
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Spectral Informed Neural Network

Anonymous Authors1

Abstract
In scientific computing, the utilization of physics-
informed neural networks (PINNs) for solving
partial differential equations (PDEs) has been bur-
geoning. More accurate and efficient PINNs are
required and under research. One bottleneck of
current PINNs is the computation of the high-
order derivatives via automatic differentiation
which often necessitates substantial computing
resources especially when dealing with complex
PDEs and high-dimensional problems. To tackle
this, we propose a spectral-based neural network
that substitutes the differential operator with a
multiplication. Compared to PINNs, our approach
requires less GPU memory and a shorter training
time. Furthermore, thanks to the exponential con-
vergence of the spectral basis, our approach is
more accurate. Moreover, to handle the differ-
ent situations between the physics domain and the
spectral domain, we provide a strategy to train net-
works using their spectral information. Through
a series of comprehensive experiments, we vali-
date the aforementioned merits of our proposed
network.

1. Introduction
With the rapid advancements in machine learning and its re-
lated theories, integrating mathematical models with neural
networks provides a novel framework for scientific research.
The representative methods are the Physics-Informed Neu-
ral Networks (PINNs) (Lagaris et al., 1998; Raissi et al.,
2019) and the Deep Ritz method (Yu et al., 2018). Thanks
to the development of the Monte Carlo method (Rubinstein
& Kroese, 2016), the automatic differentiation (AD) (Bay-
din et al., 2018), and the universal approximation theo-
rem (Hornik, 1991), PINNs have garnered significant at-
tention because of their ability to solve partial differential
equations (PDEs) without suffering from the curse of di-
mensionality (CoD) (Wojtowytsch & Weinan, 2020; Han
et al., 2018), compared with traditional numerical methods
such as Finite Difference Methods (FDM), Finite Element
Methods (FEM), Finite Volume Methods (FVM). More-
over, PINNs also demonstrate the merits in handling im-

perfect data (Karniadakis et al., 2021), extrapolation (Yang
et al., 2021; Ren et al., 2022), and interpolation (Sliwinski &
Rigas, 2023). These capabilities have propelled PINNs into
wide applications, including but not limited to fluid dynam-
ics (Jin et al., 2021), aerodynamics (Mao et al., 2020), sur-
face physics (Fang & Zhan, 2019), power systems (Misyris
et al., 2020), and heat transfer (Gao et al., 2021).

Because of the requirements of derivatives with respect to
the inputs of networks, using AD to compute the gradient
is inefficient and computationally expensive in PINNs. Fur-
thermore, (hoon Song et al., 2024) provides a complete
theorem stating that: to keep the same convergence rate, the
required width of the network grows exponentially as the
PDE order p increases, which reveals that vanilla PINNs
face challenges in learning high-order PDEs. To address this
problem, various approaches have been proposed that lever-
age alternative numerical methods to replace AD. PhyCR-
Net (Ren et al., 2022; Rao et al., 2023) utilizes the FDM to
replace AD; DTPINN (Sharma & Shankar, 2022) applies the
finite difference for radial basis functions instead of comput-
ing high-order derivatives; sPINN (Xia et al., 2023) employs
the spectral method of orthogonal polynomials to avoid com-
puting the derivatives. Additionally, SVPINN (Lyu et al.,
2022; hoon Song et al., 2024) splits high-order derivatives
into several low-order derivatives. Similarly, DFVM (Cen
& Zou, 2024) adopts this approach but calculates these low-
order derivatives by the FVM rather than AD.

On the other hand, scholars have been devoting their at-
tention to improving the efficiency of AD for a long
time (Bendtsen & Stauning, 1997; Karczmarczuk, 1998;
Wang, 2017; Laurel et al., 2022). The representative meth-
ods are the Taylor-mode (Griewank & Walther, 2008) for
univariate derivatives and Stochastic Taylor Derivative Es-
timator (Shi et al., 2024) for multivariate derivatives. Re-
searchers (Wang et al., 2022a; Shi et al., 2024; Hu et al.,
2024) have already utilized this approach within the frame-
work of PINNs to obtain high-order derivatives in Poisson’s
equations and Kuramoto–Sivashinsky equations.

In this paper, we propose Spectral-Informed Neural Net-
works (SINNs) as an efficient and low-memory approach for
training neural networks to solve partial differential equa-
tions (PDEs) by making use of the spectral information
derived from the spectral domain. When compared with

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Spectral Informed Neural Network

Physics-Informed Neural Networks (PINNs), our SINNs
utilize a precise and efficient alternative to automatic dif-
ferentiation (AD) to compute spatial derivatives. The input
is the frequencies of the spectral basis instead of the grid
points from the physical domain, and the output is the co-
efficients in the spectral domain rather than the physical
solution. Moreover, the property of exponential conver-
gence in spectral methods when approximating any smooth
function (Canuto et al., 1988; Orszag, 1971) enables SINNs
to achieve higher accuracy.

Our specific contributions can be summarized as follows:

• We propose a method that eliminates the spatial deriva-
tives of the network to deal with the high GPU memory
consumption of PINNs.

• We propose a strategy to approximate the primary
features in the spectral domain by learning the low-
frequency preferentially to handle the difference be-
tween SINNs and PINNs.

• We provide an error convergence analysis to show that
SINNs are more accurate than PINNs. Furthermore,
our experiments corroborate that the method can re-
duce the training time and improve the accuracy simul-
taneously.

The paper is structured as follows: In Section 2, we provide
a concise overview of PINNs and discuss AD and its de-
velopments. Using a simple experiment, we highlight the
challenge encountered in computing high-order derivatives
within PINNs. To address this drawback, in Section 3, we
propose our SINNs and give an intuitive understanding by
a concrete equation. In Section 4, we demonstrate state-of-
the-art results across a comprehensive experiment. Finally,
Section 5 provides a summary of our main research and
touches upon remaining limitations and directions for future
research.

2. Physics-informed neural networks (PINNs)
We briefly review the physics-informed neural networks
(PINNs) (Raissi et al., 2019) in the context of inferring the
solutions of PDEs. Generally, we consider PDEs for u
taking the form

∂tu+N [u] = 0, t ∈ [0, T], x ∈ Ω,

u(0,x) = g(x), x ∈ Ω,

B[u] = 0, t ∈ [0, T], x ∈ ∂Ω,

(1)

where N is the differential operator, Ω is the domain of grid
points, and B is the boundary operator.

The ambition of PINNs is to obtain the unknown solution u
to the PDE system (1), by a neural network uθ, where θ de-
notes the parameters of the neural network. The constructed

loss function is:

L(θ) = Lic(θ) + Lbc(θ) + Lr(θ), (2)

where

Lr(θ) =
1

Nr

Nr∑
i=1

∣∣∂tuθ
(
tir,x

i
r

)
+N

[
uθ

] (
tir,x

i
r

)∣∣2 ,
Lic(θ) =

1

Nic

Nic∑
i=1

∣∣uθ
(
0,xi

ic

)
− g

(
xi
ic

)∣∣2 ,
Lbc(θ) =

1

Nbc

Nbc∑
i=1

∣∣B [
uθ

] (
tibc,x

i
bc

)∣∣2 ,
(3)

corresponds to the three equations in (1) individually;
xi
ic,x

i
bc,x

i
r are the sampled points from initial con-

straint, the boundary constraint, and the residual constraint;
Nic, Nbc, Nr are the total number of sampled points corre-
spondingly.

2.1. Automatic differentiation (AD)

AD gives the required derivative of an overall function
by combining the derivatives of the constituent operations
through the chain rule based on evaluation traces. Herein,
in PINNs, AD is also used to calculate the derivatives with
respect to the input points. However, AD demands both
memory and computation that scale exponentially with the
order of derivatives by the scaling O(dp) where p is the dif-
ferentiation order and d is the dimensionality, although there
are investigations (Griewank & Walther, 2008; Bettencourt
et al., 2019; Tan, 2023) on computing high-order derivatives
efficiently by Faà di Bruno’s formula1 and Taylor mode2.
Alternatively, by replacing the high-order derivatives with
simple multiplication, SINNs can reduce both memory and
training time for high-order derivatives.

