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Abstract

Recent deep learning approaches for river discharge forecasting have improved the
accuracy and efficiency in flood forecasting, enabling more reliable early warning
systems for risk management. Nevertheless, existing deep learning approaches in
hydrology remain largely confined to local-scale applications and do not leverage
the inherent spatial connections of bodies of water. Thus, there is a strong need for
new deep learning methodologies that are capable of modeling spatio-temporal rela-
tions to improve river discharge and flood forecasting for scientific and operational
applications. To address this, we present RiverMamba, a novel deep learning model
that is pretrained with long-term reanalysis data and that can forecast global river
discharge and floods on a 0.05◦ grid up to 7 days lead time, which is of high rele-
vance in early warning. To achieve this, RiverMamba leverages efficient Mamba
blocks that enable the model to capture spatio-temporal relations in very large river
networks and enhance its forecast capability for longer lead times. The forecast
blocks integrate ECMWF HRES meteorological forecasts, while accounting for
their inaccuracies through spatio-temporal modeling. Our analysis demonstrates
that RiverMamba provides reliable predictions of river discharge across various
flood return periods, including extreme floods, and lead times, surpassing both AI-
and physics-based models. The source code and datasets are publicly available at
the project page https://hakamshams.github.io/RiverMamba.

1 Introduction

Riverine floods are one of the most destructive natural disasters, with their risk anticipated to rise
in the future as a result of climate change and socioeconomic developments [1–5]. They arise from
compound effects, including atmospheric conditions like heavy precipitation caused by circulation
patterns and snowmelt succeeding high temperature, all shaped by the specific characteristics of the
river drainage area [6]. The interaction of these elements influences flood timing, scale, and severity
[6]. This complexity makes future flood risk assessment challenging, as a changing climate may
alter these drivers in unpredictable ways [7]. Therefore, early prediction of flood risk, especially for
extreme floods, is a key measure for effective flood risk mitigation [8, 9].
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Figure 1: Example of a 5-day forecast of river discharge and flood events. In early June 2024, a
significant flood affected Southern Germany. While the top row shows the floods obtained from the
GloFAS reanalysis, the bottom row shows the river discharge forecast by our approach. The severity
of floods is categorized by the statistical flood return period, i.e., occurring every 10 years.

To support national forecasting initiatives, current operational flood early warning systems can forecast
river discharge in real-time and provide flood forecasts at different scales [10–12]. The discharge
forecasts derived from these systems can be further processed using inundation models to create
anticipated flooded areas [13, 14]. The Global Flood Awareness System (GloFAS) [15, 16], developed
under the Copernicus Emergency Management Service (CEMS) and operated by the European Centre
for Medium-Range Weather Forecasts (ECMWF), represents the cutting-edge physics-based model
for real-time and worldwide hydrological forecasting. However, physics-based hydrological models
are expensive to run and require extensive calibration to handle complex catchment characteristics.

AI-based early warning systems are thus considered as vital tools to enhance climate risk resilience
[17, 18] and to enable flood forecasting without requiring full physical process understanding [19, 20].
While deep-learning approaches for weather forecasting [21–23] have been investigated in recent
years, very little work has been done for forecasting river discharge at large spatial regions since it is
very challenging. It requires the combination of sparse gauged river observations with high-resolution
land surface, re-analysis, and weather forecast data. Furthermore, floods occur rarely and the goal
is to forecast floods of different severity as shown in Fig. 1. Recently, an LSTM-based model has
been proposed [24]. While it achieves promising results, it forecasts floods only locally at sparse
river basins and does not consider routing. Modeling spatio-temporal relations, however, is very
important and required to generate consistent dense maps as in Fig. 1, since river discharge at points
near connected bodies of water is highly correlated.

In this work, we propose the first deep learning approach for global river discharge and flood forecast-
ing that is not only capable of forecasting at sparse gauged observation points, but also of forecasting
accurate, high-resolution (0.05◦) global river discharge maps. In order to deal with the sparseness
of gauged river points and the computational complexity of modeling spatio-temporal relations at
the global scale, our proposed RiverMamba leverages Mamba blocks, which are bidirectional state
space models [25–28], and spatio-temporal forecast blocks. Using a specialized procedure to convert
sampled points into 1D sequences, RiverMamba maintains a very large spatio-temporal receptive
field, connecting the routing of the river channel networks and the teleconnection of meteorological
data across space and time. RiverMamba has thus the possibility to consider a spatio-temporal context
that covers very large river networks like the Amazon River. The forecast layers are further forced by
high-resolution meteorological data (HRES) to generate medium-range river discharge forecasts up
to 7 days lead time. To address uncertainty in the meteorological forcing, we built the forecast layers
so that they can, for each catchment point, incorporate information about meteorological forcing
from the neighboring points and throughout the temporal dimension. Thus, RiverMamba ensures a
consistent forecast through space and time. Our contributions can be summarized as follows:

• We introduce a novel Mamba-based approach, called RiverMamba, for global river discharge
and flood forecasting. It is the first deep learning approach that is capable of providing maps
of global river discharge forecasting at 0.05◦, and it introduces a novel methodology to
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hydrology. It is able to integrate sparse gauged observations, river attributes, high-resolution
reanalysis data, and weather forecast. The efficient structure allows to model spatio-temporal
relations covering entire river networks.

• We evaluate RiverMamba on both long-term real-world reanalysis and observational data
where it outperforms state-of-the-art AI- and physics-based operational systems for global
flood forecasting.

2 Related works

Flood forecasting. Floods can be categorized into three common types. The first type is the fluvial or
riverine flood [29]. It occurs when the water level in a stream rises and overflows onto the adjacent
land. The second type is the coastal flood, also known as storm surges [30]. The third type is the
pluvial flood, often referred to as flash flood [31–33] that can occur with extreme rainfalls. Machine
learning (ML) has become an essential element for the development of hydrological simulation
and flood models [34, 35]. Each type of flood has unique drivers and impacts. Consequently, ML
methods require different strategies to forecast them. Related tasks to flood forecasting are urban flood
modeling [36–39], flood inundation [40–42], and flood extension and susceptibility mapping [43–46].
In this work, we are interested in forecasting riverine floods (fluvial) based on river discharge.

River discharge forecasting. River discharge can be used to detect fluvial flood signals when the
magnitude of the flow exceeds certain thresholds. Current deep learning methods for forecasting
river discharge are primarily based on locally lumped models [47, 48], hypothesizing that a single
model can generalize across many catchments without considering the spatial-temporal information
over grids [49]. The dominating backbone is the LSTM model [50] which is used in most recent
studies such as EA-LSTM [51, 52], ED-LSTM [53, 54], Hydra-LSTM [55], MC-LSTM [56], MF-
LSTM [57], and DRUM [58]. These models learn features specific to individual rivers or entities
and lack spatial and topological information. However, river networks have spatio-temporal causal
relations [59]. Only a few studies deviate from this conventional modeling and propose to model
the network topology with Graph Neural Networks [60–62]. They are still limited to small scales
and the graph models fail in most cases to capture topological information [60]. Others applied an
LSTM model on a coarse grid to estimate runoff and then coupled it with a river routing model
to produce daily discharge at coarse resolution [63]. In [64], LSTM resolves local runoff spatially
on a regular grid in central Europe. Then, routing the runoff along the entire river networks is
implemented as 1D-convolutions and fully connected layers. The impact of defining routing explicitly
with physics-informed neural networks has also showed an advantage in recent studies, especially, in
improving streamflow in large continental river networks compared to models that do not consider
routing [65, 66]. In a hybrid modeling framework, physical equations including river routing are
parametrized using 3D-convolutions and fully connected layers for distributed hydrological modeling
[67]. The most relevant work is the Encoder-Decoder LSTM [51] developed for the Google global
operational forecasting system [24], which is a locally lumped model. In this work, distinct from
previous works, we propose an approach that is capable of modeling a large spatio-temporal context
and forecasting medium-range river discharge at grid-scale.

State space model (SSMs) and the Mamba family. Linear SSMs [25] and structured SSMs like S4
[26] and S5 [27] were primarily introduced for long-sequence modeling in NLP. Recently, Mamba
[28] introduced the selective scan mechanism, enabling efficient training and linear-time inference.
Built upon Mamba, VMamba [68] and Vim [69] in the vision domain were introduced as appealing
alternatives to the quadratic complexity of vision transformers [70] while improving scaling efficiency
on long token sequences. A series of works have adapted Mamba to tasks like image generation
[71, 72], image classification [73, 74], video understanding [75, 76], motion generation [77], dense
action anticipation [78], and point cloud processing [79, 80]. In this work, we propose a Mamba-based
approach for global river discharge and flood forecasting.

