
Under review as a conference paper at ICLR 2022

PROMISSING: PRUNING MISSING VALUES IN
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

While data are the primary fuel for machine learning models, they often suffer
from missing values, especially when collected in real-world scenarios. However,
many off-the-shelf machine learning models, including artificial neural network
models, are unable to handle these missing values directly. Therefore, extra data
preprocessing and curation steps, such as data imputation, are inevitable before
learning and prediction processes. In this study, we propose a simple and intuitive
yet effective method for pruning missing values (PROMISSING) during learn-
ing and inference steps in neural networks. In this method, there is no need to
remove or impute the missing values; instead, the missing values are treated as
a new source of information (representing what we do not know). Our experi-
ments on simulated data, several classification and regression benchmarks, and
a multi-modal clinical dataset show that PROMISSING results in similar predic-
tion performance compared to various imputation techniques. In addition, our
experiments show models trained using PROMISSING techniques are becoming
less decisive in their predictions when facing incomplete samples with many un-
knowns. This finding hopefully advances machine learning models from being
pure predicting machines to more realistic thinkers that can also say “I do not
know” when facing incomplete sources of information.

1 INTRODUCTION

Missing and incomplete data are abundant in real-world problems; however, the learning and infer-
ence procedures in machine learning (ML) models highly rely on high-quality and complete data.
Therefore, it is necessary to develop new methods to deal with data imperfections in rugged en-
vironments. Currently, the most popular way to deal with imperfect data is to impute the missing
values. However, if we consider the learning and inference procedures in our brain as a role model
for ML algorithms, data imputation barely follows the natural principles of incomplete data process-
ing in our brain. This is because the imputation is generally based on using a heuristic for replacing
missing values. Our brain does not impute incomplete sensory information but instead uses its in-
completeness as a separate source of information for decision making. For example, by only hearing
the rain we can estimate how hard it is raining, and we do not necessarily need to receive visual in-
formation. Instead, we direct our attention more toward our auditory inputs to decide whether to go
out with an umbrella. In addition, the more we miss sensory information, the more cautious we get
in decision-making. That is why we are more careful in darker environments.

Neural networks (NNs) are brain-inspired algorithms that are very popular these days (under the
name of deep learning) for learning complex relationships between inputs and target variables. How-
ever, they are in principle unable to handle incomplete data with missing values. They mainly rely on
matrix operations which cannot operate on not-a-number (NaN) values. Only one NaN in a dataset
impairs the forward propagation in a network. There are three solutions to this problem (Garcı́a-
Laencina et al., 2010): i) removing samples or features with missing values, ii) imputing the miss-
ing values, and iii) modeling the incomplete data. Removing the samples with missing values can
be very costly, especially in small-sample size and high-dimensional datasets. For example, data
collection in clinical applications is an expensive procedure in terms of time, finance, and patient
burden. Moreover, removing even a few samples from small datasets can affect negatively the gener-
alization performance of the final model. Removing informative features with missing values is also
compensated with lower model performance. Therefore, filling the information gaps is inevitable.

1

Under review as a conference paper at ICLR 2022

There are various techniques for data imputation, ranging from simply imputing missing values with
a constant to more sophisticated ML-based imputation approaches (Little & Rubin, 2019; Garcı́a-
Laencina et al., 2010). One can categorize the most common techniques into three main categories:
i) constant imputation, ii) regression-based imputation, and iii) ML-based imputation. In constant
imputation, the missing values are replaced with a constant, e.g., zeros or mean/median of features.
It has been shown that constant imputation is Bayes consistent when the missing features are not
informative (Josse et al., 2019). In the regression-based imputation, a linear or non-linear regression
model is derived to predict the missing values. This method can be used to impute a single or
multiple features. The most popular regression-based imputation is Multiple Imputation by Chained
Equations (MICE) (Van Buuren & Groothuis-Oudshoorn, 2011; Azur et al., 2011). In MICE, an
iterative procedure of predicting missing values and re-training regressors with updated predictions
is performed for a limited number of cycles. The central assumption behind the MICE approach is
that the missing values are missed at random (see Rubin (1976) and Appendix A.1 for definitions
of missing value mechanisms including missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR)). Applying MICE can result in biased estimations if
this assumption is not satisfied (Azur et al., 2011). Another critical limitation of regression-based
imputation is its high computational complexity (Caiafa et al., 2021). If we do not know which
feature will be missed at the test time, for d features, we need to train d different regression models.
In the ML-based approach ML algorithms, such as a K-nearest neighbor (KNN), regularized linear
model (Jiang et al., 2021), decision trees (Twala et al., 2008), random forest (Xia et al., 2017), neural
network (Bengio & Gingras, 1996), or generative model (Yoon et al., 2018; Ipsen et al., 2020; Collier
et al., 2020; Nazabal et al., 2020), are used for handling missing data.

As an alternative solution to data imputation, one can use the elegance of probabilistic modeling
to model the incomplete data under certain assumptions. One seminal work in this direction is
presented by Ghahramani & Jordan (1994), where a Gaussian Mixture Model (GMM) is used to
estimate the joint density function on incomplete data using an Expectation-Maximization (EM) al-
gorithm. This approach is later adopted and extended to logistic regression (Williams et al., 2005),
Gaussian processes, support vector machines (Smola et al., 2005), and multi-class non-linear clas-
sification (Liao et al., 2007). However, despite their good performance on small-size datasets, their
application remained limited on big and high-dimensional data due to the high computational com-
plexity (Caiafa et al., 2021). To overcome this issue, Caiafa et al. (2021) proposed a sparse dic-
tionary learning algorithm that is trained end-to-end, and simultaneously learns the parameters of
the classifier and sparse dictionary representation. Le Morvan et al. (2020) proposed NeuMiss, a
neural-network architecture that uses a differentiable imputation procedure in a impute-then-regress
scheme (Morvan et al., 2021). A notable feature of NeuMiss is its robustness to MNAR data. Inverse
probability weighted estimation (Wooldridge, 2007; Seaman & White, 2013) is another probabilis-
tic approach for handling missing values without imputation in which the weights for samples with
many missing values are inflated based on an estimation of the sampling probability. Recently,
Smieja et al. (2018) proposed a modified neuron structure that uses GMM with a diagonal covari-
ance matrix (assuming MAR) to estimate the density of missing data. GMM parameters are learned
with other network parameters. Conveniently, it handles missing values in the first layer of the
network, and the rest of the architecture remains unchanged. Elsewhere, Nowicki et al. (2016) pro-
posed a new neural network architecture based on rough set theory (Pawlak, 1998) for learning from
imperfect data. It is fascinating that this method can say “I do not know” when a large portion of
input values are missing, unlike traditional models trained on imputed data that may predict definite
outcomes even on completely unmeasured samples, i.e., they run in the absolute darkness. These
predictions can be dangerous with catastrophic consequences in more delicate applications of ML
for example in autonomous driving, robotic surgery, or clinical decision-making.

