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ABSTRACT

Permutation-invariant, -equivariant, and -covariant functions and anti-symmetric
functions are important in quantum physics, computer vision, and other disci-
plines. (Anti)symmetric neural networks have recently been developed and ap-
plied with great success. A few theoretical approximation results have been
proven, but many questions are still open, especially for particles in more than
one dimension and the anti-symmetric case, which this work focusses on. More
concretely, we derive natural polynomial approximations in the symmetric case,
and approximations based on a single generalized Slater determinant in the anti-
symmetric case. Unlike some previous super-exponential and discontinuous ap-
proximations, these seem a more promising basis for future tighter bounds. In
the supplementary we also provide a complete and explicit universality proof of
the Equivariant MultiLayer Perceptron, which implies universality of symmetric
MLPs and the FermiNet.

1 INTRODUCTION

Neural Networks (NN), or more precisely, Multi-Layer Perceptrons (MLP), are universal function
approximators [Pin99] in the sense that every (say) continuous function can be approximated ar-
bitrarily well by a sufficiently large NN. The true power of NN though stems from the fact that
they apparently have a bias towards functions we care about and that they can be trained by local
gradient-descent or variations thereof.

For many problems we have additional information about the function, e.g. symmetries under which
the function of interest is invariant or covariant. Here we consider functions that are covariant¬
under permutations. Of particular interest are functions that are invariant®, equivariant¯, or anti-
symmetric° under permutations.

Definition 1 ((Anti)symmetric and equivariant functions) A function φ : Xn → R in n ∈ N
variables is called symmetric iff φ(x1, ..., xn) = φ(xπ(1), ..., xπ(n)) for all x1, ..., xn ∈ X for all
permutations π ∈ Sn, where Sn := {π : {1 : n} → {1 : n} ∧ π is bijection} is called the
symmetric group and {1 : n} is short for {1, ..., n}. Similarly, a function ψ : Xn → R is called
anti-symmetric (AS) iff ψ(x1, ..., xn) = σ(π)ψ(xπ(1), ..., xπ(n)), where σ(π) = ±1 is the parity
or sign of permutation π. A function ϕ : Xn → X ′n is called equivariant under permutations iff
ϕ(Sπ(x)) = Sπ(ϕ(x)), where x ≡ (x1, ..., xn) and Sπ(x1, ..., xn) := (xπ(1), ..., xπ(n)).

Of course (anti)symmetric functions are also just functions, hence a NN of sufficient capacity can
also represent (anti)symmetric functions, and if trained on an (anti)symmetric target could converge
to an (anti)symmetric function. But NNs that can represent only (anti)symmetric functions are de-
sirable for multiple reasons. Equivariant MLP (EMLP) are the basis for constructing symmetric
functions by simply summing the output of the last layer, and for anti-symmetric (AS) functions by

¬In full generality, a function f : X → Y is covariant under group operations g ∈ G, if f(RX
g (x)) =

RY
g (f(x)), where RX

g : X → X and RY
g : Y → Y are representations of group (element) g ∈ G.

The symmetric group G = Sn is the group of all permutations=bijections π : {1, ..., n} → {1, ..., n}.
®RY

g =Identity. Permutation-invariant functions are also called ‘totally symmetric functions’ or simply ‘sym-
metric function’.

¯General Y and X , often Y = X and RY
g = RX

g , also called covariant.
°RY

g = ±1 for even/odd permutations.
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multiplying with Vandermonde determinants or by computing their generalized Slater determinant
(GSD) defined later.

The most prominent application is in quantum physics which represents systems of identical
(fermions) bosons with (anti)symmetric wave functions [PSMF20]. Another application is clas-
sification of point clouds in computer vision, which should be invariant under permutation of points
[ZKR+18].

Even if a general NN can learn the (anti)symmetry, it will only do so approximately, but some ap-
plications require exact (anti)symmetry, for instance in quantum physics to guarantee upper bounds
on the true ground state energy [PSMF20]. This has spawned interest in NNs that can represent
only (anti)symmetric functions [ZKR+18, HLL+19]. A natural question is whether such NNs can
represent all reasonable (anti)symmetric functions, which is the focus of this paper. We will answer
this question for the (symmetric) EMLP [ZKR+18] defined in Section 6 and for the (AS) FermiNet
[PSMF20] defined in Sections 4&5&6.

