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ABSTRACT

Branch-and-Bound (B&B) is a general and widely used algorithm paradigm for solv-
ing Mixed Integer Programming (MIP). Recently there is a surge of interest in designing
learning-based branching policies as a fast approximation of strong branching, a human-
designed heuristic. In this work, we argue that strong branching is not a good expert to
imitate for its poor decision quality when turning off its side effects in solving branch lin-
ear programming. To obtain more effective and non-myopic policies than a local heuristic,
we formulate the branching process in MIP as reinforcement learning (RL) and design a
novel set representation and distance function for the B&B process associated with a pol-
icy. Based on such representation, we develop a novelty search evolutionary strategy for
optimizing the policy. Across a range of NP-hard problems, our trained RL agent signifi-
cantly outperforms expert-designed branching rules and the state-of-the-art learning-based
branching methods in terms of both speed and effectiveness. Our results suggest that with
carefully designed policy networks and learning algorithms, reinforcement learning has
the potential to advance algorithms for solving MIPs.

1 INTRODUCTION

Mixed Integer Programming (MIP) has been applied widely in many real-world problems, such as schedul-
ing (Barnhart et al., 2003) and transportation (Melo & Wolsey, 2012). Branch and Bound (B&B) is a general
and widely used paradigm for solving MIP problems (Wolsey & Nemhauser, 1999). B&B recursively par-
titions the solution space into a search tree and compute relaxation bounds along the way to prune subtrees
that provably can not contain an optimal solution. This iterative process requires sequential decision mak-
ings: node selection: selecting the next solution space to evaluate, variable selection: selecting the variable
by which to partition the solution space (Achterberg & Berthold, 2009). In this work, we focus on learning
a variable selection strategy, which is the core of the B&B algorithm (Achterberg & Wunderling, 2013).

Very often, instances from the same MIP problem family are solved repeatedly in industry, which gives rise
to the opportunity for learning to improve the variable selection policy (Bengio et al., 2020). Based on the
human-designed heuristics, Di Liberto et al. (2016) learn a classifier that dynamically selects an existing
rule to perform variable selection; Balcan et al. (2018) consider a weighted score of multiple heuristics and
analyse the sample complexity of finding such a good weight. The first step towards learning a variable
selection policy was taken by Khalil et al. (2016), who learn an instance customized policy in an online
fashion, as well as Alvarez et al. (2017) and Hansknecht et al. (2018) who learn a branching rule offline on
a collection of similar instances. Those methods need extensively feature engineering and require strong
domain knowledge in MIP. To avoid that, Gasse et al. (2019) propose a graph convolutional neural network
approach to obtain competitive performance, only requiring raw features provided by the solver. In each
case, the branching policy is learned by imitating the decision of strong branching as it consistently leads to
the smallest B&B trees empirically (Achterberg et al., 2005).
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In this work, we argue that strong branching is not a good expert to imitate. The excellent performance
(the smallest B&B tree) of strong branching relies mostly on the information obtained in solving branch
linear programming (LP) rather than the decision it makes. This factor prevents learning a good policy by
imitating only the decision made by strong branching. To obtain more effective and non-myopic policies,i.e.
minimizing the total solving nodes rather than maximizing the immediate duality gap gap, we use reinforce-
ment learning (RL) and model the variable selection process as a Markov Decision Process (MDP). Though
the MDP formulation for MIP has been mentioned in the previous works (Gasse et al., 2019; Etheve et al.,
2020), the advantage of RL has not been demonstrated clearly in literature.

The challenges of using RL are multi-fold. First, the state space is a complex search tree, which can in-
volve hundreds or thousands of nodes (with a linear program on each node) and evolve over time. In the
meanwhile, the objective of MIP is to solve problems faster. Hence a trade-off between decision quality
and computation time is required when representing the state and designing a policy based on this state rep-
resentation. Second, learning a branching policy by RL requires rolling out on a distribution of instances.
Moreover, for each instance, the solving trajectory could contain thousands of steps and actions can have
long-lasting effects. These result in a large variance in gradient estimation. Third, each step of variable
selection can have hundreds of candidates. The large action set makes the exploration in MIP very hard.

In this work, we address these challenges by designing a policy network inspired by primal-dual iteration and
employing a novelty search evolutionary strategy (NS-ES) to improve the policy. For efficiency-effectiveness
trade-off, the primal-dual policy ignores the redundant information and makes high-quality decisions on the
fly. For reducing variance, the ES algorithm is an attractive choice as its gradient estimation is independent
of the trajectory length (Salimans et al., 2017). For exploration, we introduce a new representation of the
B&B solving process employed by novelty search (Conti et al., 2018) to encourage visiting new states.

We evaluate our RL trained agent over a range of problems (namely, set covering, maximum independent
set, capacitated facility location). The experiments show that our approach significantly outperforms state-
of-the-art human-designed heuristics (Achterberg & Berthold, 2009) as well as imitation based learning
methods (Khalil et al., 2016; Gasse et al., 2019). In the ablation study, we compare our primal-dual policy
net with GCN (Gasse et al., 2019), our novelty based ES with vanilla ES (Salimans et al., 2017). The results
confirm that both our policy network and the novelty search evolutionary strategy are indispensable for the
success of the RL agent. In summary, our main contributions are the followings:

• We point out the overestimation of the decision quality of strong branching and suggest that methods other
than imitating strong branching are needed to find better variable selection policy.

• We model the variable selection process as MDP and design a novel policy net based on primal-dual
iteration over reduced LP relaxation.

• We introduce a novel set representation and optimal transport distance for the branching process associated
with a policy, based on which we train our RL agent using novelty search evolution strategy and obtain
substantial improvements in empirical evaluation.