3 RiverMamba

In this work, we present the first deep learning approach that not only forecasts flood events at sparse
gauged river observations, but that is capable of forecasting accurate, high-resolution (i.e., at 0.05◦)
maps of river discharge up to few days at global scale, as shown in Figs. 1 and 2. These maps are
essential to forecast flood events of various severity like a flood that re-occurs statistically within a
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Figure 2: An overview of the proposed RiverMamba model for river discharge forecasting. The model
forecasts at time t, high-resolution river discharge maps Xt+1:t+L

dis24 from initial conditions (Xt−T :t−1
ERA5 ,

Xt−T :t−1
GloFAS , Xt−T−1:t−2

CPC ), static river attributes (Xstatic), and meteorological forecasts (Xt+1:t+L
HRES ).

1.5-year return period or a ‘flood of the century’. This is very challenging since it requires a model
that models spatial-temporal relations in an efficient way and integrates different sources of data
(Fig. 2).

As input, we use the initial condition of the forecasts from ERA5-Land reanalysis [81], denoted
by Xt−T :t−1

ERA5 = {Xt−T
ERA5, . . . ,Xt−2

ERA5,Xt−1
ERA5}, the initial condition Xt−T :t−1

GloFAS from the GloFAS
reanaylsis data [82], and the initial condition Xt−T−1:t−2

CPC from the operational global unified gauge-
based analysis of daily precipitation [83–85]. We also include data from weather forecasts, where
we use the high-resolution meteorological forcing forecasts Xt+1:t+L

HRES from the ECMWF Integrated
Forecast System (IFS), where L is the lead time for the forecast. We generate the river discharge
forecast at t, using 00:00 UTC as reference time, for t+1 until t+L. This means that we do not
address nowcasting but only forecasting as it is more relevant. We also do not include any nowcasts
(Xt

HRES) as input. The rationale behind this is to ensure broader applicability, since many weather
forecast systems especially ML models provide forecasts at t > 0. However, adding nowcasts to
the model is straightforward if they are available. To make the setup as realistic as possible, we
do not include any data after 00:00 UTC and we consider XGloFAS and XERA5 at day t − 1 and
XCPC at day t− 2. Additionally, we include river attributes Xstatic like catchment morphology from
LISFLOOD [86]. The input variables are described in details in the suppl. material. Given these
inputs, RiverMamba forecasts changes of the daily mean river discharge ∆Xt+1:t+L

dis24 relative to the
daily mean river discharge at t−1, i.e., Xt−1

dis24. The forecast daily mean river discharge is thus given
by Xt+l

dis24 = Xt−1
dis24 +∆Xt+l

dis24.

An overview of RiverMamba is shown in Fig. 2. For training, we sample P points that are on the
land surface and near water bodies. The details are described in the suppl. material. For each point p,
we obtain a temporal sequence of embedding vectors Xt−T :t−1

embed (p):

Xt
embed(p) = LN

(
Tanh

(
Concat

(
Linear(Xt

ERA5(p)),Linear(Xt
GloFAS(p)),Linear(Xt−1

CPC(p))
)))

,

(1)

where LN is the layer norm and Linear is the projection layer. The dimensions of the input are
XERA5 ∈ RB×T×P×Ve , XGloFAS ∈ RB×T×P×Vg , and XCPC ∈ RB×T×P×1, where B is the batch
size, Ve is the number of variables from ERA5, and Vg is the number of variables from GloFAS. The
embedding Xembed ∈ RB×T×P×K , where K = 192 is the dimensionality of the embedding, is then
the input to the encoder defined by the hindcast layers.
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Hindcast layer. The hindcast layers model spatio-temporal relations and aggregate the observations
over time. Except for the 1st layer which processes the full temporal resolution, the temporal
resolution is down-sampled by a factor of 2 with a linear layer at the beginning of each hindcast layer,
such that the output of the last hindcast layer Xhindcast ∈ RB×1×P×K has a temporal resolution of
T = 1. In our implementation, we chose T = 4 as for the GloFAS operational system and a temporal
down-sampling of 2. Consequently, we defined 3 layers to encode the input.

