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ABSTRACT

Large language models (LLMs) encode a vast amount of semantic knowledge
and possess remarkable understanding and reasoning capabilities. Previous work
has explored how to ground LLMs in robotic tasks to generate feasible and ex-
ecutable textual plans. However, low-level execution in the physical world may
deviate from the high-level textual plan due to environmental perturbations or
imperfect controller design. In this paper, we propose DoReMi, a novel language
model grounding framework that enables immediate Detection and Recovery from
Misalignments between plan and execution. Specifically, we leverage LLMs to
play a dual role, aiding not only in high-level planning but also generating con-
straints that can indicate misalignment during execution. Then vision language
models (VLMs) are utilized to detect constraint violations continuously. Our
pipeline can monitor the low-level execution and enable timely recovery if certain
plan-execution misalignment occurs. Experiments on various complex tasks in-
cluding robot arms and humanoid robots demonstrate that our method can lead to
higher task success rates and shorter task completion times. Videos of DoReMi are
available at https://sites.google.com/view/doremi-paper.

1 INTRODUCTION

Large language models (LLMs) pre-trained on web-scale data emerge with common-sense reasoning
ability and understanding of the physical world. Previous works have incorporated language models
into robotic tasks to help embodied agents better understand and interact with the world to complete
challenging long-horizon tasks that require complex planning and reasoning (Ahn et al., 2022; Huang
et al., 2022a; Liang et al., 2022).

To make the generated plan executable by embodied agents, we need to ground the language. One
line of the works leverages pre-trained language models in an end-to-end manner that directly maps
language and image inputs to the robot’s low-level action space (Brohan et al., 2022; 2023; Jang
et al., 2022; Shridhar et al., 2023; Nair et al., 2022). These approaches often require large amounts
of robot action data for successful end-to-end training, which is expensive to acquire (Brohan et al.,
2022). Moreover, these action-output models often contain large transformer-based architectures and
cannot run at high frequencies. Therefore, they may not be suitable for tasks with complex dynamics
(e.g., legged robots) that require high-frequency rapid response. Recently, many works have adopted
a hierarchical approach where language models perform high-level task planning, and then some
low-level controllers are adopted to generate the complex robot control commands (Ahn et al., 2022;
Huang et al., 2022a; Liang et al., 2022; Huang et al., 2022b). Under this hierarchical framework,
we can leverage powerful robot control methods, such as reinforcement learning, to handle complex
robot dynamic control problems with high frequency.

However, these grounding methods often assume that every low-level skill can perfectly execute
the high-level plan generated by the language model. In practice, low-level execution may deviate
from the high-level plan due to environmental perturbations or imperfect controller design. These
misalignments between plan and execution may occur at any time during the task procedure. Previous
works consider incorporating execution feedback into language prompts once the previous plan step
is finished. If the step is unsuccessful, the process is repeated (Huang et al., 2022b). However, this
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delayed feedback can be inefficient. For instance, as illustrated in Figure 1(b), when a human is
carrying a box and performing the low-level skill "Go to the gray table", if the box is accidentally
dropped, it becomes futile to continue with the current skill. The human will immediately abort the
current skill and call for the skill "Pick up the box". However, agents without immediate re-planning
will continue going forward and will take more time to pick up the box dropped halfway after reaching
the destination.

LLM ? ? ? ? ?

LLM
Abort and replan1. Pick up box 2. Go to the gray table

3. Pick up box on the floor 4. Go to the gray table

LLM

LLM

LLM

1. Pick up box 2. Go to the gray table

LLM

Timeline

? ? ? ? ?

I need to 
find the box.

? VLM Detector?

LLM

Can you move the 
yellow box from 

white table to the 
gray table?

I would:
1.Pick the yellow box
2.Go to the gray table
3.Place the yellow box on 
the gray table
4.Done

Basic skill set
Description

Prompts
…

(a) High-level Task Planning (b) Low-level Skill Execution

Box drop

Without Immediate Re-planning

Immediate Detection and Recovery

LLM

Figure 1: Illustration of our motivation. Low-level execution may deviate from the high-level plan.
DoReMi can immediately detect the misalignment between the plan and execution when the box
drops accidentally and quickly recovers. Agents without immediate re-planning suffer from such
misalignment.

In this paper, we propose a novel framework DoReMi which enables immediate Detection and
Recovery from plan-execution Misalignments. Specifically, in addition to employing LLMs for
high-level planning (Ahn et al., 2022), we further leverage LLMs to generate constraints for low-level
execution based on their understanding of physical worlds. During the execution of low-level skills, a
vision language model (VLM) (Li et al., 2023b) is employed as a general "constraint detector" to
monitor whether the agent violates any constraints continuously. If some constraints are violated,
indicating that the plan and execution may be misaligned, the language model is immediately called to
re-plan for timely recovery. We summarize several advantages of our pipeline: (1) LLM plays a dual
role, aiding not only in high-level planning but also in supervising low-level execution, enabling rapid
detection and recovery; (2) The VLM can focus on the specific constraints suggested by the LLM
and only need to pick binary answers, providing more precise feedback. This collaborative approach
between the LLM and the VLM can help align the plan and execution during the whole task period.
Furthermore, under mild assumptions, we conduct a theoretical analysis to estimate how much time
can be saved or how much the success rate can be improved through immediate re-planning when
misalignment occurs. Experiments in physical simulations, including robot arm manipulation tasks
and humanoid robot tasks, demonstrate that DoReMi leads to a higher task success rate and shorter
task execution time.

2 RELATED WORKS

Language Grounding Prior research has attempted to employ language as task abstractions and
acquired control policies that are conditioned on language (MacMahon et al., 2006; Chaplot et al.,
2018; Jiang et al., 2019a; Misra et al., 2017; Mei et al., 2016). Furthermore, some studies have
investigated the integration of language and vision inputs within embodied tasks to directly predict the
control commands (Silva et al., 2021; Guhur et al., 2023; Goyal et al., 2021). Recent works, including
(Brohan et al., 2022; 2023; Shridhar et al., 2023; Zhang & Chai, 2021; Lynch et al., 2022), have
demonstrated significant progress in utilizing transformer-based policies to predict actions. However,
these end-to-end approaches heavily depend on the scale of expert demonstrations for model training.

Task Planning with Language Model Traditionally, task planning was solved through symbolic
reasoning (Nau et al., 1999; Fikes & Nilsson, 1971) or rule-based planners (Fox & Long, 2003; Jiang
et al., 2019b). Recently, many works demonstrated that large language models (LLMs) can generate
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executable plans in a zero/few-shot manner with appropriate grounding (Huang et al., 2022a; Ahn
et al., 2022; Zeng et al., 2022; Ren et al., 2023). Some pre-trained low-level skills (primitives) are
then adopted to execute steps in order. These LLM planners typically assume the successful execution
of each skill, resulting in an open-loop system in physical worlds. Works in the instruction-following
benchmark (Shridhar et al., 2020; Puig et al., 2018) like ReAct (Yao et al., 2022), and Reflexion
(Shinn et al., 2023), incorporate feedback into LLM prompts to help planning after each step of the
plan is finished. However, these benchmarks operate in discrete scenes and pay less attention to the
skill execution period. The closest work to ours is Inner Monologue (Huang et al., 2022b), which
also considers continuous physical worlds, and takes into account 3 types of feedback (e.g. success
detectors, scene descriptions, and human feedback) upon the completion of each step. However, Inner
Monologue’s feedback is impractical and hard to obtain at high frequency. In contrast to this, our
framework enables precise and high-frequency feedback with practical detectors.

Vision Language Model for Embodied Control. The vision language model (VLM) is trained on
image-text pairs, enabling it to simultaneously understand visual and textual inputs and address a
variety of downstream tasks, such as visual question answering (VQA)(Li et al., 2023b; Antol et al.,
2015), image captioning (Zhou et al., 2020), and object detection (Gu et al., 2021). VLMs align
semantic information between vision and natural language, thereby aiding in grounding language
models and facilitating embodied control. Pre-trained visual encoders or instruction encoders
(Radford et al., 2021) can be connected with some action head to help train end-to-end policies
(Shridhar et al., 2022) or generate textual plans (Driess et al., 2023). RT-2 (Brohan et al., 2023)
directly fine-tuned on a VLM can generate texts and robot control actions simultaneously. VLMs can
also act as scene descriptors(Huang et al., 2022b), success detectors (Du et al., 2023; Zhang et al.,
2023), or object detectors(Stone et al., 2023) to facilitate the task execution. To ensure adherence
to crucial constraints, we employ the VLM (Li et al., 2022) as a "constraint detector", periodically
verifying whether the agent satisfies specific constraints.