3. Spectral Information Neural Networks
(SINNs)

To implement the spectral method on PINNs, the Fourier
operator F is applied to (1), converting the solution from
the physics domain to the frequency domain. Practically,
we use FN to represent the N th truncated Fourier operator:

FN [u] (t, x) =

N/2−1∑
k=−N/2

û (t, k) eikx, (4)

where û corresponds to the Fourier coefficients of u, and
i ≡

√
−1 is the unit imaginary number. One can easily

1Further details are presented in Appendix A
2Further details are presented in Appendix B

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Spectral Informed Neural Network

2 3 4 5 6 7 8 9 10
p

100

101

GB

PINN
SINN
Taylor mode

(a)

2 3 4 5 6 7 8 9 10
p

0

1

2

3

4

Tr
ai

ni
ng

 ti
m

e
(h

)

PINN
SINN
Taylor mode

(b)

2 3 4 5 6 7 8 9 10
p

10 2

Re
la

tiv
e

er
ro

r

PINN
SINN
Taylor mode

(c)

Figure 1. In the experiment for (19) with different p. (a) depicts the
measured maximum memory of the GPU allocated during training,
implying that the memory increases exponentially with p for the
spatial derivative ∂pu/∂xp in PINNs and is constant for the multi-
plication kpû in SINNs. Figures (b) and (c) present the training
time and relative error of SINNs in comparison with PINNs with
and without the Taylor mode. These results indicate that when
handling high-order derivatives, SINNs are more efficient and ac-
curate. The further discussion of the experiments is presented in
Section 4.2.

obtain the following derivatives:

∂tFN [u] (t, x) =

N/2−1∑
k=−N/2

∂tû (t, k) e
ikx, (5)

∂xFN [u] (t, x) =

N/2−1∑
k=−N/2

ikû (t, k) eikx. (6)

(6) straightforwardly reveals the vanishment of the AD for
spacial derivatives in the spectral domain.

Subsequently, we study a two-dimensional (2-D) heat equa-
tion a representative example to demonstrate how SINNs
work intuitively. Note that, for non-linear equations, the
non-linear term produces aliasing error (Gottlieb & Orszag,
1977) which is practically solved by pseudo-spectral meth-
ods. We also demonstrate how SINN solves non-linear
terms in Appendix C by Navier-Stokes equations. Because
SINNs use the Fourier operator, the PDEs to be solved have
to be periodic boundary conditions. We further discuss this
choice in Section 3.4

3.1. SINN for heat equations

Ideally, the heat transfer can be described by the heat equa-
tion which is investigated widely in mathematics as one of
the prototypical PDEs. Given Ω ⊂ R2, consider the 2-D
heat equation with periodic boundary condition:

∂tu(t,x) = ∂xxu(t,x) + ∂yyu(t,x), t ∈ [0, T], x ∈ Ω,

u(0,x) = g(x), x ∈ Ω.
(7)

For (7), the residual loss Lr(θ) of (2) is explicitly expressed
by:

Lr(θ) =
1

Nr

Nr∑
i=1

∣∣∂tuθ
(
tir,x

i
r

)
−∂xxu

θ
(
tir,x

i
r

)
− ∂yyu

θ
(
tir,x

i
r

)∣∣2 ,
(8)

In our SINNs, the loss function is in the spectral domain
without the boundary constraint due to the periodic feature
of the Fourier basis. Thus the loss function L (θ) is trans-
ferred to:

L̃(θ) = L̃ic(θ) + L̃r(θ), (9)

where

L̃r(θ) =
1

Nr

Nr∑
i=1

∣∣∂tûθ
(
tir,k

i
)

+
(
kix

)2
ûθ

(
tir,k

i
)
+

(
kiy

)2
ûθ

(
tir,k

i
)∣∣∣2 ,

L̃ic(θ) =
1

Nic

Nic∑
i=1

∣∣ûθ
(
0,ki

)
− g

(
ki
)∣∣2 ,

(10)
and ki = (kix, k

i
y) ∈ [−N/2, N/2− 1]

2 is the sampled
frequency from spectral domain. Here we use L̃ to refer to
the loss function associated with the spectral form.

3.2. Importance optimization

Compared to PINNs, the main divergence is the importance
of different input points. Although the literature on sam-
pling method (Tang et al., 2023; Wu et al., 2023; Lu et al.,
2021) shows that the importance of the input points in the
physics domain can be dependent on the corresponding
residual. Generally speaking, every point is equally impor-
tant without any prior knowledge. But for SINNs, normally
the importance decreases as the corresponding frequency
k increases. For instance, the energy spectrum in the in-
ertial ranges of 2-D turbulence (described by the 2-D NS
equation) satisfies the scaling relation (Kraichnan, 1967):∑

n− 1
2≤|k|<n+ 1

2

|û (t,k) |2 ∼ n−3. (11)

Similar physical analysis can be performed for 1-D prob-
lems, and the physical background demonstrates that the
Fourier coefficient û decreases rapidly as an increase in
frequency due to the effect of viscosity. In practical, com-
prehensive experiments in Fourier Neural Operator (Li et al.,
2020) show that the truncated Fourier modes can contain
most features of the PDEs. Herein, PINNs learn every input
point equally, while SINNs are supposed to learn the low-
frequency points preferentially. To train the network based
on the aforementioned divergence, we propose the sampling
method by prior importance:

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Spectral Informed Neural Network

x

t
u

∂u
∂t

∂u
∂x

L

input
layer

hidden layers

output
layer

(a) PINNs

k

t
û

∂û
∂t

kû
L

input
layer

hidden layers

output
layer

(b) SINNs

Figure 2. Comparison of PINNs and SINNs. In PINNs, the input is the spatial and temporal grid points (x, t) from the domain, the output
is the physical solution u(x, y). In SINNs, the input is the frequency of the Fourier basis k and the temporal grid points t, the output is the
coefficients û(k, t) in the spectral domain. Refer to (4), the derivative ∂u

∂t
is replaced by ∂û

∂t
, and ∂u

∂x
is replaced by kû.

Suppose p(k) is the probability density function (PDF) used
to sample the residual points, we define p(k) in SINNs :

p(k) ∝ tanh
[
α
(
∥k∥mix∥k∥−γ

∞ −N1−γ
)]

,−∞ ≤ γ < 1,
(12)

where α, γ,N are hyperparameters, ∥k∥mix =
Πd

j=1 max{1, nj}. p(k) makes SINNs sample more
points on the low frequencies and less points on the high
frequencies and is shown to be valid in sparse spectral
methods for high-dimensional problems, named optimized
hyperbolic cross (Shen & Yu, 2010). To demonstrate its
distribution intuitively, in Figure 3, we demonstrate how γ
influence p(k) where k ∈ [0, 51]2.

0 10 20 30 40 50
kx

0

10

20

30

40

50

k y

(a) γ = 1

0 10 20 30 40 50
kx

0

10

20

30

40

50

k y

(b) γ = 0.5

0 10 20 30 40 50
kx

0

10

20

30

40

50

k y

(c) γ = 0

0 10 20 30 40 50
kx

0

10

20

30

40

50

k y

(d) γ = −1

0 10 20 30 40 50
kx

0

10

20

30

40

50

k y

(e) γ = −5

0 10 20 30 40 50
kx

0

10

20

30

40

50

k y

(f) γ = −10

Figure 3. With the γ increases, the values of p(k) near the diagonal
will become larger. Moreover, the closer a point is to the diagonal
line, the more significant the magnitude of this increase becomes.
In this demonstration, α = 10, N = 55.

3.3. Spectral convergence

Regardless of the convergence analysis in temporal domain3,
assume that the capability of MLP is powerful enough,
u ∈ C∞(Ω,R) is a smooth function from a subset Ω of
a Euclidean R space to a Euclidean space R, and N is the
number of discretized points.

Firstly, let’s review the convergence rate of PINNs. Suppose
u∗ is the exact solution in the domain Ω and

θ∗ ≜ argmin
θ

∫
Ω

Lr

[
uθ(x)

]
dx,

θ∗N ≜ argmin
θ

N∑
i=1

Lr

[
uθ(xi)

]
.

(13)

Then

∥uθ∗
N − u∗∥Ω ≤ ∥uθ∗

N − uθ∗∥Ω
statistical error

+ ∥uθ∗ − u∗∥Ω
approximation error

, (14)

where approximation error depends on the capability of
PINNs. As the capability of MLP is powerful enough,
∥uθ∗ − u∗∥Ω ≪ ∥uθ∗

N − uθ∗∥Ω. Additionally, based on
the Monte Carlo method, the statistical error is O

(
N−1/2

)
(Quarteroni et al., 2006), then:

∥uθ∗
N − u∗∥Ω = O

(
N−1/2

)
. (15)

As for SINNs, with N discretized points, the truncated u∗

3Generally, the temporal error is much smaller than spatial
error so we ignore the temporal error in this analysis.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Spectral Informed Neural Network

is u∗
N =

∑N/2−1
k=−N/2 û

∗(k)eikx, suppose

θ̃∗N ≜ argmin
θ

N∑
i=1

L̃r

[
ûθ(ki)

]
. (16)

Then

∥uθ̃∗
N − u∗∥Ω ≤ ∥uθ̃∗

N − u∗
N∥Ω + ∥u∗

N − u∗∥Ω
spectral error

(17)

As the capability of MLP is powerful enough, ∥uθ̃∗
N −

u∗
N∥Ω ≤ ∑N/2−1

k=−N/2 ∥ûθ̃∗
N (k)− û∗(k)∥ = 0. Furthermore,

as the spectral error is exponential convergence (Canuto
et al., 1988), then:

∥uθ̃∗
N − u∗∥Ω = o(N−s), ∀s > 0. (18)

Thus, the convergence rate of SINNs is o(N−s) for any
s > 0 while the convergence rate of PINNs is O(N−1/2).