The hindcast layers further integrate the static river attributes Xstatic that contain additional infor-
mation like catchment morphology, which is relevant for flood forecasting. While we analyze the
impact of the different inputs, in particular the river attributes, in the suppl. material, another key
aspect of the hindcast blocks is the specialized serialization of the spatio-temporal points and the
Mamba blocks [28, 68, 69]. The serialization defines the way the sampled points are connected, and
the Mamba block efficiently updates the features of each point based on the spatio-temporal structure.
This is a very important design choice since transformer blocks are computationally infeasible for
global flood forecasting, whereas [24] does not consider spatial relations at all. In the suppl. material,
we also show that an alternative using Flash-Attention [87, 88] is inferior in terms of inference time
and accuracy compared to our approach.

The output of the last hindcast layer is then processed along with the HRES meteorological forcing
by forecast blocks, and MLP-based regression heads predict for each lead time l the difference of
daily mean river discharge ∆Xt+l

dis24 with respect to the daily mean river discharge at t−1. In the
following, we describe the components of RiverMamba in details.

Hindcast block. As shown in Fig. 2, the hindcast block has three main components: serialization
and deserialization, location-aware adaptive normalization layers (LOAN) to integrate static river
attributes, and the Mamba block.

Serialization. The serialization defines the spatio-temporal scanning path over all sampled points
for the following Mamba block. For this, we propose space-filling curves that sequentially traverse
through all points. The concept was introduced in [89] and the space-filling can be defined as a
bijective function Φ : Z3 → N, where every point in the discrete space corresponds to a unique
index within the sequence. We call this mapping the serialized encoding. The serialized decoding
is done as Φ−1 : N → Z3, where every index is mapped back into its corresponding position.
We call this deserialization. We investigated three curves: the Generalized Hilbert (Gilbert) curve,
which is a generalized version of the Hilbert curve [90], as well as the Sweep and Zigzag curves in
vertical and horizontal directions. Examples of space-filling curves in 2D are illustrated in Fig. 3.

Figure 3: Illustration of the spatial scans in River-
Mamba. Larger images are in the supp. material.

As shown in the suppl. material, a combination
of Sweep and Gilbert curves performs best. To
this end, each hindcast block has its own curve.
As shown in Fig. 3, we sweep in the first block
over the horizontal direction. The spatial curves
are connected over time by continuing the last
point of the curve at t with the first point of the
curve at t+1. The second block then sweeps
over the vertical direction and we continue with
the Gilbert curve and its transposed. These four
space-filling curves are iterated. By altering the
curves sequentially through the hindcast blocks,
the sampled points will be connected and scanned from diverse spatial perspectives, enabling River-
Mamba to capture different contextual features.

Location-aware adaptive normalization layer. In order to condition the model on static river
attributes Xstatic, the location-aware adaptive normalization layer (LOAN) [91] modulates the
features X within the hindcast block:

LOAN(X) =

(
X − µ

σ

)
+ GELU(Linear(Xstatic)) , (2)

where a linear layer projects Xstatic ∈ RB,1,P,Vs , with Vs being the number of static variables, to
RB,1,P,K . The output is then duplicated along the temporal dimension so that the output has the
dimension RB,T,P,K . µ ∈ RB,T,P,1 and σ ∈ RB,T,P,1 are the mean and standard deviation of X
along the channel dimension, respectively, and X ∈ RB,T,P,K is the input to the LOAN layer. Both µ
and σ are duplicated K times along the last dimension to match X. The layer normalizes the features
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Figure 4: The structure of the hindcast block and forecast block. Both use a bidirectional Mamba block
and the forecast block has the same structure as the hindcast block, but it additionally incorporates
meteorological forecasts (HRES) by concatenation. The forecast block also includes LOAN layers
although it is not shown in Fig. 2

and adds a systematic bias based on the attributes. For instance, the features are normalized and
biased based on location attributes that have an impact on drainage and floods.

Mamba block. Fig. 4 shows a more detailed structure of the hindcast block with the elements
of the Mamba block. After the input is serialized into a 1D sequence based on the block-specific
space-filling curve and the features are normalized by the LOAN layer, the Mamba block processes
the features of the sampled points along the sequence.

The Mamba block is based on a state-space model that transforms a 1D sequence of states x(t) into
another representation y(t) through an implicit hidden latent state h(t) and a first-order ordinary
differential equation:

h′(t) = Ah(t− 1) + Bx(t) , y(t) = Ch(t) + Dx(t) . (3)

To integrate Eq. (3) into a deep learning framework, S4 [26] parametrized the system with the matrices
(A,B,C,D) and discretized it with a timescale parameter ∆:

ht = Āht−1 + B̄xt , yt = Cht + Dxt , (4)

Ā = e(∆A) , B̄ = (∆A)−1(e(∆A) − I)∆B , (5)

where Ā and B̄ are the discretized versions of the system. Recently, S6 [28] proposed to make Eqs. (4)
and (5) time-variant. To this end, the parameters B(x), C(x), and ∆(x) become dependent on the
input state x. This representation of a state-space model is called Mamba, which is an efficient
alternative to transformers [92], particularly when processing many points as in our case.

