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Abstract

Scaling pre-trained language models has re-
sulted in large performance gains in various
natural language processing tasks but comes
with a large cost in memory requirements. In-
spired by the position embeddings in transform-
ers, we aim to simplify and reduce the memory
footprint of the multi-head attention (MHA)
mechanism. We propose an alternative module
that uses only a single shared projection ma-
trix and multiple head embeddings (MHE), i.e.
one per head. We empirically demonstrate that
our MHE attention is substantially more mem-
ory efficient compared to alternative attention
mechanisms while achieving high predictive
performance retention ratio to vanilla MHA
on several downstream tasks. MHE attention
only requires a negligible fraction of additional
parameters (3nd, where n is the number of
attention heads and d the size of the head em-
beddings) compared to a single-head attention,
while MHA requires (3n2 − 3n)d2 − 3nd ad-
ditional parameters.1

1 Introduction

Scaling pre-trained language models (PLMs) aims
to enhance performance by increasing their size and
capacity, leading to models with an unprecedented
number of parameters (Kaplan et al., 2020; Chowd-
hery et al., 2022; Hoffmann et al., 2022). Just by in-
creasing the size of PLMs and the pre-training data
has yielded state-of-the-art performance on various
natural language processing (NLP) tasks (Devlin
et al., 2019; Liu et al., 2019; Clark et al., 2020;
Raffel et al., 2020; Brown et al., 2020; Clark et al.,
2022a; Ouyang et al., 2022; Touvron et al., 2023).

However, the pursuit of developing larger PLMs
comes with large computational requirements. This
has direct environmental implications such as large
carbon emissions (Lacoste et al., 2019; Strubell
et al., 2019; Weidinger et al., 2022), conflicting

1Code: https://github.com/HUIYINXUE/simpleMHE

Figure 1: Number of parameters for an attention sub-
layer and different number of attention heads using
multi-head attention MHA and our multi-head embed-
ding attention MHE. We fix the dimension of atten-
tion to 64, only counting the parameters for projecting
queries, keys, and values.

with the principles of Green artificial intelligence
development (Schwartz et al., 2020). Moreover,
scaling can hinder researchers with limited access
to computing resources to participate in advanc-
ing the field (Schwartz et al., 2020). This results
in inequalities, where only a privileged few can
actively contribute, potentially impeding diversity
and inclusivity (Weidinger et al., 2022).

The backbone of transformers (Vaswani et al.,
2017) is the multi-head attention (MHA) mod-
ule that extends the standard single-head attention
(SHA) proposed by Cho et al. (2014). MHA ap-
plies an attention mechanism (i.e. head) multiple
times for the same set of queries, keys and values
by using a different set of parameters (i.e. pro-
jection matrices) for each of them. This results
in MHA modules with a large memory footprint
that increases with the number of layers and atten-
tion heads per layer in PLMs (Devlin et al., 2019;
Brown et al., 2020; Ouyang et al., 2022; Touvron
et al., 2023). Figure 1 shows how the number of
parameters of a single attention sublayer increases
with its number of attention heads.

Previous work has attempted to address this is-
sue by proposing to share projection matrices or

https://github.com/HUIYINXUE/simpleMHE


eliminating them entirely to improve the parameter
efficiency of MHA. Lan et al. (2020a) proposed
sharing projection parameters for keys, queries and
values across layers, while Kitaev et al. (2020) in-
troduced a method for sharing the projection ma-
trix between keys and values within each trans-
former layer. Additionally, similar approaches use
a multi-query attention approach that uses a pair of
global projection matrices for keys and values in
each layer (Shazeer, 2019; Chowdhery et al., 2022;
Ainslie et al., 2023). Furthermore, Yan et al. (2021)
eliminate the projection matrices entirely and di-
rectly treat the input hidden states as both keys and
values. In a different direction, Lee-Thorp et al.
(2022) propose models that replace the attention
blocks with token-mixture blocks (i.e. using linear
or Fourier transformations) that contain fewer or
no parameters compared to MHA.

Inspired by the position embeddings in trans-
formers (Vaswani et al., 2017; Devlin et al., 2019),
we aim to simplify and reduce the memory foot-
print of the MHA mechanism. We achieve this
using only a single projection matrix for each of
the keys, queries and values respectively shared
across all attention heads, and one embedding per
head (MHE).

Our contributions are as follows:

• We propose MHE, a novel attention module
that uses shared projection matrices across
heads that are modified by corresponding em-
bedding heads. Our method generates mul-
tiple attention heads requiring only a small
fraction of additional parameters compared to
single-head attention.

• We empirically demonstrate that our MHE
attention is substantially more parameter effi-
cient compared to alternative attention mech-
anisms while achieving high predictive per-
formance retention ratio (i.e. 92.9~98.7%) to
MHA on several downstream tasks. MHE is
(3n2 − 3n)d2 − 3nd smaller than MHA for
a single attention sublayer with n attention
heads and a hidden dimension of d per head.

2 Related Work

2.1 Model Compression
To make PLMs memory efficient, previous work
has focused on the following post-hoc model com-
pression approaches (Ganesh et al., 2021; Tay et al.,
2022).

Quantization Hubara et al. (2017) proposed rep-
resenting weights using fewer bits to reduce mem-
ory requirements. Zadeh et al. (2020) introduced a
method for identifying the outliers in weights and
excluded them during quantization. Another direc-
tion involves additional training steps to adjust the
quantized weights, i.e. quantization-aware training
(Zafrir et al., 2019; Boo and Sung, 2020; Stock
et al., 2020; Shen et al., 2020; Tambe et al., 2021;
Tao et al., 2022). Bai et al. (2022) developed a
more efficient post-training quantization approach
that minimizes the reconstruction error incurred by
quantization.

Pruning These compression approaches remove
entirely parts of the network such as weights close
to zero (Gordon et al., 2020; Mao et al., 2020;
Chen et al., 2020) and weights that move towards
zero during fine-tuning (Sanh et al., 2020; Tambe
et al., 2021). Different to operating on individual
weights, previous work attempted to remove struc-
tured blocks of weights or even architectural com-
ponents such as attention heads and encoder lay-
ers (Fan et al., 2019; Prasanna et al., 2020; Khetan
and Karnin, 2020; Li et al., 2020a; Lin et al., 2020;
Tay et al., 2021).

Knowledge Distillation This set of techniques
typically train a light-weight student model to
mimic the outputs of a larger teacher PLM (Sun
et al., 2019; Li et al., 2020b; Jiao et al., 2020; Sun
et al., 2020; Li et al., 2021; Tahaei et al., 2022). In a
similar direction, smaller PLMs have been recently
fine-tuned on text generated by larger PLMs (Chi-
ang et al., 2023; Taori et al., 2023).

Weight Matrix Decomposition Previous work
also proposed replacing large weight matrices by
the product of two smaller ones for reducing model
size and runtime memory. Weight matrix decompo-
sition has been applied to linear layers (Mao et al.,
2020; Ben Noach and Goldberg, 2020), the embed-
ding matrix (Lan et al., 2020b; Tambe et al., 2021;
Wang et al., 2022), and attention blocks (Hu et al.,
2022; Wang et al., 2022).