3.4. The basis function of SINNs

In principle, any basis function can be accommodated in
SINNs, especially when dealing with non-periodic prob-
lems, Fourier basis functions are not a reasonable choice.
However, an exhaustive exploration of all possible basis
functions is neither crucial nor necessary in this paper.
Therefore, we primarily focus on the Fourier basis func-
tion, and the reasons are as follows:

1. Fourier basis function has Faster Fourier Transform
(FFT) which can reduce the complexity of computing
operator F .

2. Due to the FFT, researchers (Shen et al., 2011; Tre-
fethen, 2000) are exploring transformations to trans-
form other basis functions into Fourier basis func-
tions to take advantage of the FFT for fast compu-
tation. Herein, after the corresponding transformation
of PDEs, Fourier basis functions can transfer to other
basis functions.

3. The multiplier of the multiplication operator kû in
Fourier basis function is exactly the input k. For other
basis functions, SINNs should derive at least one extra
input dataset with the same size as the original input
dataset.

4. The conjugate symmetry property of the Fourier trans-
form of real-valued functions reduces the size of the
input dataset from Nd to N(N2 + 1).

4. Experiments
To demonstrate the performance of the proposed SINNs,
we conducted comprehensive experiments including linear

and nonlinear equations from 1D to 3D. The details of the
equations and training hyperparameters are available in Ap-
pendix D, the metric used in our experiments is relative L2
error (Appendix D.3).

As SINN is a network that mainly changes the type the input
and output, and the form of loss function, some strategies
can be implemented easily in SINNs. We put those exper-
iments in Section 4.5. Herein, for comparison, we choose
two representative methods that cannot be used in SINNs:
1) VSPINN (hoon Song et al., 2024) splits high-order PDEs
into 1-order PDE systems. As SINNs compute the high-
order derivatives in spectral space, VSPINN is not suitable
for SINN. 2) gPINN (Yu et al., 2022) enhances PINN by
adding a gradient-based regulation. SINN will change the
gradient-based regulation to multiplication by a scaler, and
any number multiplied by zero is naturally zero, so gPINN
isn’t suitable for SINN. Thus, we only include VSPINN
and gPINN as baselines. The main results are depicted in
Figures 4 and 5. To demonstrate the results intuitively, the
detailed data including the statistical variances are shown
in Tables 7 and 8. Additionally, as SINNs are more effi-
cient than PINNs, we also discussed the training time in
Appendix G. Tables 9 and 10 reveals that, under the same
hyperparameters of training, SINN can reduce the training
time by a maximum of 39.26%.

10 5

10 4

10 3

10 2

PINN
VSPINN
gPINN
SINN

(a) cd

10 3

10 2

PINN
VSPINN
gPINN
SINN

(b) diffusion

10 3

PINN
VSPINN
gPINN
SINN

(c) burgers

10 3

10 2

10 1 PINN
VSPINN
gPINN
SINN

(d) heat 2d

10 3

10 2
PINN
VSPINN
gPINN
SINN

(e) heat random

10 1

8 × 10 2

9 × 10 2

PINN
VSPINN
gPINN
SINN

(f) heat 3d

Figure 4. We tested divergence experiments including convention-
diffusion equations in (a); diffusion equations in (b); heat equations
in (d),(e), (f); and burgers’ equations in (c).

4.1. Preserve physical laws by projections

SINNs can preserve physical laws by simple projections in
the spectral domain instead of the soft constraint in the loss
function of PINNs. For example, the continuity equation in
the Navier-Stokes (NS) equation: ∇u = 0 can be preserved
by the projection in the spectral domain, in our experiments,

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Spectral Informed Neural Network

we use the projection û =
(
1− kk

|k|2 ·
)
û. And such kind of

strict constraint can obtain a more accurate solutions. The
results of Navier-stokes equations are shown in Figure 5
and the predicted solutions and target solutions are depicted
in Figure 10. Besides, we also provide the snapshots in
Figures 11 and 12.

u v

6 × 10 4

7 × 10 4

PINN
VSPINN
gPINN
SINN

(a) ns tg

u v

10 3

10 2

PINN
VSPINN
gPINN
SINN

(b) ns random

Figure 5. Navier–Stokes equations (24) describe the motion of
viscous fluid substances, and spectral methods have large-scale
applications in fluid dynamics (Canuto et al., 1988; Li et al., 2008).
our experiments show that SINNs excel PINN and its variants
in both classical Taylor–Green vortex Figure 5(a) and randomly
generated initial condition (see Appendix D and Figure 10) Fig-
ure 5(b).

4.2. Different order of derivatives

To demonstrate the efficiency between our SINNs and
PINNs, we consider a specific one-dimensional (1-D) hyper-
diffusion equation with different order of derivatives:

∂u

∂t
− ϵ

∂pu

∂xp
= 0, x ∈ [0, 2π] , t ∈ [0, T] ,

u(0, x) =

N−1∑
k=0

sin(kx),
(19)

where p is the order of the spatial derivatives. To balance the
solution of different orders, we set ϵ = 0.2p, T = 0.1 in our
experiments. Taylor mode as a faster method to compute
AD by the function jet (Bettencourt et al., 2019) is set to be
a baseline. The results are shown in Figure 1 and Table 1.

Training time One may argue that in Table 1, for the most
general derivative term p = 2, PINNs are more efficient than
SINNs. It is because SINNs have the imaginary part thus the
output channels are double the output channels of PINNs.
However, we have a more comprehensive comparison in
Appendix G, and the conclusion is: if the spacial derivative
terms are more than one second-order derivative, including
one third-order derivative, or one second-order derivative
plus one first-order derivative, our SINNs are more efficient
than PINNs; otherwise, PINNs are more efficient.

4.3. Different spectral structures

For most problems, the structure of coefficients in the spec-
tral domain is much easier than the structure of solutions
in the physical domain. Mathematically speaking, for a
dense matrix U discretized from the solution u(x, y), the
matrix Û = FUFT is always sparse. Generally, learning a
sparse matrix is easier than learning a dense matrix. Thus to
verify that the capability of SINNs is not only for the low-
frequency solutions, experiments on the diffusion equation
((20)) are implemented with different N :

ut + aux − ϵuxx = 0, x ∈ [0, 2π] , t ∈ [0, T] ,

u(0, x) =

N−1∑
k=0

sin (kx) ,
(20)

where ϵ = 0.01, a = 0.1. Because the analytic solution
of (20) is u(t, x) =

∑N−1
k=0 sin (kx− kat) e−ϵk2t which

the high-frequency decays exponentially with t, we set
T = 0.1 in this experiment4. As we discretize the solu-
tion to 100 spatial points, because of the conjugate symme-
try property of the Fourier transform of real-valued func-
tions, the maximum N is 51. Thus in our experiments
N = {5, 7, 9, 15, 23, 30, 50}.

10 20 30 40 50
N

10 5

10 4

10 3

10 2

10 1

re
la

tiv
e

er
ro

r

PINN
SINN

(a) Relative error
for different N

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

target
PINN
SINN

(b) N = 23

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

target
PINN
SINN

(c) N = 30

Figure 6. In experiments for the diffusion equation (20) with dif-
ferent N . The relative error with N is plotted in (a). And the
solutions of N = 23 and 30 are shown in (b) and (c), respectively.
Those results indicate that SINNs are robust even with complex
spectral structures. The detailed data are presented in Table 6.

Compared to PINNs, Figure 6 indicates SINNs are more
robust even when learning a pretty complex structure in the
spectral domain. Notably, although the solution of N = 30

4For long temporal domain experiments, see Tables 3 to 5

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Spectral Informed Neural Network

Table 1. Comparison of the experiments for (19) with different order. ’-’ means we can’t obtain the value because of the limitations of
training time.

p Relative error Training time (hours) Memory allocated (GB)

PINN

2 7.35× 10−2 ± 7.07× 10−4 0.17 1.18
4 1.10× 10−2 ± 7.30× 10−3 0.5 2.81
6 2.16× 10−2 ± 1.75× 10−3 4.39 9.06
8 - - 26.65
10 - - 76.71

Taylor mode

2 7.17× 10−2 ± 2.28× 10−5 0.34 0.92
4 1.14× 10−2 ± 4.32× 10−5 0.48 1.06
6 5.53× 10−2 ± 7.27× 10−4 0.77 1.68
8 4.66× 10−2 ± 3.36× 10−4 0.98 3.00
10 5.14× 10−2 ± 3.73× 10−4 1.64 3.06

SINN

2 2.06× 10−3 ± 1.51× 10−3 0.33 1.19
4 1.67× 10−3 ± 3.25× 10−4 0.33 1.19
6 1.23× 10−2 ± 1.36× 10−3 0.33 1.19
8 8.33× 10−3 ± 1.91× 10−4 0.33 1.19
10 5.40× 10−3 ± 2.33× 10−4 0.35 1.19

is similar to the solution N = 23, PINN also performs
worse because of the spectral bias (Xu et al., 2019; Wang
et al., 2022b).