Approximation architectures need to satisfy a number of criteria to be practically useful:

(a) they can approximate a large class of functions,
e.g. all continuous (anti)symmetric functions,

(b) only the (anti)symmetric functions can be represented,
(c) a fast algorithm exists for computing the approximation,
(d) the representation itself is continuous or differentiable,
(e) the architecture is suitable for learning the function from data

(which we don’t discuss).

Section 2 reviews existing approximation results for (anti)symmetric functions. Section 3 discusses
various “naive” representations (linear, sampling, sorting) and their (dis)advantages, before intro-
ducing the “standard” solution that satisfies (a)-(e) based on algebraic composition of basis func-
tions, symmetric polynomials, and polarized bases. For simplicity the section considers only totally
symmetric functions of their n real-valued inputs (the d = 1 case), i.e. particles in one dimension.
Section 4 proves the representation power of a single GSD for totally anti-symmetric (AS) func-
tions (also d = 1). Technically we reduce the GSD to a Vandermonde determinant, and determine
the loss of differentiability due to the Vandermonde determinant. From Sections 5 on we consider
the general case of functions with n · d inputs that are (anti)symmetric when permuting their n d-
dimensional input vectors. The case d = 3 is particularly relevant for particles and point clouds
in 3D space. The difficulties encountered for d = 1 transfer to d > 1, while the positive results
don’t, or only with considerable extra effort. The universality construction and proof for the EMLP
is outlined in Section 6 with a proper treatment and all details in Sections 6-8 of the supplementary,
which implies universality of symmetric MLPs and of the AS FermiNet. Section 7 concludes. We
took great care to unify notation from different sources. The list of notation in the appendix should
be helpful to disambiguate some similarly looking but different notation.

Our main novel contributions are establishing the universality of the anti-symmetric FermiNet with
a single GSD (Theorems 3&5&7) for d = 1 and d > 1 (the results are non-trivial and unexpected),
and the universality of (2-hidden-layer) symmetric MLPs (Theorem 6) with a complete and explicit
and self-contained equivariant universality construction based on (smooth) polynomials. We took
care to avoid relying on results with inherently asymptotic or tabulation or discontinuous character,
to enable (in future work) good approximation rates for specific function classes, such as smooth
functions or those with ‘nice’ Fourier transform [Bar93, Mak96], The supplementary material con-
tains the extended version of this paper with (more) details, discussion, and proofs.

2 RELATED WORK

The study of universal approximation properties of NN has a long history, see e.g. [Pin99] for a
pre-millennium survey, and e.g. [LSYZ20] for recent results and references. For (anti)symmetric
NN such investigation has only recently begun [ZKR+18, WFE+19, HLL+19, SI19].

Functions on sets are necessarily invariant under permutation, since the order of set elements is irrel-
evant. For countable domain, [ZKR+18] derive a general representation based on encoding domain
elements as bits into the binary expansion of real numbers. They conjecture that the construction
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can be generalized to uncountable domains such as Rd, but it would have to involve pathological
everywhere discontinuous functions [WFE+19]. Functions on sets of fixed size n are equivalent to
symmetric functions in n variables. [ZKR+18] prove a symmetric version of Kolmogorov-Arnold’s
superposition theorem [Kol57] (for d = 1) based on elementary symmetric polynomials und using
Newton’s identities, also known as Girard-Newton or Newton-Girard formulae, which we will gen-
eralize to d > 1. Another proof is provided based on homeomorphisms between vectors and ordered
vectors, also with no obvious generalization to d > 1. They do not consider AS functions.