Fig. 4 illustrates the steps of the Mamba block. The normalized sequence X ∈ RB×(T×P )×K is
projected into x ∈ RB×(T×P )×K and z ∈ RB×(T×P )×K , where T×P is the length of the sequence.
Note that the order of the elements in the sequence depends on the serialization, which differs between
the hindcast blocks. We use a bi-directional approach that converts x into x′

o using a forward and a
backward 1-D causal convolution, where o ∈ {f, b} denotes the forward or backward pass. For each
direction, Bo, Co, and ∆o are obtained by projection layers from x′

o, and Āo and B̄o are computed
using Eq. (5). The selective SSM then uses Eq. (4) to obtain yforward and ybackward for the forward
and backward pass, respectively. The final output y is obtained by gating yforward and ybackward via
SiLU(z) and adding them up. Finally, y is normalized and projected back linearly to RB×(T×P )×K .
The complete algorithm for the Mamba block is described in the suppl. material. After the Mamba
block, the hindcast block includes another LOAN layer followed by an MLP. The final output X is
then deserialized at the end since the next hindcast block uses a different serialization.

Forecasting layer. While the hindcast layers encode the sequence of past input variables into a
K-dimensional vector per sampled point, i.e., Xhindcast ∈ RB×1×P×K , the forecasting layers
forecast the difference of daily mean river discharge ∆Xt+l

dis24 for each lead time l, using Xhindcast

and meteorological forecasts Xt+1:t+L
HRES as input, as shown in Fig. 2. The forecast blocks have the

same structure as the hindcast blocks except that the forecast block incorporates the meteorological
forcing (HRES). This is done by projecting Xt+l

HRES with a linear layer to 64 dimensions, serializing
it, and concatenating it with the input X as illustrated in Fig. 4. The processing of HRES is done
sequentially, i.e., we have L forecast blocks and the l-th forecast block processes Xt+l

HRES . We argue
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that this design is crucial to ensure that the temporal relationships between the meteorological forcing
and the initial conditions are maintained.

The output of all forecast blocks is processed by L regression heads implemented as multi-layer
perceptrons (MLP) where the output for the lead time t+ l is obtained as:

∆Xt+l
dis24 = Linear

(
ReLU

(
Concat

(
Linear(Xt+l

forecast),Linear(Xt+1:t+L\t+l
forecast )

)))
, (6)

where Xt+l
forecast are the features from the l-th forecast block and Xt+1:t+L\t+l

forecast are the concate-
nated features from all forecast blocks except of the l-th block. The linear layers project the
input Xt+l

forecast or Xt+1:t+L\t+l
forecast to 32 dimensions and the last linear projection estimates finally

∆Xt+l
dis24 ∈ RB×1×P×1.

Training. As already mentioned, we sample P points around the globe for training. As a target value
for training, we first use the river discharge data from the GloFAS reanalysis as ground truth and then
fine-tune on sparse observations using data from the Global Runoff Data Centre (GRDC). For GRDC
fine-tuning, we take P as the number of input points per sample and compute the loss only on points
where GRDC observations are available without considering reanalysis data from GloFAS. We obtain

the target values by ∆X̂
t+l

dis24(p) = X̂
t+l

dis24(p)− X̂
t−1

dis24(p), where X̂ are the values from GloFAS or
GRDC. For the training loss, we propose a weighted version of the mean-squared error (MSE) loss:

L =
1

B × P × L

B∑
b=1

P∑
p=1

L∑
l=1

wb,t+l(p)∥∆X̂
b,t+l

dis24(p)−∆Xb,t+l
dis24(p)∥

2
2 , (7)

where B is the batch size. Since the severity of a flood is highly important for flood forecasting and
severe floods occur rarely, the weighting factor wb,t+l(p) takes this into account. The severity of
a flood is ranked by the statistical flood return period in years, which we denote by r and ranges
from 1.5 to 500. These ranges are also used in GloFAS. We note that a high return period event
simply reflects statistical rarity in streamflow magnitude, and should not be equated with a flood
event without additional context, e.g., thresholds or inundation. The return period is used here as
a proxy indicator of hydrological extremity, which we call flood. The severity of a flood is thus

given by r̂t+l(p) = maxr

{
r : X̂

t+l

dis24(p) ≥ θr(p)
}

, where θr is the statistical threshold for a given
flood return period r. We also include the case r=0 with θr=0 for defining events that are not floods.
Using this notation, the weighting is thus given by

