
Under review as a conference paper at ICLR 2023

DOMAIN-UNIFIED PROMPT REPRESENTATIONS FOR
SOURCE-FREE DOMAIN GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Domain generalization (DG), aiming to make models work on unseen domains,
is a surefire way toward general artificial intelligence. Limited by the scale and
diversity of current DG datasets, it is difficult for existing methods to scale to di-
verse domains in open-world scenarios (e.g., science fiction and pixelate style).
Therefore, the source-free domain generalization (SFDG) task is necessary and
challenging. To address this issue, we propose an approach based on large-scale
vision-language pretraining models (e.g., CLIP), which exploits the extensive do-
main information embedded in it. The proposed scheme generates diverse prompts
from a domain bank that contains many more diverse domains than existing DG
datasets. Furthermore, our method yields domain-unified representations from
these prompts, thus being able to cope with samples from open-world domains.
Extensive experiments on mainstream DG datasets, namely PACS, VLCS, Of-
ficeHome, and DomainNet, show that the proposed method achieves competitive
performance compared to state-of-the-art (SOTA) DG methods that require source
domain data for training.

1 INTRODUCTION

Deep learning LeCun et al. (2015); He et al. (2016a) has achieved great success in many fields,
especially computer vision. However, the generalization of deep learning methods is not yet good
enough, which has become a constraint for wide applications. In recent years, deep learning gener-
alizability has attracted increasing attentions and sprouted several subfields. Although these studies
differ somewhat in their task settings, their ultimate goals are the same, i.e., to enabling models to
cope with a wide range of possible scenarios in the open world.

Generalizability has long been an essential topic in the field of machine learning. In practical ap-
plication scenarios, the ability to make reasonable predictions on unseen data is critical for machine
learning models. In recent years, thanks to the advancement of algorithms and the increase in data
scale, deep learning models have achieved satisfactory performance in testing scenarios that are in-
dependently and identically distributed with the training dataset. Furthermore, deep learning models
could face more challenges, where the testing and training data may obey different distributions.

Domain generalization (DG) is an important capability of machine learning models, which requires
the model to show good generalisation over samples from different domains. To test the DG ca-
pability, DG tasks have been proposed and attracted considerable attentions. For supervised image
classification, the DG tasks provide datasets from multiple domains that may come from different
acquisition methods or have different image styles. These data are divided into a source domain (for
training) and a target domain (for testing), without overlapping between them. For example, models
are trained on a photo dataset and tested on a sketch dataset.

In this paper, we propose the source-free domain generalization (SFDG) task, which intends to
test the DG capability of unsupervised models. SFDG is equally important and more challenging
compared to supervised DG tasks. In SFDG task, the model is used directly to predict the target
domain samples without using the source domain data for training. For DG tasks, the source domain
data are often one of the most important factors indicating the difficulty of the task. When the
source domain data is rich, the model learns domain-invariant features more easily and presents
better generalization capabilities. In the case of PACS Li et al. (2017a) dataset, for example, an
approach using three source domains can achieve nearly double performance of the one that utilizes
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a single source domain. In real-world tasks, obtaining sufficiently rich source domain data is often
not guaranteed. Reducing the dependence on source domain data in domain generalization is a
widely applied and exciting problem, and SFDG is needed.

To solve the SFDG problem, we apply a vision-language model for feature extraction. Compared to
acquiring a huge amount of images as source domain data, representing the source domain features
in the form of text is almost costless. After obtaining the textual encodings of different domains by
constructing various textual prompts, we propse a domain-unified prompt representation generator
(DUPRG) to integrate these text encodings and aggregate a set of domain-unified text representa-
tions. For the target domain samples from the open world, the model prediction is made based on the
domain-unified text representations. With the vision-language model, we only need to process the
text encoding to obtain domain invariance in the training phase, thus bypassing the need for a large
amount of source domain data and achieving source-free domain generalization. Through such a
detour, the cost of data acquisition is dramatically reduced while the efficiency of feature extraction
is significantly improved. Besides, unlike most DG methods, our model does not require source
domain data for training, which greatly extends the application scenarios of the task.