Embedding Matrix Compression Finally, vari-
ous attempts have been introduced for compressing
the embedding matrix during pre-training and fine-
tuning (Xue et al., 2022; Clark et al., 2022b; Xue
and Aletras, 2022).



2.2 Improving Attention Efficiency

Previous work on making attention more efficient
includes efforts towards (1) speeding-up pairwise
computations between token representations; and
(2) parameter efficiency.

Computational Efficiency While improving
computational efficiency of attention is out of the
scope of our paper, we provide a brief overview
of previous work since it is complementary to pa-
rameter efficiency. One approach to speed up at-
tention computation is by reducing the number of
similarity computations between representations
in different positions using predefined local win-
dows, fixed or dynamic strides (Child et al., 2019;
Zaheer et al., 2020; Beltagy et al., 2020; Kitaev
et al., 2020). Other methods leverage the approxi-
mation of SoftMax to change the order of matrix
multiplications, resulting in lower computational
complexity (Katharopoulos et al., 2020; Choroman-
ski et al., 2021; Schlag et al., 2021; Qin et al., 2022).
Related approaches along this direction proposed
kernel functions that require additional parameters
(Choromanski et al., 2021; Wang et al., 2020). Fi-
nally, Dao et al. (2022) proposed improvements in
GPU memory access to optimize and accelerate the
MHA computation.

Memory Efficiency Lan et al. (2020a) intro-
duced a method for sharing the projection parame-
ters for queries, keys and values across transformer
layers. Furthermore, Kitaev et al. (2020) proposed
sharing the projection matrix between keys and val-
ues within each layer. Additionally, other methods
use a multi-query attention approach that shares
projection weights for keys and values across differ-
ent heads (Shazeer, 2019; Chowdhery et al., 2022;
Ainslie et al., 2023), while Yan et al. (2021) directly
treat the input hidden states as both keys and values.
In a different direction, Lee-Thorp et al. (2022)
proposed replacing the attention blocks with faster
token-mixture blocks consisting of a few parame-
ters or no parameters at all. This includes methods
such as linear or Fourier transformations in the
token-mixture block. However, these approaches
tend to yield lower predictive performance com-
pared to MHA.

3 Multiple Head Embeddings Attention

Inspired by the absolute position embed-
dings (Vaswani et al., 2017; Devlin et al., 2019) for
distinguishing the representation of the same token

in different contexts, we propose Multiple Head
Embeddings (MHE) attention. MHE uses a shared
‘seed’ projection matrix that is subsequently
combined with distinct head embeddings to
generate multiple attention heads.

3.1 Multi-head Attention (MHA)
We first begin by formally defining MHA.
MHA consists of different projection matrices
(WQ

i ,W
K
i ,W

V
i ∈ Rdm×dh , i = 1, ..., n, where

dm is the dimension of the input representation
and dh is the dimension of n attention heads) for
queries (Q), keys (K) and values (V ) per head,
3× n in total. It is computed as follows:

Qi,Ki,Vi = XWQ,K,V
i (1)

Hi = Att(Qi,Ki,Vi) (2)

= SoftMax(
QiK

⊤
i√

dh
)Vi (3)

Note that we use scale-dot attention, but our
method can be used with any other attention mech-
anism.

3.2 Seed Projection Matrix
Unlike MHA that uses different projection matri-
ces per head, MHE attention employs only a single
projection matrix for each of the queries, keys and
values, WQ,WK ,WV ∈ Rdm×dh . These matri-
ces are shared across all attention heads.

We obtain query, key and values projections of
the input sequence X as follows:

Q,K,V = XWQ,K,V (4)

3.3 Attention Head Embeddings
Using a seed projection matrix for Q,K,V is
equivalent to a single-head attention (SHA) mod-
ule. Therefore, we need a mechanism to trans-
form the seed projection matrices to obtain differ-
ent attention head. For this purpose, we represent
each attention head i by specific head embeddings
eQi , e

K
i , e

V
i ∈ Rdh , i = 1, ..., n for queries, key

and values. These embeddings have a substantially
smaller memory footprint compared to using differ-
ent projection matrices per head. The contextual-
ized representation Hi of the entire input sequence
X for head i is computed as follows:

Q̃i, K̃i, Ṽi = ψ(Q;K;V, eQ,K,V
i ) (5)

Hi = Att(Q̃i, K̃i, Ṽi) (6)

where ψ(·) is a function that modifies the query,
key and value matrices with a corresponding head
embedding ei.
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Figure 2: Multi-head attention (left) requires 3× n pro-
jection matrices for queries, keys and values (WQ,K,V )
where n is the number of attention heads. Multi-head
embedding attention (right) uses only three projection
matrices and 3× n head embeddings.

3.4 Modifying Queries, Keys and Values with
Head Embeddings

We propose two MHE variants, one adds and the
other multiplies the head embeddings with the seed
projection matrices.

MHE-ADD: Motivated by the absolute posi-
tion embedding (Devlin et al., 2019), we use the
addition operation in Equation 5, represented as
ψ(A,b) := A + b, where A ∈ {Q,K,V} and
b ∈ {eQ, eK , eV } respectively.

MHE-MUL: Likewise, motivated by the rotary
position embedding (Su et al., 2021), MHE-MUL

employs multiplication as the integrating operation
in Equation 5 as ψ(A,b) := A⊙ (b+ 1), where
⊙ represents the Hadamard product.2

Figure 2 shows an overview of the MHE mecha-
nism compared to MHA.

4 Experimental Setup

4.1 Attention Mechanisms

We compare our MHE attention with the following
attention mechanisms:3

2We add 1 to avoid elements in queries, keys and values
become too small during initialization.

3We have also experimented with Linear and Fourier token-
mixture models (Lee-Thorp et al., 2022) yielding substantially
lower performance. For full results of these methods, see Ap-
pendix A.

• Multi-head Attention (MHA): This is
the original multi-head attention mecha-
nism (Vaswani et al., 2017; Devlin et al.,
2019).

• Single-head Attention (SHA): Similar to
MHA but using only one attention head.

• EL-ATT: Introduced by Yan et al. (2021),
this attention variant completely eliminates
the projection matrices for all keys and values.

• MQA: Introduced by Shazeer (2019), this
approach uses shared projection matrices for
keys and values across all attention heads.
Note that different projection matrices are
used for queries across heads.

• SKV: Introduced by Kitaev et al. (2020), this
attention variant enforces keys and values to
share the same projection matrix within each
attention module.

4.2 Data
We experiment with a diverse range of tasks includ-
ing: (1) two standard natural language understand-
ing benchmarks in English, GLUE (Wang et al.,
2018) and SUPERGLUE (Wang et al., 2019); (2)
two question and answering benchmarks in En-
glish, SQUAD V1.1 (Rajpurkar et al., 2016) and
SQUAD V2.0 (Rajpurkar et al., 2018); (3) WMT-
14 English-to-German machine translation (Bo-
jar et al., 2014); and (4) two language modelling
datasets in English WIKITEXT-103 (Merity et al.,
2017) and PENN TREEBANK (Marcus et al., 1993).