For symmetric functions and any d ≥ 1, [HLL+19] provide two proofs of the symmetric superpo-
sition theorem of [ZKR+18]: Every symmetric function can be approximated by symmetric poly-
nomials, symmetrized monomials can be represented as a permanents, and Ryser’s formula brings
the representation into the desired polarized superposition form. The down-side is that computing
permanents is NP complete, and exponentially many symmetrized monomials are needed to approx-
imate f . The second proof discretizes the input space into a n · d-dimensional lattice and uses
indicator functions for each grid cell. They then symmetrize the indicator functions, and approxi-
mate f by these piecewise constant symmetric indicator functions instead of polynomials, also using
Ryser formula for the final representation. Super-exponentially many indicator functions are needed,
but explicit error bounds are provided. The construction is discontinuous but they remark on how
to make it continuous. Approximating AS f for d ≥ 1 is based on a similar lattice construction,
but by summing super-exponentially many Vandermonde determinants, leading to a similar bound.
We show that a single Vandermonde/Slater determinant suffices but without bound. Additionally for
d = 1 we determine the loss in smoothness this construction suffers from.

[SI19] prove tighter but still exponential bounds if f is Lipschitz w.r.t. `∞ based on sorting which
inevitably introduces irreparable discontinuities for d > 1.

The FermiNet [PSMF20] is also based on EMLPs [ZKR+18] but anti-symmetrizes not with Vander-
monde determinants but with GSDs. It has shown remarkable practical performance for modelling
the ground state of a variety of atoms and small molecules. To achieve good performance, a linear
combination of GSDs has been used. We show that in principle a single GSD suffices, a sort of
generalized Hartree-Fock approximation. This is contrast to the increasing number of conventional
Slater determinants required for increasing accuracy. Our result implies (with some caveats) that
the improved practical performance of multiple GSDs is due to a limited (approximation and/or
learning) capacity of the EMLP, rather than a fundamental limit of the GSD.

3 ONE-DIMENSIONAL SYMMETRY

This section reviews various approaches to representing symmetric functions, and is the broadest
review we are aware of. To ease discussion and notation, we consider d = 1 in this section. Most
considerations generalize easily to d > 1, some require significant effort, and others break. We dis-
cuss various “naive” representations (linear, sampling) and their (dis)advantages, before introducing
the “standard” solution that can satisfy (a)-(e). All representations consist of a finite set of fixed
(inner) basis functions, which are linearly, algebraically, functionally, or otherwise combined. We
then introduce symmetric polynomials, which can be used to prove the “standard” representation
theorem for d = 1.

The extended version contains a broader and deeper review of alternative representations, including
composition by inversion, generally invariant linear bases, symmetric functions by sorting, and lin-
ear bases for symmetric polynomials. Indeed it is the broadest review we are aware of, and unified
and summarized as far as possible in one big table. The extended review may also help to better
grasp the concepts introduced in this section, since it is less dense and contains some illustrating
examples.

Motivation. Consider n ∈ N one-dimensional particles with coordinates xi ∈ R for particle i =
1, ..., n. In quantum mechanics the probability amplitude of the ground state can be described by
a real-valued joint wave function χ(x1, ..., xn). Bosons φ have a totally symmetric wave function:
φ(x1, ..., xn) = φ(xπ(1), ..., xπ(n)) for all permutations π ∈ Sn ⊂ {1 : n} → {1 : n}. Fermions ψ
have totally Anti-Symmetric (AS) wave functions: ψ(x1, ..., xn) = σ(π)ψ(xπ(1), ..., xπ(n)), where
σ(π) = ±1 is the parity or sign of permutation π. Wave functions are continuous and almost
everywhere differentiable, and often posses higher derivatives or are even analytic. Nothing in this
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work hinges on any special properties wave functions may possess or interpreting them as such, and
the precise conditions required for our results to hold are stated in the theorems.

We are interested in representing or approximating all and only such (anti)symmetric functions by
neural networks. Abbreviate x ≡ (x1, ..., xn) and let Sπ(x) := (xπ(1), ..., xπ(n)) be the permuted
coordinates. There is an easy way to (anti)symmetrize any function,

φ(x) =
1

n!

∑
π∈Sn

χ(Sπ(x)), ψ(x) =
1

n!