4.4. Hyperparameters of SI

In this section, we provide an experiment on how to choose
the hyperparameters of SI. To tune the hyperparameters,
one should consider some prior information from the dis-
tribution of the Fourier coefficients: a smaller alpha im-
plies a clearer dividing line and a lower probability of low-
importance points being picked; a smaller N means fewer
points are regarded as high-importance points; the func-
tion of γ is shown in Figure 3. We experimented with
convection-diffusion equations to show the influence of hy-
perparameters. The results are shown in Figure 7 and the
details including statistical variances can be found in Ap-
pendix H. Additionally, We conducted an ablation study on
SINNs without SI, and the relative error of heat equation
(31) is: 1.51× 10−3 ± 1.08× 10−3. Utilizing the best one
of SI can increase the accuracy by 89.01%.

4.5. Combining SINN with other strategies

Since SINN mainly changes the type of both input and out-
put and the form of the loss function, it can be directly
combined with other strategies including the weights for
every objective function (Causality (Wang et al., 2022a),
NTK (Wang et al., 2021)), the optimizer (L-BFGS (Liu
& Nocedal, 1989)) and the architecture (Fourier Embed-
ding(FE) (Tancik et al., 2020), Transformer (Zhao et al.,
2023))). Those experiments are conducted on convection-
diffusion equations (27) with ϵ = 0.5, a = 1, T = 10.

1.0 0.5 0.0 -1.0 -5.0 -10.0

(100,100)

(100,50)

(1,100)

(1,50)

(
,N

)

9.28e-04 1.66e-04 3.49e-02 3.51e-04 7.04e-03 6.66e-03

9.28e-04 1.94e-04 3.60e-04 3.23e-01 8.07e-04 3.15e-02

1.37e-03 1.26e-03 1.64e-03 7.16e-04 7.71e-03 3.34e-01

1.37e-03 1.04e-03 9.34e-03 2.72e-02 2.81e-03 1.48e-03

Figure 7. Hyperparameters study of SI, the x-axis is γ, the y-axis
is a pair of (α,N). The best hyperparameters are α = 100, N =
100, γ = 0.5, and the corresponding relative L2 error is 1.66 ×
10−4 ± 1.11× 10−4. This figure also reveals that smaller γ and
larger α are better for heat equation (31).

The results are shown in Table 2. Although those methods
obtain better results, it will take evident extra computation
costs.

5. Conclusion and future work
In this paper, we propose the Spectral Informed Neural
Network (SINN) as a novel approach for solving partial
differential equations (PDEs) in the spectral domain. The
crucial divergence between the physical domain and the
spectral domain is the importance of input points, and there-
fore we introduce a specialized training strategy tailored

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Spectral Informed Neural Network

Table 2. SINN + strategies

Method Relative error

SINN 3.17× 10−3 ± 1.45× 10−3

+ Causality 1.72× 10−3 ± 7.02× 10−4

+ NTK 2.17× 10−3 ± 4.53× 10−4

+ FE 1.46× 10−3 ± 5.05× 10−4

+ Transformer 2.82× 10−3 ± 3.87× 10−4

+ L-BFGS 2.61× 10−3 ± 5.78× 10−3

to the features of the spectral domain. The chosen Fourier
basis and the faster Fourier transform help us compute the
spatial derivatives as well as train the neural network with re-
markable efficiency and low memory allocation. Moreover,
the inherent exponential accuracy of the spectral method
endows SINNs with superior capabilities for solving PDEs.
To validate the performance of SINNs, we conducted a
comprehensive series of experiments on both linear and
nonlinear PDEs. The results of these experiments serve as
concrete evidence that SINNs not only substantially reduce
training time but also bring about significant improvements
in solution accuracy. This makes SINNs a highly promis-
ing tool for scientific research and engineering applications
where efficient and accurate PDE solving is of paramount
importance.

Limitations The current SINNs also inherit the disadvan-
tages of spectral methods, for some PDEs with complex
geometries or detailed boundaries in more than one space
variable would cause spectral methods to collapse, and so
would SINNs.

Future Apart from the positive results shown in this pa-
per, the above limitations remain to be investigated further
in the future. For the inherited disadvantages from spec-
tral methods, in essence, the spectral method is a specific
type of collocation methods that rely on selected basis func-
tions satisfying boundary conditions. Similar to the spectral
methods, the collocation methods ensure the residual of the
target equation approaches zero at the collocation points
associated with the basis functions. Therefore, the SINNs
could be developed based on the valuable insights of earlier
studies (Canuto et al., 1988) on collocation methods.

Furthermore, some tricks in classical spectral methods can
be investigated, for example,

1. Compressive Sampling (Candès et al., 2006; Bayındır,
2016) can be studied on SINNs to further reduce the
training time.

2. The smoothed series SN [u](t, x) =

∑N/2−1
k=−N/2 σkû(t, k)e

ikx can help SINNS to handle
PDEs with discontinuous solutions or sharp transitions.

References
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,

J. M. Automatic differentiation in machine learning: a
survey. Journal of machine learning research, 18(153):
1–43, 2018.

Bayındır, C. Compressive spectral method for the simulation
of the nonlinear gravity waves. Scientific reports, 6(1):
22100, 2016.

Bendtsen, C. and Stauning, O. Tadiff, a flexible c++ pack-
age for automatic differentiation. TU of Denmark, De-
partment of Mathematical Modelling, Lungby. Technical
report IMM-REP-1997-07, 1997.

Bettencourt, J., Johnson, M. J., and Duvenaud, D. Taylor-
mode automatic differentiation for higher-order deriva-
tives in JAX. In Program Transformations for ML Work-
shop at NeurIPS 2019, 2019.

Candès, E. J. et al. Compressive sampling. In Proceedings of
the international congress of mathematicians, volume 3,
pp. 1433–1452. Madrid, Spain, 2006.

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang,
T. A. Spectral Methods in Fluid Dynamics. Scien-
tific Computation. Springer Berlin, Heidelberg, 1 edi-
tion, 1988. ISBN 978-3-642-84108-8. doi: https:
//doi.org/10.1007/978-3-642-84108-8.

Cen, J. and Zou, Q. Deep finite volume method for partial
differential equations. Journal of Computational Physics,
pp. 113307, 2024.

Fang, Z. and Zhan, J. A physics-informed neural network
framework for PDEs on 3D surfaces: Time independent
problems. IEEE Access, 8:26328–26335, 2019.

Gao, H., Sun, L., and Wang, J.-X. PhyGeoNet: Physics-
informed geometry-adaptive convolutional neural net-
works for solving parameterized steady-state PDEs on
irregular domain. Journal of Computational Physics, 428:
110079, 2021.

Gottlieb, D. and Orszag, S. A. Numerical analysis of spec-
tral methods: theory and applications. SIAM, 1977.

Gottlieb, S. and Shu, C.-W. Total variation diminishing
Runge-Kutta schemes. Math. Comput., 67:73–85, 1998.

Griewank, A. and Walther, A. Evaluating derivatives:
principles and techniques of algorithmic differentiation.
SIAM, 2008.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Spectral Informed Neural Network

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

hoon Song, C., Park, Y., and Kang, M. How does pde order
affect the convergence of pinns? In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Hornik, K. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

Hou, T. Y. and Li, R. Computing nearly singular solutions
using pseudo-spectral methods. Journal of Computa-
tional Physics, 226(1):379–397, 2007. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2007.04.014.

Hu, Z., Shi, Z., Karniadakis, G. E., and Kawaguchi, K.
Hutchinson trace estimation for high-dimensional and
high-order physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 424:
116883, 2024.

Jin, X., Cai, S., Li, H., and Karniadakis, G. E. NSFnets
(Navier-Stokes flow nets): Physics-informed neural net-
works for the incompressible Navier-Stokes equations.
Journal of Computational Physics, 426:109951, 2021.

Karczmarczuk, J. Functional differentiation of computer
programs. Acm sigplan notices, 34(1):195–203, 1998.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kraichnan, R. H. Inertial ranges in two-dimensional tur-
bulence. The Physics of Fluids, 10(7):1417–1423, 1967.
ISSN 0031-9171. doi: 10.1063/1.1762301.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. Artificial neu-
ral networks for solving ordinary and partial differential
equations. IEEE transactions on neural networks, 9(5):
987–1000, 1998.