4.3 Models
We test all different attention variants on two
architectures: (1) encoder-only transformer (De-
vlin et al., 2019) and (2) encoder-decoder trans-
former (Vaswani et al., 2017).

Encoder-only For GLUE, SUPERGLUE,
SQUAD V1.1 and SQUAD V2.0, we use a
BERT-base architecture. This consists of 12
transformer layers, embedding size of 768, hidden
states dimension of 768, 12 attention heads and a
maximum sequence length of 512.

Decoder-only We also test a decoder-only model
using the GPT2-base architecture on WIKITEXT-
103, PENN TREEBANK and GLUE. GPT2-base
consists of 12 transformer layers, embedding size
of 768, hidden states dimension of 768, 12 attention
heads and a maximum sequence length of 512.



Encoder-decoder For WMT-14, we train an
encoder-decoder transformer from scratch. It con-
sists of 12 layers (6 for the encoder and decoder
respectively), an embedding size of 512, hidden
states dimension of 512 and 8 attention-heads and
a maximum sequence length of 100.

We set the number of attention heads to 1 for all
SHA models. Experimenting with larger models
and different number of attention heads is out of
the scope of our paper and left for future work due
to limited access to computing resources.

4.4 Implementation Details

Pre-training We pre-train all models on the En-
glish Wikipedia and BookCorpus (Zhu et al., 2015)
from HuggingFace (Lhoest et al., 2021) for up to
1M steps with a batch size of 128. We choose
masked language modelling as the pre-training ob-
jective. For all models, we use a 30K WordPiece
vocabulary (Devlin et al., 2019).

Fine-tuning and Training For GLUE, SUPER-
GLUE, SQUAD V1.1 and SQUAD V2.0, we fine-
tune all pre-trained models up to 20 epochs with
early stopping fixing the batch size to 32. For each
task, we use five different seeds and report the av-
erage.

We train the encoder-decoder model from
scratch on the training set of WMT-14 English-
to-German machine translation dataset up to 100K
steps with a batch size of 256. WMT-14 contains
4.5M sentence pairs and evaluate on its test set.
We train the tokenizer using byte-pair-encoding
(Sennrich et al., 2016) with 37K merging steps on
the training set. We enable both source language
and target language to share the vocabulary. We
use one random seed and report the average on
the last five epochs. We optimize all models using
AdamW (Loshchilov and Hutter, 2019).

Hyperparameters Hyperparameter selection de-
tails are in Appendix B.

Hardware For pre-training, we use four NVIDIA
Tesla A100 GPUs and one for fine-tuning on down-
stream tasks.

4.5 Predictive Performance Evaluation

For GLUE, SUPERGLUE, SQUAD V1.1 and
SQUAD V2.0, we use the official metric of each
task (see Appendix A for details on metrics for
each task). We report F1 score for SQUAD V1.1

and SQUAD V2.0. We use BLEU to report perfor-
mance in WMT-14 English-to-German machine
translation task. We use perplexity (PPL) to report
generative performance on WIKITEXT-103 and
PENN TREEBANK by fixing the stride length to
256.

4.6 Memory Efficiency Evaluation
Furthermore, we use the following metrics to mea-
sure and compare the memory efficiency of MHE
and the baselines.

• Performance Retention Ratio: We compute
the ratio between the predictive performance
of each attention mechanism compared to
MHA upper-bound baseline performance (the
higher the better).
For direct indicator (e.g. accuracy etc.):

PRR =
scoremodel

scoreMHA

For inverse indicator (e.g. perplexity etc.):

PRR = 1− scoremodel − scoreMHA

scoreMHA

• Performance Elasticity of Parameters: In-
spired by the concept of elasticity in eco-
nomics (Bittermann, 1934), which measures
the responsiveness of an economic variable
(e.g. investment demand) to a change in an-
other (e.g. interest rate), we extend it to
measure the parameter utilization rate of a
target model compared to the SHA lower-
bound. The performance elasticity of pa-
rameters (PEoP) indicates how effectively pa-
rameters contribute to predictive performance,
compared to SHA. It is computed as follows:
For direct indicator (e.g. accuracy etc.):

PEoP =
(scoremodel/scoreSHA)− 1

(paramsmodel/paramsSHA)− 1

For inverse indicator (e.g. perplexity etc.):

PEoP = − (scoremodel/scoreSHA)− 1

(paramsmodel/paramsSHA)− 1

PEoP quantifies the extent to which a model’s
performance can be boosted with 1% ad-
ditional parameters compared to a baseline
model (the higher the better).4

4We subtract 1 in both nominator and denominator, follow-
ing the original definition of elasticity.



GLUE SUPERGLUE SQUAD v1.1 SQUAD V2.0
Attention #params Acc PRR PEoP Acc PRR PEoP Acc PRR PEoP Acc PRR PEoP

SHA 8.85M 79.2 96.7 - 67.1 95.1 - 82.5 93.1 - 67.6 87.8 -
MHA 28.32M 81.9 100.0 0.02 70.5 100.0 0.02 88.6 100.0 0.03 77.0 100.0 0.06

EL-ATT 14.16M 80.3 98.0 0.02 69.5 98.5 0.06 86.5 97.6 0.08 72.2 93.8 0.11
MQA 15.34M 81.3 99.2 0.04 69.3 98.2 0.04 86.7 97.9 0.07 74.8 97.1 0.15
SKV 21.23M 81.4 99.4 0.02 69.9 99.1 0.03 88.1 99.4 0.05 75.9 98.6 0.09
MHE-ADD 8.88M 80.4 98.2 4.92 69.1 97.9 9.44 83.7 94.5 4.65 71.8 93.2 19.88
MHE-MUL 8.88M 80.6 98.3 5.53 69.6 98.7 12.07 85.9 97.0 13.19 72.3 93.9 22.25

Table 1: Results of the encoder-only architecture on GLUE, SUPERGLUE, SQUAD V1.1 and SQUAD V2.0 dev
sets with performance retention ratio (PRR) and performance elasticity of parameters (PEoP) over five runs. Bold
values denote best performing method in each benchmark.

GLUE WIKITEXT-103 PENN TREEBANK
Attention #params Acc PRR PEoP PPL PRR PEoP PPL PRR PEoP

SHA 8.85M 75.3 97.2 - 62.0 55.8 - 68.1 46.3 -
MHA 28.32M 77.5 100.0 0.01 43.0 100.0 0.14 44.3 100.0 0.16

EL-ATT 14.16M 76.6 98.9 0.03 57.1 67.2 0.13 56.1 73.4 0.29
MQA 15.34M 76.9 99.2 0.03 49.7 84.4 0.27 49.3 88.7 0.38
SKV 21.23M 77.1 99.5 0.02 46.2 92.6 0.18 45.5 97.3 0.24
MHE-ADD 8.88M 75.8 97.8 2.18 54.0 74.4 41.29 55.3 75.2 60.15
MHE-MUL 8.88M 76.7 99.0 5.92 53.8 74.9 42.32 50.7 85.6 81.76

Table 2: Results of decoder-only architecture on GLUE dev sets and WIKITEXT-103, PENN TREEBANK test sets
with performance retention ratio (PRR) and performance elasticity of parameters (PEoP) over five runs. Bold values
denote best performing method in each benchmark.