In this work, we attack the problem of modeling incomplete data using artificial neural networks
without data imputation. We propose a simple technique for pruning missing values (PROMISS-
ING) in which the effect of missing values on the activation of a neuron is neutralized. In this
strategy, a missing value is not replaced by arbitrary values (e.g., through imputation); it is naturally
considered a missing piece of the puzzle; we learn a problem-specific numerical representation for
unknowns. The key feature of PROMISSING is its simplicity; it is plug-and-play; it deals with
missing values in the first layer of the network without the need to change anything in the rest of the
network architecture or optimization process. PROMISSING in its original form does not add extra
parameters to the network, and its computational overhead remains negligible. Our experiments
on simulated data and several classification/regression problems show that the proposed pruning

2

Under review as a conference paper at ICLR 2022

method does not negatively affect the model accuracy and provides competitive results compared
to several data imputation techniques. In a clinical application, making prognostic predictions for
patients with a psychotic disorder, we present an application of PROMISSING on a multi-modal
clinical dataset. We demonstrate how the NN model trained using PROMISSING becomes indeci-
sive when facing many unknowns. This is a crucial feature for developing trustworthy prediction
models in clinical applications. Furthermore, we show a side application of PROMISSING for coun-
terfactual interpretation (Mothilal et al., 2020) of NNs decisions that can be valuable in clinics.

2 METHODS

Let x ∈ Rp represent a vector of an input sample with p features. We assume that the features in x
are divided into two sets of q observed xo ∈ Rq and r missing features xm (where p = q + r). In
this study, we do not put any assumption on the pattern of missing values in x. Then, the activation
of the kth (k ∈ {1, 2, . . . , s}) neuron in the first hidden layer of an ordinary NN is:

a(k) =
∑

xi∈xo

xiw
(k)
i +

∑
xj∈xm

xjw
(k)
j + b(k). (1)

This activation cannot be computed unless the values in xm are imputed with real numbers. Here,
in PROMISSING, we propose to alternatively replace the missing values with a neutralizer that 1)
prunes the missing values from inputs of a neuron, 2) neutralizes the effect of missing values on
the neuron’s activation by cancelling the second term in Eq. 1 and modifying the neuron’s bias. A
missing value xj ∈ xm is replaced with its corresponding neutralizer u(k)

j at the kth neuron, where:

u
(k)
j =

−b(k)

pw
(k)
j

. (2)

The value of a neutralizer depends on its corresponding weight (w(k)
j), the bias of the corresponding

neuron (b(k)), and the number of features (p); thus, it can be computed on the fly during the training
or inference procedures. A small value is added to weights before computing neutralizers to avoid
division by zero. Inserting the neutralizer into Eq. 1, the activation of the kth neuron is rewritten as:

a(k) =
∑

xi∈xo

xiw
(k)
i +

qb(k)

p
, (3)

in which the effect of weights of missing values on the activation of the neuron is eliminated, and
the neuron’s bias is reduced by a factor of r/p. If all input values for a specific sample are missing
then the neuron is completely neutralized.

Proposition 1 If all input values are missing (q = 0 and xo = ∅) then the activation of a
PROMISSING neuron is zero (see Appendix A.2.2 for the proof).

Proposition 2 If there are no missing values in inputs (q = p and xm = ∅) then the activation of a
PROMISSING neuron is equal to a normal neuron (see Appendix A.2.3 for the proof)..

We should emphasize that, when using PROMISSING, the user does not need to apply any change
to the input vectors, and the missing values (generally represented as nans in the input matrix) are
fed directly to the network. After the training procedure, we eventually learn U ∈ Rs×p, a matrix
representation for unknowns (or metaphorically the dark matter):

u
∗(k)
j =

−b∗(k)

pw
∗(k)
j

j ∈ {1, 2, . . . , p}, k ∈ {1, 2, . . . , s}, (4)

where b∗ and w∗ are representing the final learned bias and weight. At the prediction stage, a missing
value at jth input feature will be replaced with its corresponding neutralizer from U . It is worth
emphasizing that the missing values are replaced with different neutralizers at different neurons;
therefore, it cannot be considered a constant imputation. In fact, each neuron perceives differently
a missing value in the input space. Metaphorically, the neurons can be seen as blind men in the

3

Under review as a conference paper at ICLR 2022

parable of “the blind men and an elephant” 1 when facing unknowns. Furthermore, it is different
from regression-based imputation and model-based approaches in the sense that a missing value in
a specific feature is not inferred from other observed features, or the distribution of observed values;
i.e., unknowns remain unknowns. In PROMISSING, we do not assume any certain missing value
mechanism (e.g., MAR) in advance. Instead, we try to learn the patterns of missing values from data
that maybe advantageous in more difficult scenarios such as MNAR (see results in Sec. 3.1).

One possible drawback of using PROMISSING is in high-dimensional input spaces and when the
number of missing values is large, i.e., when p → ∞ and r � q. In this case, the neuron will
undershoot; hence the effect of few non-missing values are ignored. 2 To address this problem, we
propose a modified version of PROMISSING (mPROMISSING) in which the effect of large r can
be compensated with a compensatory weight, wc. The compensatory weight receives a fixed input
of r/p for a specific sample; thus, the activation of the neuron will change to:

a(k) =
∑

xi∈xo

xiw
(k)
i +

qb(k) + rw
(k)
c

p
. (5)

w
(k)
c is learned alongside the rest of the network parameters in the optimization process. On training

data with few missing values, data augmentation (e.g., by simulating different patterns and size of
missing values) is advisable to ensure the sensibility of the learned compensatory weight. Since the
input for this weight (r/p) is computed at the run time, no modification to input vectors is required.

Proposition 3 If there are no missing values (q = p, r = 0, and xm = ∅) then the activation of an
mPROMISSING neuron is equal to a normal neuron (see Appendix A.2.4 for the proof).

The proposed PROMISSING approach is straightforward to implement and use. It can be incor-
porated into the current implementations of different types of NN layers by adding/modifying few
lines of code. We have implemented a nanDense layer, inheriting from Keras (Chollet et al.,
2015) Dense layer, using PROMISSING and mPROMISSING neurons (see appendix A.3). The
nanDense layer can be directly imported and used with any Keras model. In its general usage, the
nanDense layer is only used for the first layer of an NN to handle missing values in inputs, unless
we expect some missing values in the intermediate layers.

3 EXPERIMENTS AND RESULTS

In a set of three experiments, 1) in a simulation study, we investigate the convergence behaviors of
(m)PROMISSING on MCAR, MAR, and MNAR data; 2) in a large experiment on real data, we
benchmark the reliability of (m)PROMISSING in several classification and regression tasks, and
3) on a multi-modal clinical dataset, we demonstrate an application of PROMISSING on an open
problem of psychosis prognosis prediction.

3.1 SIMULATED DATA

We conducted a simple analysis of synthesized data to better understand the behaviors of PROMISS-
ING. For data simulation, we simulated the XOR problem with 1000 samples. Gaussian noise with
a variance of 0.25 is added to data. We simulated the missing data for MCAR, MAR, and MNAR
settings. The same procedures as in Schelter et al. (2021) are used to simulate the MCAR, MAR,
and MNAR missing values (see Appendix A.4 for details). The experiments are repeated for 30%
and 50% missing samples. We used scikit-learn (Pedregosa et al., 2011) for implementing different
data imputation schemes.3 We also compared our method with a GAN-based imputation proposed
in Yoon et al. (2018). Default configurations are used for all imputers.