∑
π∈Sn

σ(π)χ(Sπ(x)) (1)

and any (anti)symmetric function can be represented in this form (proof: use χ := φ or χ := ψ). If
we train a NN χ : Rn → R to approximate some function f : Rn → R to accuracy ε > 0, then φ (ψ)
are (anti)symmetric approximations of f to accuracy ε > 0 too, provided f itself is (anti)symmetric.
Instead of averaging, the minimum or maximum or median or many other compositions would
also work, but the average has the advantage that smooth χ lead to smooth φ and ψ, and more
general, preserves many desirable properties such as (Lipschitz/absolute/...) continuity, (k-times)
differentiability, analyticity, etc. It possibly has all important desirable properties, but one:

Time complexity, sampling, learning. The problem with this approach is that it has n! terms, and
evaluating χ super-exponentially often is intractable even for moderate n, especially if χ is a NN.
There can also be no clever trick to linearly (anti)symmetrize arbitrary functions fast, intuitively
since the sum pools n! independent regions of χ. In the extended version we prove that computing
φ and ψ are indeed NP-hard. There we also show that approximating (1) by sampling permutations
is unsuitable, especially for ψ due to sign cancellations. Even if we could compute (1) fast, a NN
would represent the function separately on all n! regions, hence potentially requires n! more training
samples to learn from than an intrinsically (anti)symmetric NN. See the extended version for a more
detailed discussion.

Function composition and bases. Before delving into proving universality of the EMLP and the
FermiNet, it is instructive to first review the general concepts of function composition and basis func-
tions, since a NN essentially is a composition of basis functions. We want to represent/decompose
functions as f(x) = g(β(x)). In this work we are interested in symmetric β, where ultimately β
will be represented by the first (couple of) layer(s) of an EMLP, and g by the second (couple of)
layer(s). Of particular interest is

β(x) =

n∑
i=1

η(xi) (2)

for then β and hence f are obviously symmetric (permutation invariant) in x. Anti-symmetry is
more difficult and will be dealt with later. Formally let f ∈ F ⊆ Rn → R be a function (class)
we wish to represent or approximate. Let βb : Rn → R be basis functions for b = 1, ...,m ∈
N ∪ {∞}, and β ≡ (β1, ..., βm) : Rn → Rm be what we call basis vector (function), and ηb :
R → R a basis template, sometimes called inner function [Act18] or polarized bass function. Let
g ∈ G ⊆ Rm → R be a composition function (class), sometimes called ‘outer function’ [Act18],
which creates new functions from the basis functions. Let G ◦ β = {g(β(·)) : g ∈ G} be the
class of representable functions, and G ◦ β its topological closure, i.e. the class of all approximable
functions.± β is called a G-basis for F if F = G ◦ β or F = G ◦ β, depending on context.
Interesting classes of compositions are linear Glin := {g : g(x) = a0 +

∑m
i=1 xi; a0, ai ∈ R},

algebraic Galg := {multivariate polynomials}, functional Gfunc := Rm → R, and Ck-functional
Gkfunc := Ck for k-times continuously differentiable functions. The extended version illustrates on
some simple examples how larger composition classes G allow (drastically) smaller bases (m) to
represent the same functions F .

Algebraic basis for symmetric polynomials. It is well-known that the elementary symmetric poly-
nomials eb(x) generated by

n∏
i=1

(1 + λxi) =: 1 + λe1(x) + λ2e2(x) + ...+ λnen(x) (3)

±Functions may be defined on sub-spaces of Rk, function composition may not exists, and convergence can
be w.r.t. different topologies. We will ignore these technicalities unless important for our results, but the reader
may assume compact-open topology, which induces uniform convergence on compacta.

4



Under review as a conference paper at ICLR 2021

are an algebraic basis of all symmetric polynomials. Explicit expressions are e1(x) =
∑
i xi, and

e2(x) =
∑
i<j xixj , ..., and en(x) = x1...xn, and in general eb(x) =

∑
i1<...<ib

xi1 ...xib . For
given x, the polynomial in λ on the l.h.s. of (3) can be expanded to the r.h.s. in quadratic time or
by FFT even in time O(n log n), so the e(x) can be computed in time O(n log n), but is not of the
desired form (2). Luckily Newton already solved this problem for us. Newton’s identities express
the elementary symmetric polynomials e1(x), ..., en(x) as polynomials in pb(x) :=

∑n
i=1 x

b
i , b =

1, ..., n, hence also β(x) := (p1(x), ..., pn(x)) is an algebraic basis for all symmetric polynomials,
hence by closure for all continuous symmetric functions, and is of desired form (2):

Theorem 2 (Symmetric polarized superposition [ZKR+18, WFE+19, Thm.7]) Every continu-
ous symmetric function φ : Rn → R can be represented as φ(x) = g(

∑
i η(xi)) with η(x) =

(x, x2, ..., xn) and continuous g : Rn → R.