3 PROBLEM STATEMENT

Our objective is to enable the embodied agent to accomplish long-horizon tasks specified as natural
language instructions i in the physical world. The agent has a basic skill set Π, with each skill πj ∈ Π
corresponding to a distinct function that can be described in natural language lπj .

Previous work has illustrated that pre-trained large language models can be used as planners to
decompose complicated language instructions into textual skill sequences: i → (lπ1

, lπ2
, ..., lπn

)
(Huang et al., 2022a; Zeng et al., 2022), as shown in Figure 2a. Many works consider feedback
at the end of each skill (Huang et al., 2022b; Yao et al., 2022; Shinn et al., 2023), which can be
described as plan-level feedback in Figure 2b. In particular, Inner monologue (Huang et al., 2022b)
assumes the accessibility of 3 sources of oracle feedback from success detectors, passive scene
descriptors, and humans. However, such oracle feedback is impractical in most settings and can not
be frequently obtained: the success detector can only assess success or failure upon the completion of
each skill, humans are unable to provide high-frequency feedback, and frequently injecting passive
scene descriptions into the LLMs risks exceeding its maximum input token length and may cause a
performance drop in LLMs (Liu et al., 2023). How to incorporate frequent and precise feedback into
the LLMs remains a challenge.

In the following section, we will introduce our DoReMi framework which leverages powerful
LLMs to generate both high-level plans and low-level execution constraints, which then enables
execution-level feedback by VLM during the entire execution period, as shown in Figure 2(c).

4 METHOD

In this section, we introduce our DoReMi framework which enables immediate Detection and
Recovery from Plan-Execution Misalignment. Our algorithm can be succinctly described in two
stages depicted in Figure 2(c):

1. At the high-level planning stage, given a set of low-level skills, prompts, and high-level task
instruction, language models are leveraged to play a dual role, aiding not only in planning the
next skill but also generating constraints for the next skill based on historical information.

2. During the low-level skill execution stage, we employ a vision-language model (VLM) (Li
et al., 2023b) as a general "constraint detector" that periodically verifies the satisfaction of
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all constraints. If any constraint is violated, the language model is invoked for immediate
re-planning to facilitate recovery.

LLM

Constraints ?

yes

No

? ? ? ?……

Feedback and Re-planning

𝜟𝒕 𝜟𝒕 𝜟𝒕

……Next Skill

LLM

Basic Skill Set 𝚷
Prompts 𝒑
Few examples
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Feedback and Re-planning
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…
n. Skill n
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Few examples
Instructions

Execution
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No No No No

(a) Open loop planning                                                                (b) Plan-level feedback

(c) DoReMi: Execution-level feedback

Execution

? VLM Detector

Figure 2: Previous methods perform open-loop planning or only re-plan when the previous skill
is finished. Our DoReMi framework leverages LLM to generate both the plan and corresponding
constraints. Then a VLM is employed to supervise the low-level execution period, which enables
immediate recovery from plan-execution misalignment.

4.1 LANGUAGE MODEL FOR PLANNING

Following previous works that leverage LLM to generate feasible textual plans(Ahn et al., 2022),
we utilize LLMs to plan the next steps through few-shot in-context learning. Furthermore, we
employ language models for re-planning when our constraint detector identifies a plan-execution
misalignment. In such scenarios, we additionally include the misalignment information in prompts
and invoke the LLM for re-planning. Detailed planning prompts can be found in Appendix D.
Practically, we deploy the Vicuna-13B model (Chiang et al., 2023) locally and pick the next skill with
max output probability. We also try GPT4 (OpenAI, 2023) through OpenAI API to directly output
the next step with zero temperature. Both LLMs exhibit effective planning capabilities in our tasks.

4.2 LANGUAGE MODEL FOR CONSTRAINT GENERATION

LLM planner helps agents decompose long-horizon tasks into skill sequences. However, LLMs are
not inherently integrated into the execution of low-level skills, which potentially leads to misalign-
ment between plan and execution. To further explore the ability of LLMs in embodied tasks, we
utilize LLMs not only for next-step planning but also for constraint generation based on historical
information. For instance, consider the execution period of the "go to" skill after the "pick up box"
skill. In such cases, the constraint "robot holds box" must be satisfied and violation of this constraint
could indicate a failure in the picking or possible dropping of the box. Similarly, after the skill "place
red block on green block", the constraint "red block on green block" should always be met. LLMs
possess the capability to automatically generate these constraints for planned steps, drawing upon
their encoded understanding of the physical world. Moreover, the VLM detector can focus on these
specific constraints and only need to pick binary answers from "Yes" or "No", resulting in much more
precise feedback. In contrast, open-ended scene descriptions of VLMs may result in large ambiguity
and miss essential information, as shown in Figure 3.

In practice, after the LLM selects the next step with the highest output probability, we continue the
generation starting with "Constraint:" to derive specific constraints. Additionally, we conducted
experiments to assess the quality of the LLM-generated constraints. First, we conduct a user study to
compare the LLM-generated constraints with manually specified constraints. Survey results show
that users think 98% of the LLM-generated constraints are reasonable and admissible. Second, We
query VLM with manually specified constraints and LLM-generated constraints respectively, picking
binary answers from {"Yes", "No"}. We find these two answers are the same in 97% of the queries.
These results show the remarkable proficiency of LLMs in generating constraints, driven by their
encoded understanding of the physical world. For a more comprehensive analysis, please refer to
Appendix D.
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Query: Is the robot 
holding a fish?

No.

(Prompt)
Task: Collect a fish and a carrot on the plate.
Step 1: Move to the fish. [Constraint: ]
Step 2: Pick up the fish. [Constraint: ]
Step 3: 

LLM: Move to the plate. [Constraint: The 
robot is holding a fish.]

Next Step and Constraints

VLM

Query: Describe 
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A plate and other 
items on a table.

VLM

Ambiguous Precise

(a) Open-ended scene description

Query: Is the robot 
holding a fish?

No.

(Prompt) 
Task: Collect some seafood on the plate.
Step 1: Move to the fish. [Constraint: ]
Step 2: Pick up the fish. [Constraint: ]
Step 3: 

LLM: Move to the plate. [Constraint: The 
robot is holding a fish.]

Next Step and Constraints

VLM

Query: Describe 
the image.

A plate and other 
items on a table.

VLM

Ambiguous Precise

(b) VLMs focus on specific constraint generated by LLMs

Figure 3: Open-ended scene descriptions of VLMs are ambiguous. DoReMi leverages the LLM to
generate specific constraints for steps and directly queries the VLM with these constraints, resulting
in much more precise feedback.

Algorithm 1 DoReMi (Immediate Detection and Recovery from Misalignment)
Given: A high level instruction i, a skill set Π, language description lΠ for Π, language model L,
prompt p0, and VLM constraint detector D.

1: Initialize the skill sequence π ← ∅, the number of steps n← 1.
2: while lπn−1 6= done do
3: πn ← arg maxπ∈Π L(lπ|i, pn−1, lπn−1 , ..lπ0), cn ← L(i, pn−1, lπn , ..lπ0)
4: Update prompt pn.
5: while πn is not finished do
6: Every ∆t second, query agent all the constraints cn using the constraint detector D.
7: if ∃D(cn) = false then
8: Add constraint violate information into prompt pn and break.
9: end if

10: end while
11: n← n+ 1.
12: end while

4.3 VLM AS CONSTRAINT DETECTOR

Subsequent to the constraint generation stage, the agent proceeds to execute the planned step while
adhering to constraints suggested by the LLM. The LLM-generated constraints may include various
types, such as "red block is on blue block," "no obstacles in front of the robot," "robot is holding
an apple," and more. In this work, we adopt a vision language model(VLM) (Li et al., 2023b) as a
general "constraint detector" to check all constraints through visual information. The visual input of
the VLM is captured from either a first-person or third-person perspective camera, and the text input
is automatically adapted from the LLM proposed constraints in the form "Question: Is the constraint
cj satisfied? Answer:". For each query, the VLM only needs to select an answer from {“Yes”,
“No”}, which consists of very short token lengths and costs less than 0.1 second. We use D(cj) to
denote the answer of the VLM D when checking constraint cj . If cj is satisfied, D(cj) = True;
otherwise, D(cj) = False. The pseudo-code of the pipeline is provided in Algorithm 1. It’s also
worth mentioning that detectors in other modalities are also compatible with our framework and
constraint detectors can run parallel to low-level controllers with different frequencies.