To evaluate (m)PROMISSING, we used a simple fully connected NN architecture with four tangent-
hyperbolic neurons in the hidden layer and a single sigmoid neuron in the output layer. This simple
architecture can reach the performance of the Bayes optimal classifier (AUC=0.99± 0.01) on simu-
lated data without missing values (see the black lines in Fig. 1). We randomly divided the simulated

1See https://en.wikipedia.org/wiki/Blind_men_and_an_elephant for the parable.
2Note that this again might be considered as an advantage in some applications.
3Scikit-learn 0.24.2 with Numpy 1.19.5.

4

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant

Under review as a conference paper at ICLR 2022

Figure 1: Comparison between learning curves of PROMISSING and mPROMISSING with data
imputation approaches on simulated MCAR, MAR, and MNAR data, when tested on a test set
without missing values (first row) and with 50% missing values (second row).

data into training and test sets with 500 samples in each set. The pipeline of 1) data simulation, 2)
random data corruption with missing values, 3) randomly splitting data into the training and test set,
and 4) training the model is repeated 100 times, and the standard deviation of performances across
repetitions is reported (shadowed areas in Fig. 1). We have fixed the random number generator seed
in each repetition (randomly selected from [0, 100000]) to ensure a fair comparison between mod-
els. A stochastic gradient descent (SGD) optimizer is used to minimize a binary cross-entropy loss
function. We evaluated the network performance as the training procedure proceeds in two different
settings i) on the complete test set without missing data, and ii) on the test set with missing values.

The first row of plots in Fig. 1 shows the area under the ROC curve (AUC) for models trained on
data with 50% missing values (see Fig. 7 for 30%) and tested on test sets without missing values as
the number of epochs progresses. Here, by comparing the performance gap between the different
missing data curation strategies and the optimal Bayes classifier, we can evaluate the training bias
imposed by each strategy during the training. A lower training bias indicates a lower effect of data
curation strategy on the quality of the trained model. Our empirical results show that the training
bias is modulated by both the strategy and missing data mechanism. In the MCAR setting, all
strategies show less training bias. However, in the MAR and MNAR conditions, the model biases
are more pronounced, especially with higher percentages of missing values. The (m)PROMISSING
techniques show a competitive performance, especially in the MNAR setting where they perform
equivalently with mean, KNN, and MICE imputers (with Wilcoxon rank-sum test p-values of 0.26,
0.02, and 0.15) and better performance than zero and GAIN imputations (p-values≤ 3 × 10−12).
These results confirm that the (m)PROMISSING models provide the possibility to learn meaningful
representations for the unknowns that are at least as informative as imputed data.

The second row of plots in Fig. 1 compares the learning curves of models when tested on the test
set with missing values. By comparing the final performance of models in the first and second
row, we immediately notice the performance drops across almost all strategies. These performance
drops show the negative effect of data degradation imposed by each imputation method on the
generalization of models when applied to data with missing values. Thus, we refer to this dif-
ference as test bias. While all methods show similar test bias in the MCAR and MAR scenarios, the
(m)PROMISSING models show a negligible test bias in the MNAR scenario, i.e., the performance
of (m)PROMISSING models is not affected when they are applied to test data with MNAR missing
values. Furthermore, m(PROMISSING) methods show significantly better performance on MNAR
test data (p-values≤ 6× 10−6). The small training and test biases of the (m)PROMISSING models
in the MNAR setting confirm their effectiveness in jointly modeling the data and missing patterns.

We have further analyzed the patterns of neutralizers in U to interpret the learned representations
of unknowns in PROMISSING (see Fig. 8 in appendix A.5). Since U is derived from the network
parameters, due to the stochastic nature of parameter initialization and optimization, it may end

5

Under review as a conference paper at ICLR 2022

Figure 2: Comparing AUC drops in classification tasks with respect to the full model across five
different imputation methods, HGB, and (m)PROMISSING in MCAR, MAR, and MNAR settings.

up with different values in each repetition. Our visual inspection shows that each neuron learns
a different solution for unknowns, ranging from a simple zero or mean imputer to more complex
patterns. This is a unique feature for PROMISSING providing the possibility to learn a neuron-
specific imputation strategy from data.

3.2 OPENML DATA

In the second set of experiments, we benchmarked (m)PROMISSING alongside several impu-
tation techniques on a range of publicly available classification and regression datasets from
OpenML (Vanschoren et al., 2014). We used the same classification and regression datasets as
in Jäger et al. (2021) (see Table 2 and Table 3 in appendix A.6). Here, we use a simple fully-
connected architecture with two hidden layers, with p/2 ReLU neurons in the first and two neurons
in the second hidden layer, so the architecture changes slightly from one dataset to another depend-
ing on the number of features. A single output neuron with a sigmoid or linear transfer function
is used for output layers in classifiers or regressors, respectively. Our quick experiments on bench-
mark datasets show that this simple architecture provides competitive results with random forest
classifiers and regressors (see Fig 10 in appendix A.6). We excluded three classification and three
regression datasets from our analyses due to the poor performance of baseline models on the com-
plete data (see appendix A.6). We used MCAR, MAR, and MNAR schemes to simulate different
ratios (0.1, 0.25, 0.5, 0.9) of samples with missing values across datasets. The same procedures as
in Schelter et al. (2021) are used to simulate the MAR and MNAR missing values. In the MNAR
setting, a random percentile of the most informative feature (based on the mutual information with
the target variable) is removed. In the MAR case, values in the most informative feature are removed
based on a random percentile of the second most informative feature (see Appendix A.4 for more
details). An SGD optimizer for 100 epochs with a mini-batch size of 10 samples is used in the
training process to minimize a binary cross-entropy or a mean squared error (MSE) loss in the clas-
sification or regression scenario. The performances of different methods are evaluated in a 2-fold
cross-validation scheme computing the AUC and standardized MSE (SMSE) metrics. The whole
experiment pipeline, including 1) simulating missing values, 2) data imputation (this step does not
apply to (m)PROMISSING), 3) data standardization, 4) model training and evaluation, is repeated
twenty times with a fixed random number generator seed in each repetition. When imputing data, the
default imputer settings are applied. We have also included the histogram-based gradient boosting
(HGB) (Ke et al., 2017) –that similar to (m)PROMISSING provides a mechanism to directly deal
with missing values without imputation– in our experiments.

Fig. 2 compares the performance of different data imputation methods with (m)PROMISSING in
classification tasks for various missing value mechanisms and missing sample ratios (x-axes). The
AUC drops with respect to the full model (trained and tested on complete data) are plotted. To sum-
marize the results across datasets and replication runs, we first compute the median performance
across datasets and then average across twenty replications. While in all settings the HGB is the
best performer, the (m)PROMISSING shows competitive performance with the better performing
imputers. A similar overall pattern can be observed when comparing the increase in the SMSE in re-
gression tasks (see Fig. 11 in appendix A.6). In summary, these results show that (m)PROMISSING
can compete with data imputation approaches without the need for filling the unknowns, thus it is
more flexible with underlying missing data mechanisms and all input data types including continu-
ous, binary, and categorical.