[ZKR+18] provide two proofs, one based on ‘composition by inversion’, the other using symmet-
ric polynomials and Newton’s identities. The non-trivial generalization to d > 1 is provided in
Section 5.

Theorem 2 is a symmetric version of the infamous Kolmogorov-Arnold superposition theorem
[Kol57], which solved Hilbert’s 13th problem. Its deep and obscure² constructions continue to
fill whole PhD theses [Liu15, Act18]. It is quite remarkable that the symmetric version above is
very natural and comparably easy to prove.

For given x, the basis β(x) can be computed in time O(n2), so is actually slower to compute than
e(x). The elementary symmetric polynomials also have other advantages (integral coefficients for
integral polynomials, works for fields other than R, is numerically more stable, mimics 1,2,3,...
particle interactions), so symmetric NN based on eb rather than pb may be worth pursuing. Note
that we need at least m ≥ n functional bases for a continuous representation, so Theorem 2 is
optimal in this sense [WFE+19]. The extended version contains a discussion and a table with bases
and properties.

4 ONE-DIMENSIONAL ANTISYMMETRY

We now consider the anti-symmetric (AS) case for d = 1. We provide representations of AS func-
tions in terms of generalized Slater determinants (GSD) of partially symmetric functions. In later
sections we will discuss how these partially symmetric functions arise from equivariant functions
and how to represent equivariant functions by EMLP. The reason for deferral is that EMLP are
inherently tied to d > 1. Technically we show that the GSD can be reduced to a Vandermonde
determinant, and exhibit a potential loss of differentiability due to the Vandermonde determinant.

Let ϕi : R→ R be single-particle wave functions. Consider the matrix

Φ(x) =

ϕ1(x1) · · · ϕn(x1)
...

. . .
...

ϕ1(xn) · · · ϕn(xn)


where x ≡ (x1, ..., xn). The (Slater) determinant det Φ(x) is anti-symmetric, but can represent only
a small class of AS functions, essentially the AS analogue of product (wave) functions (pure states,
Hartree-Fock approximation). Every continuous AS function can be approximated/represented by a
finite/infinite linear combination of such determinants:

ψ(x1, ..., xn) =

∞∑
k=1

det Φ(k)(x), where Φ
(k)
ij (x) := ϕ

(k)
i (xj)

An alternative is to generalize the Slater determinant itself [PSMF20] by allowing the functions
ϕi(xj) to depend on all variables

Φ(x) =

ϕ1(x1|x 6=1) · · · ϕn(x1|x 6=1)
...

. . .
...

ϕ1(xn|x 6=n) · · · ϕn(xn|x 6=n)


²involving continuous η with derivative 0 almost everywhere, and not differentiable on a dense set of points.
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where x 6=i ≡ (x1, ..., xi−1, xi+1, ..., xn). If ϕi(xj |x 6=j) is symmetric in x 6=j , which we henceforth
assume³, then exchanging xi ↔ xj is (still) equivalent to exchanging rows i and j in Φ(x), hence
det Φ is still AS. The question arises how many GSD are needed to be able to represent every AS
function ψ. The answer turns out to be ‘just one’, but with non-obvious smoothness relations: Any
AS ψ can be represented by some Φ, any analytic ψ can be represented by an analytic Φ, for k-times
continuously differentiable ψ ∈ Ck, a large number of derivatives are potentially lost:

Theorem 3 (Representation of all (analytic) AS ψ) For every (general/analytic/Ck+n(n+1)/2) AS
function ψ(x) there exist (general/analytic/Ck) ϕi(xj |x 6=j) symmetric in x 6=j such that ψ(x) =
det Φ(x).