2 BACKGROUND

Mixed Integer Programming. MIP is an optimization problem, which is typically formulated as

minx∈Rn {cTx : Ax ≤ b, ` ≤ x ≤ u, xj ∈ Z, ∀j ∈ J} (1)

where c ∈ Rn is the objective vector, A ∈ Rm×n is the constraint coefficient matrix, b ∈ Rm is the
constraint vector, `,u ∈ Rn are the variable bounds. The set J ⊆ {1, · · · , n} is an index set for integer
variables. We denote the feasible region of x as X .
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Linear Programming Relaxation. LP relaxation is an important building block for solving MIP problems,
where the integer constraints are removed:

minx∈Rn {cTx : Ax ≤ b, ` ≤ x ≤ u}. (2)

Algorithm 1: Branch and Bound
Input: A MIP P in form Equation 1
Output: An optimal solution set x∗ and

optimal value c∗
1 Initialize the problem set S := {PLP }. where
PLP is in form Equation 2. Set
x∗ = φ, c∗ =∞ ;

2 If S = φ, exit by returning x∗ and c∗ ;
3 Select and pop a LP relaxation Q ∈ S ;
4 Solve Q with optimal solution x̂ and optimal

value ĉ ;
5 If ĉ ≥ c∗, go to 2 ;
6 If x̂ ∈ X , set x∗ = x̂, c∗ = ĉ, go to 2 ;
7 Select variable j, split Q into two subproblems
Q+
j and Q−j , add them to S and go to 3 ;

Branch and Bound. LP based B&B is the most
successful method in solving MIP. A typical LP
based B&B algorithm for solving MIP looks as Algo-
rithm 1 (Achterberg et al., 2005).

It consists of two major decisions: node selection, in
line 3, and variable selection, in line 7. In this paper,
we will focus on the variable selection. Given a LP
relaxation and its optimal solution x̂, the variable se-
lection means selecting an index j. Then, branching
splits the current problem into two subproblems, each
representing the original LP relaxation with a new con-
straint xj ≤ bx̂jc for Q−j and xj ≥ dx̂je for Q+

j re-
spectively. This procedure can be visualized by a bi-
nary tree, which is commonly called search tree. We
give a simple visualization in Section A.1.

Evolution Strategy. Evolution Strategies (ES) is a class of black box optimization algorithm (Rechenberg,
1978). In this work, we refer to the definition in Natural Evolution Strategies (NES) (Wierstra et al., 2008).
NES represents the population as a distribution of parameter vectors θ characterized by parameters φ : pφ(θ).
NES optimizes φ to maximize the expectation of a fitness f(θ) over the population Eθ∼pφ [f(θ)]. In recent
work, Salimans et al. (2017) outlines a version of NES applied to standard RL benchmark problems, where
θ parameterizes the policy πθ, φt = (θt, σ) parameterizes a Gaussian distribution pφ(θ) = N (θt, σ

2I) and
f(θ) is the cumulative reward R(θ) over a full agent interaction. At every iteration, Salimans et al. (2017)
apply n additive Gaussian noises to the current parameter and update the population as

θt+1 = θt + α
1

nσ

n∑
i=1

f(θt + σεi)εi (3)

To encourage exploration, Conti et al. (2018) propose Novelty Search Evolution Strategy (NS-ES). In NS-
ES, the fitness function f(θ) = λN(θ)+(1−λ)R(θ) is selected as a combination of domain specific novelty
score N and cumulative reward R, where λ is the balancing weight.

3 WHY IMITATING STRONG BRANCHING IS NOT GOOD

Strong branching is a human-designed heuristic, which solves all possible branch LPs Q+
j , Q

−
j ahead of

branching. As strong branching usually produces the smallest B&B search trees (Achterberg, 2009), many
learning-based variable selection policy are trained by mimicking strong branching (Gasse et al., 2019;
Khalil et al., 2016; Alvarez et al., 2017; Hansknecht et al., 2018). However, we claim that strong branching
is not a good expert: the reason strong branching can produce a small search tree is the reduction obtained
in solving branch LP, rather than its decision quality. Specifically, (i) Strong branching can check lines 5,
6 in Algorithm 1 before branching. If the pruning condition is satisfied, strong branching does not need to
add the subproblem into the problem set S. (ii) Strong branching can strengthen other LP relaxations in the
problem set S via domain propagation (Rodosek et al., 1999) and conflict analysis (Achterberg, 2007). For
example, if strong branching finds x1 ≥ 1 and x2 ≥ 1 can be pruned during solving branch LP, then any
other LP relaxations containing x1 ≥ 1 can be strengthened by adding x2 ≤ 0. These two reductions are
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the direct consequence of solving branch LP, and they can not be learned by a variable selection policy. (iii)
Strong branching activates primal heuristics (Berthold, 2006) after solving LPs.

To examine the decision quality of strong branching, we employ vanilla full strong branching (Gamrath
et al., 2020), which takes the same decision as full strong branching, while the side-effect of solving branch
LP is switched off. Experiments in Section 5.2 show that vanilla full strong branching has poor decision
quality. Hence, imitating strong branching is not a wise choice for learning variable selection policy.

4 METHOD

Due to line 5 in Algorithm 1, a good variable selection policy can significantly improve solving efficiency. To
illustrate how to improve variable selection policy, we organize this section in three parts. First, we present
our formulation of the variable selection process as a RL problem. Next, we introduce the LP relaxation
based state representation and the primal-dual based policy network. Then, we introduce our branching
process representation and the corresponding NS-ES training algorithm.

4.1 RL FORMULATION

Let the B&B algorithm and problem distribution D be the environment. The sequential decision making of
variable selection can be formulated as a Markov decision process. We specify state space S, action space
A, transition P and reward r as follows

• State Space. At iteration t, node selection policy will pop out a LP relaxation PLP from the problem set
S. We set the representation of the state to st = {PLP , J, S}, where J is the index set of integer variables.