The main contributions of this work can be summarized as follows.

• The research problem of SFDG is introduced, which is more suitable for most application
scenarios than the basic DG task.

• An effective SFDG method is proposed to achieve DG for visual tasks by learning domain-
unified text encodings. The proposed framework has comparable or even better perfor-
mance than other DG approaches using source domain training on mainstream datasets.

2 RELATED WORK

2.1 DOMAIN GENERALIZATION

In this paper, a more challenging task, named source-free domain generalization is proposed based
on the domain generalization task. In computer vision, a seminal work Torralba & Efros (2011)
suggests that dataset biases can lead to poor generalization performance. For example, a person
classifier trained on Caltech101 Fei-Fei et al. (2004) could obtain a very low accuracy (11.8%)
on LabelMe Russell et al. (2008). The domain generalization issue raised attentions, and many
wonderful studies have tried to address it since then. From a methodological point of view, the DG
approaches can be broadly divided into domain alignment Muandet et al. (2013); Li et al. (2018b),
meta-learning Balaji et al., data augmentation Zhou et al. (2020), ensemble learning Liu et al. (2020),
self-supervised learning Carlucci et al. (2019), disentangling representations Khosla et al. (2012),
regularization strategies Wang et al. (2019), etc., which has been discussed in detail in a survey Zhou
et al. (2022a).

Here, we discuss some nuances of the existing DG tasks from a task setting perspective. In the basic
DG task, the dataset consists of samples from multiple domains Li et al. (2017a); Fang et al. (2013);
Venkateswara et al. (2017); Beery et al. (2018); Peng et al. (2019a), and in addition to the category
labels, domain labels are also provided. These samples are divided into source and target domains,
where the source domain is used for training and validation, while the target domain is used for
testing only. Domainbed Gulrajani & Lopez-Paz (2021b) provides a complete process, and many
methods follow its experimental settings. Single-source DG Wang et al. (2021) is more challeng-
ing, since its source domain has only one domain. This makes it difficult to find common domain
features. Therefore, most approaches opt for less affected strategies such as data augmentation.
Some attempts, like unsupervised DG Zhang et al. (2022), are made to improve the generalizability
from a pretraining perspective. By replacing the commonly used ImageNet pretraining with an un-
supervised pretraining approach, the model achieves better performance on downstream DG tasks.
Zero-shot DG Maniyar et al. (2020) modifies the category space of the target domain so that it no
longer coincides with the category space of the source domain.

It can be seen that various difficult versions of previous DG tasks, including unsupervised DG and
zero-shot DG, cannot completely discard the source domain.
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2.2 VISION-LANGUAGE PRETRAINING

In contrast to natural images, language, as a symbolic representation created by humans, is inher-
ently rich in prior knowledge and well interpretable, which inspires researchers to exploit the rich
semantic information contained in natural language to help the neural networks to learn a better
visual representation Su et al. (2019); Chen et al. (2020); Li et al. (2020); Tan & Bansal (2019); Lu
et al. (2019). These methods effectively enhance the performance of many cross-modal tasks, such
as visual question answering (VQA) Antol et al. (2015) and visual commonsense reasoning (VCR)
Zellers et al. (2019).

Specially, contrastive language-image pretraining (CLIP) Radford et al. (2021) utilizes 400 million
(image, text) pairs collected from the internet to learn robust and superior image representations
through contrastive learning. Recently, some methods find that CLIP is exceptional at encoding the
semantic meaning of visual depictions, regardless of their styles Vinker et al. (2022); Goh et al.
(2021), which is in line with the original purpose of the domain generalization task, i.e., learning
the uniform visual semantic representations across domains. Therefore, Li et al. (2022b) introduced
a novel domain generalization paradigm to better leverage various large-scale pretraining models,
including CLIP. Zhang et al. (2021) devised domain prompt learning (DPL) to generate a domain-
specific prompt for each image. Similarly, Zheng et al. trained a prompt adapter to produce a suitable
prompt for each input image. Cha et al. (2022) derived a tractable variational lower bound via
approximating the oracle model by a pretrained model, termed as mutual information regularization
with oracle (MIRO). Besides, there are prompt learning methods try to learn continuous context for
different downstream tasks Zhou et al. (2022c;b).