Proof. sketch. The proof uses ϕ1(xj |x 6=j) := χ(x1:n) with χ(x) := ψ(x)/∆(x) and
∆(x) :=

∏
j<i(xi − xj) and ϕi(xj |x 6=j) := xi−1

j for 1 < i ≤ d. For this choice, det Φ reduces
to χ times the Vandermonde determinant ∆. χ is obviously symmetric, but properly extending
its definition to x for which ∆(x) = 0 is subtle. For general ψ, any continuation will do. For
polynomial ψ, representation ψ = χ ·∆ in terms of a symmetric polynomial χ and AS polynomial
∆ is well-known. This can be extended to analytic ψ via Taylor series expansion. For k′-times
differentiable ψ, the construction is more difficult and the reduction in differentiability unfortunate
and perhaps surprising. Full proofs can be found in the extended version.

We do not know whether the loss of 1
2n(n + 1) derivatives is an artefact of the proof or ‘real’. For

instance, we have seen that linear anti-symmetrization preserves differentiability. In Section 5 we
show that continuity is preserved (only for d = 1).

5 d-DIMENSIONAL (ANTI)SYMMETRY

This section generalizes the theorems from Sections 3 and 4 to d > 1: the symmetric polynomial
algebraic basis and the generalized Slater determinant representation.

Motivation. We now consider n ∈ N, d-dimensional particles with coordinates xi ∈ Rd for parti-
cles i = 1, ..., n. For d = 3 we write xi = (xi, yi, zi)

> ∈ R3. As before, Bosons/Fermions have
symmetric/AS wave functions χ(x1, ...,xn). That is, χ does not change/changes sign under the
exchange of two vectors xi and xj . It is not symmetric/AS under the exchange of individual coor-
dinates e.g. yi ↔ yj . X ≡ (x1, ...,xn) is a matrix with n columns and d rows. The (representation
of the) symmetry group is Sdn := {Sdπ : π ∈ Sn} with Sdπ(x1, ...,xn) := (xπ(1), ...,xπ(n)), rather
than Sn·d. Functions f : Rd·n → R invariant under Sdn are sometimes called multisymmetric or
block-symmetric, if calling them symmetric could cause confusion.

Algebraic basis for multisymmetric polynomials. The elementary symmetric polynomials (3)
have a generalization to d > 1 [Wey46]. We only present them for d = 3. The general case is
obvious from them. They can be generated from

n∏
i=1

(1 + λxi + µyi + νzi) =:
∑

0≤p+q+r≤n

λpµqνrepqr(X) (4)

Even for d = 3 the explicit expressions for epqr are rather cumbersome, but straightforward to
obtain. One can show that {epqr : p+q+r ≤ n} is an algebraic basis of sizem = (n+3

3 )−1 for all
multisymmetric polynomials [Wey46]. Note that constant e000 is not included/needed. For a given
X, their values can be computed in time O(mn) by expanding (4) or in time O(m log n) by FFT,
where m = O(nd). Newton’s identities also generalize: epqr(X) are polynomials in the polarized
sums ppqr(X) :=

∑n
i=1 ηpqr(xi) with ηpqr(x) := xpyqzr. The proofs are much more involved

than for d = 1. For the general d-case we have:

Theorem 4 (Multisymmetric polynomial algebraic basis [Wey46]) Every continuous (block-
=multi)symmetric function φ : Rn·d → R can be represented as φ(X) = g(

∑n
i=1 η(xi))

with continuous g : Rm → R and η : Rd → Rm defined as ηp1...pd(x) = xp1yp2 ...zpd for
1 ≤ p1 + ...+ pd ≤ n (pi ∈ {0, ..., n}), hence m = (n+d

d )− 1.
³The bar | is used to visually indicate this symmetry, otherwise there is no difference to using a comma.
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The basis can be computed in timeO(m·d) ⊆ O(d·(n+1)d). Note that there could be much smaller
functional bases of size m = dn as per “our” composition-by-inversion argument for continuous
representations in Section 3 of the extended version, which readily generalizes to d > 1, while the
above minimal algebraic basis has larger size m = O(nd) for n � d > 1. It is an open question
whether a continuous functional basis of size O(dn) exists, whether in polarized form (2) or not.