6

Under review as a conference paper at ICLR 2022

3.3 CLINICAL APPLICATION: PSYCHOSIS PROGNOSIS PREDICTION

Missing data are seemingly ubiquitous in the healthcare domain. In general, clinical datasets contain
multi-modal data that are collected through different measurement tools, including patient question-
naires, medical reports and instruments, biological tests, and imaging data. Each modality may
represent a different aspect of a disease or treatment outcome. Therefore, employing smart modality
fusion techniques is inevitable to best benefit from these rich data. However, this goal is occluded be-
cause these data are collected through different sources and often include missing variables or even
missing modalities. In this section, we demonstrate an application of PROMISSING in multi-modal
data fusion and counterfactual model interpretation for psychosis prognosis prediction (PPP).

3.3.1 OPTIMISE DATASET

Table 1: Data modalities in the OPTiMiSE dataset.

Modality Measures
Num.

Samples
with NaNs

Percentage
of NaNs Description

1 Demographics 20 300 16% Socio-demographic features
2 Diagnosis 6 45 6% Illness related features
3 Lifestyle 7 421 21% Use of substances like drugs and alcohol
4 Somatic 11 92 13% Psychical examination
5 Treatment 1 67 14% Average dosage of medication
6 MINI 67 47 8% Psychiatric comorbidity
7 Cytokines 34 100 20% Proteins important in cell signaling
8 PANSS 30 42 8% Positive and Negative Syndrome Scale
9 PSP 5 57 11% Personal and Social Performance Scale
10 CGI 1 46 9% Clinical Global Impression
11 CDSS 9 53 11% Measurement scale about depression
12 SWN 20 81 16% Subjective Well-Being Under Neuroleptic

Summary 211 - 13% -

We used the OPTiMiSE dataset (Kahn
et al., 2018), an antipsychotic three-
phase switching study: 495 patients
with schizophrenia, schizophreniform,
or schizoaffective disorder according to
DSM-IV diagnosis standards. The pa-
tients received different medications in
a three-phase study design. We used the
data from the first phase of the study
in which the patients were treated with
amisulpride for four weeks. Only 376
patients who finished the first phase are used in our experiments. In a PPP framework, we aimed
to predict the probability of patients’ symptomatic remission based on the Positive and Negative
Syndrome Scale (PANSS) as defined by consensus criteria (Andreasen et al., 2005). We used 12
different data modalities in our experiments (see Table 1). In total, 13% values in the dataset are
missing. These missing values include complete or partial missed modalities. The missing values
are scattered across patients and measures; somehow, if we remove all subjects with missing values
only 17 patients are left. This observation substantiates, even more, the importance of missing data
management in clinical datasets. We have applied a minimal preprocessing pipeline on the data
before the modeling stage. The input data contains binary, categorical, and continuous variables.
We used 0/1 and one-hot encoding for binary and categorical variables, respectively. All continuous
variables are standardized before feeding them to the model. Considering the unbalanced class dis-
tributions (67% of patients get remitted), in each fold of K-fold cross-validation, we resampled the
minority class samples in the training data to match its size to the majority class.

3.3.2 A MULTI-MODAL MODEL FOR PPP

Figure 3: The NN architecture with middle and
late information fusion for psychosis prognosis
prediction on multi-modal data.

Inspired by Huang et al. (2020), we used a
multi-modal NN architecture with middle and
late information fusion. As depicted in Fig. 3,
our model has five layers: input, representa-
tion learning, modality-specific classification,
fusion, and classification. The network re-
ceives the data from M different modalities in
the input layer. Since input samples may con-
tain missing values, we use nanDense lay-
ers right after the input layer in the repre-
sentation learning phase. These layers trans-
fer the raw inputs to an intermediate repre-
sentations. We roughly (without any opti-
mization and solely based on input feature
size) fixed the number of neurons in this layer
for each modality (Demographics=10, Diagno-
sis=10, Lifestyle=5, Somatic=5, Treatment=2,
MINI=10, Cytokines=10, PANSS=10, PSP=5,
CGI=2, CDSS=5, SWN=5). In the modality-specific classification layer, we use 2 Softmax neurons

7

Under review as a conference paper at ICLR 2022

Figure 4: The trajectories of model predictions for 17 patients with information loss when using a)
data imputation, b) PROMISSING, and c) mRPOMISSING methods to handle missing data.

to classify the modality-specific representations into target classes, i.e., whether a patient remits
given a certain amount of medication after four weeks. These decisions are merged with middle
representation and then fed to the fusion layer. A trivial ReLU Dense layer with five neurons is
used for the fusion layer. Finally, two Softmax neurons are used to classify the fused data into
target classes. Dropout layers with a probability of 0.1 are applied before any weighted layer. An
Adam (Kingma & Ba, 2014) optimizer (with learning rate of 0.0003) is used to minimize the total
categorical cross-entropy loss across classification layers.

3.3.3 EVALUATION AND COMPARISON

We first compared (m)PROMISSING with two alternative strategies: i) removing features with miss-
ing values and ii) data imputation. In the first case, we first removed subjects that completely missed
one data modality; then, we removed features containing missing values. This procedure ended up
losing 67 subjects and 78% of features including two modalities. In the second case, we used a
KNN to impute the missing data. Note that, due to binary and categorical features, many imputa-
tion techniques (such as mean and iterative imputer) cannot be directly applied to our data. Even
in the KNN case, we needed to set the number of neighbors equal to one to avoid float numbers
for the categorical features. A 10-fold cross-validation scheme is employed for model evaluations,
and all the experiments are repeated ten times to evaluate the variability in performances. The re-
sults support our conclusion in Sec. 3.2 that (m)PROMISSING performs as well as data imputation.
PROMISSING and mPROMISSING result in AUCs of 0.67 ± 0.02 and 0.66 ± 0.02 that are on a
par with the KNN imputer 0.66±0.02. However, as is expected, removing missing features resulted
in an impaired model performance of 0.61 ± 0.02. The similar performance of (m)PROMISSING
and data imputation despite their completely different strategies to deal with missing values raises
two questions: “Do the resulting models behave similarly too?”, “If not, how are they different?”.
Craving to answer these questions, we set up the second set of experiments on the OPTiMiSe data.