• Action Space. At iteration t, the action space is the index set of non-fixed integer variables determined
by the relaxation: A(st) = {j ∈ J : `j < uj}.

• Transition. Given state st and action at, the new state is determined by the node selection policy.
• Reward. As our target is solving the problem faster, we set the reward rt = −1 with discount γ = 1.

Maximizing the cumulative reward encourages the agent solving problems with less steps.

In commercial solver, the solving process is much more complicated than the B&B stated in Algorithm 1.
For example, between line 3 and line 4, primal heuristics could be used to detect feasible solutions, and
cutting planes could be applied to strengthen the LP relaxation. These components in solver introduce more
randomness in transition, but our formulation is still valid.

4.2 PRIMAL DUAL POLICY NET

Reduced LP. In the solving process, the variable bounds keep changing due to branching. Thus, we obtain
our reduced LP relaxation by the following two steps: 1) remove fixed variables xj , where `j = uj , and
plug their values into the constraints; 2) remove trivial constraints, where max`≤x≤u

∑
j Aijxj ≤ bi. In the

view of primal-dual iteration, the LP relaxation has Lagrangian form:

min
x

max
λ

cTx + λT (Ax− b), s.t. ` ≤ x ≤ u,0 ≤ λ (4)

where variables and constraints naturally form a bipartite graph. In the primal-dual iteration over Equation 4,
fixed variables and trivial constraints always pass zero and have no interaction with other variables.

PD policy net. We parameterize our policy network πθ(at|st) as a primal-dual iteration over the reduced
LP relaxation by message passing

Yi ← fC

(
Yi,

∑
jAijmC (Xj)

)
, Xj ← fV

(
Xj ,

∑
iAijmV (Yi)

)
(5)
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3.3 NOVELTY SEARCH EVOLUTIONARY STRATEGY

We train the RL agent using evolutionary strategy similar to NSRA-ES (Conti et al., 2018). The core
idea is to flatten the RL problem into a blackbox optimization problem, where the input is the policy
parameter ✓ and the outputs are cumulative reward F and novelty score N . At every iteration, we
apply additive Gaussian noise to the current parameter vector. The update is performed as follows:

✓t+1 = ✓t + ↵
1

n�

nX

i=1

� ·Ni✏i + (1� �) · Fi✏i (5)

where � is a weight balancing cumulative reward and novelty score. The remaining work is defining
the novelty score for the abstract B&B process.

[ It will be good to have a figure to explain the following 3 paragraphs.]

In general B&B algorithm, the solving process can be represented as a search tree, where each
leaf is a solved subproblem. Given a branch policy ⇡ and instance Q, we define our characteri-
zation b(⇡, Q) = {R1, · · · , RH} as the collection of those leaf subproblems. For subprolbems,
we define a weight function w(Ri) and a distance function d(Ri, Rj). Provided weight func-
tion w, we can map the characterization b = {R1, · · · , RH} to simplex p(b) 2 �H�1 such
that p(Rj) = w(Rj)/

P
H

i=1 w(Ri). Given the distance function, we can set the cost matrix
Wij = d(Ri, Rj). Then, we can define the metric D between two characterization, such that
D(b1, b2) = OT (p(b1), p(b2),W ) is the Wasserstein distance.

Equipped metric D between characterization, we can define the novelty score following Conti et al.
(2018). Given a policy memory M and an instance Q sampled from the problem distribution D,
novelty score is computed as:

N(✓, Q,M) =
1

k

X

⇡j2kNN(M,✓)

D(b(⇡✓, Q), b(⇡j , Q)) (6)

where kNN(M, ✓) is the k nearest neighbor of ⇡✓ in M . In this definition, the novelty score
encourages the policies with characterization far from the characterizations in policy memory.

Focusing on MIP, in this work, we represent the subproblem Ri as a polyhedron which is the feasi-
ble region the integer variables of the LP relaxation. The weight function w is defined as counting
number of feasible integer points and the distance function d is defined as the 1�norm distance
between the gravity center of two polyhedrons. For computational efficiency, we ignore the con-
straints and only consider variable bounds such that every polyhedron is a box. A simple illustration
of characterization is given in Figure 2. We can see that
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Figure 2: Caption for image

To put everything together, we lay out the training algorithm in Algorithm 2.

4 EXPERIMENTS

We now present a comparative experiments against two competing machine learning approach and
three SCIP’s branching rules to assess the value of our RL agent, as well as an ablation study to
validate the our choice of state representation and training algorithm.

5

Figure 2: (l) characterization b1, (m) characterization b2, (r) distribution and the cost matrix

where kNN(M, ✓) is the k nearest neighbor of ⇡✓ in M . In this definition, the novelty score
encourages the policies with characterization far from the characterizations in policy memory.

[ Rephrase this paragraph. Make it easier to understand.]
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We have introduced the characterization and its metric for general B&B algorithm. Focusing on
MIP, a subproblem Ri can be represented by a polytope, the feasible region of the LP relaxation.
We define the weight function w as counting the number of feasible integer points in the polytope
and the distance function d as the 1�norm distance between the gravity center of two polytopes.
For computational efficiency, we ignore the constraints and only consider variable bounds such that
every polytope is a box. A simple illustration of characterizations is given in Figure 2. We can
compute the distance D(b1, b2) = 3

2 . Another observation is the polyhedron may degenerate to
lower dimension after branching, for example, the B1 in b1. Hence, we choose the counting weight
function w in our work [ Not so sure what this sentence means.]. This finishes the definition of
the novelty score. To put everything together, we summarize the training in Algorithm 2.

5 EXPERIMENTS

We now present a comparative experiments against two competing machine learning approach and
three SCIP’s branching rules to assess the value of our RL agent, as well as an ablation study to
validate the our choice of state representation and training algorithm.

