure 5a, where the data is still Gaussian but the shared class-conditional covariance is not spherical.
In the one-shot case, max-margin on the separators does not choose the optimal separator. In this
case, we could manually select points to choose the correct line. Doing so, however, is quite risky;

14

Under review as a conference paper at ICLR 2024

(a) Trained on N cluster centers (b) Trained on 3N cluster centers

Figure 5: Decision boundaries using a multiclass SVM (4) trained on cluster centers (shown by stars),
with (a) the one-shot case and (b) the three-shot case.

since we do not know the data labels (or that it is actually Gaussian), we might incorrectly separate
the data. Figure 5b shows the same problem in a three-shot setting; here, even though the data is truly
generated from a mixture of two Gaussians, fitting a mixture of six Gaussians gives us an approximate
set cover of the data, and the max-margin separator now works well.

In fact, we can expect that (a) as the number of clusters grows, the cluster centers produce a better
and better set cover of the dataset; (b) the max-margin separator on a set cover will approximate the
max-margin separator on the full dataset, since the support vectors are all nearby.

A.1 PROOFS

Lemma 1. Suppose that {xi}Ni=1 are orthonormal. Then the solution to (4) with the dataset
{(xy, y)}Ny=1 is given by wy = xy − 1

N

∑N
i=1 xi, and hence

argmax
y

wT
y x = argmin

y
∥x− xy∥.

Proof. We will be able to analytically solve the KKT conditions for (4) in this case. Rather than
using existing analyses of (4), it will be simpler to directly analyze this particular case.

Let w =

w1

...
wN

 ∈ RNd, where d is the dimension of the xi and wy . The objective of our optimization

problem is then simply ∥w∥2.

We will next define a matrix A such that the constraints can be written as Aw + 1 ≤ 0, with A ∈
RN(N−1)×Nd and ≤ interpreted elementwise. Each constraint is of the form −wT

i xi+wT
j xi+1 ≤ 0,

where i ̸= j are class indices in [N]. We can write the corresponding row of A as (Ej − Ei)xi,

where Ei ∈ RNd×d are given by Ei =

 0(i−1)d×d

Id
0(N−i−1)d×d

; these Ei are a block-matrix analogue of

standard basis vectors, so that Eixi ∈ RNd has xi in the ith block of d coordinates, and 0 elsewhere.
We will order these constraints in A in “row-major” order: recalling that i ̸= j, this means we have
first i = 1 j = 2, then i = 1 j = 3, up to i = 1 j = N , followed by i = 2 j = 1, i = 2 j = 3, and
so on. Let ℓ(i, j) give the index of the corresponding constraint, so that e.g. ℓ(1, 3) = 2.

Now, the problem can be written

min
w∈RNd

1

2
∥w∥2 s.t. Aw + 1 ≤ 0,

15

Under review as a conference paper at ICLR 2024

with the 1
2 introduced for convenience. The KKT conditions for this problem are

w +ATµ = 0 Aw + 1 ≤ 0 µ ≥ 0 µ⊙ (Aw + 1) = 0,

where ⊙ is elementwise multiplication. From the first condition, w = −ATµ, where µ ∈ RN(N−1)

is any vector satisfying
µ ≥ 0 AATµ− 1 ≥ 0 µ⊙ (AATµ− 1) = 0.

Since (4) is a strictly convex minimization problem with affine constraints, these conditions are
necessary and sufficient for optimality, and the solution w is unique.

We can reasonably expect, since the xi are orthonormal, that all constraints should be active, meaning
that AATµ = 1. Indeed, choosing µ = (AAT)−11 automatically satisfies the second and third
conditions; it only remains to show that this µ ≥ 0 in order to show this as an optimal solution to (4).

To do this, we will explicitly characterize AAT:
(AAT)ℓ(i,j),ℓ(i′,j′) = xT

i (Ej − Ei)
T(Ej′ − Ei′)xi′ = (δii′ + δjj′ − δij′ − δji′)x

T
i xi′ ,

where δij = 1(i = j) is the Kronecker delta, since ET
i Ej = δijId.

Since the xi are orthonormal, xT
i xi′ = δii′ . As we know i ̸= j and i′ ̸= j′, this simplifies to

(AAT)ℓ(i,j),ℓ(i′,j′) = δii′(1 + δjj′).

Thus (AAT) is a block matrix with diagonal blocks of size (N − 1)× (N − 1) with values IN−1 +
1N−11

T
N−1, and all off-diagonal blocks zero. Taking µ = (AAT)−11N(N−1), the zero blocks

contribute nothing, so each block of N − 1 entries of µ is (IN−1 + 1N−11N−1)
−11N−1.

Note that 1N−11
T
N−1 has one eigenvector v1 = 1√

N−1
1 with eigenvalue λ1 = N − 1, and the

remaining eigenvalues are all zero with eigenvectors satisfying vTi 1 = 0. Adding I to this matrix
simply increases all eigenvalues by one. Thus(

I + 11T
)−1

1 =
1

N

(
1√

N − 1
1

)(
1√

N − 1
1

)T

1+

N−1∑
i=2

vi v
T
i 1︸︷︷︸
0

=
1

N

1T1

N − 1︸ ︷︷ ︸
1

1 =
1

N
1,

and so µ = 1
N 1N(N−1), which is indeed ≥ 0; thus this is an optimal solution to the problem.