Laurel, J., Yang, R., Ugare, S., Nagel, R., Singh, G., and
Misailovic, S. A general construction for abstract inter-
pretation of higher-order automatic differentiation. Pro-
ceedings of the ACM on Programming Languages, 6
(OOPSLA2):1007–1035, 2022.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C.,
Burns, R., Chen, S., Szalay, A., and Eyink, G. A public
turbulence database cluster and applications to study la-
grangian evolution of velocity increments in turbulence.
Journal of Turbulence, 9:N31, 2008.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions, 2020.

Liu, D. C. and Nocedal, J. On the limited memory bfgs
method for large scale optimization. Mathematical pro-
gramming, 45(1):503–528, 1989.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. Deep-
XDE: A deep learning library for solving differential
equations. SIAM review, 63(1):208–228, 2021.

Lucas, J. F. Introduction to abstract mathematics. Rowman
& Littlefield, 1990.

Lyu, L., Zhang, Z., Chen, M., and Chen, J. Mim: A deep
mixed residual method for solving high-order partial dif-
ferential equations. Journal of Computational Physics,
452:110930, 2022.

Mao, Z., Jagtap, A. D., and Karniadakis, G. E. Physics-
informed neural networks for high-speed flows. Com-
puter Methods in Applied Mechanics and Engineering,
360:112789, 2020.

Misyris, G. S., Venzke, A., and Chatzivasileiadis, S. Physics-
informed neural networks for power systems. In 2020
IEEE power & energy society general meeting (PESGM),
pp. 1–5. IEEE, 2020.

Orszag, S. A. Numerical simulation of incompressible flows
within simple boundaries: accuracy. Journal of Fluid
Mechanics, 49(1):75–112, 1971. ISSN 0022-1120. doi:
10.1017/S0022112071001940.

Quarteroni, A., Sacco, R., and Saleri, F. Numerical mathe-
matics, volume 37. Springer Science & Business Media,
2006.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Rao, C., Ren, P., Wang, Q., Buyukozturk, O., Sun, H., and
Liu, Y. Encoding physics to learn reaction–diffusion
processes. Nature Machine Intelligence, 5(7):765–779,
2023.

Ren, P., Rao, C., Liu, Y., Wang, J.-X., and Sun, H. PhyCR-
Net: Physics-informed convolutional-recurrent network
for solving spatiotemporal PDEs. Computer Methods in
Applied Mechanics and Engineering, 389:114399, 2022.

Rubinstein, R. Y. and Kroese, D. P. Simulation and the
Monte Carlo method. John Wiley & Sons, 2016.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Spectral Informed Neural Network

Sharma, R. and Shankar, V. Accelerated training of physics-
informed neural networks (pinns) using meshless dis-
cretizations. Advances in Neural Information Processing
Systems, 35:1034–1046, 2022.

Shen, J. and Yu, H. Efficient spectral sparse grid methods
and applications to high-dimensional elliptic problems.
SIAM Journal on Scientific Computing, 32(6):3228–3250,
2010.

Shen, J., Tang, T., and Wang, L.-L. Spectral methods: algo-
rithms, analysis and applications, volume 41. Springer
Science & Business Media, 2011.

Shi, Z., Hu, Z., Lin, M., and Kawaguchi, K. Stochas-
tic taylor derivative estimator: Efficient amortization
for arbitrary differential operators. arXiv preprint
arXiv:2412.00088, 2024.

Sliwinski, L. and Rigas, G. Mean flow reconstruction of
unsteady flows using physics-informed neural networks.
Data-Centric Engineering, 4:e4, 2023.

Tan, S. Higher-Order Automatic Differentiation and Its Ap-
plications. PhD thesis, Massachusetts Institute of Tech-
nology, 2023.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron,
J., and Ng, R. Fourier features let networks learn high fre-
quency functions in low dimensional domains. Advances
in neural information processing systems, 33:7537–7547,
2020.

Tang, K., Wan, X., and Yang, C. DAS-PINNs: A deep
adaptive sampling method for solving high-dimensional
partial differential equations. Journal of Computational
Physics, 476:111868, 2023.

Trefethen, L. N. Spectral methods in MATLAB. SIAM,
2000.

Wang, M. High Order Reverse Mode of Automatic Differen-
tiation. PhD thesis, Purdue University, 2017.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

Wang, S., Sankaran, S., and Perdikaris, P. Respecting causal-
ity is all you need for training physics-informed neural
networks. arXiv preprint arXiv:2203.07404, 2022a.

Wang, S., Yu, X., and Perdikaris, P. When and why PINNs
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022b.

Wojtowytsch, S. and Weinan, E. Can shallow neural net-
works beat the curse of dimensionality? a mean field
training perspective. IEEE Transactions on Artificial
Intelligence, 1(2):121–129, 2020.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. A compre-
hensive study of non-adaptive and residual-based adaptive
sampling for physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering,
403:115671, 2023.

Xia, M., Böttcher, L., and Chou, T. Spectrally adapted
physics-informed neural networks for solving unbounded
domain problems. Machine Learning: Science and Tech-
nology, 4(2):025024, 2023.

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z. Fre-
quency principle: Fourier analysis sheds light on deep
neural networks. arXiv preprint arXiv:1901.06523, 2019.

Yang, L., Meng, X., and Karniadakis, G. E. B-PINNs:
Bayesian physics-informed neural networks for forward
and inverse PDE problems with noisy data. Journal of
Computational Physics, 425:109913, 2021.

Yu, B. et al. The deep Ritz method: a deep learning-based
numerical algorithm for solving variational problems.
Communications in Mathematics and Statistics, 6(1):1–
12, 2018.

Yu, J., Lu, L., Meng, X., and Karniadakis, G. E. Gradient-
enhanced physics-informed neural networks for forward
and inverse pde problems. Computer Methods in Applied
Mechanics and Engineering, 393:114823, 2022.

Zhao, Z., Ding, X., and Prakash, B. A. Pinnsformer: A
transformer-based framework for physics-informed neu-
ral networks. arXiv preprint arXiv:2307.11833, 2023.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Spectral Informed Neural Network

A. Faà di Bruno’s formula
Given f, g are sufficiently smooth functions, Faà di Bruno’s formula states that the n-th derivative of f (g (x)) is a sum of
products of various orders of derivatives of the component functions:

dp

dxp
f(g(x)) = (f ◦ g)(p)(x) =

∑
π∈Π

f (|π|)(g(x)) ·
∏
B∈π

g(|B|)(x),

where Π is the set of all partitions of the set {1, . . . , p}, |π| is the number of blocks in the partition π, and |B| is the number
of elements in the block B. Since Faà di Bruno’s formula is a generalization of the chain rule used in first-order, one can
directly apply this formula to achieve accurate higher-order AD efficiently by avoiding a lot of redundant computations.
However, the total number of partitions of an n-element set is the Bell number (Lucas, 1990): #{Π} = Bp =

∑p
k=0

(
p
k

)
Bk

which still increases exponentially with the differentiation order n.

B. Taylor mode
Here we consider computing the derivative of f ◦ g (i.e. one-layer networks). One may derive the derivative for multi-layer
networks by recursion. Consider the polynomial function x : R → Rn

x(t) = x0 + x1t+
1

2!
x2t

2 + · · ·+ 1

d!
xdt

d. (21)

For a sufficiently smooth vector-valued function f : Rn → Rm, suppose y = (f ◦ x)(t) :: R → Rm, and the truncated
Taylor polynomial is

y(t) = y0 + y1t+
1

2!
y2t

2 + · · ·+ 1

d!
ydt

d. (22)

obviously, yi = di

dti (f ◦ x)(t). However, if x(t) is a Taylor polynomial, i.e. xi =
di

dtix(t), then we can derive that:

y0 = f(x0)

y1 = f ′(x0)
dx

dt
= f ′(x0)x1

y2 = f ′(x0)
d2x

dt2
+ f ′′(x0)

(
dx

dt

)2

= f ′(x0)x2 + f ′′(x0)x
2
1

...

(23)

The above expansions exactly correspond to the expressions for the higher order derivatives given by Faà di Bruno’s formula.
Herein, one can use the coefficients of y(t) as derivative coefficients. This method has already been implemented by
jax.experimental.jet module.