5.1 SETUP

Benchmarks: We consider three classes of instances, Set Covering, Maximum Independent Set
and Capacitated facility location, that are not only challenging for state-of-the-art solvers, but also
representative for problems encountered in practice. For each class, we set up a backbone based
on which we randomly generate the dataset.[ Need to justify why backbone idea is good: in

many real word problems, different problem instance may share a backbone. For instance

.... . Do you have more information about the backbone, and details about the generative

process in appendix?] [Sun: I will add the generating process in Appendix] We generate
set covering instances using 1000 columns. We train on instances with 500 rows and we evaluate
on instances with 500 rows (test), 1000 rows (medium transfer), 1500 rows (hard transfer). We
generate maximum independent set on graphs with 400 nodes and we evaluate on graphs with 400
nodes (test), 1000 nodes (medium transfer) and 1500 nodes (hard transfer). We generate capacitated
facility location with 100 facilities. We train on instances with 40 customers (test) and we evaluate
on instances with 200 customers (medium transfer) and 400 customers (hard transfer). More details
are provided in the appendix.
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4.4 NOVELTY SEARCH EVOLUTIONARY STRATEGY

With metric D between representations, we can define the novelty score following Conti et al. (2018). Given
a policy memory M and an instance Q sampled from the problem distribution D, novelty score is computed
as:

N(✓, Q,M) =
1

k

X

⇡j2kNN(M,✓)

D(b(⇡✓, Q), b(⇡j , Q)) (7)

where kNN(M, ✓) is the k nearest neighbor of ⇡✓ in M . In this definition, the novelty
score encourages the policies with representation far from the representations in policy memory.
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
1/2 1/4 0
0 0 1/4

�
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�
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� [ cite and summarize algorithm 1 here in this section!!! Consider

wrap figure and make it half column.]

Algorithm 2: Evolutionary Strategy with Novelty Score.
Input: Learning rate ↵, Noise std �, number of workers n, Validation size N , Batch size M , Initial

weight �, Weight decay rate �, Iterations T, Parameter ✓0, Policy memory MK with capacity K,
Instance distribution D

Output: Best parameter ✓best
1 Sample valid instances Q1, · · · , QN ⇠ D
2 Set Fbest =

1
N

P
N

j=1 f(✓0, Qj), ✓best = ✓0 and push ✓0 into MK

3 for t=0 to T do

4 Sample instances P1, · · · , PM ⇠ D
5 for i=1 to N do

6 Sample ✏1, · · · , ✏n ⇠ N (0, I)

7 Compute Fi =
1
m

P
M

m=1 f(✓t + �✏i, Pm)

8 Compute Ni =
1
m

P
M

m=1 N(✓t + �✏i, Pm,M)
9 Send Ni and Fi from each worker to coordinator

10 end

11 Set ✓t+1 = ✓t + ↵ 1
n�

P
n

i=1 � ·Ni✏i + (1� �) · Fi✏i
12 Compute F (t+1) = 1

N

P
N

j=1 f(✓t+1, Qj)

13 if F (t+1) > Fbest then

14 Set Fbest = F (t+1), ✓best = ✓t+1, � = � ⇤ �
15 end

16 Push ✓t+1 into MK

17 end
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Figure 1: (left) three policies π1, π2 and π3 produce three sets of polytopes b1, b2 and b3 respectively for the
same problem Q, (right) example cost matrix W and transportation matrix Γ.

where fC , fV are two-hidden-layers neural networks, mC ,mV are one hidden layer neural networks, Aij
is the entry in the reduced constraint matrix A and X,Y are the embedding for variables and constraints
initialized by PLP and J . As mentioned above, the original primal-dual iterations only occurs on the reduced
LP hence, our message passing in Equation 5 is defined only on the reduced graph. For efficiency, we do
not include problem set S, which makes it a partial observable MDP (Astrom, 1965). After two iterations
of Equation 5, the variable embedding X is passed to a two-hidden-layer neural network score function fS
and the output is the final score for each variable. Since the state reduction and message passing are both
inspired by primal-dual iteration, we call it PD policy. A more detailed discussion and comparison with
GCN (Gasse et al., 2019) can be found at section A.2.2.

4.3 SET REPRESENTATION FOR POLICY AND OPTIMAL TRANSPORT DISTANCE

We train the RL agent using evolution strategy similar to NSR-ES (Conti et al., 2018) and we need to define
the novelty score for B&B process. In the general B&B algorithm, the solving process can be represented by
a search tree, where each leaf is a solved subproblem. Given a branch policy π and an instance Q, we define
our representation b(π,Q) = {R1, · · · , RH} as the collection of leaf subproblems on the complete search
tree . Focusing on MIP, a subproblem Ri is a LP relaxation which can be represented by its feasible region,
a polytope. For example, in Figure 1, b1, b2 and b3 are the set of polytopes produced by three different
policies π1, π2 and π3 respectively. And b1 = {A1, B1} is a set of two polytopes (leaf subproblems), b2 =
{A2, B2, C2} is a set of three polytopes, and b3 = {A3, B3} is a set of two polytopes. For computational
efficiency, we ignore the constraints and only consider variable bounds such that every polytope is a box.

For each polytope Ri (leaf subproblem), we define the weight function w(·) and distance function d(·, ·)
between two polytopes Ri and Rj as

• w(Ri) := #{x ∈ Ri : x is a feasible solution for Q}.
• d(Ri, Rj) := ‖gi − gj‖1, where gi and gj are the center of mass for Ri and Rj respectively.