We next reconstruct w = −ATµ = − 1
NAT1N(N−1). Consider the block wi inside w; its value will

be the negative mean of the entries of A with an Ei in them. The ℓ(i, j) rows for j ̸= i contribute
N − 1 entries of the form −Eixi. We also have the ℓ(k, i) rows, which have one Eixk term for each
k ̸= i. Thus

wi = − 1

N

−(N − 1)xi +
∑
k ̸=i

xk

 = − 1

N

(
−Nxi +

N∑
k=1

xk

)
= xi − x̄,

where x̄ = 1
N

∑N
k=1 xk. Thus, for a test point x,

argmax
i

wT
i x = argmax

i
xT
i x− x̄Tx = argmax

i
xT
i x.

Because the xi are orthonormal, this is further equal to
argmin

i
∥xi∥2 + ∥x∥2 − 2xT

i x = argmin
i

∥x− xi∥.

Lemma 2. If X | Y = y ∼ N (µy, σ
2I) and Y ∼ Uniform([N]), the Bayes-optimal classifier is

given by
f∗(x) = argmin

y
∥x− µy∥.

Proof. This well-known fact follows by combining

p(Y = y | X = x) =
p(X = x | Y = y)p(Y = y)

p(X = x)
∝ p(X = x | Y = y)

with the definition of the density for X ,

argmax
y

1

(2πσ2)d/2
exp

(
− 1

2σ2
∥x− µy∥2

)
= argmin

y
∥x− µy∥.

16

Under review as a conference paper at ICLR 2024

B IMPLEMENTATION DETAILS FOR META LEARNING ALGORITHMS

Metric-based We use a meta learning library called learn2learn (Arnold et al., 2020) to implement
ProtoNet (Snell et al., 2017). Following the original paper, we train a model with 30-way and 20-way
for 1-Shot and 5-Shot, respectively, for 3,000 iterations. We use a 4 layer convolutional neural
network (Conv4) with 64 channel size, and the batch size is set to 100. For optimization, we employ
an Adam optimizer with a learning rate of 0.01 without having a learning rate schedule.

Optimization-based We use the learn2learn library to implement both MAML (Finn et al., 2017)
and ANIL (Raghu et al., 2020). We use Conv4 with 32 channel size for MAML and 64 channel size
for ANIL (larger channel size does not perform better for MAML). We train both MAML and ANIL
for 60,000 iterations. For optimizer, we employ an Adam optimizer for both with learning rates of
0.003 and 0.001 (adaptation learning rates of 0.5 and 0.1) for MAML and ANIL, respectively. Batch
sizes are set to 32 for both.

For MetaOptNet (Lee et al., 2019b), we use the publicly available code provided by the authors of the
paper (https://github.com/kjunelee/MetaOptNet). We employ the dual formulation
of Support Vector Machine (SVM) proposed in MetaOptNet (MetaOptNet-SVM) for experiments
with the training shot of 15, and use the default hyperparameter settings. For instance, we use a SGD
optimizer with initial learning rate of 0.1 which decays step-wise. We train a model for 60 epochs
with a batch size of 8.

Model-based For both Conditional Neural Process (CNP) (Garnelo et al., 2018a) and Attentive
Neural Process (ANP) (Kim et al., 2019), we use the publicly available code provided by the
authors of the paper that addresses regression tasks for computer vision problems (Gao et al., 2022)
(https://github.com/boschresearch/what-matters-for-meta-learning).

As the authors provide the model checkpoints for CNP on Distractor dataset and ANP on ShapeNet1D,
we utilize them to compare active learning methods in meta-test time. We use 2-Shot for context
sets in meta-test time instead of 25-Shot as done in the original work, since 25-Shot is too large to
investigate the difference between active learning methods.

Pre-training-based We use the publicly available code provided by the authors of the pa-
pers for both Baseline++ (Chen et al., 2019) (https://github.com/wyharveychen/
CloserLookFewShot) and SimpleShot (Wang et al., 2019) (https://github.com/
mileyan/simple_shot). For both models, we use the features from the pre-trained models on
the whole training dataset in inference time. As reported in the public repository for Baseline++, the
performance on CUB for 1-Shot and 5-Shot is lower than the numbers reported in the paper by about
1.1% and 2.5%, respectively. Similarly, the reproduced performance of SimpleShot for 1-Shot and
5-Shot is lower by about 4 ∼ 5%. Note that the numbers correspond for the case of fully stratified
random sampling.

C IMPLEMENTATION DETAILS FOR ACTIVE LEARNING STRATEGIES

In this section, we provide detailed description for the implementation of the following active learning
methods.

DPP (Bıyık et al., 2019) We use DPPy library (Gautier et al., 2019) to implement DPP selection.
Gram matrix of the features from the penultimate layer are used as L-ensembles for DPP. We employ
k-DPP to select k number of context data points.