C. Loss functions for Navier-Stokes equations
The mathematical model describing incompressible flows of turbulence problems is the incompressible NS equation, namely,

∇ · u = 0, t ∈ [0, T], x ∈ Ω, (24a)

∂tu+ u · ∇u = −∇p+ ν△u, t ∈ [0, T], x ∈ Ω, (24b)

u(0,x) = g(x), x ∈ Ω, (24c)

where ∇ = (∂x, ∂y) is the gradient operator, u(t,x) = (u, v) is the hydrodynamic velocity, p(t,x) is the mechanical
pressure, △ = ∇ · ∇ is the Laplace operator, and ν is kinematic viscosity. By Fourier transform and appropriate derivation
tricks (see Appendix F), the continuity equation (24a) and momentum equation (24b) can be expressed in the spectral
domain:

k · û = 0, (25a)

∂tû = −
(
1− kk·

|k|2
)
N̂ − ν|k|2û, (25b)

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Spectral Informed Neural Network

where |k|2 = k · k is the inner product for k = (kx, ky), and N̂ is the non-linear term in the spectral domain, which has
the rotational form N = (∇× u)× u in the physical space (Canuto et al., 1988). The continuity equation (25a) can be
preserved strictly by the projection in our SINNs; however, the non-linear term has the challenge of dealing with the aliasing
error which is solved by pseudo-spectral methods. To deal with the aliasing error, the loss function is

L̃r(θ) =
1

Nr

Nr∑
i=1

∣∣∣∣F−1[∂tû
(
tir,k

)
] + F−1

[(
1− kk·

|k|2

)
N̂

(
tir,k

)]
+ νF−1

[
|k|2û

(
tir,k

)]∣∣∣∣2 . (26)

D. Details of Experiments
In the following experiments, we proceed by training the model via stochastic gradient descent using the Adam (Kingma &
Ba, 2014) optimizer with the exponential decay learning rate. The hyperparameters for exponential decay are: the initial
learning rate is 10−3, the decay rate is 0.95 and the number of transition steps is 10000. The MLP is equipped with the
Sigmoid Linear Unit (SiLU) activations and Xavier initialization.

Note that there is no injection of external source terms in our experiments, resulting in a decay of the quantities, including
temperature and energy, over time. As time increases, the related functions gradually become smoother, and the overall flow
field tends to be constant. Herein, to distinctly demonstrate the advantages and performance of our SINNs, the temporal
domain is restricted to the interval when the flow field undergoes significant changes. Additionally, we experimented in a
long temporal domain for the 1-D convection-diffusion equation with periodic boundary conditions.

D.1. The experiments on linear equations

D.1.1. 1-D PROBLEMS

In 1-D problems, we discretize the spatial domain to 100 points and the temporal domain to 100 points, thus the total size of
the discretization for PINNs is 100× 100. Thanks to the symmetric of real functions in the spectral domain, the total size of
the discretization for SINNs is 51× 100. The MLP we used for both PINNs and SINNs is 10× 100: 10 layers and every
hidden layer has 100 neurons. We train both PINNs and SINNs for 5× 105 iterations.

Convection-diffusion equation (cd) Our first experiment is the 1-D convection-diffusion equation with periodic boundary
conditions, and the convection-diffusion equation can be expressed as follows:

ut + aux − ϵuxx = 0, x ∈ [0, 2π] , t ∈ [0, T] ,

u(0, x) =

N−1∑
k=0

sin (kx) ,
(27)

with the analytic solution

u(t, x) =

N−1∑
k=0

sin (kx− kat) e−ϵk2t, (28)

where T = 0.1, ϵ = 0.01, a = 0.1, and N = 6 in our experiments.

Additionally, to verify our methods on long temporal domain, we did two experiments one is T = 1 (discretize to 100
points) and another is T = 10 (discretize to 1000 points). The results are in Table 3 and Table 4 respectively.

Table 3. Long temporal domain of T = 1

t(s) 0.10 0.30 0.50 0.70 0.90 1.00

relative error 1.43× 10−5 1.55× 10−5 1.39× 10−5 1.44× 10−5 1.47× 10−5 1.49× 10−5

Furthermore, for a more complex problem with larger coefficients ϵ = 0.5, a = 1, we provide the results in Table 5.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Spectral Informed Neural Network

0 20 40 60 80 100
x

3

2

1

0

1

2

3

u
t:1.00,relative error: 8.858e-05

target
SINN(SI)

0 20 40 60 80 100
x

3

2

1

0

1

2

3

u

t:3.00,relative error: 6.478e-05
target
SINN(SI)

0 20 40 60 80 100
x

2

1

0

1

2

u

t:5.00,relative error: 6.587e-05
target
SINN(SI)

0 20 40 60 80 100
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

t:7.00,relative error: 4.976e-05
target
SINN(SI)

0 20 40 60 80 100
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

t:9.00,relative error: 3.963e-05
target
SINN(SI)

0 20 40 60 80 100
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

t:10.00,relative error: 4.210e-05
target
SINN(SI)

Figure 8. Lone temporal domain experiment of T = 10, with the time t increases, the function becomes smoother and the relative error
becomes even smaller.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Spectral Informed Neural Network

Table 4. Long temporal domain of T = 10

t(s) 1.00 3.00 5.00 7.00 9.00 10.00

relative error 8.86× 10−5 6.48× 10−5 6.59× 10−5 4.98× 10−5 3.96× 10−5 4.21× 10−5

Table 5. A more complex equation on the long temporal domain of T = 10

t(s) 1.00 3.00 5.00 7.00 9.00 10.00

relative error 1.76× 10−4 4.80× 10−4 1.51× 10−3 8.18× 10−4 3.39× 10−3 6.33× 10−4

Diffusion equation (diffusion) Another set of experiments on 1-D linear equations is about the diffusion equation, which
can be written as

ut = ϵuxx, x ∈ [0, 2π] , t ∈ [0, T] ,

u(0, x) =

N−1∑
k=0

sin(kx),
(29)

with the analytic solution

u(t, x) =

N−1∑
k=0

sin(kx)e−ϵk2t, (30)

where T = 0.1 and ϵ = 1.0 in our experiments. Based on PINNs and SINNs with sampling by importance, Figure 6
illustrates two groups of experiments with varied N Besides, Table 7 shows the experimental results with N = 23, while
Table 6 presents more results with different N .

Table 6. Comparison of the relative errors for the diffusion equation with different N in (30)

N PINN SINN

5 6.07× 10−5 ± 3.17× 10−5 3.71× 10−6 ± 1.59× 10−7

7 2.00× 10−4 ± 4.04× 10−5 2.66× 10−5 ± 1.54× 10−6

9 1.75× 10−4 ± 7.42× 10−5 2.82× 10−5 ± 8.11× 10−6

15 2.38× 10−3 ± 1.80× 10−3 9.17× 10−5 ± 2.62× 10−5

23 2.33× 10−2 ± 1.21× 10−2 4.15× 10−4 ± 1.58× 10−4

30 3.19× 10−2 ± 1.80× 10−2 2.13× 10−3 ± 3.91× 10−4

50 6.55× 10−2 ± 3.22× 10−2 2.37× 10−2 ± 6.89× 10−3

One may observe that the weighted loss method fails when N > 30. Because the weighted loss forces SINNs to pay more
attention to the low-frequency part, SINNs with weighted loss will abandon the high-frequency if the loss on low-frequency
is not small enough.

D.1.2. 2-D PROBLEMS

In 2-D problems, the MLP we used for both PINNs and SINNs is 10 × 100: 10 layers and every hidden layer has 100
neurons. We train both PINNs and SINNs for 106 iterations.

Heat equation with analytic solution (heat 2d) For a 2-D linear problem, the heat equation with the following initial
condition is considered here:

ut = ϵ (uxx + uyy) , x ∈ [0, 2π]2, t ∈ [0, T],

u(0,x) =

N−1∑
k=0

[sin (kx) + sin (ky)] ,
(31)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Spectral Informed Neural Network

with the analytic solution

u(t, x) =

N−1∑
k=0

[sin (kx) + sin (ky)] e−ϵk2t, (32)

where T = 0.01, ϵ = 1.0, and N = 10 in our experiment. The discretization of the spatial and temporal domains is set to
100× 100 and 10 points, respectively. Thus, the total size of the discretization for PINNs is 100× 100× 10, while the total
size for SINNs can be reduced to 51× 100× 10 due to the Fourier transform for real functions.