The above approaches require more or less training on the source domain to learn the uniform
semantics between different domains. They suffer from two main problems: 1) Limited source
domain data is hard to be extended to the rich unknown domains in open-world scenarios (e.g., sci-
ence fiction and pixelate style), and 2) Well-developed visual semantic and rich domain information
embedded in large-scale vision-language pretraining models are not fully utilized. Therefore, we
propose a novel domain-unified prompt representation generator to deal with the source-free domain
generalization task in open-world scenarios.

3 METHOD

3.1 PROBLEM FORMULATION

The domain generalization task aims to address the shift in data distribution between different do-
mains by zero-shot transferring knowledge from the source domain to the unseen domain. DG meth-
ods usually train a model f : RH×W 7→ RC on several source domains Ds = {D1, D2, · · ·DS} and
then evaluate it on unseen target domains Dt = {D1, D2, ···DT }. DK = {(xi, yi)}Ni=1 represents a
dataset of the domain K, which samples N sample points from an input image space XK ∈ RH×W

and a domain-shared label space Y ∈ RC , where H and W are the height and width of the input
images, and C is the number of the classes.

However, the existing domain generalization datasets (e.g., PACS Li et al. (2017b), and DomainNet
Peng et al. (2019b)) contain only a very limited number of domains (e.g., painting, sketch, and
cartoon), which makes it difficult for networks trained on these datasets to generalize to unseen
domains (e.g., mosaic and abstract) in the open-world scenarios. Therefore we first introduce a
source-free domain generalization task that aims to generalize the visual representations learned
by the neural networks to any unseen domain of real-world scenarios without training through the
source domain data Ds (i.e., without sampling images from the source domain).

3.2 CLIP FOR SOURCE-FREE DOMAIN GENERALIZATION TASK

To achieve generalization in open-world scenarios, our model needs to consistently model different
semantics under a rich set of domains. However, it is not easy to encompass the domain knowledge
in the real world using only the current limited-scale DG datasets.

Recently, large-scale vision-language pretraining models Radford et al. (2021); Li et al. (2022a)
obtain uniform and robust semantic representations Goh et al. (2021) by contrast learning over a
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Figure 1: Overview of our method for SFDG. First, based on the rich variety of domains in domain
bank (DB), we generate M text descriptions under different domains for each class, where M is
the size of the domain bank. After that, our proposed DUPRG generates a domain-unified prompt
representation for each class for inference. It is worth noting that only DUPRG needs to be trained
in the whole paradigm while the parameters of both text and image encoders are frozen.

large number of (image, text) pairs. Especially, CLIP match the accuracy of the original ResNet50
He et al. (2016b) on ImageNet Deng et al. (2009) zero-shot without needing to use any images from
ImageNet. We believe that the extensive domain information embedded in CLIP is the key to solving
the SFDG task.

As a vanilla approach, CLIP uses its text encoder and image encoder to embed the input prompts (“a
photo of a {class}”) and images into text features Ti ∈ Rd and image features Ij ∈ Rd of the same
dimension d, respectively. Then CLIP gives the inference result by calculating the cosine similarity
of Ti and Ij , which can be formulated as,

ŷj = argmax
i

(⟨Ij , Ti⟩), i ∈ {1, 2, · · ·, C} . (1)

Where ŷj is the prediction made by CLIP on the j-th image, C is the number of the classes, and
⟨·, ·⟩ represents the cosine similarity between two vectors. For SFDG tasks, a naive strategy utilizing
CLIP is to use a standard prompt to generalize text prompts for each category, and then finish the
prediction following the above inference process.