Coreset (Sener & Savarese, 2018) We refer to both original code (https://github.com/
ozansener/active_learning_coreset) and code provided by the authors of Typiclust
and ProbCover. Since we assume that there is no initial labeled data points, we randomly choose the
first data point and then apply the greedy algorithm after that.

Typiclust (Hacohen et al., 2022) We refer to the publicly available code provided by the authors
of the paper (https://github.com/avihu111/TypiClust). As the maximum number of
data points to annotate is 25 (= 5-Way × 5-Shot), we do not set the maximum number of clusters
unlike the original paper. We set the k in k-NN to 20 as with the original work.

17

https://github.com/kjunelee/MetaOptNet
https://github.com/boschresearch/what-matters-for-meta-learning
https://github.com/wyharveychen/CloserLookFewShot
https://github.com/wyharveychen/CloserLookFewShot
https://github.com/mileyan/simple_shot
https://github.com/mileyan/simple_shot
https://github.com/ozansener/active_learning_coreset
https://github.com/ozansener/active_learning_coreset
https://github.com/avihu111/TypiClust

Under review as a conference paper at ICLR 2024

Coreset0

200
1-Shot Train Strat.

Coreset

1-Shot Unstrat.

Coreset

5-Shot Train Strat.

Coreset

5-Shot Unstrat.

Typiclust0

100

Typiclust Typiclust Typiclust

ProbCover0

100

ProbCover ProbCover ProbCover

6 8
GMM

0

100

15 20
GMM

15 20
GMM

20 25
GMM

(a) Distributions of distances

Coreset0

100

1-Shot Train Strat.

Coreset

1-Shot Unstrat.

Coreset

5-Shot Train Strat.

Coreset

5-Shot Unstrat.

Typiclust0

100

Typiclust Typiclust Typiclust

ProbCover0

100

ProbCover ProbCover ProbCover

0.25 0.50
GMM

0

100

0.25 0.50 0.75
GMM

0.25 0.50 0.75
GMM

0.25 0.50 0.75
GMM

(b) Distributions of accuracies

Figure 6: Estimation of goodness of selected data points on MiniImageNet with ANIL using the distribution of
(a) the distance between the unlabeled points and closest selected points, and (b) the equality between the true
labels of unlabeled points and labels of the closest select points. Red dotted lines show mean values.

Data & Model Clustering
1-Shot 5-Shot

Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

MiniImage.

MAML

k-means 56.75 ± 0.20 33.29 ± 0.26 37.26 ± 0.18 65.76 ± 0.18 41.61 ± 0.24 59.17 ± 0.20
k-means++ 56.12 ± 0.26 32.87 ± 0.32 38.53 ± 0.21 65.49 ± 0.21 43.61 ± 0.32 58.63 ± 0.26

GMM 58.82 ± 0.24 33.34 ± 0.24 37.68 ± 0.19 67.18 ± 0.18 54.35 ± 0.20 59.05 ± 0.20

FC100

ProtoNet

k-means 50.20 ± 0.17 29.69 ± 0.20 35.03 ± 0.23 54.07 ± 0.17 41.42 ± 0.23 41.34 ± 0.23

k-means++ 49.91 ± 0.17 27.27 ± 0.22 34.93 ± 0.27 54.72 ± 0.30 41.61 ± 0.39 42.64 ± 0.39

GMM 50.22 ± 0.18 34.23 ± 0.23 35.03 ± 0.23 54.76 ± 0.17 46.30 ± 0.21 47.03 ± 0.20

Table 6: Comparison of GMM and k-Means selections on MiniImageNet and FC100 using MAML and ProtoNet.

ProbCover (Yehuda et al., 2022) We use the code provided by the original authors of the paper
(it is the same as Typiclust). As we state in Appendix F and Appendix I, we exploit the features
from the meta learners instead of self-supervised features to determine the radius parameters of
ProbCover. In particular, the radius for each algorithm and dataset combination is determined as
shown in Appendix F.

GMM (Ours) We refer to a publicly available implementation for GMM (https://
github.com/ldeecke/gmm-torch). As previously mentioned, we initialize the cluster cen-
ters using k-means. Then, we update the cluster means and covariance matrix (shared by all the
clusters) using expectation maximization algorithm for up to 100 iterations. We make the covariance
matrix shared between the clusters because we assume that the “influence" of each annotated data
point to other data points is roughly the same regardless of data point although the weight of each
dimension may be different (if they are the same, it is equivalent to k-means).

D COMPARISON OF QUALITY OF SELECTED DATA POINTS

In this section, we estimate the quality of selected data points from the low budget active learning
methods. In Figure 6, we compare them in the distance and accuracy as explained in the caption
with ANIL (Raghu et al., 2020) on MiniImageNet. Whether a task is 1-Shot or 5-Shot, or train-time
stratified or unstratified, we can observe that the metrics for GMM are consistently the best.

E COMPARISON TO k-MEANS BASED METHODS

Table 6 compares the proposed GMM method to k-means and weighted k-means (Nguyen & Smeul-
ders, 2004; Donmez et al., 2007) on MiniImageNet and FC100 datasets with MAML and ProtoNet,
respectively.