5 Results

5.1 Predictive Performance Comparison

Table 1 presents results on GLUE, SUPERGLUE,
SQUAD V1.1 and SQUAD V2.0 for our MHE
variants and all baselines. We first observe that
both the performance of our MHE-ADD and MHE-
MUL are comparable to the vanilla MHA on two
text classification benchmarks (80.4, 80.6 vs. 81.9
on average GLUE and 69.1, 69.6 vs. 70.5 on aver-
age SUPERGLUE) with high performance retention
ratios (PRR) between 97.9% and 98.7%. On ques-
tion answering tasks SQUAD V1.1 and SQUAD
V2.0, both MHE variants are also competitive,
with PRRs higher than 93%.

Similar results are observed on the WMT-14
English-to-German machine translation task for the
encoder-decoder transformer. According to Table 3,
MHE-ADD and MHE-MUL achieve BLEU scores
of 23.0 and 23.6, respectively. The performance of
MHE-MUL is negligibly lower than that of MHA
(24.8) while being substantially smaller.

Consistent results for the decoder-only trans-
former are shown in Table 2. The PRRs for MHE-
ADD and MHE-MUL on GLUE are still high (i.e.
97.8% and 99.0%). While using the intrinsic met-

rics for evaluation, MHE-MUL leads to the perplex-
ities of 53.8 and 50.7 compared to 43.0 and 44.3 for
MHA on WIKITEXT-103 and PENN TREEBANK

respectively, indicating a stable PRR higher than
74.9%.

In all tasks, MHE consistently outperforms SHA
by a large margin with only 0.03M extra param-
eters, i.e. 0.6~17.4. For example, 69.6 vs. 67.1
in SUPERGLUE, 72.3 vs. 67.6 in SQUAD V2.0,
23.6 vs. 22.5 in WMT-14 and 62.0 vs. 53.8 in
WIKITEXT-103 for the MHE-MUL variant. We
also note that MQA and SKV attention mecha-
nisms generally perform better than MHE, how-
ever they are 1.7 and 2.4 times larger than MHE,
i.e. 15.34M and 21.23M vs. 8.88M parameters.
It is worth noting that MHE-MUL outperforms
EL-ATT on three out of five benchmarks, despite
having nearly half the parameters in the attention
module.

5.2 Memory Efficiency Comparison

Our results so far indicate that performance in-
creases with the number of attention mechanism
parameters, which is expected. Next, we inspect
how efficiently different attention mechanisms uti-



lize their parameters 5. Tables 1 and 3 show how
parameter efficient our two MHE attention variants
and all baselines are, measured in PEoP. Note that
PEoP scores for SHA cannot be computed as it
is used as the point for reference model. We also
report PRR using MHA as a baseline for complete-
ness, however this metric does not take the model
size into account.

We first observe in Table 1 that both our MHE-
ADD and MHE-MUL achieve the highest PEoP
scores on the two natural language understanding
benchmarks (4.92, 5.53 on GLUE, and 9.44, 12.07
on SUPERGLUE) and two question answering tasks
(4.65, 13.19on SQUAD V1.1, and 19.88, 22.25 on
SQUAD V2.0). In contrast, vanilla MHA results
in the lowest PEoP score among all models as ex-
pected, ranging from 0.02 to 0.06. It indicates the
memory inefficiency of MHA.

The PEoPs of more light-weight EL-ATT and
SKV are similar to that of MHA (0.02) on aver-
age GLUE, barely 4 ‰of that of MHE, indicating
they are far more memory-inefficient compared to
MHE.

Similar findings are observed in WMT-14 for
the encoder-decoder models depicted in Table 3.
MHE-ADD and MHE-MUL achieve PEoP scores
of 20.0 and 27.9, respectively. In contrast, the
PEoP scores of MHA, EL-ATT MQA and SKV
are close to zero (barely 0.1). This means that
investing more parameters into their attention mod-
ules would not bring proportional benefits in predic-
tive performance. Even for the SKV which is half
the size of MHA and achieves high PRR, when the
number of parameters increase by 1%, the BLEU
score increases a negligible 0.1%, while evolving
from SHA. However, with the same number of
parameters, our most memory-inefficient MHE-
MUL is able to improve the BLEU score by 11.0%.
Such rate of return is 110 times larger than that of
SKV. Leveraging the head embeddings by adding
only a negligible number of parameters efficiently
improves the predictive performance.

We further observe that MHE-ADD and MHE-
MUL are architecture-agnostic, obtaining similar
memory efficiency for the decoder-only model in
Table 2. Both our MHE-ADD and MHE-MUL

achieve the highest PEoP scores on the two lan-
guage modelling benchmarks (41.29, 42.32 on
WIKITEXT-103 and 60.15 and 81.76 on PENN

5For a detailed report on the memory usage of different
attention mechanisms, see Appendix C.

Attention #params BLEU PRR PEoP

SHA 6.49M 22.5 90.8 -
MHA 18.87M 24.8 100.0 0.1

EL-ATT 9.44M 23.9 96.6 0.1
MQA 10.62M 24.2 97.6 0.1
SKV 14.16M 24.7 99.5 0.1
MHE-ADD 6.52M 23.0 92.9 5.5
MHE-MUL 6.52M 23.6 95.0 11.0

Table 3: BLEU scores on WMT-14 English to German
machine translation task with performance retention
ratio (PRR) and performance elasticity of parameters
(PEoP). Bold values denote best performing method in
each benchmark.

TREEBANK) and GLUE (2.18 and 5.92). At the
same time, MHA fail to perform well on GLUE and
PENN TREEBANK with a PEoP of 0.01 and 0.16
respectively. MHE-ADD and MHE-MUL also con-
sistently outperform other efficient-attention vari-
ants (i.e. EL-ATT, MQA and SKV) by 72~340
times on PEoP across the three benchmarks.

In all tasks, MHE consistently outperforms
MHA by orders of magnitude in parameter effi-
ciency. We also note that EL-ATT, MQA and SKV
only lead to PEoP scores with the same magnitude
as MHA. This highlights the more superior parame-
ter utilization of MHE attention variants, achieving
state-of-the-art memory-efficiency.

5.3 Theoretical Memory Complexity

Table 4 presents the theoretical memory complex-
ity and the total number of parameters of our two
MHE and baseline attention mechanisms in a sin-
gle transformer sublayer. First, we see that the
theoretical memory complexity of MHA and other
efficient parameters (EL-ATT, MQA and SKV) are
quadratic with the number of attention heads, while
our MHE are the only two variants having the com-
plexity linear with the attention heads similar to
SHA.