3.3 DUPRG: A NEW PARADIGM FOR SOURCE-FREE DOMAIN GENERALIZATION TASK

Although experiments in Zhang et al. (2021) show a good performance on several DG datasets
with the standard prompt (“a photo of a {class}”). The standard prompt cannot provide an equally
robust prompt for visual semantic representations of different open-world domains. For example, “a
{watercolor} photo of {class}” can be a better prompt for watercolor images. To accomplish the
SFDG task, we need to generate domain-unified prompt representations for each category to cope
with the rich open-world domains.
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Figure 2: Two implementations of the proposed domain-unified prompt representation generator.
(a) Mean pooling: mean value of the representations of different domains, (b) Cosine Autoencoders:
aggregates the representations through the desighed loss.

Based on this viewpoint, we build a domain bank, which contains various domains that exist in the
open-world scenarios. As shown in Figure 1, according to the domain type in the domain bank, M
prompts are generated for each class, which means that we can get M × C prompt representations
embedded by the text encoder.

After getting the M prompt representations of each class, these prompt representations are aggre-
gated by the DUPRG into a domain-unified prompt representation for final inference. We propose
two specific implementations of DUPRG in Figure 2.

Mean Pooling: As shown in Figure 2(a), the most intuitive way to aggregate these M representa-
tions is to take the mean value as the domain-unified prompt representation. The domain-unified
prompt representation of the i-th class can be defined as,

Ti =

∑M
j=1 T

j
i

M
, i ∈ {1, 2, · · ·, C} , (2)

where T j
i denotes the prompt representation of the i-th class in the j-th domain.

Cosine Autoencoder: As shown in Figure 2(b), we propose a cosine autoencoder (CAE) to extract
the shared part of the original M prompt representations (i.e., class semantic related part). A naive
autoencoder computes the mean squared error (MSE) between the input and output as the reconstruc-
tion loss function Hinton & Salakhutdinov (2006). However, the inference process of CLIP uses the
cosine similarity to make the final prediction, which means the distance metric in the aligned vision-
text embedding space of CLIP is cosine similarity rather than L1 or L2 distance. That is to say,
the semantic similarity is calculated by cosine similarity. Therefore, to preserve the semantically
relevant orientation in the reconstruction process, we use cosine similarity as the reconstruction loss
of the proposed CAE. The reconstruction loss can be formulated as,

Lrec = −
∑C

i=1

∑M
j=1⟨T

j
i , T̂

j
i ⟩

MC
, (3)
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where T̂ j
i is the reconstruction output of CAE for T j

i . In addition, in order to obtain a domain-unified
representation, an intra-class loss is used to narrow the gap between representations of different
domains, which can be computed as,

Lintra = −
∑C

i=1

∑M
j=1⟨T

j
i , Ti⟩

MC
, (4)

where Ti is the mean value of M prompt representations of i-th class. Finally, an inter-class loss is
defined to make the cosine similarity of the representations of different classes in the same domain
as low as possible (i.e., obtain a larger inter-class distance in each domain). The inter-class loss can
be defined by,

Linter =

∑M
i=1

∑C
j=1

∑C
k=1, j ̸=k⟨T i

j , T
i
k⟩

MC(C − 1)
. (5)

The overall loss function of CAE is defined as follows,

Lall = Lrec + λ1Lintra + λ2Linter. (6)

Where λ1 and λ2 are two hyper-parameters controlling loss coefficients. The domain-unified prompt
representation can be directly calculated by,

Ti =

∑M
j=1 T̂

j
i

M
, i ∈ {1, 2, · · ·, C} , (7)

It is worth noting that no images are involved in the whole training process of CAE. Our method
takes M ×C prompt representations generated from the domain bank as the input to train the CAE.
Since our method does not overfit the limited source domain image data and learns a unified prompt
representation from rich domain type in the domain bank, it can be adapted to more unseen domains
in richer open-world scenarios.