18

https://github.com/ldeecke/gmm-torch
https://github.com/ldeecke/gmm-torch

Under review as a conference paper at ICLR 2024

Nguyen & Smeulders (2004); Donmez et al. (2007) combines uncertainty and density-based sampling
e.g. k-means for binary classification using logistic regression. For their original tasks, the selection
criterion is equivalent to density weighted margin sampling. We extend it to K way multi-class
classification tasks where their acquisition criterion becomes weighted entropy.

For most cases, weighted entropy is constantly worse than the other two methods. It is expected since
uncertainty-based criteria perform significantly worse than density-based criteria throughout all the
experiments.

Also, the performance of GMM and k-means is similar in general but for some cases, GMM is
significantly better than k-means. We conjecture it is because some features are more important than
the others, and since GMM takes it into account using Mahalanobis distance (instead of Euclidean
distance used in k-means), it selects data points that represents nearby data points better.

F DIFFICULTY OF TUNING THE RADIUS PARAMETER FOR PROBCOVER

In Section 3.2 of Yehuda et al. (2022), the authors proposed to tune the radius δ based on the purity
defined as,

π(δ) = P ({x : Bδ(x) is pure}) where Bδ(x) = {x′ : ∥x′ − x∥2 ≤ δ} (5)

Here, a ball Bδ(x) is “pure" if f(x′) = y, ∀x′ ∈ Bδ(x) where y is the label of x. As the radius δ
increases, the purity decreases monotonically. They choose the optimal radius δ∗ as δ∗ = max{δ :
π(δ) ≥ 0.95}. More specifically, they first run k-means with k being the number of classes. Then,
the purity is measured using the k-means assignment as pseudo-labels.

In their setting (pool-based active learning for image classification), since it is hard to obtain mean-
ingful features from a model trained only a few examples, they use the features from self-supervised
learning methods such as SimCLR (Chen et al., 2020) It is, however, not the case for meta-learning.
In meta-test time, the features from the meta learner are usually more meaningful than self-supervised
learning features. Hence, we use the mete learner’s features to estimate the optimal radius for
ProbCover. Following the original paper, we first run k-means and compute the purity in the same
way. Since the features can differ by meta learning algorithms and the number of shots, we provide
the plots for different algorithms as well as 1 and 5-Shots as shown in Figure 7 (we select the optimal
radius δ based on these plots throughout the experiments). For Figure 7(a)-(f), we also provide the
meta-test performance of stratified and unstratified versions of Random selection to demonstrate that
the estimated optimal radius and best radius for meta-test accuracy do not align.

Another difficulty of estimating the optimal radius is that it is hard to set a search space for the radius.
As shown in the x-axis of Figure 7, the reasonable search space varies significantly depending on the
meta-learning algorithms and datasets we use. In Yehuda et al. (2022), this was less of a problem
since they use SimCLR features, which are normalized: the range of the radius is in [0, 1]. However,
as shown in Appendix I, if we use SimCLR features in meta-test time to actively select context sets,
the performance generally drops.

G ADDITIONAL EXPERIMENTAL RESULTS FOR CLASSIFICATION

In this section, we provide addtional experimental results for few-shot image classification. In Table 7,
we compare the active learning strategies for ANIL (Raghu et al., 2020) on the TieredImageNet
dataset. Similarly, Table 8 provides the results with MetaOptNet (Lee et al., 2019b) on FC100
dataset. Table 9, Table 10, and Table 11 are for SimpleShot (Wang et al., 2019), ProtoNet (Snell
et al., 2017), and ANIL (Raghu et al., 2020) on MiniImageNet, respectively. Note that Entropy and
Margin selections are not applicable for MetaOptNet-SVM. Regardless of meta-learning algorithm
and dataset, GMM significantly outperforms the other active learning methods, and some of them are
worse than the Random selection.

19

Under review as a conference paper at ICLR 2024

(a) Proto FC100 1-Shot (b) Proto FC100 1-Shot (c) MAML Mini. 1-Shot (d) MAML Mini. 5-Shot

(e) ANIL Tiered. 1-Shot (f) ANIL Tiered. 5-Shot (g) Baseline++ CUB (h) SimpleShot Mini.

Figure 7: Estimation of the optimal radius for ProbCover in meta-learning

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 47.55 ± 0.18 38.19±0.16 34.79 ± 0.15 63.84±0.17 57.92±0.23 57.56±0.18

Entropy 43.89 ± 0.16 32.73 ± 0.16 26.33 ± 0.14 57.56 ± 0.18 40.23 ± 0.18 34.16 ± 0.17

Margin 47.35 ± 0.17 36.01 ± 0.14 30.79 ± 0.14 62.87 ± 0.17 54.89 ± 0.24 56.76 ± 0.17

DPP 49.28±0.17 38.17±0.15 36.52±0.15 63.24 ± 0.19 57.28 ± 0.21 57.23±0.18

Coreset 47.32 ± 0.18 36.97 ± 0.20 40.72±0.14 56.93 ± 0.18 47.68 ± 0.22 52.89 ± 0.17

Typiclust 52.95±0.18 37.21 ± 0.17 34.05 ± 0.14 63.13 ± 0.19 55.84 ± 0.22 56.76 ± 0.17

ProbCover 48.53 ± 0.53 37.61 ± 0.49 34.53 ± 0.43 63.48±0.51 57.77 ± 0.56 57.12 ± 0.58

GMM (Ours) 60.29±0.19 50.92±0.22 42.17±0.17 66.48±0.18 60.12±0.24 60.28±0.17

Table 7: 5-Way K-Shot classification on TieredImageNet with ANIL, with Picktrainθ random.