ŵb,t+l(p) =

{
r̂b,t+l(p) if r̂b,t+l(p) > 1

1 otherwise.
(8)

We thus weight the loss based on the flood return period if a flood occurred at location p and time
t+ l, and we use 1 if there has been no flood. We further weight the loss with ûb,t+l = eα(L−l+1),
where we give a higher weight to a shorter lead time l and use α=0.25. This compensates for the
sequential structure of the forecast blocks where each forecast block takes the features of the previous
block as input. The final weight is thus given by wb,t+l(p) = ûb,t+lŵb,t+l(p). Since river discharge
exhibits a very large dynamic with varying orders of magnitude, we transform the discharge values
by sign(∆x̂)log(1 + |∆x̂|). We evaluate the impact of the weighting in Table 2 (a) and provide more
details in the suppl. material. For inference, we can forecast floods for any set of points or densely as
in Fig. 1.

4 Experimental results

Dataset. We obtain data for river discharge from the ECMWF GloFAS reanalysis [82]. It is
generated by forcing the LISFLOOD hydrological model [93] using meteorological data from
ERA5 [94]. GloFAS reanalysis combines physics-based simulation with observations to generate
a consistent reconstruction of the past. The dataset is provided as a daily averaged discharge on a
global coverage at 3 arcmin grid (0.05◦). We use the GloFAS reanalysis as a target discharge for
training and testing the model in Sec. 4.1. The ablation studies are done using GloFAS reanalysis
over Europe. In addition, we fine-tune and test the model on observational GRDC river discharge
data in Sec. 4.2. Flood thresholds are determined using return periods for individual points and are
calculated from the long-term data. The thresholds allow for the identification of a flood when the
threshold is surpassed.
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Evaluation metrics. We evaluate the performance of RiverMamba on both GloFAS reanalysis
and GRDC, where diagnostic GRDC stations are available (3366 stations). For evaluation, we use
common metrics like the coefficient of determination (R2), Kling–Gupta efficiency (KGE), and the
averaged F1-score for floods with return periods of 1.5 to 20 years. Details about these metrics can
be found in the suppl. material. We train on the years 1979-2018, validate on 2019-2020, and test
on 2021-2024. All evaluation points are gauged stations and temporally out-of-sample. Results on
ungauged stations are also available in the suppl. material. The metrics are calculated on the time
series at single grid points and then averaged over all points.

Baselines. We compare RiverMamba to persistence, climatology, and the state-of-the-art deep
learning Encoder-Decoder LSTM of Google’s operational flood forecasting system [24]. For the
LSTM model, we followed the same protocol as originally proposed in [24], which considers only
temporal context but does not include any spatial connections. The space filling curves are thus not
used in combination with the LSTM baseline. To ensure a consistent evaluation, we train LSTM on
the same input data as RiverMamba. All results in the paper are obtained with our trained LSTM.
A comparison with the published reforecasts by Google’s LSTM [24] is also available in the suppl.
material. For evaluation on GRDC observations, we additionally compare our approach to the
reforecast version of the state-of-the-art operational GloFAS forecasting system operated by ECMWF
[15, 16]. More details about dataset, evaluation metrics and baselines are provided in the suppl.
material.

4.1 Experiments on GloFAS river discharge reanalysis

The quantitative results are shown in Table 1. As can be seen, the climatology baseline performs
poorly, as the dynamic in local river discharge varies a lot over time, highlighting the difficulty
in predicting flows. We therefore exclude it in Fig. 5 (a) that shows F1-score for floods with a
1.5-year return period and (b) KGE for river discharge for different lead times from 24 to 168 hours.
The boxes show distribution quartiles and the evaluation points are represented as points along the
y-axis. Fig. 5 (d) shows the F1-score averaged over return periods of 1.5 to 20 years and (e) shows
the median R2 for river discharge. The persistence baseline predicts the future discharge as the
same value of the discharge at time t. This achieves good prediction for the short-term forecast,
however, the prediction skill drops with lead time. While LSTM outperforms the persistence baseline,
RiverMamba outperforms all baselines and methods on all metrics as shown in Table 1. In particular
for lead times above 48 hours, the performance gap between RiverMamba and LSTM is large. We
attribute this to the receptive field and the spatio-temporal modeling of RiverMamba. Fig. 5 (c) plots
the F1-score averaged over 24 to 168 hours lead time for different flood return periods. The results
show that RiverMamba outperforms the other approaches both for more frequent floods and rare
severe floods that occur statistically only every 500 years. More results are in the suppl. material. In
the following, we discuss a set of ablation studies that are not performed globally but over Europe.