Anti-Symmetry. For d = 1, all AS functions ψ have the same (core) zeros (called Fermion nodes),
namely when xi = xj for some i 6= j, which form a union of linear spaces dividing Rn into n!
isomorphic partitions on which ψ are identical apart from sign ±1. This fact allowed representing
every ψ as a product of a symmetric function φ and the universal anti-symmetric polynomial ∆,
leading to representation Theorem 3. For d > 1, the Fermion nodes {X : ψ(X) = 0} form
essentially arbitrary ψ-dependent unions of (non-linear) manifolds partitioning Rdn into an arbitrary
even number of cells of essentially arbitrary topology [Mit07]. This fact prevents a similar simple
factoring (ψ = φ · ∆) and Vandermonde-like reduction in the proof of Theorem 3, and indeed
prevents finite algebraic bases for AS polynomials. We can still show a similar representation result,
albeit weaker and via a different construction:

As in Section 4, consider Φij(X) := ϕi(xj |x6=j), i.e.

Φ(X) =

ϕ1(x1|x 6=1) · · · ϕn(x1|x6=1)
...

. . .
...

ϕ1(xn|x 6=n) · · · ϕn(xn|x6=n)


where ϕi(xj |x 6=j) is symmetric in x 6=j .

Theorem 5 (Representation of all AS ψ) For every AS function ψ(X) there exist ϕi(xj |x 6=j)
symmetric in x 6=j such that ψ(X) = det Φ(X).

The proof in the extended version is based on sorting xπ̄(1) ≤ xπ̄(2) ≤ ... ≤ xπ̄(n) with suitable
π̄, which is a discontinuous operation in X for d > 1. It is continuous though not differentiable for
d = 1, hence ϕi can be chosen continuous for continuous ψ in d = 1. For n = 2 and any d, any
AS continuous/smooth/analytic/Ck function ψ(x1,x2) has an easy continuous/smooth/analytic/Ck
representation as a GSD. Choose ϕ1(x1|x2) := 1

2 and ϕ2(x1|x2) := ψ(x1,x2). Whether this
generalizes to n > 2 and d > 1 is an open problem.

6 NEURAL NETWORKS

In this section we will restrict the representation power of classical MLPs to equivariant functions,
which are then used to define universal (anti)symmetric NN.

Equivariance and all-but-one symmetry. We are mostly interested in (anti)symmetric func-
tions, but for (de)composition we need equivariant functions, and directly need to consider the
d-dimensional case. A function ϕ : (Rd)n → (Rd′)n is called equivariant under permutations
if ϕ(Sdπ(X)) = Sdπ(ϕ(X)) for all permutations π ∈ Sn. With slight abuse of notation we iden-
tify (ϕ(X))1 ≡ ϕ1(X) ≡ ϕ1(x1,x2, ...,xn) ≡ ϕ1(x1,x 6=1) with ϕ1(x1|x6=1). It is easy to
see (see extended version) that a function ϕ is equivariant (under permutations) if and only if
ϕi(X) = ϕ1(xi|x6=i) ∀i and ϕ1(xi|x 6=i) is symmetric in x 6=i. Hence ϕ1 suffices to describe
all of ϕ.

Equivariant Neural Network. We aim at approximating equivariant ϕ by an Equivariant MLP
(EMLP) defined as follows: The output X′ ∈ Rd′×n of an EMLP layer is computed from its input
X ∈ Rd×n by

x′i := τi(X) := τ1(xi|x6=i) ≡ τ1,W,V,u(xi|x 6=i) := σ(Wxi + V
∑
j 6=ixj + u) (5)

where τ : Rd×n → Rd′×n can be shown to be an equivariant “transfer” function with weight
matrices W,V ∈ Rd′×d, and u ∈ Rd′ the biases. Using

∑
j as in [ZKR+18] instead of

∑
j 6=i as in

[PSMF20] works as well. A L-(hidden)-layer EMLP concatenates L such layers (with non-linearity
removed from the last layer). It is easy to see that EMLP is indeed equivariant and that the argument
of σ() is the only linear function in X with such invariance [ZKR+18, Lem.3].
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In previous work it may have been tacitly been assumed that the universality of the polarized rep-
resentation in Theorem 2 implies that EMLP can approximate all equivariant functions. In Sec-
tions 7&8 of the extended version we provide an explicit construction and proof based on Theorem 4.
The explicit steps in the proof can be retraced if one wishes to derive error bounds.