For example, in Figure 1, we have w(A1) = 12, d(A1, A2) = 3
2 . Then we can map the representation

b = {R1, · · · , RH} to a simplex p(b) ∈ ∆H−1 by normalizing the weights p(Rj) = w(Rj)/
∑H
i=1 w(Ri),

and compute a cost matrix Wij = d(Ri, Rj) (See Figure 1 for examples). Then, we can define the metric
D between two representations as the Wasserstein distance (or optimal transport distance) (Villani, 2008;
Peyré et al., 2019):

D(b1, b2) = min
Γ

∑
i,j

ΓijWij(b1, b2), s.t. Γ1 = p(b1), ΓT1 = p(b2) (6)

For example, in Figure 1, the distance D(b1, b2) = 3
2 , D(b1, b3) = 3

4 meaning b3 is closer to b1 than b2.
Hence the corresponding policy π3 is closer to π1 than π2. Here, we provide a concrete method to measure
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the distance between two solving processes. It is also provides a framework for general B&B algorithm. We
can choose weight function w and distance function d depending on the property of the solution space and
compute the distance between two B&B solving processes.

4.4 NOVELTY SEARCH EVOLUTIONARY STRATEGY

Equipped with metric D between representations, we can define the novelty score following Conti et al.
(2018). Given a policy memory M (a collection of older policies) and an instance Q sampled from the
problem distribution D, novelty score is computed as:

N(θ,Q,M) =
1

k

∑
πj∈kNN(M,θ)

D(b(πθ, Q), b(πj , Q)) (7)

where kNN(M, θ) is the k nearest neighbor of πθ in M . Back to Algorithm 1, B&B algorithm recursively
splits the feasible region and obtains a set of polytopes when finishing solving an instance. Notice that a
polytope in the set representation is invariant with the generating order, i.e. branching x1 then x2 will give
the same polytope with branching x2 then x1. As a result, our metric D and novelty score N is mostly
determined by the pruning behavior during the solving process. Put everything together, we summarize the
training algorithm in section A.3.

5 EXPERIMENTS

We now present comparative experiments against two competing machine learning approaches and three
SCIP’s branching rules to assess the value of our RL agent, as well as an ablation study to validate our
choice of policy representation and training algorithm.

5.1 SETUP

Benchmarks: We consider three classes of instances, Set Covering (Balas & Ho, 1980), Maximum Indepen-
dent Set (Albert & Barabási, 2002) and Capacitated facility location (Cornuéjols et al., 1991), those are not
only challenging for state-of-the-art solvers, but also representative for problems encountered in practice.
For each class, we set up a backbone based on which we randomly generate the dataset as many real-world
problems also share the same backbone. For example, a logistics company frequently solves instances on
very similar transportation networks with different customer demands. We generate set covering instances
using 1000 columns. We train on instances with 500 rows and evaluate on instances with 500 rows (test),
1000 rows (medium transfer), 1500 rows (hard transfer). We train maximum independent set on graphs with
400 nodes and evaluate on graphs with 400 nodes (test), 1000 nodes (medium transfer), and 1500 nodes
(hard transfer). We generate capacitated facility location with 100 facilities. We train on instances with 40
customers (test) and evaluate on instances with 40 customers (test), 200 customers (medium transfer), and
400 customers (hard transfer). More details are provided in the section A.4

Settings: Throughout all experiments, we use SCIP 7.0.1 as the backend solver, with a time limit of 1 hour.
For SCIP parameters, we have two settings: clean and default. The clean setting switches off other SCIP
components, such as estimate node selection, cutting plane and primal heuristics. This way, the evaluation
eliminates the interference from other components of the solver to variable selection policy. Under the clean
setting, the solving nodes reflect the decision quality of variable selection policies only. So, we compare
the decision quality of different methods under the clean setting. The default setting of SCIP will turn on
all components inside SCIP, which is tuned for solving real problems. So, We compare the ability to solve
challenging problems of different methods under the default setting.

Baselines: We compare against: Reliability Pseudocost Branch (RPB) (Achterberg & Berthold, 2009), the
human-designed state-of-the-art branching rule, which computes strong branching in the beginning and

6
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Table 1: Policy evaluation on test instances. Wins are counted by the number of times a method results in
least number of solving nodes. The time Tavg is reported in seconds.

Method Tavg Navg Wins Tavg Navg Wins Tavg Navg Wins

FSB 99.73 367 na/100 19.19 140 na/100 27.16 964 na/100
RPB 12.64 763 na/100 3.06 250 na/100 21.39 1449 na/100

VFS 1935.35 737 5/ 75 244.14 1304 0/100 173.50 1848 31/100
SVM 21.19 856 1/100 10.83 498 1/100 29.64 2096 17/100
GCN 10.37 575 28/100 1.56 418 2/100 26.31 1752 13/100
RL 7.91 399 66/100 1.26 200 97/100 20.85 1640 39/100

Set Covering Independent Set Facility Location

gradually switches to simpler heuristics; Full Strong Branching (FSB), a full version of strong branching;
Vanilla Full Strong Branching (VFS), strong branching with branch LP information muted (Gamrath et al.,
2020); and two recent machine learning policies support vector machine (SVM) rank approach (Khalil et al.,
2016) and GCN approach (Gasse et al., 2019) 1. We denote our method as RL, which is the primal-dual net
trained by NS-ES.

Metrics. To minimize the expected solving cost, metrics are selected as the average solving times (Tavg)
for all instances and average solving nodes (Navg) for instances solved by all methods. Since MIP instances
could vary a lot in difficulty, we count the number of times each method leads the performance over the
number of times each method solves the instance within timelimit (Wins) as a third robust metric.

Implementation. The detail of implementation is provided in section A.2

5.2 DECISION QUALITY

We evaluate the variable selection quality by solving 100 test instances under clean setting. Since we are
comparing the decision quality, we say a method wins in this experiment if it results in the least number of
solving nodes. As FSB and RPB benefit a lot from branching LP information (section 3), we do not include
them when counting Wins. Table. 1 shows our RL agent leads the win times on all datasets and the average
solving nodes on set covering, and independent set are significantly better than other methods.