In the next experiment, we left all the 17 patients with complete data in the test set and used the other
359 patients (with missing data) for training. Here, to fully use the capabilities of (m)PROMISSING
models, we have augmented the training data by removing different subsets of modalities from data.
Having M = 12 modalities and n = 470 samples (after balancing the training data) in the training
set, this procedure resulted in 1, 919, 010 samples (

∑M−1
m=0

(
M
m

)
× n). We trained three models, one

using KNN imputation and two using (m)PROMISSING. Then, we have used a particular procedure
for testing these models on the test set. In 100 repetitions, we have removed the modalities one by
one and in random order. Fig. 4 shows the trajectories of predictions for 17 test subjects across three
models. The trajectories show the predicted probability of remission when the model has access to
less information about the patients (from complete information on the left to no information on the
right). Note that it is impossible to remove all modalities in the KNN imputation case because it
impairs the imputation mechanism. The interesting observation is the difference between the pre-
diction behavior of models when they have less information available. The model trained and tested
on imputed data always reacts to inputs even in an unknown environment. While the predictions
of m(PROMISSING) models monotonically converge to 0.5, i.e., the models become indecisive in
an unknown environment. As expected, the predictions of the PROMISSING model are slightly
below the chance when the number of missing values increases, but this divergence is corrected in
mPROMISSING. This feature is crucial in delicate applications of ML in the medical domain in
which the decisions made by machines can significantly affect the quality of life of patients.

8

Under review as a conference paper at ICLR 2022

Figure 5: Counterfactual interpretation of model decisions using mPROMISSING for a) true nega-
tive, b) true positive, c) false negative, and d) false positive examples in model predictions.

One possible application of PROMISSING is in counterfactual interpretation (CI) (Mothilal et al.,
2020) of model decisions. CI is an effective method for the causal interpretation of complex mod-
els such as NNs. PROMISSING facilitates the usage of CI; we can simply use artificially inserted
missing values to create the counterfactual examples. In other words, to evaluate the effect of one
variable or modality on the final prediction, we assume it is missing in a counterfactual scenario. To
demonstrate this feature, we used this technique on the predictions of an mPROMISSING model.
The first and second row of Fig. 5 show respectively the CI results for four example patients with
correct and incorrect predictions on their remission. In the first case (Fig. 5a), the model correctly
predicts no-remission, and CI shows that the demographic features are the decisive factor by re-
ducing the probability of remission by ∼ 0.5. Similar inference can be used to explain the false
decisions. For example, PANSS and MINI measures are decisive factors in wrong model predic-
tions in Fig. 5c and 5d, respectively. This extra level of model explainability at the individual
patient level is valuable in the clinical settings as it answers the “Why?” question often asked by the
clinicians about decisions of black box models, and hopefully, paves the way towards the new field
of precision psychiatry (Fernandes et al., 2017).

4 SUMMARY AND CONCLUSIONS

In this work, we presented PROMISSING, a promising and novel second thought on dealing with
missing data in neural networks. Unlike previous works, we do not intend to replace missing values
based on their relation to other features or the joint distribution of observed data. Instead, we opt
to use the unknowns as an additional source of information by learning a representation for missing
data. The learned representation is used to prune missing values by neutralizing their effect on the
neurons’ activation. The proposed method is convenient, intuitive, and reliable. It is convenient be-
cause it is straightforward in implementation and application; there is no need for extra data prepara-
tion, and the missing values are directly fed to the model; and unlike some data imputation methods,
it is flexible with all input data types including continuous, binary, and categorical. This feature
makes PROMISSING irreplaceable in applications of neural networks on multi-modal datasets with
a mixture of diverse features. It is intuitive because it reacts to unknowns like a living agent; the
more the unknowns, the less the actions. Moreover, it is reliable since it performs as well as its al-
ternatives while its decisions are calibrated with the amount of information it receives. Furthermore,
it provides an embedded mechanism to explain the decisions of complex neural networks models
which is favorable for more reliable applications of ML in clinical decision making. Therefore, we
consider PROMISSING as one step ahead towards more naturalistic ML-based decision-making in
uncertain environments. Despite our extensive experiments, some analytical and empirical aspects
of PROMISSING remain unexplored. Exploring the connection between modeling unknowns and
model uncertainty, empirical comparison with model-based incomplete data modeling, and applica-
tions on more complex and structured data are among the unexplored avenues that we consider as
future work.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of conclusions of this work, we have made the core implementation
of the proposed method available in appendix A.3. The nanDense layer can be directly imported
and tested by the readers. Furthermore, anonymized scripts and codes to reproduce the results for
experiments on simulated data and OpenML datasets are included in the supplementary materials.
Meanwhile, in case needed, we are open to sharing scripts of the experiments on clinical data with
reviewers during the discussion process (the data is not available publicly). In our largest validation
experiments in Sec. 3.2, we have used 52 publicly available ML datasets from OpenML. We tried
our best to be very specific, descriptive, and precise about the applied parameter settings, model
specifications, and model evaluations in Sec. 3. We plan to release all the codes and scripts in
Github upon acceptance of the manuscript.

REFERENCES

Nancy C Andreasen, William T Carpenter Jr, John M Kane, Robert A Lasser, Stephen R Marder, and
Daniel R Weinberger. Remission in schizophrenia: proposed criteria and rationale for consensus.
American Journal of Psychiatry, 162(3):441–449, 2005.

Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J Leaf. Multiple imputation
by chained equations: what is it and how does it work? International journal of methods in
psychiatric research, 20(1):40–49, 2011.

Yoshua Bengio and Francois Gingras. Recurrent neural networks for missing or asynchronous data.
Advances in neural information processing systems, pp. 395–401, 1996.

Cesar F Caiafa, Ziyao Wang, Jordi Sole-Casals, and Qibin Zhao. Learning from incomplete features
by simultaneous training of neural networks and sparse coding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2621–2630, 2021.

Francois Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras.

Mark Collier, Alfredo Nazabal, and Christopher KI Williams. VAEs in the presence of missing data.
arXiv preprint arXiv:2006.05301, 2020.

Brisa S Fernandes, Leanne M Williams, Johann Steiner, Marion Leboyer, André F Carvalho, and
Michael Berk. The new field of precision psychiatry. BMC medicine, 15(1):1–7, 2017.

Pedro J Garcı́a-Laencina, José-Luis Sancho-Gómez, and Anı́bal R Figueiras-Vidal. Pattern classifi-
cation with missing data: a review. Neural Computing and Applications, 19(2):263–282, 2010.

Zoubin Ghahramani and Michael I Jordan. Supervised learning from incomplete data via an em
approach. In Advances in neural information processing systems, pp. 120–127, 1994.

Zoubin Ghahramani and Michael I Jordan. Learning from incomplete data. 1995.

Shih-Cheng Huang, Anuj Pareek, Roham Zamanian, Imon Banerjee, and Matthew P Lungren. Mul-
timodal fusion with deep neural networks for leveraging CT imaging and electronic health record:
a case-study in pulmonary embolism detection. Scientific reports, 10(1):1–9, 2020.

Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-MIWAE: Deep generative mod-
elling with missing not at random data. In International Conference on Learning Representations,
2020.

Sebastian Jäger, Arndt Allhorn, and Felix Bießmann. A benchmark for data imputation methods.
Frontiers in big Data, pp. 48, 2021.

Wei Jiang, Małgorzata Bogdan, Julie Josse, Szymon Majewski, Błażej Miasojedow, Veronika
Ročková, and TraumaBase® Group. Adaptive bayesian SLOPE: Model selection with incom-
plete data. Journal of Computational and Graphical Statistics, (just-accepted):1–47, 2021.