Theorem 6 (Universality of (two-hidden-layer) EMLP) For any continuous non-linear activa-
tion function, EMLPs can approximate (uniformly on compacta) all and only the equivariant con-
tinuous functions. If σ is non-polynomial, a two-hidden-layer EMLP suffices.

Proof. idea. The construction follows 4 steps: (1) representation of polynomials in a single
vector xi, (2) multisymmetric polynomials in all-but-one vector crucially exploiting Theorem 4,
(3) equivariant polynomials, (4) equivariant continuous functions. Each step (1-3) constructs an
EMLP. One hidden-layer EMLP suffice by classical results for MLPs [Pin99]. Two layers can
be merged, leading to a 2-hidden-layer EMLP. Step (4) uses the (Stone-)Weierstrass theorem, for
which also quantitative versions exist with error bounds, e.g. based on Chebyshev polynomials.

Universal Symmmetric Network. We can approximate all symmetric continuous functions by
applying any symmetric continuous function ς : Rd′×n → Rd′ with the property ς(y, ...,y) = y to
the output of an EMLP, e.g. ς(Y) = 1

n

∑n
i=1 yi or ς(Y) = max{y1, ..., yn} if d′ = 1.

Universal AntiSymmmetric Network. By Theorem 5 we know that every AS function ψ can be
represented as a GSD of n functions symmetric in all-but-one-variable. The proof of Theorem 5
requires only a single symmetric function, but using an EMLP with n equivariant function can
potentially preserve smoothness as discussed in the extended paper.

Let us define a (toy) FermiNet as computing a single GSD from the output of a universal EMLP. The
real FermiNet developed in [PSMF20] contains a number of extra features, which improves practical
performance, theoretically most notably particle pair representations. Since it is a superset of our
toy definition, the following theorem also applies to the full FermiNet. We arrived at the following
result (under the same conditions as in Theorem 6):

Theorem 7 (Universality of the FermiNet) A FermiNet with a single GSD can approximate any
continuous anti-symmetric function.

For d = 1, the approximation is again uniform on compacta. For d > 1, the proof of Theorem 5
involves discontinuous ϕi(xj |x6=j). Any discontinuous function can be approximated by continu-
ous functions, not in∞-norm but only weaker p-norm for 1 ≤ p < ∞. This implies the theorem
also holds for d > 1 in Lp norm. Whether a stronger L∞ result holds is an important open problem,
important because approximating continuous functions by discontinuous components can cause all
kinds of problems.

7 DISCUSSION

We reviewed a variety of representations for (anti)symmetric functions (ψ)φ : (Rd)n → R. The
most direct and natural way is as a sum over n! permutations of some other function χ. If χ ∈
Ck then also (ψ)φ ∈ Ck. Unfortunately this takes exponential time, or at least is NP hard, and
other direct approaches such as sampling or sorting have their own problems. The most promising
approach is using Equivariant MLPs, for which we provided a constructive and complete universality
proof, combined with a trivial symmetrization and a non-trivial anti-symmetrization using a large
number Slater determinants. We investigated to which extent a single generalized Slater determinant
introduced in [PSMF20], which can be computed in time O(n3), can represent all AS ψ. We have
shown that for d = 1, all AS ψ ∈ Ck+n(n−1)/2 can be represented as det Φ with Φ ∈ Ck. Whether
Φ ∈ Ck suffices to represent all ψ ∈ Ck is unknown for k > 0. For k = 0 it suffices. For d > 1 and
n > 2, we were only able to show that AS ψ have representations using discontinuous Φ.

Important problems regarding smoothness of the representation are open in the AS case. Whether
continuous Φ can represent all continuous ψ is unknown for d > 1, and similar for differentiability
and for other properties. Indeed, whether any computationally efficient continuous representation of
all and only AS ψ is possible is unknown.
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