4 EXPERIMENTS

Our code is implemented in PyTorch (and will be open source). The datasets and experiment settings
used are described below.

Datasets. We experiment on 5 benchmark datasets including PACS Li et al. (2017a) (4 domains,
9,991 samples, 7 classes), VLCS Fang et al. (2013) (4 domains, 10,729 samples, 5 classes), Office-
Home Venkateswara et al. (2017) (4 domains, 15,588 samples, 65 classes), TerraIncognita Beery
et al. (2018) (4 domains, 24,778 samples, 10 classes), and DomainNet Peng et al. (2019a) (6 do-
mains, 586,575 samples, 345 classes). These datasets are all representative and widely used in DG
tasks. In a DG task, experiments are usually performed using the leave-one-out strategy. For a
dataset, one of the domains is selected as the target domain at a time, and the other domains are used
as the source domains. In the SFDG task proposed in this paper, one domain is also selected as the
target domain each time, but the data from other domains will not be used as the source domain.

Details. We adopt the pretraining weights of CLIP and apply ViT-B/16 Dosovitskiy et al. (2021)
as the backbone for the experiments without special instructions. More experiments using other
backbones can be found in Appendix A.2. The CAE is an autoencoder consisting of linear layers
and activation functions, and the number of neurons in the hidden layer is (512, 256, 512). The
optimizer is AdamW with a learning rate of 0.04. The max epochs is 1000, since the training data is
scarce and CAE needs to be finely tuned to achieve a better reconstruction.

4.1 DOMAIN GENERALIZATION

We compare our approach with some strong DG baselines including SOTA. The results are shown
in Table 1. As discussed in Section 2, some of the compared methods incorporate elaborate learning
algorithms and some works incorporate ensemble learning. It is noteworthy that all these methods
require more or less training on the source domain. Table 1 shows that our method achieves over or
near SOTA performance on most datasets, despite not using source domain data. We also notice that
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Table 1: Accuracy (%) on PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet. The last
column is the average results of the former five columns. The best results are in bold faces and
the second best results are underlined. MP and CAE represent the “mean pooling” and the “cosine
autoencoder” strategy in Figure 2, respectively.

Method PACS VLCS OfficeHome TerraInc. DomainNet Avg.

MMD Li et al. (2018a) 84.7± 0.5 77.5± 0.9 66.3± 0.1 42.2± 1.6 23.4± 9.5 58.8
Mixstyle Zhou et al. (2021) 85.2± 0.3 77.9± 0.5 60.4± 0.3 44.0± 0.7 34.0± 0.1 60.3
GroupDRO Sagawa* et al. (2020) 84.4± 0.8 76.7± 0.6 66.0± 0.7 43.2± 1.1 33.3± 0.2 60.7
IRM Arjovsky et al. (2019) 83.5± 0.8 78.5± 0.5 64.3± 2.2 47.6± 0.8 33.9± 2.8 61.6
Fish Shi et al. (2022) 85.5± 0.3 77.8± 0.3 68.6± 0.4 45.1± 1.3 42.7± 0.2 63.9
ERM Gulrajani & Lopez-Paz (2021a) 84.2± 0.1 77.3± 0.1 67.6± 0.2 47.8± 0.6 44.0± 0.1 64.2
SagNet Nam et al. (2021) 86.3± 0.2 77.8± 0.5 68.1± 0.1 48.6± 0.1 40.3± 0.1 64.2
SelfReg Kim et al. (2021) 85.6± 0.4 77.8± 0.9 67.9± 0.7 47.0± 0.3 42.8± 0.0 64.2
CORAL Sun & Saenko (2016) 86.2± 0.3 78.8± 0.6 68.7± 0.3 47.6± 1.0 41.5± 0.1 64.5
mDSDI Bui et al. 85.4± 0.4 79.0± 0.0 70.5± 0.4 50.4± 1.1 44.3± 0.2 65.9
MIRO Cha et al. (2022) 85.4± 0.4 79.0± 0.0 70.5± 0.4 50.4± 1.1 44.3± 0.2 65.9
SWAD Cha et al. 88.1± 0.1 79.1± 0.1 70.6± 0.2 50.0± 0.3 46.5± 0.1 66.9
DPL Zhang et al. (2021) 97.3± 0.2 84.3± 0.4 84.2± 0.2 52.6± 0.6 − −
GVRT Min et al. (2022) 85.1± 0.3 79.0± 0.2 70.1± 0.1 48.0± 0.2 44.1± 0.1 65.2
SEDGE Li et al. (2022b) 96.1± 0.0 82.2± 0.0 80.7± 0.2 56.8± 0.3 54.7± 0.1 74.1
Ours-MP (source-free) 96.5± 0.0 83.1± 0.0 82.5± 0.0 38.3± 0.0 59.2± 0.0 71.9
Ours-CAE (source-free) 97.1± 0.2 83.9± 0.5 83.6± 0.3 42.0± 1.3 59.6± 0.3 73.2