H ADDITIONAL EXPERIMENTAL DETAILS FOR REGRESSION

Gao et al. (2022) propose the Distractor and ShapeNet1D datasets to compare meta learning algo-
rithms for vision regression tasks. They evaluate meta learners for intra-category (IC) and cross-
category (CC) inputs where CC corresponds to the cross-domain in few-shot image classification.

Distractor consists of 10 object classes for a training set and 2 novel classes for CC evaluation. Each
class contains 1, 000 randomly sampled objects from ShapeNetCoreV2 (Chang et al., 2015). 20%
of training set is reserved for IC evaluation. In this dataset, each image consists of two objects: the
object of interest and a distractor object, which are positioned randomly. The goal is to recognize and
locate the object of interest within the image in the presence of a distractor.

ShapeNet1D (Gao et al., 2022) consists of 27 object classes for a training set and 3 object classes
for CC evaluation. Each object class contains 50 images, and 10 images are used for IC evaluation.
ShapeNet1D aims to predict the 1D pose, i.e., rotation angle, around the azimuth axis of an object.

To analyze these vision regression tasks, we compare various active learning strategies in the 2-shot
setting. We use CNP for Distractor, NP for ShapeNet1D. More details about the models can be found
in Appendix B.

I COMPARISON TO SELF-SUPERVISED FEATURES

ProbCover and Typiclust use self-supervised features to actively select new data points to annotate,
since there are not enough labeled data to train a classifier to output meaningful features. Instead,
they utilize the features from SimCLR (Chen et al., 2020). To validate if it is better to use the features
from a meta learner than SimCLR in meta-learning, we compare SimCLR features to the features
from either MAML or ProtoNet for Typiclust and ProbCover as shown in Table 12 and Table 13.

20

Under review as a conference paper at ICLR 2024

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 40.41 ± 0.74 31.96 ± 0.56 32.76 ± 0.63 53.11 ± 0.66 47.73 ± 0.70 47.48 ± 0.76
DPP 40.47 ± 0.80 30.33 ± 0.67 33.41 ± 0.66 51.44 ± 0.68 48.21 ± 0.67 47.45 ± 0.68

Coreset 39.20 ± 0.71 27.55 ± 0.66 30.16 ± 0.69 46.80 ± 0.67 24.08 ± 0.65 25.75 ± 0.72
Typiclust 45.20 ± 0.78 26.35 ± 0.47 27.00 ± 0.43 52.39 ± 0.66 23.97 ± 0.42 24.12 ± 0.39

ProbCover 41.93 ± 0.67 26.87 ± 0.62 27.43 ± 0.48 54.36 ± 0.76 37.00 ± 0.69 38.33 ± 0.76
GMM (Ours) 51.16 ± 0.67 40.89 ± 0.74 41.61 ± 0.87 60.48 ± 0.86 52.68 ± 0.70 51.79 ± 0.70

Table 8: 5-Way K-Shot classification on FC100 with MetaOptNet, with Picktrainθ random.

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Fully strat. Train strat.

Random 45.15± 0.73 26.28± 0.61 61.22 ± 0.72 51.89 ± 0.73
Entropy 37.08± 0.75 21.62± 0.37 47.93± 0.74 32.74± 0.60

Margin 41.53± 0.73 24.28± 0.51 62.15 ± 0.70 50.90 ± 0.75
DPP 44.52± 0.75 26.32 ± 0.58 60.93± 0.72 51.79 ± 0.75

Coreset 45.85 ± 0.73 27.04 ± 0.54 56.48± 0.72 40.39± 0.68

Typiclust 44.53± 0.71 22.97± 0.42 34.21± 0.77 20.04± 0.06

ProbCover 49.32 ± 0.71 24.61± 0.52 55.60± 0.66 32.24± 0.67

GMM (Ours) 52.77 ± 0.72 28.17 ± 0.64 62.64 ± 0.71 50.40± 0.75

Table 9: 5-Way K-Shot classification on MiniImageNet with SimpleShot, with Picktrainθ random.