5.3 GENERALIZATION TO LARGER INSTANCES

It is very important for RL agents to transfer to larger unseen instances as training on large instances is very
expensive in the real world. We investigate the generalization ability of our RL agent by solving 100 transfer
instances under default setting. To meet the needs in practice, we say a method wins in this experiment if it
results in the fastest solving time. As VFS is not able to solve any transfer instance in time limit, we do not
list its results in Table. 4. We can see, except for RPB and SVM having comparable performance on hard
set covering and hard facility location, respectively, the RL agent leads the performance. In set covering
(hard) and maximum independent set (hard), we do not compute the average number of nodes for full strong
branching as it solves too limited instances.

5.4 IMPROVEMENT ANALYSIS

Having seen the improvements brought by RL, we would like to ask what kind of decisions our agent learns.
We answer this question in two aspects: finding lower primal bound c∗ and obtaining higher dual value ĉ that

1The source code has been released in Gasse et al. (2019).
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Table 2: Policy evaluation on transfer instances. Wins are counted by the number of times a method results
in fastest solving time. The time Tavg is reported in seconds.

Method Tavg Navg Wins Tavg Navg Wins Tavg Navg Wins

Medium

FSB 1806 835 0/85 2835 95 0/57 506 208 3/100

RPB 360 10422 6/100 228 1354 8/100 311 562 4/100
SVM 1003 10170 0/92 1353 2687 8/81 314 1079 17/100
GCN 351 8789 7/100 1654 9292 0/76 332 1231 7/100
RL 295 7687 87/100 148 1374 84/100 258 1032 69/100

Hard

FSB 3361 na 0/15 3566 na 0/3 1046 101 0/90

RPB 1608 15043 30/80 1743 1618 21/82 763 281 5/99
SVM 2928 14058 0/30 3243 3850 0/20 606 623 37/100
GCN 1979 15043 0/71 2973 2114 0/26 891 865 5/97
RL 1628 12555 50/80 1497 1648 62/79 624 650 53/100

Set Covering Independent Set Facility Location
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Figure 2: Primal bounds versus the depth in search tree (number of branch constraints) they are found

allows pruning in line 5 Algorithm 1. We compare our RL agent with GCN, SVM, VFC on 100 maximum
independent set test instances under clean setting.

We first examine primal bound c∗. Figure 2 plots the feasible solutions found during the solving process.
A point (n, y) means we find a feasible solution c∗ = y in a subproblem containing n branch constraints.
Figure 2 shows that our RL agent is able to detect small c∗ at the early stage. Hence, it can prune more
subproblems and solve the MIP faster. On the contrary, VFS fails to detect feasible solutions efficiently.
One reason is, traditionally, strong branching or other human-designed heuristics are mainly on the purpose
of obtaining higher ĉ. Our result suggests a new possibility for researchers to find variable selection method
good at detecting feasible solutions.

Then, we check local dual value ĉ. To eliminate the influence in primal bound c∗ changing, we initialize
c∗ = copt with the optimal value like Khalil et al. (2016). We plot the curve of average width versus the
depth in Figure 3. The area under the curve equals the average number of solving nodes, and we report it
in the legend. Also, as c∗ is fixed, the width versus depth plot characterizes how many branches are needed
to increase the local dual value ĉ to c∗ so as to close a subproblem. A smaller width indicates the variable
selection policy closes the gap faster. VFS performs better under this setting than in Figure 2 while it is
still beat by learning based methods. Figure 3 shows that although our RL agent has the worst width in the
beginning, it has the lowest peak and leads the overall performance. This means our RL agent successfully
employs a non-myopic policy to maximize ĉ in the long term.
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Figure 4: Comparison of 4 RL agents

5.5 ABLATION STUDY

We present an ablation study of our method on maximum independent set problem by comparing four types
of RL agents: (1) PD policy + ES; (2) PD policy + NS-ES; (3) GCN + ES; (4) GCN + NS-ES. We sample
V = 200 instances as our validation set in and plot the average number of solving nodes under clean setting
on the validation set during the training process for five random seeds. All agents are initialized by imitation
learning. The results are plotted in Figure 4. All curves obtain higher rewards shows that RL improves the
variable selection policy. (1) and (2) having larger rewards than (3) and (4) shows that PD policy can obtain
more improvement than GCN. Also, (2) and (4) having larger rewards than (1) and (3) shows that novelty
search helps to find better policies. The results suggest that RL improves learning to branch and both PD
policy, NS-ES are indispensable in the success of RL agent.

6 DISCUSSION

In this work, we point out the overestimation of the decision quality of strong branching. The evidence in
Table 1 shows VFS performs poor on synthetic dataset under clean setting. An interesting phenomenon is
that GCN can easily beat VFS after imitation learning (or our PD policy can obtain similar result). One
possible explanation is that the primal-dual message passing structure naturally learns the good decisions
and ignores the noise brought by strong branching. Another possible reason is the biased sampling. To
keep the diversity of the samples, Gasse et al. (2019) employs a mixed policy of RPB and VFS to sample
the training data. VFS probably performs good on most of the states while has poor decision quality when
trapped in some regions. As a result, VFS has poor overall performance. Fortunately, using the mixing
policy as the behavior policy helps to escape from these regions hence, the collected data have good decision
quality. More studies are needed before we can give a confident answer for this question.

7 CONCLUSION

We present an NS-ES framework to automatically learn the variable selection policy for MIP. Central to our
approach is the primal-dual policy network and the set representation of the B&B process. We demonstrate
our RL agent makes high-quality variable selection across different problems types and sizes. Our results
suggest that with carefully designed policy networks and learning algorithms, reinforcement learning has
the potential to advance algorithms for solving MIP.
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A APPENDIX

A.1 BRANCH AND BOUND

Here we gives a simple illustration of B&B algorithm in Figure 5. Given the LP relaxation, the polytope
represents the feasible region of the LP relaxation and the red arrow represents the objective vector. We first
solve the LP relaxation and obtain the solution x̂ as the red point. Noticing it is not feasible for MIP, we
branch the LP relaxation into two subproblems. In (a) we select to split variable x1 and in (b) we select
to split variable x2. The subproblems obtained after branching are displayed by the shaded purple regions.
After finishing solve these two MIPs, we obtain the search trees t1 and t2. We can see that a wise selection
of variable x2 can solve the problem faster.