Heat equation with random initialization (heat random) The 2-D heat equation with the Gaussian random initial
condition is included here, which can be written as

ut = ϵ (uxx + uyy) , x ∈ [0, 2π]2, t ∈ [0, T],

û(0,k) = ĝ(k),

ĝ(k) =



104
√
0.123456/H(1)h(k),

1

2
≤ |k| < 3

2
,

104
√
0.654321/H(2)h(k),

3

2
≤ |k| < 5

2
,

104
√
0.345612/H(3)h(k),

5

2
≤ |k| < 7

2
,

104
√
0.216543/H(4)h(k),

7

2
≤ |k| < 9

2
,

104
√
0.561234/H(5)h(k),

9

2
≤ |k| < 11

2
,

104
√
0.432165/H(6)h(k),

11

2
≤ |k| < 13

2
,

0, |k| ≥ 13

2
,

H(n) =
∑

n− 1
2≤|k|<n+ 1

2

|h(k)|2,

(33)

where h ∈ C generated by standard normal distribution fulfills the symmetry h(k) = h̄(−k), and the parameters T = 0.01,
ϵ = 1.0, and N = 10 are taken in our experiment. The spatial and temporal domains are discretized to 100× 100 and 6
points, respectively. The total size of the discretization for PINNs is 100× 100× 6, while the total size for SINNs is reduced
to 51× 100× 6 since the functions are real. The solutions u(0.01,x) in our experiments for the 2-D heat equation with
the Gaussian random initial condition are plotted in Figure 9. The spectral method in Appendix I computes the numerical
solution u(0.01,x) with a sufficiently small time step.

0 2 4 6
x

0

2

4

6

y

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

(a) Exact

0 2 4 6
x

0

2

4

6

y

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

(b) PINNs

0 2 4 6
x

0

2

4

6

y

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

(c) SINNs

Figure 9. The exact solution, the predicted solution by PINNs, and the predicted solution by SINNs for u(0.01,x) in the 2-D heat equation
with the Gaussian random initial condition are displayed in (a), (b), and (c), respectively.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Spectral Informed Neural Network

D.1.3. 3-D PROBLEMS

Heat equation with analytic solution (heat 3d) To compare SINNs and PINNs for 3-D linear equations, a heat equation
problem is considered here, which has the form

ut = ϵ (uxx + uyy + uzz) , x ∈ [0, 2π]3, t ∈ [0, T],

u(0,x) =

N−1∑
k=0

[sin (kx) + sin (ky) + sin (kz)] ,
(34)

with the analytic solution

u(t,x) =

N−1∑
k=0

[sin (kx) + sin (ky) + sin (kz)] e−ϵk3t. (35)

where T = 0.01, ϵ = 1.0, and N = 5 in our experiment. The discretized spatial and temporal domains are 100× 100× 100
and 10 points, respectively. The total size of the discretization for PINNs is 100× 100× 100× 10, while the total size for
SINNs is decreased to 51× 100× 100× 10 for the real function u.

D.2. The experiments on non-linear equations

D.2.1. 1-D PROBLEMS

Burgers equation (Burgers) One of the most important 1-D nonlinear equations is the Burgers equation, taking the
following form:

ut = νuxx − uux, x ∈ [0, 2π] , t ∈ [0, T] ,

u(0, x) =

N∑
k=1

sin(kx)
(36)

where T = 0.1, N = 3 and ν = π/150 in our experiment. The discretization of the spatial and temporal domains is set to
100 and 11 points, respectively. The total size of the discretization for PINNs is 100× 11, while the total size for SINNs is
51× 11 for a real u.

D.2.2. 2-D PROBLEMS

NS equations with Taylor–Green vortex (NS TG) The 2-D nonlinear NS equation is the same as (24) with T = 2,
ν = 2π/100, and g(x) = (− cos(x) sin(y), sin(x) cos(y)) in our experiment. The spatial and temporal domains are
discretized to 100× 100 and 11 points, respectively. The total size for PINNs is 100× 100× 11, while the total size for
SINNs is 51× 100× 11 since u is real.

NS equations with random initialization (NS random) The 2-D NS equation (24) is also included here with T = 2,
ν = 2π/100, and a random initial condition g(x), namely,

û(0,k) = ĝ(k),

ĝ(k) =



104
√
0.123456/H(1)(h− kk · h/|k|2), 1

2
≤ |k| < 3

2
,

104
√
0.654321/H(2)(h− kk · h/|k|2), 3

2
≤ |k| < 5

2
,

104
√
0.345612/H(3)(h− kk · h/|k|2), 5

2
≤ |k| < 7

2
,

0, |k| ≥ 7

2
,

H(n) =
∑

n− 1
2≤|k|<n+ 1

2

|h(k)|2,

(37)

where h ∈ C generated by standard normal distribution fulfills the symmetry h(k) = h̄(−k). The spatial and temporal
domains are discretized to 100× 100 and 11 points, respectively. And the total size for PINNs is 100× 100× 11, while

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Spectral Informed Neural Network

the total size for SINNs is reduced to 51 × 100 × 11 for a real u. The predicted solutions from the SINNs for this
problem, including the x-component u and y-component v of the velocity u(2,x) = (u, v), are plotted in Figure 10. And
the corresponding numerical solution u(2,x) is obtained with a sufficiently small time step by the spectral method in
Appendix I.

0 2 4 6
x

0

2

4

6

y

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0×10−2

(a) Exact u

0 2 4 6
x

0

2

4

6

y

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0×10−2

(b) Predicted u

0 2 4 6
x

0

2

4

6

y

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8×10−9

(c) Squared error of u

0 2 4 6
x

0

2

4

6

y

−4

−3

−2

−1

0

1

2

3

4×10−3

(d) Exact v

0 2 4 6
x

0

2

4

6

y

−4

−3

−2

−1

0

1

2

3

4×10−3

(e) Predicted v

0 2 4 6
x

0

2

4

6

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6×10−8

(f) Squared error of v

Figure 10. For the 2-D NS equations (24) with the Gaussian random initial condition, exact solutions of u(2,x) and v(2,x) are plotted
on Figures 10(a) and 10(d) respectively, predicted solutions by SINNs of u(2,x) and v(2,x) are plotted on Figures 10(b) and 10(e)
respectively,and the corresponding squared errors are plotted Figures 10(c) and 10(f)

D.3. The metrics of the relative error

The metric we use is the relative L2 error as follows:

E =

√∑N
i=1 |uθ (ti, xi)− uT (ti, xi)|2√∑N

i=1 |uT (ti, xi)|2
, (38)

where uT is the target solution and uθ is the trained approximation. In cases where uT cannot be analytically represented,
the spectral method in Appendix I is utilized to obtain high-accuracy numerical solutions.

E. Results of experiments

F. Details of the derivation of the spectral form of the incompressible NS equations
This appendix presents the details of the derivation of (25) and the calculation of non-linear terms N̂ in spectral space.

Considering the periodic boundary conditions, by applying the Fourier transform on both sides of (24), the NS equations in

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Spectral Informed Neural Network

Table 7. Comparison of the relative errors for the linear equations
equation PINN VSPINN gPINN SINN

1-D cd u 1.79× 10−2 ± 4.19× 10−3 4.77× 10−3 ± 1.80× 10−3 1.04× 10−3 ± 3.80× 10−4 1.14× 10−5 ± 1.28× 10−5

diffusion u 1.88× 10−2 ± 1.44× 10−2 5.86× 10−3 ± 3.42× 10−3 8.40× 10−4 ± 1.14× 10−4 4.32× 10−4 ± 1.61× 10−4

2-D heat 2d u 1.06× 10−3 ± 1.55× 10−4 1.51× 10−3 ± 1.54× 10−4 1.05× 10−1 ± 2.18× 10−3 1.66× 10−4 ± 1.10× 10−4

heat random u 1.24× 10−2 ± 5.24× 10−3 2.10× 10−3 ± 5.06× 10−4 6.62× 10−4 ± 3.28× 10−5 3.54× 10−3 ± 6.65× 10−4

3-D heat 3d u 1.19× 10−1 ± 3.61× 10−3 8.80× 10−2 ± 1.25× 10−3 1.48× 10−1 ± 4.71× 10−5 7.29× 10−2 ± 1.98× 10−4

Table 8. Comparison of the relative errors for the non-linear equations
equation PINN VSPINN gPINN SINN

1-D Burgers u 5.17× 10−4 ± 1.50× 10−4 1.89× 10−3 ± 1.68× 10−4 1.39× 10−3 ± 9.02× 10−7 1.62× 10−4 ± 4.70× 10−5

2-D
NS TG u 6.97× 10−4 ± 2.61× 10−5 7.43× 10−4 ± 2.13× 10−4 6.74× 10−4 ± 1.10× 10−4 5.63× 10−4 ± 1.99× 10−4

v 6.74× 10−4 ± 3.26× 10−4 7.77× 10−4 ± 3.18× 10−4 5.96× 10−4 ± 1.22× 10−4 5.13× 10−4 ± 1.71× 10−4

NS random u 2.20× 10−3 ± 7.78× 10−4 5.15× 10−3 ± 3.12× 10−3 1.72× 10−3 ± 3.96× 10−4 1.35× 10−4 ± 2.89× 10−5

v 2.06× 10−2 ± 8.58× 10−3 1.43× 10−2 ± 4.63× 10−3 1.76× 10−2 ± 5.45× 10−3 1.19× 10−3 ± 1.30× 10−4

the spectral space are expressed as
ik · û = 0, (39a)

∂tû+ N̂ = −ikp̂− ν|k|2û. (39b)

The continuity equation reveals that frequency and velocity are orthogonal in spectral space; by taking the frequency dot
product on both sides of the momentum equation (39b), the relationship between the pressure and the non-linear term can be
obtained,

k · N̂ = −i|k|2p̂. (40)

Eliminating the pressure in the momentum equation (39b), the form of (25b) can be finally obtained.