In practice, we use the pre-trained BLIP-2 model (Li et al., 2023b) as a general "constraint detector"
to periodically check whether the agent satisfies all constraints every ∆t = 0.2 second. If so, the
robot continues executing the current low-level skill; otherwise, the robot aborts the current skill, and
the re-planning process is triggered. We observe that pre-trained zero-shot VLM can perform well
in most tasks, except those with extremely complex scenes. To enhance the performance in such
complex tasks, we collect a small dataset and fine-tune the VLM using the parameter-efficient LoRA
method (Hu et al., 2021). We also verify that the fine-tuned VLM detector can generalize to unseen
objects, unseen backgrounds, and even unseen tasks.

4.4 THEORETICAL ANALYSES

Delayed re-planning may waste time (as shown in Figure 1) or even result in failures. In this section,
we analyze the potential time savings and success rate improvements achievable through immediate
detection and recovery. We denote the execution time of low-level skill with random variable t
with mean E[t] = µ and variance V ar(t) = σ2. Misalignment can occur at any time s within the
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execution time interval [0, t] where 0 ≤ s ≤ t. Additionally, we assume our constraint detector has
probability pd to detect each misalignment. We define the discrete random variable M as the number
of misalignment occurrences under the following assumptions: (1) Plan-execution misalignments
occur independently. (2) Misalignments occur at a constant ratio λ within a small time interval:
lim
t→0

P (M = 1) = λt. (3) No two misalignments occur simultaneously: lim
t→0

P (M = k) = 0 for

k > 1. Under these assumptions, the number of plan-execution misalignments follows a Poisson
distribution (Papoulis & Unnikrishna Pillai, 2002):

P (M = k) =
(λt)ke−λt

k!
k = 0, 1, 2, 3... (1)

Theorem 1 The following equations describe the possible time-savings ts and the success rate
improvement Ps under immediate detection and re-planning:

E(ts) =
∑
k

P (M = k)E(tw|M = k) =
pdλ(µ2 + σ2)

2
− pdλµ∆t (2)

E(Ps) = 1− E(e−λt) ≈ pdλµ−
(2pd − p2

d)λ
2(µ2 + σ2)

2
(3)

The detector’s reaction time, ∆t, is much smaller than the average execution time µ, so time-saving
E(ts) is greater than 0. λ represents the misalignment occurrence ratio per second, which is very
small, so success rate improvement E(Ps) is also greater than 0. Detailed proof can be found in
Appendix A.

5 EXPERIMENTS

In this section, we conduct experiments involving both robotic arm manipulation tasks and humanoid
robot tasks, as shown in Figure 4. These tasks incorporate various environmental disturbances and
imperfect controllers, such as random dropping by the robot end-effector, noise in end-effector
placement positions, failure in pick, and unexpected obstacles appearing in the robot’s path.

We aim to answer the following questions: (1) Does DoReMi enable immediate detection and
recovery from plan-execution misalignment? (2) Does DoReMi lead to higher task success rates and
shorter task execution time under environmental disturbances or imperfect controllers?

Pick and Place                     Stack blocks in order            Obstacle-avoidance                  Move-box                       Prepare-food       

Figure 4: Robot manipulation and humanoid robot tasks in our experiments. We consider various
types of environmental disturbance and imperfect controllers.

5.1 ROBOT ARM MANIPULATION TASKS

Robot and Environment This environment is adapted from Ravens (Zeng et al., 2020), a benchmark
for vision-based robotic manipulation focused on pick-and-place tasks. An UR5e robot equipped with
a suction gripper operates on a black tabletop, while a third-view camera provides a comprehensive
view of the tabletop. The robot possesses a basic skill set including "pick obj" and "place obj
on receptacle", both of which are pre-trained primitives conditioned on single-step instructions
similar to the CLIPort (Shridhar et al., 2022) and Transporter Nets (Zeng et al., 2020). To assess the
effectiveness of our algorithm, we introduce additional disturbances into the original environment
and the robot controller.

Tasks: (1) Pick and Place. The agent is required to pick a certain block and place it in a fixture. We
assume the block has a probability p to drop every second when sucked by the end-effector, so the
agent may need to perform pick and place several times to finish the task. (2) Stack blocks in order.
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Tasks with disturbance Success Rate(%) ↑ Execution Time(s) ↓

SayCan CLIPort IM DoReMi
(ours)

IM-
Oracle IM DoReMi

(ours)
IM-

Oracle

Pick and place
with random drop p

p=0.0 100 (±0) 100 (±0) 100 (±0) 100 (±0) 100 (±0) 2.7 (±0.0) 2.7 (±0.0) 2.7 (±0.0)
p=0.2 81 (±9) 100 (±0) 100 (±0) 100 (±0) 100 (±0) 3.4 (±0.2) 3.0 (±0.2) 3.4 (±0.2)
p=0.3 63 (±9) 100 (±0) 100 (±0) 100 (±0) 100 (±0) 4.0 (±0.2) 3.3 (±0.2) 4.0 (±0.2)

Stack in order
with noise n

n=0.0 100 (±0) 100 (±0) 100 (±0) 100 (±0) 100 (±0) 7.2 (±0.0) 7.2 (±0.0) 7.2 (±0.0)
n=1.0 96 (±4) 96 (±4) 96 (±4) 100 (±0) 100 (±0) 8.0 (±3.0) 7.5 (±0.5) 7.4 (±0.5)
n=2.0 63 (±9) 85 (±7) 86 (±7) 96 (±4) 98 (±2) 12.2 (±5.3) 10.2 (±1.7) 9.8 (±2.0)
n=3.0 31 (±11) 74 (±10) 75 (±8) 86 (±8) 91 (±7) - 15.6 (±3.2) 14.7 (±2.3)

Stack in order
with noise n

random drop p=0.1

n=0.0 71 (±9) 94 (±7) 94 (±6) 98 (±4) 99 (±1) 10.0 (±3.6) 9.4 (±1.7) 9.9 (±1.9)
n=1.0 71 (±9) 94 (±7) 94 (±7) 94 (±7) 97 (±2) 10.7 (±3.9) 10.6 (±3.2) 10.9 (±3.0)
n=2.0 54 (±12) 79 (±9) 79 (±8) 92 (±6) 95 (±3) - 14.5 (±3.4) 15.3 (±3.5)
n=3.0 21 (±9) 33 (±10) 34 (±10) 55 (±10) 64 (±8) - - -

Table 1: Success rates and task execution time under different degrees of disturbances. We only
measure execution time under high success rates. The results show the mean and standard deviation
over 4 different seeds, each with 12 episodes.

Timeline

Place blue block on green block
Place green block on red block

CLIPort with
Success Detector
(Wrong Planning)

(e)                           (f)                

DoReMi
(Correct Planning)

(a)                        (b)                         (c)                         (d)

Pick blue block
Pick green block

Figure 5: A comparison example. The robot arm tries to finish the step "Place blue block on green
block" but collapses (bcd). DoReMi detects this misalignment and replans to pick and place the green
block first (e). The baseline continues to repeat the previous step (ef) and results in failure.

The robot is required to stack several blocks in an order given by language instructions. The agent
must perform "pick" and "place" skills in a precise sequence to successfully accomplish the task. We
assume the controllers are not perfect by introducing uniform [0, n] cm noise to the place positions.
There is also a probability p that a block held by the end-effector might randomly drop every second.
The max execution time for all tasks is set to 20 seconds. Any execution that takes time longer than
20 seconds is considered as failure.

Experiment Details Following the pipeline in Figure 2, we use Vicuna-13B (Chiang et al., 2023) as
LLM planner and zero-shot transferred BLIP-2 (Li et al., 2023b) as VLM constraint detector. We
compare DoReMi with 4 baselines: (1) SayCan: an LLM is utilized to decompose instructions into
steps and execute them sequentially. However, this approach assumes the successful execution of each
step without considering potential failures. (2) CLIPort: a multi-task CLIPort policy conditioned
on the single pick-place step. It utilizes an LLM to decompose instructions into steps and repeat
each step until success. The same VLM is leveraged as a success detector to determine whether the
current step should be repeated. (3) Inner Monologue (IM): The same VLM is employed as scene
descriptors and success detector to help LLM re-plan upon completion of each step. (4) IM-Oracle:
Inner-Monologue with oracle feedback which does not exist in practical real-world settings. Results
are shown in Table 1.