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 47.70 ± 0.20 39.65 ± 0.28 38.72 ± 0.27 64.66 ± 0.18 57.36 ± 0.27 57.42 ± 0.25
Entropy 44.33 ± 0.20 36.35 ± 0.28 34.87 ± 0.27 61.23 ± 0.19 49.83 ± 0.31 48.46 ± 0.32
Margin 47.07 ± 0.20 37.69 ± 0.27 37.84 ± 0.28 63.79 ± 0.18 55.25 ± 0.29 56.15 ± 0.27

DPP 47.90 ± 0.20 39.17 ± 0.28 37.89 ± 0.26 64.36 ± 0.19 57.48 ± 0.26 57.37 ± 0.25
Coreset 47.86 ± 0.20 39.51 ± 0.26 37.79 ± 0.26 55.09 ± 0.20 50.14 ± 0.29 50.27 ± 0.28

Typiclust 59.51 ± 0.17 38.47 ± 0.27 37.57 ± 0.27 61.02 ± 0.19 51.82 ± 0.31 52.02 ± 0.30
ProbCover 48.51 ± 0.20 35.25 ± 0.26 34.50 ± 0.25 43.61 ± 0.19 38.63 ± 0.21 38.24 ± 0.20

GMM (Ours) 64.50 ± 0.16 47.88 ± 0.32 44.71 ± 0.29 67.03 ± 0.19 57.55 ± 0.29 56.44 ± 0.30

Table 10: 5-Way K-Shot classification on MiniImageNet with ProtoNet, with Picktrain
θ random. The first,

second, third best results for each setting are marked in this and all other results tables.

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 46.59 ± 0.19 36.70 ± 0.19 34.79 ± 0.18 61.35 ± 0.19 55.24 ± 0.20 56.65 ± 0.19
Entropy 44.63 ± 0.20 35.51 ± 0.18 27.35 ± 0.14 55.09 ± 0.19 39.71 ± 0.20 37.45 ± 0.19
Margin 46.58 ± 0.19 36.60 ± 0.19 32.46 ± 0.18 55.62 ± 0.19 40.40 ± 0.20 37.67 ± 0.19

DPP 47.33 ± 0.19 37.45 ± 0.17 37.76 ± 0.18 61.08 ± 0.19 56.18 ± 0.18 57.08 ± 0.18
Coreset 46.40 ± 0.21 38.37 ± 0.17 41.34 ± 0.17 53.74 ± 0.20 47.81 ± 0.20 51.62 ± 0.19

Typiclust 54.44 ± 0.18 36.78 ± 0.17 34.52 ± 0.19 60.87 ± 0.18 52.56 ± 0.20 55.11 ± 0.19
ProbCover 51.56 ± 0.18 27.49 ± 0.15 41.46 ± 0.17 61.68 ± 0.18 53.80 ± 0.20 42.70 ± 0.22

GMM (Ours) 58.50 ± 0.18 48.13 ± 0.20 40.26 ± 0.18 65.14 ± 0.17 59.01 ± 0.20 61.48 ± 0.19

Table 11: 5-Way K-Shot classification on MiniImageNet with ANIL, with Picktrain
θ random.

Here, we use MiniImageNet and FC100 datasets for MAML and ProtoNet, respecitvely as with
Table 2 and Table 1. For both Typiclust and ProbCover, although there are a couple of cases where
SimCLR features are better, it is significantly worse than MAML and ProtoNet features in general. It
intuitively makes sense because 1) meta learners are trained with large enough data points and 2) it is
likely that the information in self-supervised features do not align with that in meta learners.

21

Under review as a conference paper at ICLR 2024

Dataset Features
1-Shot 5-Shot

Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Mini.
MAML 55.65 ± 0.18 27.45 ± 0.17 35.46 ± 0.18 64.16 ± 0.18 46.70 ± 0.21 57.83 ± 0.21
SimCLR 44.84 ± 0.44 27.59 ± 0.35 34.80 ± 0.47 65.95 ± 0.43 36.03 ± 0.48 57.77 ± 0.47

FC100
ProtoNet 46.01 ± 0.16 30.96 ± 0.19 30.61 ± 0.21 47.54 ± 0.17 43.61 ± 0.18 44.03 ± 0.21
SimCLR 36.07 ± 0.44 29.60 ± 0.46 30.13 ± 0.45 48.59 ± 0.49 43.29 ± 0.49 43.89 ± 0.59

Table 12: Comparison of MAML and SimCLR features for Typiclust in meta-test time.

Dataset Features
1-Shot 5-Shot

Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Mini.
MAML 52.81 ± 1.16 21.91 ± 0.24 36.21 ± 0.18 64.70 ± 0.91 42.07 ± 0.49 23.40 ± 0.36
SimCLR 47.57 ± 0.42 25.35 ± 0.38 32.19 ± 0.43 64.33 ± 0.39 36.64 ± 0.58 26.16 ± 0.43

FC100
ProtoNet 48.66 ± 0.16 32.86 ± 0.22 33.58 ± 0.19 51.11 ± 0.17 44.20 ± 0.24 44.40 ± 0.24
SimCLR 31.40 ± 0.42 29.53 ± 0.42 28.39 ± 0.43 47.11 ± 0.39 39.33 ± 0.54 45.40 ± 0.52

Table 13: Comparison of MAML and SimCLR features for ProbCover in meta-test time.