Taking a closer look at the rightmost column in
Table 4, we observe that the number of extra pa-
rameters of all attention variants compared to SHA
have a quadratic relationship to both the number n
and the dimension of attention heads d, except our
two MHE variants. MHE only requires a relatively
small fraction of additional parameters compared
to SHA.



Attention Complexity #Params #Params (+)

SHA O(n) 3d2n 0
MHA O(n2) 3d2n2 (3n2 − 3n)d2

EL-ATT O(n2) d2n2 (n2 − 3n)d2

MQA O(n2) d2n2 + 2d2n (n2 − n)d2

SKV O(n2) 2d2n2 (2n2 − 3n)d2

MHE (ours)
-ADD O(n) 3d2n+ 3dn 3nd
-MUL O(n) 3d2n+ 3dn 3nd

Table 4: Memory complexity regarding the number of
parameters in each attention sublayer, while fixing the
dimension of attention heads to d. n denotes the number
of attention heads. To simplify, the dimension of hidden
states dm is set to nd. The last projection for pooling
attention heads is excluded.

5.4 Scaling the Number of Attention
Parameters

Delving deeper to the effect of scaling to memory
footprint, we show in Figure 3 the total number
of parameters needed for a single attention mod-
ule (e.g. in an encoder layer). We fix the dimen-
sion of attention heads to 64 commonly used by
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), GPT-2 (Radford et al., 2019), BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020). In general,
we note that the number of parameters in MHA
could reach more than 200M if employing 128 at-
tention heads. At the same time, SKV, MQA and
EL-ATT would require 2/3, 1/3 and 1/3 of that num-
ber respectively. In contrast, MHE only accounts
for 1% of the MHA parameters.

Moreover, we also present in Figure 4 the to-
tal number of parameters required across attention
variants when stacking 12, 24 and 48 layers along
with 32 and 64 attention heads respectively. We
also fix the dimension of attention heads to 64. We
can observe, when the number of attention head
reaches 64, MHA with 24 layers already occupies
more than 1B parameters, while EL-ATT and MQA
reach 0.8B parameters with 48 layers. SKV takes
24 layers to reach 0.8B parameters. However, the
total number of parameters in MHE attention does
not exceed 0.1B even when scaling to 48 layers
with 64 attention heads. It is also clear that scal-
ing the attention module to 48 layers, 32 attention
heads and 12 layers needs a comparable number
of parameters for MHA, EL-ATT, MQA or SKV.
This indicates, that LLM developers have to make
a choice whether doubling the number of attention

Figure 3: Number of parameters per attention sublayer,
while scaling the number of attention heads in different
attention variants. We fix the dimension of attention to
64.

heads or cutting down the number of layers to a
quarter when working under a tight memory budget.
However, MHE does not suffer by such issues.

Further, we project these estimates to the pop-
ular GPT-3 model (Brown et al., 2020). It is a
decoder-only model with 96 decoder layers, 96
attention heads per layer, and a head dimension
of 128. The vanilla multi-head attention module
requires a massive 43.48B parameters. However,
using MHE attention, this number can be signif-
icantly reduced to 0.46B parameters, i.e. approx-
imately a reduction by 98.9%.6 Comparing this
to other parameter-efficient attention variants such
as EL-ATT (14.50B parameters), MQA attention
(14.80B parameters), and SKV attention (28.99B
parameters), it becomes evident that our MHE of-
fers better memory efficiency. This makes it a com-
pelling alternative for memory-constrained scenar-
ios. See Appendix D for a detailed study on the
robustness of MHE to model size changes (i.e. scal-
ing).

6 Discussion

MHA enables the model to attend to information
from different representation subspaces at differ-
ent positions (Vaswani et al., 2017). It uses dis-
tinct projection matrices for each attention head
and integrates the information from these differ-
ent representation subspaces. However, Vaswani
et al. (2017) did not explore different methods for
performing space transformations per head.

Previous work has pointed out that over-
parameterized models might have a low intrinsic
dimension. Therefore, transforming the projection

6It would have been great to report results by pre-training
our own MHE GPT-3 model, however this is prohibitive with
the modest compute we have available.



matrices to smaller low-rank ones usually does not
severely harm model predictive performance (Li
et al., 2018; Aghajanyan et al., 2020). Meanwhile,
the classic MHA approach also does not impose
any constraints on the orthogonality of these sub-
spaces during pre-training and fine-tuning. The col-
umn vectors in those projection matrices could be
highly collinear, i.e. the projection matrices could
be rank-deficient. As a result, its inner-working
mechanism could be simply understood as intro-
ducing levels of variation to the encoded represen-
tation of the same token at the same position across
different heads.

Our MHE approach is possible to achieve mem-
ory efficiency (similar to SHA) together with high
PRR compared to MHA by mimicking the posi-
tion embeddings for representing different attention
heads.

On one hand, the addition operation in MHE-
ADD is used for transforming the keys, queries and
values. This can be seen as a small distortion of the
subspace obtained through projection, followed by
rotation. For an input representation, the difference
between the projected and injected (i.e. through
head embedding addition) queries, keys and values
is a constant vector across any pair of heads. On the
other hand, the MHE-MUL approach employs a
multiplication operation, which more aggressively
distorts and reshapes the keys, queries and values
subspaces. Head embeddings in MHE-MUL play
a role as the scaling factors, respectively stretching
each dimension of the input representation. Thus,
the difference between the keys, queries, and values
generated by different heads for the same input
representation, is a vector parallel to the projected
input. This vector is dependent on the specific
input, unlike the constant vector in MHE-ADD.

Interestingly, our experimental results consis-
tently show that the multiplication operation outper-
forms addition in the majority of benchmarks. This
corroborates findings of a previous empirical study
by Su et al. (2021) that compared rotary position
embeddings (somehow analogous to MHE-MUL)
with absolute position embeddings (analogous to
MHE-ADD).

7 Conclusions

We have proposed MHE attention that employs a
single shared projection matrix along with mul-
tiple head embeddings, to simplify and reduce
the memory footprint of the MHA. Our experi-

Figure 4: Total number of parameters in attention sub-
layers, while scaling the number of attention layers to
12, 24 and 48 with 32 attention heads and 64 attention
heads respectively. We fix the dimension of attention to
64.

mental results have demonstrated that MHE at-
tention exhibits superior memory efficiency com-
pared to other memory-efficient attention variants,
while achieving high predictive performance ra-
tio to MHA on various downstream tasks. Com-
pared to a single-head attention, MHA requires
(3n2 − 3n)d2 parameters for n attention heads and
head dimensionality d, while MHE barely requires
a negligible 3nd. For future research, we plan to
investigate scaling up MHE models and explore
its linguistic capabilities (Vulić et al., 2020; Koto
et al., 2021).