Result Analyses In the presence of disturbances, SayCan consistently fails in all tasks due to its
lack of success detectors and re-planning mechanisms. In simple pick-place tasks, CLIPort and
Inner-monologue with success detector can repeat the step and recover. However, they do not have
a mechanism to abort the current execution and only re-plan at the end of each skill, resulting in a
longer execution time. In the stack-block task, when encountering situations that require re-planning
(e.g., the blocks collapse), CLIPort that only repeats the previous step fails to recover, as shown in
Figure 5. When provided with imperfect scene descriptors (VLM), Inner Monologue also struggles
to recover due to ambiguous open-ended scene descriptions. In contrast, DoReMi leverages LLMs
to propose specific constraints for every low-level skill, with the VLM focused on these constraints,
leading to highly accurate feedback. Furthermore, our VLM continuously detects constraint violations
throughout the execution period, which enables immediate re-planning and recovery. Under these
two mechanisms, DoReMi reaches higher success rates and shorter execution times.

7



Under review as a conference paper at ICLR 2024

5.2 HUMANOID ROBOT TASKS

Robot Description and Low-level Skill Set The humanoid robot utilized in our experiments pos-
sesses 6 degrees of freedom per leg and 4 degrees of freedom per arm, totaling 20 degrees of freedom.
We equip the robot with a first-view camera on its base to provide visual information. Controlling
complex humanoid robots with a single policy is challenging. Following the framework in Ma et al.
(2022), we employ reinforcement learning to train the locomotion policy and leverage model-based
controllers to acquire the manipulation policy. Specifically, we utilize the Deepmimic algorithm
(Peng et al., 2018) to train a policy conditioned on commanded linear and angular velocity, allowing
the robot to execute low-level skills such as "go forward 10 meters," "move forward at speed v," "go
to target place," "turn right/left," and more. As for the manipulation policy, physically picking up
objects is a challenging task, and we introduce an assistant pick-primitive similar to Li et al. (2023a),
which can suck objects close to the end-effector. This enables the robot to execute low-level skills
like "pick up object" and "place object on receptacle". Detailed architecture and training process can
be found in Appendix B.

5.2.1 TASK CATEGORIES

We consider 3 categories of tasks and set the max task execution time to 90 seconds.

(1) Obstacle-avoidance. The robot performs the skill "go forward" to reach a finish line located
at various distances. However, unknown obstacles may appear on the way with density d. As we
mentioned above, the robot lacks perfect navigation skills and only holds low-level skills such as "go
forward", "turn left/right", etc. Therefore, the robot needs to satisfy the constraint "no obstacle in the
front". If the constraint is violated, it must perform skill "turn left/right" to avoid the collision.

(2) Move-box. The robot is required to transport a certain box from one location to another. A proper
solution might involve 1) Go to place A. 2) Pick up box. 3) Go to place B. 4) Put down box. We
introduced additional perturbations to this task by assuming that the robot has a probability p of
dropping the box every second during transport.

(3) Prepare-food. The robot is required to collect 2-5 types of foods from random positions according
to abstract language instructions (example in Figure 3b). We introduced additional perturbations to
this task by assuming that the robot has a probability p1 of failing to pick the object and p of dropping
the carried object every second. These tasks may need 10-20 steps of low-level skills.

5.2.2 VLM FINE-TUNING

In our experiments, we observed that the performance of zero-shot transferred VLM diminishes as
the scene complexity increases, such as in the prepare-food task involving more than 20 objects. To
address this, we collected a small dataset that only consisted of 5 demonstrations with 128 image-text
pairs to fine-tune the BLIP-2 model (Li et al., 2023b). These 5 demonstrations only included fruit
objects, while the test tasks involved entirely different scenarios, including unseen objects in random
positions like junk food, vegetables, and seafood, as well as unseen backgrounds. It is worth noting
that fine-tuning the VLM on the prepare-food task also yielded benefits for unseen tasks. We can
use "detection time" to refer to the time interval between when the misalignment occurred and when
detectors detected this violation. We find the fine-tuned VLM exhibited improved efficiency in
detecting dropped boxes during move-box tasks, reducing the average "detection time" from 2.5
seconds to 0.6 seconds. Some out-of-distribution samples are shown in Figure 6. Ablations and
analysis of the fine-tuned VLM can be found in Appendix B.4.

5.2.3 RESULTS

Experiment details Following the pipeline in Figure 2(c), we use Vicuna-13B (Chiang et al., 2023)
as the LLM planner and BLIP-2 (Li et al., 2023b) as the VLM constraint detector. We use DoReMi-
FT to denote DoReMi with VLM fine-tuned on the prepare-food task, as described in Sec. 5.2.2.
We compare our methods with (1) SayCan (Ahn et al., 2022) which assumes every step is executed
successfully, and (2) Inner Monologue (IM) (Huang et al., 2022b) which plans at the end of each
step and uses the same vision-language model as both success detectors and scene descriptors. (3)
Periodic replan which re-plans at a fixed time interval of 3 seconds and obtains feedback from the
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Tasks with disturbance Success Rate(%) ↑ Execution Time(s) ↓

SayCan IM Periodic
replan

DoReMi
(ours)

DoReMi-FT
(ours)

IM-
Oracle

DoReMi
(ours)

DoReMi-FT
(ours)

IM-
Oracle

Obstacle-avoidance
with density d

d=0.0 100 (±0) 100 (±0) 100 (±0) 100 (±0) 100 (±0) 100 (±0) 24.2 (±0.8) 24.2 (±0.8) 24.2 (±0.8)
d=0.3 68 (±6) 68 (±6) 59 (±8) 92 (±6) 92 (±6) 68 (±6) 31.2 (±2.4) 31.2 (±2.4) -
d=0.6 40 (±8) 40 (±8) 37 (±10) 90 (±6) 90 (±6) 40 (±8) 34.3 (±3.2) 34.3 (±3.2) -

Move-box with
random drop p

p=0.0 98 (±2) 98 (±2) 96 (±3) 97 (±2) 97 (±2) 98 (±2) 32.2 (±2.5) 32.2 (±2.5) 32.1 (±2.5)
p=0.02 61 (±7) 63 (±7) 55 (±9) 95 (±4) 96 (±4) 98 (±2) 38.4 (±3.0) 35.0 (±3.0) 46.5 (±4.7)
p=0.04 42 (±9) 46 (±9) 38 (±8) 94 (±4) 96 (±4) 96 (±2) 43.6 (±3.5) 37.3 (±3.1) 61.2 (±7.6)

Prepare-food with
pick failure p1=0.1

random drop p

p=0.0 78 (±5) 83 (±4) 81 (±5) 85 (±6) 96 (±3) 99 (±1) - 27.6 (±2.7) 27.8 (±3.0)
p=0.02 49 (±5) 56 (±5) 50 (±5) 66 (±4) 93 (±5) 97 (±2) - 31.0 (±3.8) 36.8 (±5.8)
p=0.04 18 (±5) 21 (±7) 16 (±6) 37 (±8) 91 (±6) 96 (±2) - 35.2 (±6.5) 46.3 (±7.5)

Table 2: Success rates and task execution time under different degrees of disturbances. We only
evaluate execution time under high task success rates. The results show the mean and standard
deviation over 5 different seeds each with 20 episodes.

Finetune dataset

Text input: Is the robot 
holding a banana?
Text output: No.
Image:

Unseen objects, unseen backgrounds, unseen tasks

Figure 6: VLM detector fine-tuned on the small
dataset can benefit unseen objects, unseen back-
ground, and unseen tasks.

Go to the sofa
Pick up the yellow box
Place the yellow box on sofa

Inner Monologue - Oracle

DoReMi – Finetune (more efficient!)

Figure 7: Box dropped during the execution of
skill "Go to the sofa". Inner Monologue only
re-plans when the current skill is finished, taking
more time to complete the task.

same VLM scene descriptors. (4) IM-Oracle. Inner monologue with Oracle feedback which does
not exist in practical real-world settings.

Result Analyses The results are shown in Table 2. Similar to analysis in section 5.1, SayCan failed
due to the absence of re-planning mechanisms and Inner-monologue failed because of the ambiguity
and the low frequency of the feedback. Additionally, we find that naively increasing the re-plan
frequency (Periodic replan baseline) does not necessarily improve success rates and can even lead to
performance degradation. These results can be explained intuitively as follows: without sufficiently
precise feedback, the more you re-plan, the more mistakes you may make. Higher frequency is
beneficial only with precise enough feedback. These results further highlight the advance of DoReMi
which enables more precise feedback, thanks to the seamless cooperation between LLMs and VLMs
to propose and detect critical constraints.