Table 2: Accuracy (%) on SFDG tasks corresponding to different loss functions. “SP” represents
using standard prompt (“a photo of a {class}”) for inference. The best results are in bold faces.

PACS VLCS
Photo Art Cartoon Sketch Avg. VOC2007 LabelMe Caltech101 SUN09 Avg.

SP 99.8 97.2 99.1 88.1 96.1 86.0 70.2 99.9 73.6 82.4

L2 loss 83.0 97.3 67.9 69.1 79.3 72.8 72.8 69.3 69.1 71.0
Cosine loss 99.9 97.8 99.2 91.4 97.1 87.0 72.5 99.9 76.1 83.9

our method does not perform well on TerraIncognita. We speculate that the possible reasons are (1)
different domains are simply taken from different cameras, so the domain gaps of TerraIncognita are
much smaller compared to other datasets such as PACS; (2) some categories in TerraIncognita are
rare (e.g. bobcat) and have small differences between classes (e.g., bobcat and cat), which makes
source-free prediction extremely difficult.

4.2 ABLATIONS

Hyper-parameters. Our method introduces two additional hyperparameters (i.e.,the loss weight
coefficients λ1 and λ2 in Eq 6). We tested different combinations of λ1 and λ2 on PACS and
VLCS datasets, which encompassed the ablation experiment (when λ1 = λ2 = 0). The results
are shown in Figure 3. We only show the experimental results on the VLCS dataset in order to
provide a clearer picture of the effect of hyperparameter variation on the results. It can be seen that
when both loss functions have a performance improvement. In addition, most of the hyperparameter
combinations can achieve good performance, and the choice of weights does not require particularly
tedious adjustment. Specially, λ1 = λ2 = 0 refers to the mean pooling strategy as shown in Figure 2

Loss for reconstruction. Inspired by the inference process of CLIP, we choose the cosine similarity
as the reconstruction loss Lrec to optimize the autoencoder. The effects of using traditional L2 loss
is also given in Table 2 for a comparison.

Domain bank. The rich and diverse prompt can be considered as the raw material for constructing
domain-unified prompt representations. Compared to collecting domain-specific image datasets,
generating prompts in textual form can be very easy. We integrated the domains of all the used
datasets into a domain bank as the defalut setting for all the experiments in this paper, which cor-
responds to “combined” in Table 3. In fact, the domain bank can be easily expanded or reduced.
Table 3 shows the experimental results corresponding to different domain banks. On one hand, when
the bank shrinks to the limit (empty set), the prompt set degenerates to the standard prompt. On the
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Figure 3: Average accuracy on PACS and VLCS datasets with different combinations of weighting
coefficients [λ1, λ2].