Limitations

We experiment only using ‘base’ size models with-
out experimenting with larger architectures, due
to limited access to computational resources. Sim-
ilarly, we did not experiment with decoder only
architectures (Brown et al., 2020) which we leave
for future work. We have not combined our
MHE method with computationally efficient at-
tention methods with linear complexity, such as
Linformer (Wang et al., 2020). We expect that it
would speed up computation of MHE, but it is out
of the scope of our paper.
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A Reported Metrics for Each Task

We evaluate all models on GLUE (Wang et al.,
2018), SUPERGLUE (Wang et al., 2019), SQUAD
V1.1 (Rajpurkar et al., 2016) and SQUAD
V2.0 (Rajpurkar et al., 2018). We report matched
accuracy for MNLI, Matthews correlation for
CoLA, Spearman correlation for STS, F1 score for
QQP, CB, MultiRC and SQUAD and accuracy for
all other tasks. Table 5 and Table 6 present results
on GLUE and SUPERGLUE respectively for our
MHE-FORMERS models and all baselines with the
encoder-only architecture. Table 7 and 8 present
results of the scores and performance elasticity of
parameters (PEoP) across all models over each task
in GLUE and SUPERGLUE. Table 10 presents re-
sults on GLUE for our MHE-FORMERS models
and all baselines with the decoder-only architec-
ture. Table 10 presents results of the scores and
performance elasticity of parameters (PEoP) across
all models over each task in GLUE.

B Hyperparameters

The hyperparameters used in pre-training are listed
in Table 11. The hyperparameters used in fine-
tuning are listed in Table 12.

C Memory Usage

To further illustrate the memory-efficiency of our
MHE models compared to the baselines, we take
the BERT-base architecture (12 attention heads,
each with a dimension of 64) as an example, and
measure the memory usage per attention block as
in Section 2.1.1 from Smith et al. (2022) and re-
port the memory usage saving ratio (%) during the
attention calculation in Table 13:

The calculation is based on inputs with batch size
of 32, hidden dimension of 768, sequence length
of 512 and fp16 mixture precision training using
the following formula:

• Memory(weights)=#params*(2+4) bytes;

• Memory(gradients)=#params*(2+4) bytes;

• Memory(Adam states)=#params*(4+4) bytes;

• Memory(activations)= batch-size*sequence-
length*hidden-dimension*2 bytes.

From Table 13, we observe the memory usage
saving ratio of our proposed MHE is 2.75 times
better than SKV, 1.50 times better than MQA and

1.37 times better than EL-ATT, which indicates a
SotA memory saving capabilities compared to all
other parameter-efficient attention variants.

D Robustness to Scaling

We also conduct experiments to observe the effec-
tiveness and the robustness of our best MHE-MUL

while scaling the model size.
Table 14 presents average accuracy on two

text classification benchmarks (GLUE and SUPER-
GLUE), perplexities on two language modelling
benchmarks (WIKITEXT-103 and PENN TREE-
BANK) with their corresponding performance re-
tention ratio (PRR) for MHA and MHE-MUL in
both encoder-only and decoder-only architecture
across different model sizes.7 For the encoder-only
models, we observe that the PRR of MHE-MUL re-
mains stable on GLUE (from 98.4% to 98.7%) and
SUPERGLUE (from 98.7% to 96.2%) while scaling
the number of parameters in the attention blocks
to 3.5 times larger. For the decoder-only models,
the PRR on GLUE for MHE-MUL stabilizes at
97.9% (i.e. 1.1% lower) after scaling. Surprisingly,
the PRR of MHE-MUL increases on WIKITEXT-
103 (from 74.9% to 95.2%) and PENN TREEBANK

(from 85.6% to 88.5%) while scaling to MEDIUM
size.

Similar results are observed for the encoder-
decoder architecture on WMT14 machine trans-
lation task. According to Table 15, we first ob-
serve the PRR of MHE-MUL remains stable (i.e.
between 91.5% and 96.0%) across all different
sizes, where the number of parameters in the cor-
responding MHA ranges from 19.87M to 75.50M.
Meanwhile, we also observe that making the model
deeper by stacking more encoder and decoder lay-
ers results in a steady increment on PRR for MHE-
MUL (e.g. 93.6%, 95.0% and 96.0% respectively,
for 8 layers, 12 layers and 16 layers in total). More-
over, for the same number of parameters in the
attention, wider attention heads consistently leads
to a better PRR for MHE-MUL, i.e. 91.5%, 95.0%
and 95.3% for the dimensionality of 32, 64 and 128
of attention heads respectively.

These results indicate MHE consistently
achieves good performance retention ratios and is
robust to model size change.

7BASE: 12 encoder/decoder layers, each containing 12
attention heads; LARGE/MEDIUM: 24 encoder/decoder
layers, each containing 16 attention heads.



ATTENTION MNLI QNLI QQP RTE SST MRPC CoLA STS GLUE Avg.

SHA 80.5(0.3) 87.5(0.2) 86.7(0.1) 63.6(0.9) 90.7(0.3) 85.1(0.7) 53.8(1.1) 85.8(0.4) 79.2(0.1)
MHA 83.4(0.1) 89.8(0.3) 87.8(0.1) 67.6(1.5) 92.0(0.3) 86.8(0.4) 59.6(1.3) 88.5(0.3) 81.9(0.3)

EL-ATT 81.7(0.1) 88.4(0.2) 87.3(0.2) 67.6(1.0) 91.7(0.6) 85.9(0.7) 52.4(1.7) 87.7(0.2) 80.3(0.3)
MQA 82.6(0.1) 88.8(0.2) 87.3(0.1) 66.5(0.9) 91.4(0.5) 87.3(0.2) 58.4(1.3) 87.9(0.2) 81.3(0.2)
SKV 82.6(0.1) 89.4(0.3) 87.7(0.1) 68.2(1.7) 91.6(0.3) 87.4(0.6) 56.2(1.2) 88.6(0.2) 81.4(0.2)
FNET 76.3(0.1) 83.8(0.1) 84.8(0.1) 63.2(2.0) 88.4(0.7) 78.0(0.4) 43.2(2.5) 83.7(0.3) 75.2(0.6)
LINEAR 75.4(0.1) 81.4(0.1) 85.5(0.2) 54.7(2.3) 90.4(0.4) 72.2(0.6) 50.3(1.0) 70.9(0.5) 72.6(1.1)
MHE-ADD 81.5(0.2) 87.8(0.2) 87.2(0.1) 66.9(2.0) 90.5(0.4) 87.2(0.3) 54.7(0.9) 87.7(0.1) 80.4(0.2)
MHE-MUL 81.9(0.1) 87.9(0.1) 87.4(0.1) 67.1(1.5) 91.1(0.5) 85.4(0.5) 56.6(1.7) 87.3(0.2) 80.6(0.2)

MHA(M) 84.4(0.2) 91.1(0.4) 84.0(0.6) 70.5(1.0) 92.0(0.2) 87.2(0.8) 62.5(1.0) 88.8(0.2) 82.6(0.4)
MHE-MUL (M) 82.7(0.2) 89.2(0.4) 87.2(0.2) 67.9(0.4) 90.7(0.3) 86.3(1.0) 59.8(1.8) 88.0(0.2) 81.5(0.3)

Table 5: Results for encoder-only models on GLUE dev sets with standard deviations over five runs in parentheses.
Bold values denote best performing method in each task.