In order to enhance the performance in extremely complex scenarios, such as the prepare-food task
with over 20 objects, we fine-tuned the VLM on a small dataset as claimed in section B.4. DoReMi-FT
with the fine-tuned BLIP-2 model performs better in all complicated scenes with unseen objects,
unseen backgrounds, and even unseen tasks. For instance, in unseen move-box tasks, the detector
can detect constraint violations more quickly and lead to a shorter total execution time. Furthermore,
DoReMi-FT even surpasses IM-oracle in execution time while maintaining similar success rates due
to its immediate detection and recovery mechanism, as depicted in Figure 7.

6 DISCUSSION

Limitation Our experiments indicate that the zero-shot transferred VLM is not a perfect constraint
detector. We need to fine-tune the VLM in complicated tasks to improve detection accuracy and our
framework can benefit from more advanced VLMs in the future. Furthermore, a detector fully based
on vision may be limited by mis-detection, occlusion, and perspective. We may explore detectors in
other modalities under our framework in the future.

Conclusion When employing language models for embodied tasks in a hierarchical approach, the low-
level execution might deviate from the high-level plan. We emphasized the importance of continuously
aligning the plan with execution and leveraged LLM to generate both plan and constraints, which
enables grounding language through immediate detection and recovery. Theoretical analyses and a
variety of challenging tasks in disturbed environments demonstrated the effectiveness of DoReMi.
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A PROOF FOR THEOREM

We denote the execution time of low-level skill with random variable t with mean E[t] = µ and
variance V ar(t) = σ2. Misalignment can occur at any time s within the execution time interval
[0, t] where 0 ≤ s ≤ t. Additionally, we assume our constraint detector has probability pd to detect
each misalignment. We define the discrete random variable M as the number of misalignment
occurrences under the following assumptions: (1) Plan-execution misalignments occur independently.
(2) Misalignments occur at a constant ratio λ within a small time interval: lim

t→0
P (M = 1) = λt.

(3) No two misalignments occur simultaneously: lim
t→0

P (M = k) = 0 for k > 1. Under these
assumptions, the number of plan-execution misalignments follows a Poisson distribution (Papoulis &
Unnikrishna Pillai, 2002):

P (M = k) =
(λt)ke−λt

k!
k = 0, 1, 2, 3... (4)

Theorem 1 The following equations describe the possible time-savings ts and the success rate
improvement Ps under immediate detection and re-planning:

E(ts) =
∑
k

P (M = k)E(tw|M = k) =
pdλ(µ2 + σ2)

2
− pdλµ∆t (5)

E(Ps) = 1− E(e−λt) ≈ pdλµ−
(2pd − p2

d)λ
2(µ2 + σ2)

2
(6)

A.1 LEMMA

Lemma 1 Given a Poisson process which is conditional on n arrivals in the time interval (0, t), the
conditional pdf (probability density function) of event occurrence time t1, t2..., tn satisfy (Papoulis &
Unnikrishna Pillai, 2002):

f(t1, ..., tn|M(t) = n) =
n!

tn
0 ≤ t1 ≤ ... ≤ tn ≤ t (7)

Proof Since the inter-arrival times of Poisson distribution are independent exponentially distributed,
the joint pdf of the n first arrival times is:

f(t2, t2, ..., tn) = f(t1)f(t2|t1)...f(tn|tn−1)

= λe−λt1λe−λ(t2−t1)...λe−λ(tn−tn−1)

= λne−λtn

(8)

And conditional pdf can be derived:

f(t1, t2, ..., tn|M(t) = n) =
f(t2, t2, ..., tn,M(t) = n)

P (M(t) = n)

=
f(t1, t2, ..., tn)P (M(t) = n|t1, t2, ..., tn)

P (M(t) = n)

=
λne−λtne−λ(t−tn)

e−λt(λt)n/n!

=
n!

tn

(9)

That is to say, each event can be considered as "placed" independently and uniformly at a given time
in [0, t].
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A.2 PROOF FOR THEOREM 1

Soft Misalignment Based on lemma A.1, each event can be considered to occur independently and
uniformly at a given time in [0, t], the event that occurs at s will lead to time cost t− s. Total time
cost without immediate replanning (E(M) =

∑
P (M = k) ∗ k = λt):

E(tdelay) =
∑
ti

(t− ti) =
∑
k

P (M = k)Et(tw|M = k)

= Et[
∑
k

P (M = k) ∗ kt/2]

= Et[λt2/2] = λ(µ2 + σ2)/2

(10)

Time cost without immediate replan (every event has detection time ∆t and failed detect pd):

E(tdoremi) = (1− pd)λ(µ2 + σ2)/2 + pdEt[M ] ∗∆t

= (1− pd)λ(µ2 + σ2)/2 + pdλµ∆t
(11)

The wasted time E(tw) is the difference between E(tdelay) and E(tdoremi):

E(tw) = E(tdelay)− E(tdoremi) =
pdλ(µ2 + σ2)

2
− pdλµ∆t (12)

Critical misalignment Once critical misalignment comes, a delayed replanning will lead to failure.
So the failure ratio Pf equals the probability that the misalignment occurrence number is greater than
1. We assume misalignment happens ratio λ is very small and we use second-order Tyler expansion
to approximate the failure probability without immediate detection.

E(Pf ) = Et[
∑
k≥1

P (M = k)] = Et[1− P (M = 0)] = 1− Et(e−λt)

= 1− Et(1− λt+ λ2t2/2 + ...) ≈ λEt(t)− λ2Et(t2)

= λµ− λ2(µ2 + σ2)

2

(13)

Since we consider the detector has probability pd to detect the violation and each violation happens
independently, we can view the new process as Poisson distribution with λ′ = λ ∗ (1− pd)

E(Ps) = E(Pf )− E(P ′f ) = λµ− λ2(µ2 + σ2)

2
− ((1− pd)λµ−

(1− pd)2λ2(µ2 + σ2)

2
)

= pdλµ−
(2pd − p2

d)λ
2(µ2 + σ2)

2

(14)

B HUMANOID ROBOT TASK

B.1 BASIC HUMANOID ROBOT INFORMATION

Our robot has 21 links and 20 degrees of joint freedom(DOF), and each joint holds a corresponding
motor.

Link names: "base", "left shoulder pitch", "left shoulder roll", "left arm", "left elbow", "right
shoulder pitch", "right shoulder roll", "right arm" "right elbow", "left leg yaw", "left leg roll", "left
leg pitch", "left knee", "left ankle roll", "left ankle pitch" "right leg yaw", "right leg roll", "right leg
pitch", "right knee", "right ankle roll", "right ankle pitch"

DOF joint names: "left shoulder pitch", "left shoulder roll", "left arm", "left elbow", "right shoulder
pitch", "right shoulder roll", "right arm" "right elbow", "left leg yaw", "left leg roll", "left leg pitch",
"left knee", "left ankle roll", "left ankle pitch" "right leg yaw", "right leg roll", "right leg pitch", "right
knee", "right ankle roll", "right ankle pitch"
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B.2 LOW-LEVEL SKILL TRAINING

Controlling complex humanoid robots with a single policy is challenging. Thus, we train low-level
skills at the category level. Following the separate framework in (Ma et al., 2022), we utilize rein-
forcement learning to train locomotion policy and use model-based methods to obtain manipulation
policy. In the case of our humanoid robot, there are 12 motors dedicated to the legs and 8 motors
allocated to the arms. Notably, the observation of arm motors is not incorporated into the locomotion
policies.

The locomotion policy is responsible for directly controlling the 12 motors associated with the
legs, leading to a 12-dimensional action space. These policies output the target position of motors
and run at 50 Hz, followed by PD controller run at 1000 Hz with kp = 100 and kd = 2.5. The
proprioceptive observation space of the robot includes various dimensions: 12-dimensional joint
angles, 12-dimensional joint angular velocities, 12-dimensional last actions, 3-dimensional angles
between the torso and gravity, 2-dimensional periodic clock signals, and reserved 3-dimensional
command signals, resulting in a total of 44 basic observation spaces.

We train low-level skills with the Deepmimic algorithm based on the Legged Gym (Isaac Gym
Environments for Legged Robots) environment https://github.com/leggedrobotics/
legged_gym built with the Isaac Sim physics simulator. Motion capture data we used can
be found in the poselib https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/
tree/main/isaacgymenvs/tasks/amp/poselib.