J TRAINING-TIME ACTIVE LEARNING

As mentioned in Section 5, we observe that active learning
methods do not significantly change the generalization per-
formance of meta learners when applied in meta-train time,
which aligns with Ni et al. (2021) and Setlur et al. (2020).
To empirically demonstrate the statement, we apply several
active learning methods without stratification in the meta-
train time for ProtoNet on MiniImageNet. Again, we report
the mean and 95% confidence interval from 600 meta-test
tasks. Figure 8 shows among Random, DPP and GMM se-
lections, one is not significantly better than another although
the Entropy selection is significantly worse than them. Figure 8: Comparison of Picktrainθ .

K SEQUENTIAL ACTIVE-META LEARNING

Although iterative sampling is more common in active learning, we have focused on sampling a
context set at once because of the following two reasons,

• Even though we iterative label additional samples, the features do not change in most of meta-
learning algorithms except for MAML. Even for other optimization-based methods such
as ANIL, since the feature extractor is not updated during adaptation on a context set, the
features will stay the same for iterative process of active learning. As we demonstrated with
ProtoNet in Figure 9 (c)-(d) (details about experiments are below), although we iteratively
add more labeled samples, the performance does not change much as the features do not
change. In this case, selecting N ×K samples at once is not different from iterative process
while it is cheaper.

• If we iteratively add labeled samples, it will quickly go beyond few-shot regime in meta-
learning, which is often not that practical in real world settings. Suppose we have a meta
learner trained in 5-way 1-Shot. It is reasonable to add 5 samples per iteration since it is
the minimum number to cover all the classes. But only after 5 iterations, it will go few-shot
regime where we typically have 25 labeled context samples. It is even less practical for
5-Shot case.

Figure 9 compare active learning methods for sequential setting where we select 5 context samples
at a time until the budget reaches 25 samples. Every time we select new context samples we may
utilize them to maximize new label information. For MAML, we update all the model parameters
through adaptation steps. It is, however, not applicable to the other meta-learning methods we use in

22

Under review as a conference paper at ICLR 2024

this work including ProtoNet, since none of the other methods including optimization-based methods
such as ANIL, do not update the parameters up to the penultimate layer.

As expected, the test performance of ProtoNet does not change much regardless of active learning
methods. But, the test performance of MAML gradually increases as we add more context samples. In
sequential active-meta learning, GMM still significantly outperforms other active learning methods.

5 10 15 20 25
Number of Labeled Data

22
24
26
28
30
32
34
36
38

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(a) MAML – Train strat.

5 10 15 20 25
Number of Labeled Data

25

30

35

40

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(b) MAML – Unstrat.

5 10 15 20 25
Number of Labeled Data

34

36

38

40

42

44

46

48

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(c) Proto – Train strat.

5 10 15 20 25
Number of Labeled Data

32

34

36

38

40

42

44

46

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(d) Proto – Unstrat.

Figure 9: Test performance of MAML and ProtoNet on MiniImageNet with sequentially actively
selected context sets. 5 context samples are selected at each iteration until it reaches 25.

L COMPARISON WITH HYBRID ACTIVE LEARNING METHODS

Table 14 shows that the proposed GMM-based method significantly outperforms all the hybrid
methods - Weighted Entropy (Nguyen & Smeulders, 2004), BADGE (Ash et al., 2020), and Al-
Shedivat et al. (2021).

• Nguyen & Smeulders (2004) proposed weighted expected error active learning method for
binary classification but for multi-class classification, we derived that it becomes weighted
entropy (we call Weighted Ent.) where weights are based on likelihood computed using soft
k-means.

• BADGE (Ash et al., 2020) is one of popular hybrid active learning methods. It uses
initialization of k-means++ where embedding is derived from the gradients of loss with
respect to the output of the penultimate layer using pseudo labels.

• Al-Shedivat et al. (2021) first clusters unlabeled samples using k-means++ and selects
samples per cluster using entropy.

This experiment along with the poor performance of uncertainty methods such as Entropy and Margin,
demonstrates that for low budget regime, diversity measure is significantly more important than
uncertainty measure.

Discussion Most uncertainty measures should be high near decision boundaries, which is not
desirable for low budget setting since those uncertain points tend to be outliers or are too hard to
be generalized. In particular, the purpose of having context sets for meta-learning is to refer them
when making predictions on target samples. For this, it is better to choose the points that are easy to
refer. If selected context samples are too far away from the target samples, it would be hard to make
good predictions for the target set. Diversity measure, especially GMM, ensures that the context
set is not too far away from the target set even in the worst case (imagine some target samples are
outliers). Therefore, it is desirable to only consider diversity for active selection of context sets in
meta-learning. Hybrid methods considering both uncertainty and diversity may help for mid-budget
active learning but it does not really help for extremely low budget scenario like meta-learning.

M FITTING GMM USING EXPECTATION MAXIMIZATION

In this section, we provide details about fitting GMM using the expectation maximization (EM)
algorithm. Although it is available in many literature, we add it here for completeness of our method.

23

Under review as a conference paper at ICLR 2024

Data & Model Clustering
1-Shot 5-Shot

Train strat. Unstrat. Train strat. Unstrat.

MiniImage.