Table 3: Accuracy (%) on SFDG tasks corresponding to different domain banks. An “empty” bank
means using standard CLIP; “task” means to form the bank with domain type of the corresponding
dataset; “combined” represents a summary of the domains of several datasets; and “expanded” adds
some additional propmts based on “combined”. The domains of VLCS and TerraIncognita do not
correspond to a specific style, so no specific prompt is provided. The best results are in bold faces
and the second best results are underlined.

Bank PACS VLCS OfficeHome TerraInc. DomainNet Avg.

Empty (standard CLIP) 96.1 82.4 81.6 36.9 56.7 70.7
Task 96.7 82.4 83.8 36.9 57.2 71.4
Combined 97.1 83.9 83.6 42.0 59.6 73.2
Expanded 96.8 82.9 83.3 40.8 59.1 72.6

other hand, an overly redundant domain bank can increase the amount of computation while not
improving performance, but may have a better performance for the open-world scenarios.

4.3 VISUALIZATIONS

To further demonstrate the effect of the proposed CAE on generating domain-unified prompt repre-
sentations, we visualize the input and output feature distributions of CAE by t-SNE Van der Maaten
& Hinton (2008) on PACS and OfficeHome datasets. As shown in Figure 4, the input prompt
representations of different domains (orange) are relatively scattered, while the output prompt rep-
resentations (blue) are closely distributed. This means that out CAE filter out the domain-related
part while the class-related part is preserved.

Since both strategies calculate the domain-unified prompt representations by utilizing the mean pool-
ing operation in Figure 2, the center of the prompt representations serves as the domain-unified
prompt representations for each class. As shown in the zoomed-in part of Figure 4(b), the center
of the output features (blue) has a clear shift compared to that of the input features (orange), which
is brought by is the filtering of domain-related parts. Therefore, our CAE can be used to generate
better domain-unified prompt representations.

4.4 OPEN-WORLD DOMAIN GENERALIZATION

To demonstrate the advantages of our approach on the domain generalization task in open-world
scenarios, we collected data of two domains (i.e., pixelate style and geometric style) that hardly
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(a) PACS (b) OfficeHome

Figure 4: Visualization of the input and output prompt feature distribution of CAE by t-SNE. The
numbers represent the categories. The orange and blue points refer to the input and output prompt
representations of CAE, respectively. The points with the same color and number stand for the
prompt representations generated by various domain types from the domain bank.

Table 4: Accuracy (%) on domains in open-world scenarios. “X”, “G”, “P”, “A”, “C”, and “S”
represent the pixelate and geometric, photo, art, cartoon, and sketch style, respectively. The best
results are in bold faces.

Multi-Source Methods

P A C P A S P C S A C S

X G X G X G X G

ERM Gulrajani & Lopez-Paz (2021a) 51.5 61.5 48.2 65.1 57.9 58.9 53.8 62.1
GroupDRO Sagawa* et al. (2020) 52.2 61.3 51.6 62.9 60.4 59.7 55.3 64.1
CORAL Sun & Saenko (2016) 46.1 57.1 45.0 62.2 51.1 57.2 49.2 63.5
DPL Zhang et al. (2021) 94.9 90.8 91.9 91.3 96.0 93.8 93.7 92.9

Source-Free Methods

X G

Ours (CAE) 97.1 95.1

appear in the current DG datasets from internet as a supplement to the PACS dataset (share the same
categories with the PACS dataset). More details about the datasets can be found in Appendix A.1. As
shown in Table 4, our method that need no source domain data for training significantly outperforms
recent DG methods by a large margin. Besides, as shown Table 4, existing DG methods get very
different performance on the same target domain when the source domains are different (e.g., for
DPL Zhang et al. (2021), (P, A, S)-→ X 91.9% and (P, C, S)-→ X 96.0%), which shows that limited
source domain data will bring bias to traditional DG task. While our CAE can integrate diverse
domains from the text side, reducing the risk of introducing bias from certain source domains.