According to the identities in field theory, the non-linear terms in (24b) can be expressed in the form

N = u · ∇u = ∇ (u · u/2) = (∇× u)× u, (41)

where the term ∇ (u · u/2) has no contribution to (25b), and the non-linear term can be simplified as the rotational
form (Canuto et al., 1988) N = (∇× u)× u. The specific calculation of non-linear terms in spectral space can be written
as

N = F−1 [ik × û (t,k)]×F−1 [û (t,k)] , (42)

G. Comparison of training time
To briefly demonstrate the comparison of training time, Tables 9 and 10 only shows the training time of PINN and SINN.
Because the training time of both VSPINN and gPINN is higher than PINN for all our experiments.

Table 9. Comparison of the training time of the linear equations

equation PINN SINN

1-D convection-diffusion† 1.92 h 1.63 h

diffusion† See Table 6

2-D heat† 8.67 h 5.28 h

heat random† 7.87 h 4.78 h

3-D heat‡ 20.94 h 14.11 h

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Spectral Informed Neural Network

Table 10. Comparison of the training time of the non-linear equations

equation PINN SINN

1-D Burgers† 2.03 h 1.51 h

2-D NS TG‡ 3.38 h 2.51 h

NS random‡ 3.40 h 2.53 h

Those superscripts are:

†: train on single Tesla V100-SXM2-16GB with CUDA version: 12.3.

‡: train on single NVIDIA A100-SXM4-80GB with CUDA version: 11.2.

H. Hyperparameters of SI
We study those hyperparameters on 2D heat equations (31) with the same setting in Table 7 on the hyperparameter domain
α = {1, 100}, N = {50, 100}, γ = {1.0, 0.5, 0.0,−1.0,−5.0,−10.0}. The best hyperparameters are α = 100, N =
100, γ = 0.5, and the corresponding error is 1.66× 10−4 ± 1.11× 10−4 (see Table 11).

Table 11. Ablation results
γ/(α,N) (100,100) (100,50) (1,100) (1,50)

1.0 9.28× 10−4 ± 1.00× 10−3 9.28× 10−4 ± 1.00× 10−3 1.37× 10−3 ± 4.27× 10−4 1.37× 10−3 ± 4.27× 10−4

0.5 1.66× 10−4 ± 1.11× 10−4 1.94× 10−4 ± 1.10× 10−4 1.26× 10−3 ± 4.64× 10−4 1.04× 10−3 ± 3.69× 10−4

0.0 3.49× 10−2 ± 4.92× 10−2 3.60× 10−4 ± 3.21× 10−4 1.64× 10−3 ± 1.12× 10−3 9.34× 10−3 ± 1.11× 10−2

-1.0 3.51× 10−4 ± 2.73× 10−4 3.23× 10−1 ± 4.55× 10−1 7.16× 10−4 ± 3.24× 10−4 2.72× 10−2 ± 3.69× 10−2

-5.0 7.04× 10−3 ± 7.25× 10−3 8.07× 10−4 ± 6.48× 10−4 7.71× 10−3 ± 3.44× 10−3 2.81× 10−3 ± 4.28× 10−4

-10.0 6.66× 10−3 ± 7.50× 10−3 3.15× 10−2 ± 4.40× 10−2 3.34× 10−1 ± 4.71× 10−1 1.48× 10−3 ± 8.82× 10−4

I. Details of spectral method
Since the analytical solutions to the 1-D Burgers equation (36) as well as the 2-D heat equation (33) and NS equation (37)
with random initialization are difficult to obtain, we developed in-house spectral method codes to provide the corresponding
numerical solutions instead.

Specifically, the 1-D Burgers equation (36) in frequency space is

ût = −νk2û−F [uux] , k ∈ [−N/2, N/2− 1], t ∈ [0, T] . (43)

And the time derivative ût can be approximated by the optimal third-order total variation diminishing Runge-Kutta
scheme (Gottlieb & Shu, 1998), which has the following explicit discrete form:

û1 = û(t, k)−∆t
{
νk2û(t, k) + F

[
D
[
F−1 [û (t, k)] · F−1 [ikû (t, k)]

]]}
,

û2 =
3

4
û(t, k) +

1

4
û1 −

1

4
∆t

{
νk2û1 + F

[
D
[
F−1 [û1] · F−1 [ikû1]

]]}
,

û(t+∆t, k) =
1

3
û(t,k) +

2

3
û2 −

2

3
∆t

{
νk2û(t, k) + F

[
D
[
F−1 [û2] · F−1 [ikû2]

]]}
,

(44)

where ∆t is the time step, D is the dealiasing operator based on the Fourier smoothing method (Hou & Li, 2007), and û1

and û2 are intermediate variables.

Besides, the 2-D heat equation (33) can be written in frequency space as

ût = −ϵ
(
k2x + k2y

)
û, k = (kx, ky) ∈ [−N/2, N/2− 1]2, t ∈ [0, T]. (45)

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Spectral Informed Neural Network

The optimal third-order total variation diminishing Runge-Kutta scheme (Gottlieb & Shu, 1998) can be employed for the
time derivative ût, and the explicit discrete forms for û are

û1 = û(t,k)− ϵ∆t
(
k2x + k2y

)
û(t,k),

û2 =
3

4
û(t,k) +

1

4
û1 −

1

4
ϵ∆t

(
k2x + k2y

)
û1,

û(t+∆t,k) =
1

3
û(t,k) +

2

3
û2 −

2

3
ϵ∆t

(
k2x + k2y

)
û2.

(46)

As for the 2-D NS equation (37), the second-order Adams-Bashforth scheme (Orszag, 1971) is applied to the time
discretization, and the explicit discrete system becomes

û(t+∆t,k) = e(−ν|k|2∆t)

(
1− kk·

|k|2

)[
3∆t

2
N̂(t,k)− ∆t

2
e(−ν|k|2∆t)N̂(t−∆t,k)− û(t,k)

]
,

N̂(t,k) = F
[
D
[
F−1 [ik × û (t,k)]×F−1 [û (t,k)]

]]
,

N̂(t−∆t,k) = F
[
D
[
F−1 [ik × û (t−∆t,k)]×F−1 [û (t−∆t,k)]

]]
,

(47)

where D is the dealiasing operator based on the Fourier smoothing method (Hou & Li, 2007).

In our calculations, the time steps for the aforementioned three discrete forms are chosen to be small enough to minimize
the impact of numerical errors on the solutions.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Spectral Informed Neural Network

0 20 40 60 80
x

0

20

40

60

80

y
Target u(0.40,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted u(0.40,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0 20 40 60 80
x

0

20

40

60

80

y

Target u(0.80,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted u(0.80,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0 20 40 60 80
x

0

20

40

60

80

y

Target u(1.20,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted u(1.20,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0 20 40 60 80
x

0

20

40

60

80

y

Target u(1.60,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted u(1.60,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0.00041

0.00042

0.00043

0.00044

0.00045

0.00046

0.00047

0.00048

0.00049

0.00068

0.00070

0.00072

0.00074

0.00076

0.00078

0.00080

0.00082

0.000925

0.000950

0.000975

0.001000

0.001025

0.001050

0.001075

0.001100

0.00115

0.00120

0.00125

0.00130

0.00135

Figure 11. Representative snapshots of the predicted u against the ground truth at t = 0.4, 0.8, 1.2, 1.6

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Spectral Informed Neural Network

0 20 40 60 80
x

0

20

40

60

80

y
Target v(0.40,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted v(0.40,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0 20 40 60 80
x

0

20

40

60

80

y

Target v(0.80,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted v(0.80,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0 20 40 60 80
x

0

20

40

60

80

y

Target v(1.20,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted v(1.20,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0 20 40 60 80
x

0

20

40

60

80

y

Target v(1.60,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

Predicted v(1.60,x,y)

0 20 40 60 80
x

0

20

40

60

80

y

absolute error

0.0037

0.0038

0.0039

0.0040

0.0041

0.0042

0.0043

0.0044

0.0068

0.0070

0.0072

0.0074

0.0076

0.0078

0.0080

0.0082

0.00950

0.00975

0.01000

0.01025

0.01050

0.01075

0.01100

0.01125

0.01150

0.0125

0.0130

0.0135

0.0140

0.0145

Figure 12. Representative snapshots of the predicted v against the ground truth at t = 0.4, 0.8, 1.2, 1.6

22