Julie Josse, Nicolas Prost, Erwan Scornet, and Gaël Varoquaux. On the consistency of supervised
learning with missing values. arXiv preprint arXiv:1902.06931, 2019.

10

https://github.com/fchollet/keras

Under review as a conference paper at ICLR 2022

René S Kahn, Inge Winter van Rossum, Stefan Leucht, Philip McGuire, Shon W Lewis, Marion
Leboyer, Celso Arango, Paola Dazzan, Richard Drake, Stephan Heres, et al. Amisulpride and
olanzapine followed by open-label treatment with clozapine in first-episode schizophrenia and
schizophreniform disorder (optimise): a three-phase switching study. The Lancet Psychiatry, 5
(10):797–807, 2018.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30:3146–3154, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Marine Le Morvan, Julie Josse, Thomas Moreau, Erwan Scornet, and Gaël Varoquaux. Neumiss
networks: differential programming for supervised learning with missing values. In Advances in
Neural Information Processing Systems 33, 2020.

Xuejun Liao, Hui Li, and Lawrence Carin. Quadratically gated mixture of experts for incomplete
data classification. In Proceedings of the 24th International Conference on Machine learning, pp.
553–560, 2007.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John
Wiley & Sons, 2019.

Marine Le Morvan, Julie Josse, Erwan Scornet, and Gaël Varoquaux. What’s a good imputation to
predict with missing values? arXiv preprint arXiv:2106.00311, 2021.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pp. 607–617, 2020.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete
heterogeneous data using VAEs. Pattern Recognition, 107:107501, 2020.

Robert K Nowicki, Rafal Scherer, and Leszek Rutkowski. Novel rough neural network for clas-
sification with missing data. In 2016 21st International Conference on Methods and Models in
Automation and Robotics (MMAR), pp. 820–825. IEEE, 2016.

Zdzislaw Pawlak. Rough set theory and its applications to data analysis. Cybernetics & Systems, 29
(7):661–688, 1998.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

Joseph L Schafer and John W Graham. Missing data: our view of the state of the art. Psychological
methods, 7(2):147, 2002.

Sebastian Schelter, Tammo Rukat, and Felix Biessmann. Jenga-a framework to study the impact of
data errors on the predictions of machine learning models. In EDBT, pp. 529–534, 2021.

Shaun R Seaman and Ian R White. Review of inverse probability weighting for dealing with missing
data. Statistical methods in medical research, 22(3):278–295, 2013.

Marek Smieja, Łukasz Struski, Jacek Tabor, Bartosz Zieliński, and Przemysław Spurek. Processing
of missing data by neural networks. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pp. 2724–2734, 2018.

Alex J Smola, SVN Vishwanathan, and Thomas Hofmann. Kernel methods for missing variables.
In International Workshop on Artificial Intelligence and Statistics, pp. 325–332. PMLR, 2005.

Bheki ETH Twala, MC Jones, and David J Hand. Good methods for coping with missing data in
decision trees. Pattern Recognition Letters, 29(7):950–956, 2008.

11

Under review as a conference paper at ICLR 2022

Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equa-
tions in r. Journal of statistical software, 45(1):1–67, 2011.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

David Williams, Xuejun Liao, Ya Xue, and Lawrence Carin. Incomplete-data classification using
logistic regression. In Proceedings of the 22nd International Conference on Machine learning,
pp. 972–979, 2005.

Jeffrey M Wooldridge. Inverse probability weighted estimation for general missing data problems.
Journal of econometrics, 141(2):1281–1301, 2007.

Jing Xia, Shengyu Zhang, Guolong Cai, Li Li, Qing Pan, Jing Yan, and Gangmin Ning. Adjusted
weight voting algorithm for random forests in handling missing values. Pattern Recognition, 69:
52–60, 2017.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International Conference on Machine Learning, pp. 5689–5698. PMLR, 2018.

12

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 MISSING DATA MECHANISMS

Let X ∈ Rn×p represent the data matrix of n samples with p features. Each sample x ∈ X then
can be decomposed into observed xo and missing xm components where the pattern of the missing
values can be indicated by a mask vector m ∈ {0, 1}p. Using these notation, the underlying mech-
anisms for missing values in data can be divided into three categories (Rubin, 1976; Ghahramani &
Jordan, 1995; Schafer & Graham, 2002):

1. Missing Completely at Random (MCAR): where there is no systematic relationship
between the patterns of missingness with either observed or unobserved variables, i.e.,
p(m | xo,xm) = p(m). In this case the missingness patterns are completely at random
and do not depend on observed or missing data.

2. Missing at Random (MAR): is a weaker assumption than MCAR (MCAR data is MAR
but not vice-versa), in which the patterns of missingness are independent from missing data
but may depend on observed values, i.e., p(m | xo,xm) = p(m | xo).

3. Missing Not at Random (MNAR): where the pattern of missingness depends on the values
of missing data, i.e., p(m | xo,xm) depends on the values in x. An example of MNAR is
censored data in which a certain range of data is missing.

A.2 ACTIVATION OF (M)PROMISSING NEURONS

A.2.1 DERIVATION OF EQ. 3

Eq. 3 can be derived by inserting Eq. 2 in Eq. 1 for missing inputs xj ∈ xm:

a(k) =
∑

xi∈xo

xiw
(k)
i +

∑
xj∈xm

xjw
(k)
j + b(k)

xj=
−b(k)

pw
(k)
j−−−−−−→

a(k) =
∑

xi∈xo

xiw
(k)
i +

∑
xj∈xm

−b(k)w(k)
j

pw
(k)
j

+ b(k)

=
∑

xi∈xo

xiw
(k)
i +

−rb(k) + pb(k)

p
=
∑

xi∈xo

xiw
(k)
i +

(p− r)b(k)

p

=
∑

xi∈xo

xiw
(k)
i +

qb(k)

p
.

A.2.2 PROOF OF PROPOSITION 1

When all input values are missing (xo = ∅, q = 0, and r = p), then the activation of a PROMISS-
ING neuron is zero:

a(k) =
∑

xi∈xo

xiw
(k)
i +

∑
xj∈xm

xjw
(k)
j + b(k)

xj=
−b(k)

pw
(k)
j−−−−−−→

xo=∅

a(k) =
∑

xj∈xm

−b(k)w(k)
j

pw
(k)
j

+ b(k) =
−rb(k)

p
+ b(k)

r=p−−→

a(k) =0.

13

Under review as a conference paper at ICLR 2022

A.2.3 PROOF OF PROPOSITION 2

When there are no missing values in inputs (xm = ∅, q = p, and r = 0), then the activation of a
normal neuron (Eq. 1) is computed as follows:

a(k) =
∑

xi∈xo

xiw
(k)
i +

∑
xj∈xm

xjw
(k)
j + b(k)

xm=∅−−−−→

a(k) =
∑

xi∈xo

xiw
(k)
i + b(k).