Branching Rules

Task

• divide into (disjoint)

subproblems

• improve local bounds

Techniques

• branching on variables

• most infeasible
• least infeasible
• random branching
• strong branching
• pseudocost
• reliability
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• hybrid reliability/inference

• branching on constraints

• SOS1
• SOS2

Gregor Hendel – SCIP Introduction 47/71
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(b) split on x2 and search tree t2

Figure 5: Illustration of splitting in B&B and the corresponding search tree

A.2 IMPLEMENTATION

A.2.1 HARDWARE

All the experiments were run at a Ubuntu 18.04 machine with Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz, 256 GB Memory and Nvidia RTX 2080Ti graphic cards.

A.2.2 PD POLICY

Comparison. PD policy is similar to the GCN in Gasse et al. (2019) but has two major differences. First, we
use a dynamic reduced graph where fixed variables and trivial constraints are removed due to the variable
bounds changing during the solving process while Gasse et al. (2019) do not consider it. The reduced graph
can not only save computation, but also give a more accurate description of the solving state by ignoring the
redundant information. The ablation in Section 5.5 shows it is indispensable in the success of RL. Second,
we use a simple matrix multiplication in our PD policy while Gasse et al. (2019) use a complicated edge
embedding in GCN. In some sense, GCN can be seen as an overparameterized version of our method. And
our success reveals that message passing on the LP relaxation is the true helpful structure.

detail. We implement our primal dual policy net using dgl (Wang et al., 2019), with hidden dimension
h = 64 and ReLU activation. The feature X for variable is a 17 dimension vector and feature Y for
constraint is a 5 dimension vector. We list the detail of feature in Table. 3
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Tensor Name Description

X

type a one-hot encoding for (binary, integer, implicit, continuous)
coef objective coefficient
lb variable lower bound
ub variable upper bound
at-lb indicator whether solution value equals lower bound
at-ub indicator whether solution value equals upper bound
sol-frac solution value fractionality
basis-status a one-hot encoding for simplex basis status (lower, basic, upper, zero)
red reduced cost
age normalized LP age
sol-val solution value

Y

obj-sim cosine similarity with objective
bias bias value
is-tight tightness indicator in LP solution
dualsol-val dual solution value
age normalized LP age

Table 3: Feature X for variable and feature Y for constraint

A.2.3 BASELINE

FSB. We use the implementation in SCIP Gamrath et al. (2020)

VFS. We use the implementation in SCIP Gamrath et al. (2020)

RPB. We use the implementation in SCIP Gamrath et al. (2020)

GCN. We tried to implement GCN in dgl (Wang et al., 2019), however, it is significantly slower than the
original implementation in Gasse et al. (2019). Hence, we still use the implementation in Gasse et al. (2019).

SVM. We use the implementation in Gasse et al. (2019).

A.3 TRAINING

We have two settings clean, default. In experiments, we always train and test under the same setting.

Imitation Learning. We initialize our PD policy using imitation learning similar to Gasse et al. (2019). The
difference is we only use 10000 training samples, 2000 validation samples and 10 training epochs as a warm
start. In our setting, a policy from scratch can hardly solve an instance in a reasonable time, hence a warm
start is necessary.

Novelty Search Evolution Strategy. We improve our RL agent using Algorithm 2. The parameters are set
as α = 1e− 4, σ = 1e− 2, n = 40, V = 200, w = 0.25, β = 0.99, T = 1000, k = 10.

13
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Algorithm 2: Evolutionary Strategy with Novelty Score.
Input: Learning rate α, Noise std σ, number of workers n, Validation size V , Batch size M , Initial

weight λ, Weight decay rate β, Iterations T, Parameter θ0, Policy memory M , Instance
distribution D, Neighborhood size k.

Output: Best parameter θbest
1 Sample validation instances Q1, · · · , QV ∼ D
2 Set Rbest = 1

V

∑V
j=1R(θ0, Qj), θbest = θ0

3 for t=0 to T do
4 Sample instances P1, · · · , PM ∼ D
5 Sample ε1, · · · , εn ∼ N (0, I) and compute θit = θt + σεi
6 Set M = {θ1

t , · · · , θnt }
7 for i=1 to n do
8 Compute Ri = 1

m

∑M
m=1R(θit, Pm)

9 Compute Ni = 1
m

∑M
m=1N(θit, Pm,M)

10 end
11 Set θt+1 = θt + α 1

nσ

∑n
i=1 λ ·Niεi + (1− λ) ·Riεi

12 Compute R(t+1) = 1
V

∑V
j=1R(θt+1, Qj)

13 if R(t+1) > Rbest then
14 Set Rbest = R(t+1), θbest = θt+1, λ = β ∗ λ
15 end
16 end

A.4 DATA SET

Set Covering. We generate a weighted set covering problem following Balas & Ho (1980). The problem is
formulated as the following ILP.

min
∑
S∈S

wSxS

subject to
∑
S:e∈S

XS ≥ 1, ∀e ∈ U

xS ∈ {0, 1}, ∀S ∈ S

where U is the universe of elements, S is the universe of the sets, w is a weight vector. For any e ∈ U and
S ∈ S , e ∈ S with probability 0.05. And we guarantee that for any e, it is contained by at least two sets in
S. Each wS is uniformly sampled from integer from 1 to 100.