ATTENTION BoolQ CB RTE WiC MultiRC COPA WSC SUPERGLUE Avg.

SHA 72.3(0.7) 88.7(2.5) 62.5(1.0) 63.6(0.5) 59.7(15.7) 59.2(2.8) 63.8(1.5) 67.1(2.4)
MHA 76.6(0.6) 89.4(1.8) 67.9(1.3) 65.4(0.8) 69.0(1.2) 64.0(3.1) 61.5(3.3) 70.5(0.5)

EL-ATT 73.5(1.0) 85.7(4.8) 69.5(1.4) 63.8(0.8) 67.9(0.3) 62.2(1.8) 63.8(0.5) 69.5(1.0)
MQA 74.6(0.6) 86.7(1.6) 65.4(0.8) 64.0(1.2) 68.8(0.5) 62.2(2.0) 63.3(2.7) 69.3(0.7)
SKV 75.2(0.3) 84.5(3.7) 67.5(0.9) 65.2(1.1) 68.7(0.2) 64.0(1.0) 64.4(1.2) 69.9(0.4)
FNET 68.4(0.5) 51.8(4.3) 60.7(0.9) 63.8(1.1) 62.3(0.6) 58.2(3.7) 60.0(1.6) 60.7(0.6)
LINEAR 70.4(0.2) 50.6(2.1) 55.2(1.8) 62.9(0.7) 57.8(0.5) 60.0(2.8) 61.0(1.1) 59.7(0.9)
MHE-ADD 73.3(0.2) 88.8(1.7) 67.5(1.5) 64.2(0.5) 67.1(0.2) 60.2(2.8) 62.5(1.4) 69.1(0.5)
MHE-MUL 74.9(0.6) 89.4(1.0) 67.8(1.3) 64.7(0.6) 68.0(0.3) 61.6(1.5) 61.2(2.9) 69.6(0.3)

MHA(M) 78.1(0.3) 88.1(6.8) 70.3(1.3) 67.8(0.8) 72.9(0.6) 68.2(4.1) 64.6(2.9) 72.9(0.6)
MHE-MUL (M) 75.2(0.5) 84.6(2.4) 68.6(1.8) 66.3(0.9) 69.8(0.4) 61.6(3.8) 64.6(0.8) 70.1(1.1)

Table 6: Results for encoder-only models on SUPERGLUE dev sets with standard deviations over five runs in
parentheses. Bold values denote best performing method in each task.

ATTEN GLUE

-TION MNLI QNLI QQP RTE SST MRPC CoLA STS

SHA 80.5 - 87.5 - 86.7 - 63.6 - 90.7 - 85.1 - 53.8 - 85.8 -
MHA 83.4 (0.02) 89.8 (0.01) 87.8 (0.01) 67.6 (0.03) 92.0 (0.01) 86.8 (0.01) 59.6 (0.05) 88.5 (0.01)

EL-ATT 81.7 (0.02) 88.4 (0.02) 87.3 (0.01) 67.6 (0.10) 91.7 (0.02) 85.9 (0.02) 52.4 (-0.04) 87.7 (0.04)
MQA 82.6 (0.04) 88.8 (0.02) 87.3 (0.01) 66.5 (0.06) 91.4 (0.01) 87.3 (0.04) 58.4 (0.12) 87.9 (0.03)
SKV 82.6 (0.02) 89.4 (0.02) 87.7 (0.01) 68.2 (0.05) 91.6 (0.01) 87.4 (0.02) 56.2 (0.03) 88.6 (0.02)
FNET 76.3 (-) 83.8 (-) 84.8 (-) 63.2 (-) 88.4 (-) 78.0 (-) 43.2 (-) 83.7 (-)
LINEAR 75.4 (-) 81.4 (-) 85.5 (-) 54.7 (-) 90.4 (-) 72.2 (-) 50.3 (-) 70.9 (-)
MHE-ADD 81.5 (3.88) 87.8 (1.34) 87.2 (1.86) 66.9 (16.35) 90.5 (-0.81) 87.2 (7.93) 54.7 (5.22) 87.7 (7.05)
MHE-MUL 81.9 (5.41) 87.9 (1.51) 87.4 (2.54) 67.1 (17.80) 91.1 (1.29) 85.4 (1.29) 56.6 (16.29) 87.3 (5.60)

Table 7: Detailed average scores and performance elasticity of parameters (in parentheses) on GLUE for MHE
models and the baselines with encoder-only architecture using MLM as pre-training objectives. Underlined values
denote the best performing method and bold values denote the method with best PEoP in each task.



ATTEN SuperGlue
-TION BoolQ CB RTE WIC MultiRC COPA WSC

SHA 72.3 - 88.7 - 62.5 - 63.6 - 59.7 - 59.2 - 63.8 -
MHA 76.6 (0.03) 89.4 (0.00) 67.9 (0.04) 65.4 (0.01) 69.0 (0.07) 64.0 (0.04) 61.5 (-0.02)

EL-ATT 73.5 (0.03) 85.7 (-0.06) 69.5 (0.19) 63.8 (0.00) 67.9 (0.23) 62.2 (0.08) 63.8 (0.00)
MQA 74.6 (0.04) 86.7 (-0.03) 65.4 (0.06) 64.0 (0.01) 68.8 (0.21) 62.2 (0.07) 63.3 (-0.01)
SKV 75.2 (0.03) 84.5 (-0.03) 67.5 (0.06) 65.2 (0.02) 68.7 (0.11) 64.0 (0.06) 64.4 (0.01)
FNET 68.4 (-) 51.8 (-) 60.7 (-) 63.8 (-) 62.3 (-) 58.2 (-) 60.0 (-)
LINEAR 70.4 (-) 50.6 (-) 55.2 (-) 62.9 (-) 57.8 (-) 60.0 (-) 61.0 (-)
MHE-ADD 73.3 (4.58) 88.8 (0.54) 67.5 (25.50) 64.2 (3.00) 67.1 (39.90) 60.2 (5.41) 62.5 (-6.75)
MHE-MUL 74.9 (11.78) 89.4 (2.52) 67.8 (26.97) 64.7 (5.36) 68.0 (44.63) 61.6 (12.97) 61.2(-13.49)

Table 8: Detailed average scores and performance elasticity of parameters (in parentheses) on SUPERGLUE for
MHE models and the baselines with encoder-only architecture using MLM as pre-training objectives. Underlined
values denote the best performing method and bold values denote the method with best PEoP in each task.

ATTENTION MNLI QNLI QQP RTE SST MRPC CoLA STS GLUE Avg.