In this case, the activation of a PROMISSING neuron is exactly equal to an ordinary neuron:

a(k) =
∑

xi∈xo

xiw
(k)
i +

qb(k)

p

p=q−−→ a(k) =
∑

xi∈xo

xiw
(k)
i + b(k).

A.2.4 PROOF OF PROPOSITION 3

When there are no missing values in inputs (xm = ∅, q = p, and r = 0), the activation of an
mPROMISSING neuron is exactly equal to an ordinary neuron:

a(k) =
∑

xi∈xo

xiw
(k)
i +

qb(k) + rw
(k)
c

p

p=q−−→
r=0

a(k) =
∑

xi∈xo

xiw
(k)
i + b(k).

A.3 A NANDENSE LAYER

A preliminary implementation of a nanDense layer is listed in Listing 1. This layer is imple-
mented by inheriting and overloading the class constructor, build, and call functions. A flag,
use c, is added to the class constructor to decide whether to use compensatory weights or not
(defaulted to False). Using this flag, the user can simply switch between PROMISSING and
mPROMISSING. Furthermore, the flag use bias is fixed to True. In the build function an ex-
tra weight is concatenated to the end of the weight vector to implement compensatory weight in the
case use c==True. The matrix of epsilons is also pre-set for usage in the call function. In the
call function, the values for compensatory weights and neutralizers are computed, accordingly.
The current implementation is limited to non-sparse 2-dimensional inputs. The implementation is
preliminary and not optimized for memory and speed efficiencies. This implementation is tested
with Python 3.8.3, TensorFlow 2.4.1, and Keras 2.4.3. A similar guideline may be
followed to implement PROMISSING within other types of NN layers.

1 import keras
2 import tensorflow as tf
3 from tensorflow.python.framework import sparse_tensor
4 from tensorflow.python.ops import gen_math_ops
5 from tensorflow.python.ops import math_ops
6 from tensorflow.python.ops import nn_ops
7 from tensorflow.python.keras import backend as K
8 from tensorflow.python.framework import dtypes
9 from tensorflow.python.framework import tensor_shape

10 from tensorflow.python.keras.engine.input_spec import InputSpec
11 from tensorflow.python.keras import activations
12 from tensorflow.python.keras import initializers
13 from tensorflow.python.keras import regularizers
14 from tensorflow.python.keras import constraints
15

16

17 class nanDense(keras.layers.Dense):
18

19 def __init__(self,
20 units,
21 use_c = False, # A flag to use compensatory weight or

not.
22 activation=None,

14

Under review as a conference paper at ICLR 2022

23 kernel_initializer=’glorot_uniform’,
24 bias_initializer=’zeros’,
25 kernel_regularizer=None,
26 bias_regularizer=None,
27 activity_regularizer=None,
28 kernel_constraint=None,
29 bias_constraint=None,
30 **kwargs):
31 super(nanDense, self).__init__(units,
32 activity_regularizer=activity_regularizer, **kwargs)
33

34 self.use_c = use_c
35 self.use_bias = True
36 self.units = int(units) if not isinstance(units, int) else units
37 self.activation = activations.get(activation)
38 self.kernel_initializer = initializers.get(kernel_initializer)
39 self.bias_initializer = initializers.get(bias_initializer)
40 self.kernel_regularizer = regularizers.get(kernel_regularizer)
41 self.bias_regularizer = regularizers.get(bias_regularizer)
42 self.kernel_constraint = constraints.get(kernel_constraint)
43 self.bias_constraint = constraints.get(bias_constraint)
44 self.input_spec = InputSpec(min_ndim=2)
45 self.supports_masking = True
46

47 def build(self, input_shape):
48

49 dtype = dtypes.as_dtype(self.dtype or K.floatx())
50 if not (dtype.is_floating or dtype.is_complex):
51 raise TypeError(’Unable to build ‘nanDense‘ layer with non-

floating point ’
52 ’dtype %s’ % (dtype,))
53

54 input_shape = tensor_shape.TensorShape(input_shape)
55 last_dim = tensor_shape.dimension_value(input_shape[-1])
56 if last_dim is None:
57 raise ValueError(’The last dimension of the inputs to ‘

nanDense‘ ’
58 ’should be defined. Found ‘None‘.’)
59 self.input_spec = InputSpec(min_ndim=2, axes={-1: last_dim})
60

61 if self.use_c: # an extra weight if use_c is True.
62 self.kernel = self.add_weight(
63 ’kernel’,
64 shape=[last_dim+1, self.units],
65 initializer=self.kernel_initializer,
66 regularizer=self.kernel_regularizer,
67 constraint=self.kernel_constraint,
68 dtype=self.dtype,
69 trainable=True)
70 else:
71 self.kernel = self.add_weight(
72 ’kernel’,
73 shape=[last_dim, self.units],
74 initializer=self.kernel_initializer,
75 regularizer=self.kernel_regularizer,
76 constraint=self.kernel_constraint,
77 dtype=self.dtype,
78 trainable=True)
79

80 self.bias = self.add_weight(
81 ’bias’,
82 shape=[self.units,],
83 initializer=self.bias_initializer,
84 regularizer=self.bias_regularizer,
85 constraint=self.bias_constraint,

15

Under review as a conference paper at ICLR 2022

86 dtype=self.dtype,
87 trainable=True)
88

89 self.epsilon = tf.fill(self.kernel.shape, K.epsilon()) # Epsilon
Matrix

90

91 self.built = True
92

93

94 def call(self, inputs):
95

96 dtype = self._compute_dtype_object
97

98 if self.use_c: # Computing and concatenating the compensatory
weight to the weights

99 c = tf.math.reduce_sum(tf.cast(tf.math.is_nan(inputs), dtype)
, axis=1)

100 c = tf.math.divide(c, inputs.shape[1])
101 inputs = tf.concat([inputs,tf.expand_dims(c, axis=1)], axis

=1)
102

103 kernel = math_ops.add(self.epsilon, self.kernel) # Adding epsilon
to weights

104

105 if self.dtype:
106 if inputs.dtype.base_dtype != dtype.base_dtype:
107 inputs = math_ops.cast(inputs, dtype=dtype)
108

109 rank = inputs.shape.rank
110 if rank == 2 or rank is None:
111 if isinstance(inputs, sparse_tensor.SparseTensor):
112 raise NotImplementedError
113 else:
114 outputs = []
115 for i in range(self.kernel.shape[1]): # Computing

Neutralizers and activations for each neuron
116 d = tf.math.divide(-self.bias[i]/self.kernel.shape

[0], kernel[:,i])
117 temp_inputs = tf.where(tf.math.is_nan(inputs), d,

inputs) # replacing nans in inputs with -b/w
118 outputs.append(gen_math_ops.mat_mul(temp_inputs,

kernel[:,i:i+1]))
119 outputs = tf.concat(outputs, axis=1)
120

121 # Broadcast kernel to inputs.
122 else:
123 raise NotImplementedError
124

125 outputs = nn_ops.bias_add(outputs, self.bias)
126

127 if self.activation is not None:
128 outputs = self.activation(outputs)
129

130 return outputs

Listing 1: An implementation of a nanDense layer in Keras.