Locomotion Policy This neural network policy is conditioned on 3-dimensional commands which
respectively represent the required velocity in x-direction, y-direction, and required yaw angular
velocity. In order to obtain natural moving gaits, we use the Deepmimic algorithm with multiple Mo-
tion Capture Date(Mocap data), thus the reward function has 2 parts including tracking commanded
linear/angular velocity and imitating the style of Mocap data. This learned policy can help robots
realize a category of sub-skills related to locomotion like: "Go forward fast", "Go forward at speed
v", "Stand still", "Turn right/left", "Go to target place A", etc.

Arm Manipulation Policy Since we separate the control of arm and leg, we can use various manipu-
lation policies including learned neural network policy or model-based policy, without influencing
the leg locomotion policy. We use a linear interpolation controller to achieve the skill: "Pick up box",
"Pick up box on the floor", "Put box on table", etc.

Hyperparameters Deepmimic algorithm pipeline is similar to PPO. Hyperparameters of the back-
bone Deepmimic algorithm can be found in table 3.

Parameters Value

Number of Environments 4096
Learning epochs 5

Steps per Environment 24
Minibatch Size 24576
Episode length 20 seconds
Discount Factor 0.99

Generalised Advantage Estimation(GAE) 0.95
PPO clip 0.2

Entropy coefficient 0.005
Desired KL 0.01

Learning Rate 5e-4
Weight decay 0.01

Table 3: Hyperparameters of backbone PPO algorithm.

Training curves The training process for the navigation policies and stand/squat policies is illustrated
in Figure 8. The navigation policy enables the robot to control its xy position within the world frame,
while the height switch policy allows for adjusting the robot’s z height within the world frame.
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Figure 8: Traning curves for navigation policy by Deepmimic algorithm.

B.3 TASK DETAILS

Obstacle-avoidance task: The finish line is 8m-16m far away from the robot. The task instruction
is "Reach the finish line which is 15m in front of you". And the robot will plan low-level skills "go
forward 15m". However, unknown obstacles may appear in the way and the robot needs to replan the
skill "turn right/left" to avoid collision.

Move-box task: The robot is required to move the box in a certain color from place A to place B.
The box color is randomly selected from {red, yellow, orange, green, blue, purple}.

Prepare food: The robot is required to collect 2-5 types of food. The food is in random positions.
The robot has a chance to fail to pick up the food and the food may drop from the end-effector during
transportation.

(a) Reach line (b) Move box

(c) Prepare food (d) Prepare food

Figure 9: Robot and tasks. For every task, the photo on the Left is recorded from a third-view camera
and the photo on the right is from the first-view camera. We use first-view images as inputs to VLM
models.
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B.4 VISION LANGUAGE MODEL FINETUNING

Vision language model input images are the first-view camera attached to the robot. Visualization
of this camera can be found in Figure 9. Zero-shot transferred BLIP-2 model performs well in
the obstacle-avoidance task and the move-box task. However, in complex prepare-food tasks, the
accuracy of the VLM detector drops significantly. To better handle complex tasks, we finetune
BLIP-2 ViT-g FlanT5XL model (Li et al., 2023b) with 4.1B parameter on prepare food task, we use
LoRA (Hu et al., 2021) method to finetune the parameters in an efficient war.

Train dataset collection: we collect 5 demonstration trajectories which are 128 seconds long. Then
we label the data every 1 second, which results in a total of 128 image-text pairs. The demonstrations
only contain fruit objects on a white plain table without decorations, as shown in Figure 10.

Object in training dataset: apple, green apple, strawberry, banana, orange, lemon.

Unseen objects: carrot, chicken, corn, fish, meat, peach, pear, pizza, pumpkin, shrimp, vegetable,
soccer, cups, red plate, hammer.

Unseen background: The backgrounds are randomly generated colors, 3 samples are shown in
Figure 10.

Unseen tasks: obstacle-avoidance and move-box are two unseen tasks. Compared to the zero-shot
transferred BLIP-2 model, the finetuned BLIP-2 model performs better in move-box tasks and
performs similarly in obstacle-avoidance tasks. A fine-tuned BLIP-2 model can discover box dropped
more quickly.

Finetune dataset

Text input: Is the robot 
holding a banana?
Text output: No.
Image:

Unseen objects, unseen backgrounds, unseen tasks

Figure 10: Train dataset only contains fruit objects on plain white tables. And the test tasks are much
more complicated with unseen objects, backgrounds, and tasks.

Ensemble VLM Answers: The VLM text output for a single vision-question pair may not always be
correct. To reduce the probability of true-negative(TN) samples, an ensemble approach can be utilized
by incorporating 2 consecutive frames. Practically, We detect constraint violations by considering
2 consecutive time-step images where VLM identifies the same constraint violation. The time step
duration, denoted as ∆t, is set to 0.2 seconds.

Fine-tuned VLM can benefit unseen objects and unseen backgrounds. First, we compare the
zero-shot transferred BLIP-2 model and fine-tuned BLIP-2 model in unseen objects and backgrounds.
Zero-shot transferred BLIP-2 model may fail to detect a drop during transportation and lead to low
task success rates. A fine-tuned BLIP-2 model can detect constraint violation with high accuracy and
lead to high task success rates. Some comparisons are shown in Figure 11. we use a green border
around the image to indicate that our VLM detector determines there is no constraint violation in the
image, and a red border to indicate that VLM believes there is a constraint violation in the image.

Fine-tuned VLM can benefit unseen tasks. We also compare the zero-shot transferred BLIP-2
model and fine-tuned BLIP-2 model with unseen tasks. In move-box tasks, the zero-shot transferred
BLIP-2 model can detect the box drop when the box is totally dropped on the floor or even disappears
in the camera. However, the finetuned BLIP-2 model seems to figure out the correct robot body part
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(a) Wrong detection of zero-shot transferred BLIP-2 model.

(b) Correct detection of finetuned BLIP-2 model on unseen objects and background

Figure 11: Fine-tuned VLM performs well in unseen objects and unseen backgrounds.

and can detect box drop as soon as the box leaves the robot arm, as shown in Figure 12. The average
detection time decreased from 2.5 seconds to 0.4 seconds.

(a) Zero-shot transferred BLIP-2 identify box drop until box disappear in the horizon

(b) Fine-tuned BLIP-2 immediately detect the
box drop in this unseen task.

Figure 12: Fine-tuned VLM can benefit unseen tasks

Accuracy analysis

After fine-tuning, the accuracy of VLM in the prepare-food task has significantly increased, as shown
in Table 4.

VLM ablation study We also conduct an ablation study on different types of VLM with max
disturbances in our tasks, as shown in Table 5. The BLIP-2 model performs similarly to the
Instruct-BLIP model. However, all zero-shot transferred models can not perform well in complicated
prepare-food tasks.
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Before finetune After finetune
TP FN FP TN TP FN FP TN

Obstacle 120 5 0 14 121 4 0 14
Move box 140 0 6 22 140 0 2 26

Prepare food 78 27 8 25 99 6 1 32

Table 4: Accuracy analysis of VLM on humanoid tasks.

Success rate% BLIP-1 BLIP-2 Instruct-BLIP
Obstacle-avoidance 88 90 92

Move-box 64 94 92
Prepare-food 16 37 40

Table 5: Ablation study on zero-shot transferred VLM

B.5 ABLATIONS IN REPLAN AND DETECTION TIME

Re-plan time counts The average numbers of planning in trajectories are shown in Table 6. We did
not count the planning number in low success rate situations where agents may keep planning the
wrong steps which are meaningless. It’s worth mentioning that DoReMi only triggered a re-plan of
LLM if the constraint detector identified a constraint violation. The replanning time of DoReMi is
comparable to IM with Oracle feedback, indicating that our constraint detector provides very precise
feedback and triggers replans at the correct condition.