Objective functions. In Table 2 (a), we evaluate the impact of the weighting factor in the loss
(7), which is based on ŵ Eq. (8) and û. The results show that both terms improve the results. ŵ is

Figure 5: Results on GloFAS reanalysis across lead times and flood return periods.
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Table 1: Results on GloFAS-Reanalysis. (±) denotes the standard deviation for 3 runs.
Validation (2019-2020) Test (2021-2024)

Model R2 (↑) KGE (↑) F1 (↑) R2 (↑) KGE (↑) F1 (↑)

Climatology 0.1175 0.2618 – 0.1352 0.2449 –
Persistence 0.6778 0.8380 0.3138 0.6833 0.8412 0.3223

LSTM 0.8539±0.0031 0.8931±0.0034 0.3511±0.0068 0.8485±0.0021 0.8924±0.0029 0.3582±0.0058

RiverMamba 0.8803±0.0043 0.9137±0.0026 0.4540±0.0056 0.8728±0.0013 0.9125±0.0008 0.4589±0.0080

Table 2: Ablation studies on the validation set over Europe.
(a) Objective function (b) Location Embedding (c) Forecasting strategy

ŵ û KGE | F1 (↑) LOAN(hind) LOAN(forc) KGE | F1 (↑) S-HRES T-HRES KGE | F1 (↑)

✗ ✗ 0.9086 | 0.2236 ✗ ✗ 0.9183 | 0.2790 ✗ ✓ 0.8862 | 0.2030
✓ ✗ 0.9127 | 0.2859 ✓ ✗ 0.9160 | 0.2827 ✓ ✗ 0.8869 | 0.2268
✗ ✓ 0.9136 | 0.2593 ✗ ✓ 0.9166 | 0.2931 ✓ ✓ 0.9205 | 0.2875
✓ ✓ 0.9205 | 0.2875 ✓ ✓ 0.9205 | 0.2875

important to focus on rare and more severe floods, increasing the F1 metric substantially (second
row). û gives more weight to the forecast in the near future where XHRES is more reliable, which is
important due to the sequential structure of the forecast module. Using only û (third row) improves
the results on both KGE and F1 metrics. Using both ŵ and û (fourth row) gives the best results.

Location embedding. In Table 2 (b), we show the benefit of using LOAN. In the first row, we
duplicate the static features along the T dimension and concatenate them with the dynamic input.
Using the LOAN layer in the hindcast (second row) or forecast blocks (third row) increases the F1
score but decreases KGE. Using LOAN in both hindcast and forecast blocks balances the metrics
(fourth row).

Forecasting strategy. Table 2 (c) evaluates the impact of spatio-temporal modeling in the forecast
module. In the first row, we remove the spatial relations in the forecast module by replacing the
forecast blocks by point-wise MLPs. In this way, the data is processed after the last hindcast layer
temporally but not spatially. This makes the model unaware of the spatial biases in the meteorological
forcing XHRES . The second row denotes a setup where the forecast blocks do not get the features
from the previous forecast block (Fig. 2) but directly from the last hindcast layer. In this case,
we forecast river discharge for each lead time independently. The results show that in both cases
the performance drops compared to our approach (third row), demonstrating the importance of
spatio-temporal modeling. More ablation studies can be found in the suppl. material.