5 CONCLUSION

In this work, we develop a more challenging version of the domain generalization problem that re-
quires good performance in the target domain without using the source domain data. This paper
also proposes a feasible solution to the source-free domain generalization problem. By transform-
ing the need for image feature consistency into constructing domain-unified prompt representations
through a vision-language model, we bypass the need for source domain data. Experimental results
demonstrate that our method exhibits excellent performance on most of the tested datasets with-
out using source domain data, achieving a competitive performance compared to other approaches
trained with source domain data. More importantly, we substantially outperformed current SOTA
DG methods on open-world domains without training with multi-source domain data.
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Table 5: Accuracy (%) on SFDG tasks corresponding to different encoder backbones. Bold denotes
the best.

Backbone PACS VLCS OfficeHome TerraInc. DomainNet Avg.

ResNet50 (SP) 91.1 80.8 71.3 17.8 45.6 61.3
ResNet50 (MP) 93.0 82.5 75.3 24.6 48.1 64.7
ResNet50 (CAE) 93.1 81.2 73.0 25.2 48.4 64.2

ViT-B/16 (SP) 96.1 82.4 81.6 36.9 56.7 70.7
ViT-B/16 (MP) 96.5 83.1 82.5 38.3 59.2 71.9
ViT-B/16 (CAE) 97.1 83.9 83.6 42.0 59.6 73.2

ViT-B/32 (SP) 94.7 81.3 78.8 23.2 53.2 66.2
ViT-B/32 (MP) 94.7 81.1 79.6 26.4 55.0 67.4
ViT-B/32 (CAE) 95.1 81.9 80.3 39.9 55.7 70.6

Table 6: Comparison with some prompt learning methods.
Methods (few-shot) PACS (original) (P A C S) → X (P A C S) → G

CoOp (1-shot) Zhou et al. (2022c) 91.4 85.6 85.9
CoCoOp (1-shot) Zhou et al. (2022b) 85.8 90.6 91.0
CoOp (5-shots) Zhou et al. (2022c) 96.5 96.0 94.0
CoCoOp (5-shots) Zhou et al. (2022b) 95.5 94.9 94.7

Ours (zero-shot) 97.1 97.1 95.1

A APPENDIX

A.1 OPENSET DATASETS

As declared in Section 4.4, we collect a supplementary for PACS datasets to evaluate the effective-
ness of our method on the domain generalization task in open-world scenarios. Specifically, we
collect 1365 pixelate style images and 1202 geometric style images from the internet. As shown in
Figure5 and Figure6, some samples in the datasets are given. The datasets will be released together
with our source code.

A.2 BACKBONES

In the proposed framework, the only part that needs to be trained is the proposed CAE (domain-
unified prompt representation generator), while the parameters of the text and image encoders are
fixed. These encoders are replaced to verify the generalizability of the proposed approach for differ-
ent model structures. We implemented ResNet He et al. (2016a) and ViT Dosovitskiy et al. (2021)
and generate prompt representations with different strategies, “SP”: using standard prompt (”a photo
of a {class}”) to generate the only representation for each category; “MP”: the prompts generated
by different domains are aggregated by the mean pooling operation; “CAE”: using CAE to generate
the unified representations. The results are shown in Table 5. Regardless of the model structure,
using CAE to generate unified-representations is always the best for both ViT-based backbones and
is comparable with the mean pooling strategy for ResNet50, which demonstrate the effectiveness of
the proposed CAE.

A.3 COMPARISON OF PROMPT LEARNING METHODS

Some prompt learning methods Zhou et al. (2022c;b) try to adaptively learning continuous context
for better transfering CLIP to different downstream tasks. Though these methods still need source
domain data to implement, we still compare them with our methods on PACS datasets in Table 6. It
should be noticed that under zero-shot setting, our method still significantly outperforms both CoOp
and CoCoOp, which are under few-shot setting.
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Figure 5: Geometric style images in our dataset
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Figure 6: Pixelate style images in our dataset
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