SHA 78.7(0.1) 86.0(0.2) 85.0(0.1) 66.5(0.9) 89.8(0.2) 76.8(0.4) 38.0(1.3) 81.5(0.4) 75.3(0.3)
MHA 80.6(0.1) 87.9(0.2) 86.3(0.1) 66.9(1.1) 90.2(0.3) 79.0(0.7) 42.9(1.3) 86.0(0.2) 77.5(0.2)

EL-ATT 79.5(0.2) 86.8(0.3) 85.7(0.1) 65.7(1.4) 90.0(0.4) 79.2(1.4) 41.5(2.2) 84.3(0.2) 76.6(0.4)
MQA 80.0(0.1) 86.3(0.1) 85.9(0.1) 66.2(0.7) 90.3(0.3) 80.7(0.6) 41.3(0.8) 84.3(0.4) 76.9(0.2)
SKV 80.3(0.1) 87.5(0.3) 85.9(0.1) 66.1(1.1) 90.6(0.5) 79.6(0.5) 41.9(1.8) 84.9(0.2) 77.1(0.4)
MHE-ADD 78.7(0.1) 85.6(0.2) 85.4(0.1) 66.4(2.5) 89.6(0.4) 78.7(0.6) 38.4(1.2) 83.5(0.3) 75.8(0.3)
MHE-MUL 79.0(0.2) 85.5(0.1) 85.6(0.1) 70.2(2.5) 90.9(0.2) 78.9(0.8) 39.4(1.3) 84.0(0.3) 76.7(0.2)

Table 9: Results for decoder-only models on GLUE dev sets with standard deviations over five runs in parentheses.
Bold values denote best performing method in each task.

ATTEN GLUE

-TION MNLI QNLI QQP RTE SST MRPC CoLA STS

SHA 78.7 - 86.0 - 85.0 - 66.5 - 89.8 - 76.8 - 38.0 - 81.5 -
MHA 80.6 (0.01) 87.9 (0.01) 86.3 (0.01) 66.9 (0.00) 90.2 (0.00) 79.0 (0.01) 42.9 (0.06) 86.0 (0.03)

EL-ATT 79.5 (0.02) 86.8 (0.02) 85.7 (0.01) 65.7 (-0.02) 90.0 (0.01) 79.2 (0.05) 41.5 (0.16) 84.3 (0.06)
MQA 80.0 (0.02) 86.3 (0.01) 85.9 (0.01) 66.2 (-0.01) 90.3 (0.01) 80.7 (0.07) 41.3 (0.12) 84.3 (0.05)
SKV 80.3 (0.01) 87.5 (0.01) 85.9 (0.01) 66.1 (-0.00) 90.6 (0.01) 79.6 (0.03) 41.9 (0.07) 84.9 (0.03)
MHE-ADD 78.7 (-0.02) 85.6 (-1.50) 85.4 (1.60) 66.4 (-0.69) 89.6 (-0.57) 78.7 (7.96) 38.4 (3.71) 83.5 (7.98)
MHE-MUL 79.0 (0.98) 85.5 (-1.88) 85.6 (2.05) 70.2 (17.72) 90.9 (4.01) 78.9 (8.58) 39.4 (12.32) 84.0 (9.97)

Table 10: Detailed average scores and performance elasticity of parameters (in parentheses) on GLUE for MHE
models and the baselines with decoder-only architecture using MLM as pre-training objectives. Underlined values
denote the best performing method and bold values denote the method with best PEoP in each task.



Hyperparameter Pretraining

Maximum train steps 1000000 steps
Batch size (per GPU) 32 instances
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.9999
Sequence length 512
Peak learning rate 1e-4 for MLM
Learning rate schedule linear
Warmup steps 10000
Weight decay 0.01
Attention Dropout 0.1
Dropout 0.1

Table 11: Details of hyperparameters used in pre-
training.

Hyperparameter Fine-tuning

Maximum train epochs 20 epochs for GLUE, SUPERGLUE and SQUAD
Batch size (per GPU) 32 instances
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999

Peak learning rate 3e-5 for GLUE and SQUAD;
5e-5 for SUPERGLUE

Learning rate schedule cosine with hard restarts

Warmup steps
first 6% steps for GLUE and SUPERGLUE;
3327 for SQUAD V1.1;
4950 for SQUAD V2.0

Weight decay 0
Attention Dropout 0.1
Dropout 0.1
Evaluation steps 2455 for MNLI, 655 for QNLI,

2275 for QQP, 48 for RTE,
421 for SST, 69 for MRPC,
162 for CoLA and 108 for STS,
177 for BoolQ, 5 for CB,
47 for RTE, 102 for WiC,
512 for MultiRC, 8 for COPA,
11 for WSC,
548 for SQUAD V1.1,
815 for SQUAD V2.0

Table 12: Details of hyperparameters used in fine-
tuning.



ATTENTION weights gradients Adam states activations Total Memory Saving Ratios (%)

SHA 4423680 4423680 5898240 25165824 39911424 44.84
MHA 14155776 14155776 18874368 25165824 72351744 0.00

EL-ATT 7077888 7077888 9437184 25165824 48758784 32.61
MQA 7667712 7667712 10223616 25165824 50724864 29.89
SKV 10616832 10616832 14155776 25165824 60555264 16.30
MHE-ADD 4437504 4437504 5916672 25165824 39957504 44.77
MHE-MUL 4437504 4437504 5916672 25165824 39957504 44.77

Table 13: Memory usage (in bytes) and memory saving ratios (compared to MHA) per attention block for our MHE
and other baselines. MHA denotes BERT-base here.

#Params(M) GLUE SUPERGLUE WIKITEXT-103 PENN TREEBANK

MHA
MHE
-MUL

MHA
MHE
-MUL

PRR MHA
MHE
-MUL

PRR MHA
MHE
-MUL

PRR MHA
MHE
-MUL

PRR

Encoder BASE 28.32 8.88 81.9 80.6 98.4 70.5 69.6 98.7 - - - - - -
-only LARGE 100.66 29.96 81.5 82.6 98.7 72.9 70.1 96.2 - - - - - -

Decoder BASE 28.32 8.88 77.5 76.7 99.0 - - - 43.0 53.8 74.9 44.3 50.7 85.6
-only MEDIUM 100.66 29.96 79.4 77.7 97.9 - - - 35.5 37.2 95.2 37.5 41.6 88.5

Table 14: Results of evaluation metrics on two text classification benchmarks (GLUE, SUPERGLUE) and two
language modelling benchmarks (WIKITEXT-103 and PENN TREEBANK) with performance retention ratio (PRR)
for MHA and MHE-MUL across different model sizes.

N dm h dh pdrop #Steps #Params(M) BLEU PRR
MHA MHE-MUL MHA MHE-MUL

BASE 12 512 8 64 0.1 100K 18.87 6.52 24.8 23.6 95.0
12 512 16 32 0.1 100K 18.87 5.63 25.1 22.9 91.5
12 512 4 128 0.1 100K 18.87 8.29 24.7 23.6 95.3

4L 8 512 8 64 0.1 100K 12.58 4.34 23.9 22.4 93.6
8L 16 512 8 64 0.1 100K 25.17 8.69 25.3 24.3 96.0
12H 12 768 12 64 0.15 100K 42.47 13.31 25.7 24.2 94.2
BIG 12 1024 16 64 0.3 300K 75.50 22.47 26.5 24.8 93.6

Table 15: Results of BLEU scores on WMT-14 English to German machine translation task with performance
retention ratio (PRR) for MHA and MHE-MUL across different model sizes.