Number of planning Saycan Inner-Monologue Inner-Monologue
Oracle DoReMi-FT

Obstacle-avoidance
d=0.0 1.0 1.0 1.0 1.0
d=0.3 1.0 1.0 1.0 1.4
d=0.6 1.0 1.0 1.0 2.2

Move-box
p=0.0 5.0 5.0 5.0 5.0

p=0.02 - - 6.1 6.2
p=0.04 - - 7.3 7.4

Prepare-food
p=0.0 16.0 18.2 17.2 17.2

p=0.02 - - 20.9 21.2
p=0.04 - - 24.3 24.7

Table 6: Number of planning

Ablations on constraint detection interval time The ablation study on constraint detection interval
was shown in Table 7. In obstacle tasks, the agent may not have enough time to change direction with
too large constraint detection intervals. In other tasks, larger detection intervals resulted in longer
execution times.
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success rate 0.2s (original) 0.4s 0.6s 1.0s 1.5s
Obstacle 90 90 89 83 74
Move-box 96 95 95 95 95
Prepare-food 91 89 90 90 87

Execution time
Obstacle 34.3 34.6 34.2 - -
Move-box 37.3 39.7 40.7 43.2 45.1
Prepare-food 35.2 36.8 38.0 40.3 43.8

Table 7: Ablation on detection interval times

C ROBOT ARM MANIPULATION TASK

C.1 IMPLEMENTATION DETAILS

Low-level Policy The low-level policy is similar to CLIPort(Shridhar et al., 2022) and Transporter
Network (Zeng et al., 2020). Detailed references for its implementation can be found at https:
//github.com/google-research/ravens. This policy has been trained to perform single-
step pick-and-place tasks based on language descriptions, and its performance is nearing perfection.
However, for the purpose of our study, we presume this original policy to be perfect and introduce
additional perturbations to the location placement.

Ensembling Multi-step Detection by VLM In the robot arm manipulation tasks, we use the zero-
shot transferred BLIP-2 model. To decrease the true-negative error of the VLM detector, We detect
constraint violations by considering 2 consecutive time-step images where VLM identifies the same
constraint violation.

Figure 13: Our method is agnostic to different stack orders.

Baseline To adapt to our tasks, we slightly modify the original implementation of three base-
lines: (1) SayCan: similar to the original implementation of SayCan https://github.com/
google-research/google-research/tree/master/saycan, we don’t use a value
function here given this environment does not have RL-trained policies or an associated value
function. Instead, we use affordances obtained from ground-truth object information. The low-level
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Tasks with disturbance

Success Rate(%) ↑ Execution Time(s) ↓
Inner

Monologue
DoReMi

(w/o ensembling)
DoReMi

(ours)
Inner

Monologue
DoReMi

(w/o ensembling)
DoReMi

(ours)

Stack in order
with noise n

random drop p=0.05

n=0.0 100 (±0) 100 (±0) 100 (±0) 7.9 (±0.7) 7.5 (±0.5) 7.4 (±0.5)
n=1.0 94 (±7) 96 (±4) 98 (±4) 9.3 (±3.3) 8.6 (±2.9) 8.1 (±1.0)
n=2.0 83 (±8) 88 (±7) 94 (±7) 17.3 (±5.8) 12.1 (±2.9) 10.8 (±2.7)
n=3.0 63 (±9) 67 (±10) 73 (±11) 36.3 (±7.2) 25.8 (±7.1) 19.9 (±3.9)

Stack in order
with noise n

random drop p=0.15

n=0.0 92 (±6) 92 (±6) 94 (±7) 10.6 (±4.3) 9.7 (±3.2) 8.9 (±2.2)
n=1.0 88 (±7) 90 (±7) 92 (±6) 14.8 (±5.1) 12.5 (±4.2) 10.3 (±3.2)
n=2.0 73 (±11) 79 (±9) 85 (±7) 25.2 (±6.3) 21.3 (±5.7) 14.0 (±3.7)
n=3.0 23 (±9) 33 (±10) 44 (±11) 47.8 (±6.5) 40.6 (±6.9) 29.3 (±4.1)

Table 8: Ablation study over different degrees of perturbations and whether to adopt ensembling or
not. The results show the mean and standard deviation over 4 different seeds, each with 12 episodes.

policies are adopted as the same as ours. We use Vicuna-13B (Chiang et al., 2023) to output the
probabilities of each low-level policy in each scene. (2) CLIPort: the implementation is based
on https://github.com/google-research/ravens. The oracle success detector is re-
placed with our VLM detector. (3) Inner Monologue: We reproduce the implementation based on
(Huang et al., 2022b). Both the low-level policies and the LLM planner are the same as ours. The
original success detector and the scene descriptor are also replaced with our VLM.

C.2 ABLATION STUDY

We evaluated the robustness of DoReMi in various environmental conditions by testing our method
under distinct levels of perturbations. We observed that when the positional noise level n of the
end-effector exceeds 0.03 cm, the frequency of constraint violations escalates, leading to an almost
zero success rate and dramatically increased execution time, despite accurate detection of constraint
violations. This observation aligns with the theoretical expectation derived from a simple computation
of block placement probabilities.

Our primary interest lies in the response of DoReMi to a spectrum of drop perturbation levels, in
addition to the p = 0.1 presented in Table 1. As illustrated in Table 8, DoReMi demonstrates
admirable performance under a variety of scenarios, outperforming the best-performing baseline. We
attribute this largely to DoReMi’s robust detection mechanism and its ability to swiftly recover from
misalignment between plan and execution.

We are also curious to explore how the ensembling of multi-step detection would perform under
various environmental settings. As indicated in Table 8, our findings suggest that ensembling can
markedly enhance DoReMi’s effectiveness in scenarios where strong perturbations exist and a single
detection error could potentially result in a complete episode failure.

C.3 VISION LANGUAGE MODEL ANALYSIS

Accuracy analysis: To analyze the accuracy of the VLM detector, we categorize all the detection
results into True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN),
using these to calculate relevant accuracy metrics as outlined in Table 9.

A True Positive (TP) refers to the VLM correctly identifying that no constraint violation has occurred,
whereas a True Negative (TN) signifies a successful detection of a constraint violation. A False
Positive (FP) is when the VLM fails to recognize a constraint violation, and a False Negative (FN) is
when the VLM incorrectly identifies a normal condition as a violation.

Utilizing the count in each of these categories, we compute the True Positive Rate (TPR) as TPR =
TP

TP+FN . TPR reflects the accuracy with which the VLM identifies normal conditions. Similarly, the
True Negative Rate (TNR) is calculated as TNR = TN

TN+FP , representing the accuracy of VLM in
detecting constraint violations.

Further, we determine the Positive Prediction Value (PPV) as PPV = TP
TP+FP , and the Negative

Prediction Value (NPV) as NPV = TN
TN+FN . These metrics correspond to the precision of the VLM

detector in identifying normal conditions and constraint violations, respectively.
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Stack-block-in-order TP TN FP FN TPR TNR PPV NPV

p=0

n=0 150 0 0 0 1.00 N/A 1.00 N/A
n=1 188 0 0 4 0.98 N/A 1.00 0.00
n=2 249 27 3 6 0.98 0.90 0.99 0.82
n=3 272 81 1 2 0.99 0.99 1.00 0.98

p=0.05

n=0 173 5 0 0 1.00 1.00 1.00 1.00
n=1 204 7 1 1 1.00 0.88 1.00 0.88
n=2 196 23 3 4 0.98 0.88 0.98 0.85
n=3 253 92 2 6 0.98 0.98 0.99 0.94

p=0.1

n=0 202 13 1 1 1.00 0.93 1.00 0.93
n=1 180 8 0 1 0.99 1.00 1.00 0.89
n=2 212 14 3 1 1.00 0.82 0.99 0.93
n=3 231 100 4 7 0.97 0.96 0.98 0.93

p=0.15

n=0 182 24 1 0 1.00 0.96 0.99 1.00
n=1 178 12 2 0 1.00 0.86 0.97 1.00
n=2 175 26 1 3 0.98 0.96 0.99 0.90
n=3 208 128 6 9 0.96 0.96 0.97 0.93

Table 9: Statistics of VLM detection. The number of results of TP, TN, FP, FN are summed over 4
different seeds each with 12 episodes.

As per Table 9, both TPR and PPV maintain high values across various settings, which suggests
that the VLM detector excels at identifying normal conditions. However, TNR is typically lower,
particularly under conditions of low perturbations, indicating that the VLM detector may not be adept
at detecting all constraint violations. The fluctuating detections become particularly pronounced
when violations are infrequent. Similarly, NPV also trends lower across settings, signifying that
our VLM detector might misidentify normal conditions as constraint violations at times, leading to
redundant re-planning efforts.

C.4 CASE VISUALIZATION

Similar to B.4, we use a green border around the image to indicate that our VLM detector determines
there is no constraint violation in the image, and a red border to indicate that VLM believes there is a
constraint violation in the image.