4.2 Experiments on GRDC observational river discharge

Table 3 reports the performance on GRDC river discharge observations at gauged stations, which also
includes the physics-based GloFAS reforecast model. As previously, Fig. 6 compares the forecast
performance across multiple lead times and flood return periods. Compared to the results on GloFAS
reanalysis (Table 1), all models show a noticeable drop in performance when evaluated on GRDC
observations (Table 3). This decline likely stems from the fact that GloFAS simulates primarily
naturalized discharge, with simplified representations of major reservoirs [82, 95], whereas GRDC
reflects fully regulated flow, influenced by complex and unobserved human activities, such as dam
operations and irrigation. This introduces biases that models cannot learn, especially in the absence
of globally available data representing human water management, highlighting the challenge of
predicting discharge under human-modified conditions. The results show that traditional baselines
such as Climatology and Persistence perform poorly. GloFAS performs much better than the baselines,
but the R2 and KGE values are rather low due to the mentioned differences of physics-based models
and observations. RiverMamba consistently outperforms the other methods for all metrics. Notably,
RiverMamba shows less degradation in F1-score with increasing lead time, highlighting its strength
in medium-range flood forecasting. More results are in the suppl. material.
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Figure 6: Results on gauged GRDC observations across lead times and flood return periods.

Table 3: Results on GRDC gauged stations. (±) denotes the standard deviation for 3 runs.
Validation (2019-2020) Test (2021-2023)

Model R2 (↑) KGE (↑) F1 (↑) R2 (↑) KGE (↑) F1 (↑)

Climatology -0.0002 0.1342 – -0.0013 0.0870 –
Persistence 0.1682 0.4569 0.1626 0.0660 0.3918 0.1462

GloFAS 0.3713 0.5412 0.2135 0.2892 0.4944 0.2044
LSTM 0.5437±0.0025 0.6572±0.0010 0.1724±0.0017 0.4615±0.0039 0.6141±0.0018 0.1475±0.0014

RiverMamba 0.5943±0.0016 0.7015±0.0007 0.2577±0.0046 0.5057±0.0028 0.6612±0.0010 0.2427±0.0111

5 Conclusions and limitations

We introduced RiverMamba, a novel deep learning approach for global, medium-range river discharge
and flood forecasting. Due to its efficient structure and specialized scanning paths, RiverMamba main-
tains a very large receptive field, while scaling linearly with respect to the number of sampled points.
As a result, RiverMamba is capable of forecasting high-resolution (0.05◦) global river discharge maps.
Further, the spatio-temporal modeling of the forecast blocks incorporates meteorological forcing
and ensures a consistent forecast through space and time. Our analysis reveals that RiverMamba
outperforms operational state-of-the-art deep learning and physics-based models on both reanalysis
and observational data. While the results show major advancements in river discharge and flood
forecasting, the approach has some limitations. For a real operational setting, only data can be
used that is available until the current day t. For instance, ERA5-Land is publicly available after 5
days whereas we assumed that ERA5-Land is already available after 1 day, i.e., t− 1. ERA5-Land,
however, could be substituted by other near real-time reanalysis data that is earlier available or
analysis data until day t. It also needs to be mentioned that observational data are affected by human
interventions like dams and there is a need to integrate such interventions in the model. As it is the
case for operational systems, floods are not always correctly forecast. The causes of the errors need
to be analyzed more in detail. The forecast errors can be caused by human interventions, errors in
the weather forecast for meteorological forcing or river attributes, the rarity of floods, or bias in the
data and re-analysis. Given such errors, it is desirable to extend the model such that it estimates its
uncertainty for the forecast as well.

Besides these limitations, RiverMamba has the potential for an operational medium-range river
discharge and flood forecasting system that predicts flood risks, in particular extreme floods, more
accurately and at higher resolution than existing systems. This is essential for stakeholders to make
decisions for an effective flood risk mitigation strategy and an early warning system to protect citizens.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: see Sec. 4.1 and 4.2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see Sec. 5 and supplementary material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: the paper dose not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: see Sec. 3 and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: the code for the approach, processing the data, and evaluation are made
publicly available. The code of RiverMamba, processing scripts, and pretrained models
are available on GitHub at https://github.com/HakamShams/RiverMamba_code. The
pre-processed data used in the study and RiverMamba reforecasts are available at https:
//doi.org/10.60507/FK2/T8QYWE [96]. GRDC data that has been used in this study
is available for researchers after signing a license agreement with the owner of the data.
Instructions on how the data can be obtained and used are provided in the source code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: see supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: see Tables 1 and 3 and Figs. 5 and 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: see supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: see Introduction, Sec. 5, and supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: we think the paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we cite the original publications for the raw data and refer to the URLs in the
supplementary material when applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: see supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: we used LLMs for very limited editing (e.g., grammar, spelling, word choice).
In addition, we used an LLM to generate the RiverMamba logo.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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