MAML

Weighted Ent. 22.69 ± 0.18 32.27 ± 0.32 23.75 ± 0.25 46.80 ± 0.33

BADGE 27.71 ± 0.18 34.30 ± 0.21 41.37 ± 0.28 58.79 ± 0.24

Al-Shedivat et al. 30.59 ± 0.28 33.73 ± 0.24 38.24 ± 0.29 54.87 ± 0.26

GMM (Ours) 33.34 ± 0.24 37.68 ± 0.19 54.35 ± 0.20 59.05 ± 0.20

FC100

ProtoNet

Weighted Ent. 31.80 ± 0.20 28.94 ± 0.19 40.40 ± 0.25 39.95 ± 0.25

BADGE 30.91 ± 0.23 29.29 ± 0.28 43.85 ± 0.22 44.00 ± 0.29

Al-Shedivat et al. 30.93 ± 0.22 30.43 ± 0.24 41.76 ± 0.27 43.41 ± 0.29

GMM (Ours) 34.23 ± 0.23 35.03 ± 0.23 46.30 ± 0.21 47.03 ± 0.20

Table 14: Comparison of GMM with hybrid active learning methods.

The log-likelihood objective for a GMM is given by,

ℓ(θ) =

N∑
i=1

log

(
K∑

k=1

πkN (xi|µk,Σk)

)
, (6)

where model parameters θ = {(πk, µk,Σk)}Kk=1 with Nand K being the number of samples and
mixture components, respectively. EM algorithm is an iterative algorithm where we alternatively
conduct E-step and M-step as follows,

• E-step: we compute the posterior probability ωik that represents i-th data point belongs to
the k-th Gaussian component as,

wik =
πkN (xi|µk,Σk)∑K
j=1 πjN (xi|µj ,Σj)

(7)

• M-step: we maximize the log-likelihood in terms of the model parameters. Fortunately, for
GMM, there are closed form solutions for each parameter.

πk =
1

N

N∑
i=1

wik, µk =

∑N
i=1 wikxi∑N
i=1 wik

, Σk =

∑N
i=1 wik(xi − µk)(xi − µk)

T∑N
i=1 wik

(8)

We repeat the E-step and M-step until convergence of the log-likelihood or for a fixed number of
iteration time. Please note that we use diagonal covariance Σk since it is computationally efficient
and often fits better in term of log-likelihood.

N MORE ANALYSIS ON LOW BUDGET ACTIVE LEARNING METHODS

We briefly explain why each active learning method does not perform as well as the proposed GMM
method or even Random selection. In this section, we discuss further on the inferiority of low
budget active learning methods compared to GMM. We conjecture it may be attributed to its implicit
exploration of locally dense regions or inappropriate measure of representativeness. Here we analyzed
potential reasons of their failure in very low budget regime.

• Typiclust: after conducting k-means, it selects samples for each cluster j, based on

argmax
x∈clustj

 1

K

∑
xi∈KNN(x)

||x− xi||2

−1

where KNN denotes k-nearest neighbors of which size is fixed to 20. This measure seeks
for locally dense region by selecting samples that are close to its nearest neighbors.

24

Under review as a conference paper at ICLR 2024

• ProbCover: it greedily finds the maximally covering samples given a fixed radius. This
greedy algorithm provide (1− 1

e)-approximation for the optimal solution but the gap with
the optimal solution can be quite large. Also, the selection of the radius is hard as we
discussed in Appendix F. When the radius is small, it tries to find samples that are in locally
dense regions.

• DPP: it finds samples of which a kernel matrix (with a pre-defined kernel function) has the
maximum determinant, which implicitly finds diverse samples. The determinant of a matrix,
however, may not align with selecting maximum covering (or representative) samples. In
particular, maximizing the determinant of the kernel matrix may lead to selecting samples
far away from other samples.

Compared to these methods, GMM tries to find globally representative samples in non-greedy fashion
(using expectation maximization). Also, its measure of covering other samples is in Mahalanobis
distance, which intuitively makes more sense than the determinant of a kernel matrix as a measure.
The proposed GMM method is also theoretically motivated by the Proposition 1, which says a
classifier trained with the selected samples from GMM (cluster means) is a Bayes-optimal classifier
under certain conditions.

25

	Introduction
	Meta-Learning: Background and Where to Make It Active
	Active Selection of Context in Meta Learning
	Related Work: Meta-Learning algorithms

	Active Learning
	Related Work: Existing Active Learning Methods
	Features for Representative-Selection Methods
	Gaussian Mixture Selection for Low-Budget Active Learning

	Active Meta-Learning Experiments
	Few-shot Image Classification
	Cross-Domain Active Meta-Learning
	Active Meta-Learning for Regression

	Discussion
	Details for Max-Margin Motivation
	Proofs

	Implementation Details for Meta Learning Algorithms
	Implementation Details for Active Learning Strategies
	Comparison of quality of selected data points
	Comparison to k-Means based methods
	Difficulty of Tuning the Radius Parameter for ProbCover
	Additional Experimental Results for Classification
	Additional Experimental Details for Regression
	Comparison to Self-Supervised Features
	Training-Time Active Learning
	Sequential Active-Meta Learning
	Comparison with Hybrid Active Learning Methods
	Fitting GMM using Expectation Maximization
	More Analysis on Low Budget Active Learning Methods