(a) Q:Is the robot holding
the red block? A:Yes

(b) Q:Is the robot holding
the red block? A:No

(c) Q:Is the green block
on the red block? A:Yes

(d) Q:Is the green block
on the red block? A:No

Figure 14: Case visualization for robot arm experiment.
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D PROMPTS AND PIPELINE

We provide the prompt and the whole pipeline in this section. These prompts enable LLMs to
generate both the next step and constraint through few-shot in-context learning. In practice, the nth
generated constraint is used for (n+ 1)th skill. We find this way is more natural for LLM and LLM
can generate more admissible constraints.

D.1 QUALITY OF LLM GENERATED CONSTRAINTS

Previous works demonstrate that LLM can finish high-level planning with high quality. Additionally,
we conducted an experiment to analyze the quality of the constraints generated by LLMs.

Constraint admissible rate. We first conducted a user study to compare LLM-generated constraints
and manually specified constraints. We sought the input of five individuals to assess the admissibility
of these constraints, considering a constraint as admissible if at least four out of the five people
reached a consensus. Our findings revealed the following: For 83 specific skills used in our tasks,
LLM-generated constraints had a 98% admissible rate; For 50 random skills out of our tasks (like
"open fridge" or "give milk to human"), they had a 94% admissible rate. These results underscore the
remarkable proficiency of LLMs in generating constraints, driven by their profound understanding of
the physical world. Some examples are shown in Table 10.

Constraint consistent rate. We then query the VLM with LLM-generated constraints and manually
specified constraints under the same image input. The answers of the VLM under these two types
of constraint inputs reach a consistency rate of 97%, which proves that the LLM is able to generate
very high-quality constraints and thus can be used for constraint generation.

Specific Low-level Skill LLM-generated Constraints VQA Question

go forward 10m +no obstacle in the front +Is there any obstacle in the front?

pick block +{agent}hold block +Is the {agent} holding box?

place box on table +box on table
-{agent}hold box

+Is the box on table?
-Is the {agent} holding box?

open fridge +fridge is open +Is fridge open?

Give milk to human +human hold mild
-{agent}hold mild

+Is the human holding milk?
-Is the {agent} holding milk?

Table 10: Examples of LLM-generated constraints. The symbol "+" indicates the addition of the
constraint while "-" means popping out this constraint. Questions are in the general structure: "Is the
{constraint}?"

D.2 PROMPT

The robot performs manipulation tasks. At the same time, the robot needs to satisfy some constraints
to ensure the successful execution of each task. Just fill in the blank and directly output the next step.

Task: Go forward

(0) Start, [Constraint: no obstacle in the front], (1) Go forward, [Constraint: no obstacle in the front],
[Constraint violation: obstacle on the left], (2) Turn right, [Constraint: ],(3) Go forward, [Constraint:
no obstacle in the front], (4) Done.

Task: Collect meat and banana on the plate.

(0) Start, [Constraint: ], (1) Go to meat, [Constraint: ], (2) Pick up meat, [Constraint: The robot
is holding meat], (3) Go to plate, [Constraint: The robot is holding meat], [Constraint violation:
The robot is not holding meat] (4) Pick up meat, [Constraint: The robot is holding meat], (5) Go
to plate, [Constraint: The robot is holding meat], (6) Place meat in plate, [Constraint: ], (7) Go to
banana, [Constraint: ], (8) Pick up banana, [Constraint: The robot is holding banana], (9) Go to plate,
[Constraint: The robot is holding banana], (10) Place banana in plate, [Constraint: ], (10) Done.

Task: Stack blocks in the order of blue, red, and green.
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(0) Start, [Constraint: ], (1) Pick the red block, [Constraint: The robot is holding red block], (2) Place
the red block on the blue block, [Constraint: The red block is on the blue block], (3) Pick the green
block, [Constraint: The robot is holding green block, the red block is on the blue block], (4) Place
the green block on the red block, [Constraint: The red block is on the blue block, the green block is
on the red block], [Constraint violation: the green block is not on the red block], (5) Pick the green
block, [Constraint: The robot is holding green block, the red block is on the blue block], (6) Place the
green block on the red block, [Constraint: The red block is on the blue block, the green block is on
the red block], (7) Done.

D.3 OVERALL PIPELINE

To help understand, here we provide a specific case in the timeline, the abstract task is "Stack blocks
in the order of brown, red, and green."

1. **Planning and constraint generation for step 1:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green. (1)

- LLM output: Pick the red block, [Constraint: The robot is holding red block]

2. **Step 1 execution**

3. **Planning and constraint generation for step 2:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2)

- LLM output: Place the red block on the brown block, [Constraint: The red block is on the brown
block]

4. **Step 2 execution**

5. **Planning and constraint generation for step 3:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2) Place the red block on the brown block,
[Constraint: The red block is on the brown block], (3)

- LLM output: Pick the green block, [Constraint: The robot is holding green block, the red block is
on the brown block]

6. **Step 3 execution**

7. **Planning and constraint generation for step 4:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2) Place the red block on the brown block,
[Constraint: The red block is on the brown block], (3) Pick the green block, [Constraint: The robot is
holding green block, the red block is on the brown block], (4)

- LLM output: Place the green block on the red block, [Constraint: The red block is on the brown
block, the green block is on the red block]

8. **Step 4 execution, Detector: the red block is not on the brown block**

9. **Planning and constraint generation for step 5:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2) Place the red block on the brown block,
[Constraint: The red block is on the brown block], (3) Pick the green block, [Constraint: The robot is
holding green block, the red block is on the brown block], (4) Place the green block on the red block,
[Constraint: The red block is on the brown block, the green block is on the red block], [**Detector**:
the red block is not on the brown block], (5)

- LLM output: Pick the red block, [Constraint: The robot is holding red block]

10. **Step 5 execution**
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11. **Planning and constraint generation for step 6:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2) Place the red block on the brown block,
[Constraint: The red block is on the brown block], (3) Pick the green block, [Constraint: The robot is
holding green block, the red block is on the brown block], (4) Place the green block on the red block,
[Constraint: The red block is on the brown block, the green block is on the red block], [Detector: the
red block is not on the brown block], (5) Pick the red block, [Constraint: The robot is holding red
block], (6)

- LLM output: Place the red block on the brown block, [Constraint: The red block is on the brown
block]

12. **Step 6 execution**

13. **Planning and constraint generation for step 7:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2) Place the red block on the brown block,
[Constraint: The red block is on the brown block], (3) Pick the green block, [Constraint: The robot is
holding green block, the red block is on the brown block], (4) Place the green block on the red block,
[Constraint: The red block is on the brown block, the green block is on the red block], [Detector: the
red block is not on the brown block], (5) Pick the green block, [Constraint: The robot is holding green
block, the red block is on the brown block], (6) Place the red block on the brown block, [Constraint:
The red block is on the brown block], (7)

- LLM output: Pick the green block, [Constraint: The robot is holding green block, The red block is
on the brown block]

14. **Step 7 execution**

15. **Planning and constraint generation for step 8:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2) Place the red block on the brown block,
[Constraint: The red block is on the brown block], (3) Pick the green block, [Constraint: The robot is
holding green block, the red block is on the brown block], (4) Place the green block on the red block,
[Constraint: The red block is on the brown block, the green block is on the red block], [Detector: the
red block is not on the brown block], (5) Pick the green block, [Constraint: The robot is holding green
block, the red block is on the brown block], (6) Place the red block on the brown block, [Constraint:
The red block is on the brown block], (7) Pick the green block, [Constraint: The robot is holding
green block, The red block is on the brown block], (8)

- LLM output: Place the green block on the red block, [Constraint: The red block is on the brown
block, The green block is on the red block]

16. **Step 8 execution**

17. **Planning and constraint generation for step 9:**

- LLM input: ...(prompt)...Task: Stack blocks in the order of brown, red, and green.(1) Pick the red
block, [Constraint: The robot is holding red block], (2) Place the red block on the brown block,
[Constraint: The red block is on the brown block], (3) Pick the green block, [Constraint: The robot is
holding green block, the red block is on the brown block], (4) Place the green block on the red block,
[Constraint: The red block is on the brown block, the green block is on the red block], [Detector: the
red block is not on the brown block], (5) Pick the green block, [Constraint: The robot is holding green
block, the red block is on the brown block], (6) Place the red block on the brown block, [Constraint:
The red block is on the brown block], (7) Pick the green block, [Constraint: The robot is holding green
block, The red block is on the brown block], (8) Place the green block on the red block, [Constraint:
The red block is on the brown block, The green block is on the red block]

- LLM output: Done.

18. **Step 9 execution**
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