We first generate a set covering problem with U0 = {e1, · · · , e400} and S0 = {S1, · · · , S1000} and set
it as our backbone. Then, every time we want to generate a new problem with m elements, we let U =
U0 ∪ {e401, e402, · · · , em} add new ei into S ∈ S following the pipeline mentioned above.
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Maximum Independent Set. We generate maximum independent set problem using Barabasi-Albert (Al-
bert & Barabási, 2002) graphs. The problem is formulated as the following ILP.

max
∑
v∈V

xv

subject to xu + xv ≤ 1, ∀euv ∈ E
xv ∈ {0, 1}, ∀v ∈ V

where V is the set of vertices and E is the set of edges. We generate the BA graph using a preferential
attachment with affinity coefficient 4.

We first generate a BA graph G0 with 350 nodes. Then, every time we want to generate a new problem with
n variables, we expand G0 using preferential attachment.

Capacitated Facility Location. We generate the capacitated facility location problem following Cornuéjols
et al. (1991). The problem with m customers and n facilities is formulated as the following MIP.

min

n∑
i=1

m∑
j=1

cijdjyij +

n∑
i=1

fixi

subject to
n∑
i=1

yij = 1, ∀j = 1, · · · ,m

m∑
j=1

djyij ≤ uixi, ∀i = 1 · · · , n

yij ≥ 0, ∀i = 1, · · · , n and j = 1, · · · ,m
xi ∈ {0, 1}, ∀i = 1, · · · , n

where xi = 1 indicates facility i is open, and xi = 0 otherwise; fi is the fixed cost if facility i is open;
dj is the demand for customer j; cij is the transportation cost between facility j and customer i; yij is the
fraction of the demand of customer j filled by facility i. Following Cornuéjols et al. (1991), where we first
sample the location of facility and customers on a 2 dimension map. Then cij is determined by the Euclidean
distance between facility i and customer j and other parameters are sampled from the distribtuion given in
Cornuéjols et al. (1991).

We first generate the location of 100 facilities and 40 customers as our backbone. Then, every time we want
to generate a new problem with m customers, we generate new m − 40 locations for customers and follow
the pipeline mentioned above.

A.5 EXPERIMENTS ON BENCHMARK FROM GASSE ET AL

We are mostly interested in improving the variable selection policy on similar problems hence, we generate
our benchmark based on a backbone. The backbone allows the instances share some common structures such
that there exists a good policy for the given distribution of problems. Our experiments show that NS-ES is
able to learn a good policies on this purpose. However, it is also interesting to check the performance of
our method on a more random distribution. Here, we conduct experiments on benchmark from Gasse et al.
(2019). We employ the same instance generator and SCIP setting as Gasse et al. (2019). For each category,
we evaluate the policy on 20 instances with 5 random seeds. We report the average solving time Tavg and
shifted geometric mean solving time Tgeo on all instances, average solving nodes Navg and shifted geometric
mean solving nodes Ngeo on instances solved by all instances, and Wins for the times one methods leads
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Table 4: Policy evaluation on benchmark from Gasse et al. (2019)

Easy Medium Hard
Method Tavg Tgeo Navg Ngeo Wins Tavg Tgeo Navg Ngeo Wins Tavg Tgeo Navg Ngeo Wins

VFS 155.74 74.84 249 122 0/100

RPB 10.94 9.57 284 58 0/100 121.3 76.8 7351 2413 0/100 2406 2038 50702 46487 9/56
SVM 14.16 11.49 348 166 0/100 220.8 108.1 6786 2522 0/100 3140 3029 55052 52059 0/34
GCN 8.84 7.97 282 132 5/100 88.5 53.1 4614 1844 44/ 100 2311 1971 39735 37699 52/70
RL 7.54 6.38 275 133 95/100 96.4 51.5 4761 1872 56/ 100 2611 2248 39802 36863 9/51

Set Covering

VFS 103.32 81.77 121 84 0/100

RPB 3.39 3.10 29 10 0/100 20.2 19.3 1036 732 0/100 243 167 43147 9074 5/100
SVM 3.09 2.71 125 78 0/100 30.9 26.3 1189 867 0/100 420 272 17171 10933 0/100
GCN 2.26 2.15 106 69 29/100 15.0 13.1 964 694 46/100 219 138 13046 7661 29/100
RL 2.16 2.00 107 68 71/100 14.3 12.8 876 665 54/100 212 132 12700 7531 66/100

Conbinatorial Auction

VFS 298.52 94.18 399 122 0/100

RPB 50.84 29.18 341 25 13/100 219.9 165.5 371 151 13/100 863 624 245 109 19/97
SVM 84.06 33.71 571 115 3/100 209.3 146.9 606 343 16/100 1365 1029 513 334 1/91
GCN 71.60 27.39 684 109 21/100 196.8 133.0 586 344 28/100 876 573 483 309 48/95
RL 56.43 25.00 538 109 63/100 191.9 136.7 577 327 43/100 807 583 527 367 29/95

Capacitated Facility Location

VFS 385.68 144.61 205 50 0/100

RPB 11.68 10.24 270 21 15/100 185.3 143.8 5687 2437 7/100 2809 2365 8374 7294 4/38
SVM 20.67 10.78 431 39 1/100 723.5 306.8 8692 2595 2/100 3330 3159 12991 10807 0/14
GCN 10.92 8.96 333 37 0/100 161.6 87.4 11110 2563 50/100 2422 1500 3236 2607 37/43
RL 10.38 7.64 305 38 84/100 240.9 104.4 9767 2082 41/100 3039 2439 9241 5936 8/23

Maximum Independent Set

over the number of instance solving to optimal. As VFS is too slow to solve challenge instances, we only
report its performance on easy instances.

We can see that, in Table 4, the improvement from RL method is less than that in the main text. Intuitively,
the randomly generated instances have less shared structure and leave less room for RL to improve the
policy. How can we improve branch policies for randomly generated problems is still a question needs more
explorations in the future.
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