A.4 MISSING DATA SIMULATIONS

We used the same procedures in Schelter et al. (2021) to simulate the missing values in our exper-
iments on simulated and OpenML data. For MAR and MNAR settings, first, a random range of
a certain feature F1 is selected. This random range is decided based on random lower and upper
bound percentiles. In the MAR condition, the values of a second random feature F2 are removed if
the values of F1 lie in the specified range, i.e., the missing values in F2 depend on the observations

16

Under review as a conference paper at ICLR 2022

(a) Simulated data and imputation results in MCAR setting.

(b) Simulated data and imputation results in MAR setting.

(c) Simulated data and imputation results in MNAR setting.

Figure 6: In each panel: a) The simulated XOR data. The effect of b) zero, c) mean, d) KNN,
and e) iterative imputations on simulated data with MCAR, MAR, and MNAR missing values. The
missing values for the first feature (x-axis) are selected based on a random range of the second
feature (y-axis).

in F1 (see Fig. 6b for an example). In contrast in the MNAR case, the values are removed from the
same F1 feature. In fact, in the MNAR case the values of F1 are censored for in a certain range
(see Fig. 6c for an example). In the MCAR setting, the samples with missing value are selected
completely at random (see Fig. 6a).

Fig. 6b-e illustrate the effect of applying different data imputation methods. In all cases, imputation
may result in the misrepresentation of samples with missing values.

17

Under review as a conference paper at ICLR 2022

Figure 7: Comparison between learning curves of PROMISSING and mPROMISSING with data
imputation approaches on simulated MCAR, MAR, and MNAR data, when tested on a test set
without missing values (first row) and with 30% missing values (second row).

A.5 SUPPLEMENTARY MATERIAL FOR THE SIMULATION STUDY

To better understand the learned representation of unknowns U , we have visualized the elements in
U across 100 simulation replications. Fig. 8 shows the values of U across 100 simulation runs in
our simulation study. In our simulation study, U has eight values (two inputs for each four input
neurons). Markers with similar color and shape represent the neutralizer values for two features
(axes) in four neurons in a specific run. For example, the four blue circles show the values of four
neutralizers in two-dimensional feature space in the first run of the experiment. Since the scatter plot
is very crowded, we plotted only the 8 representative runs in Fig. 9 in the main text in Sec. 3.1. Since
U is derived from the network parameters, due to the stochastic nature of parameter initialization and
optimization, it may end up with different values in each run (local minima). Our visual inspection
shows that the network finds four main groups of solutions for representing unknowns.

Fig. 9 depicts elements in U for 8 selected runs that represent these four groups. In this case, U has
eight elements (two inputs for four neurons). Markers with similar colors represent the neutralizer
values for two features (axes) and four neurons in a specific run (legends). The neutralizers in the
first group (1 and 11) are roughly zero imputers in which the missing values are imputed with close
to (but not absolutely) zero values. These are sub-optimal solutions that happen only in a few runs.
In the other cases, the models seem to perform more than a simple imputer. In another minority
group, represented by runs 52 and 100, the model turns to a mean imputer for the first feature,
but it learns diverse representation for the second feature; the neurons see unknowns as borderline
samples. In another minority group (represented by run 41 and 81), some neurons see unknowns as
samples with extreme values (outside or close to the outer range of inputs). Run 7 and 10 represent
the majority group of solutions in which each neuron has its unique perception of unknowns.

A.6 SUPPLEMENTARY MATERIALS FOR EXPERIMENTS ON OPENML DATA

Table 2 and Table 3 summarize the OpenML datasets that are respectively used in our classification
and regression analyses in Sec. 3.2. We used exactly the same datasets as in Jäger et al. (2021).

Fig. 10a and Fig. 10b compare the performance of our naive NN architecture (that are used in our ex-
periments in Sec. 3.2) with a random forest (RF) classifier or regressor across (with default settings)
benchmark datasets. The errorbars represent the variation in AUC/SMSE across 10 repetitions. The
models are evaluated in a 2-fold cross-validation scheme. The random number generator seed is
fixed for all algorithms in each repetition. Our results show that our simple NN architecture with
two hidden layers generally performs as well as random forest models. Both NN and RF models
show near the chance performance on ’pollen’, ’egg-eye-state’, and ’numerai28.6’, thus we have
removed these datasets from our analyses in Sec. 3.2. About the regression tasks, again we observed
poor performance (SMSE>1) of both models in the case of ’stock-fardamento02’, ’wine-quality’,
and ’Bike-Sharing-Demand’ datasets. Thus, they are removed from our analysis.

18

Under review as a conference paper at ICLR 2022

(a) The patterns of neutralizers for MCAR data.

(b) The patterns of neutralizers for MAR data.

(c) The patterns of neutralizers for MNAR data.

Figure 8: Patterns of neutralizer elements across two input features and the four neurons across 100
simulation repetitions. The markers with the same color and shape show the neutralizer values for
each of four neurons in a specific run (the legends) of the pipeline. The blue and red dots in the
background are representing the simulated data.

19

Under review as a conference paper at ICLR 2022

Figure 9: Pattern of neutralizers in U across two input features and the four neurons. The markers
with the same color show the neutralizer values for each of four neurons in a specific run (legends)
of the pipeline. The blue and red dots in the background are representing the simulated data.

Fig. 11 shows the results for experiments in Sec 3.2 in the regression tasks. Plots show the difference
between the SMSE of the full model (trained on complete data) and the model trained on data with
missing values. As expected the difference in SMSE increases with an increase in the ratios of
missing samples and features. The (m)PROMISSING shows competitive performance compared to
HGB and the better performing imputers, i.e., the zero, mean, and KNN imputers.

In an extra experiment, we used the MCAR scheme to simulate different ratios of samples (0.1,
0.25, 0.5, 0.9) and features (0.1, 0.25, 0.5, 0.75, 1) with missing values across datasets. Please
bear in mind that applying this setting (with more than one feature with missing values) to the
MAR and MNAR conditions is tricky because guaranteeing the assumptions behind these schemes
can be complicated. Fig. 12 compares the performance of different data imputation methods with
(m)PROMISSING on the classification tasks for different missing sample ratios (in each panel) and
missing feature ratios (x-axes). The AUC drops with respect to the full model (trained on complete
data) are averaged across different datasets and ten runs. The (m)PROMISSING shows competitive
performance compared to the better performing imputers, i.e., the mean and KNN imputers. Espe-
cially, mPROMISSING performs slightly better when the ratio of missing features is increasing. A
similar overall pattern can be observed when comparing the increase in the SMSE in the regression
tasks (see Fig. 13). In summary, these results show that (m)PROMISSING can compete with data
imputation approaches without the need for filling the unknowns.

20

Under review as a conference paper at ICLR 2022

(a) AUCs in classification tasks. The higher score is better.

(b) SMSEs in regression tasks. The less score is better.

Figure 10: Comparison between the performance of our simple NN architecture with random forest
across a) 31 classification and b) 21 regression tasks.

21

Under review as a conference paper at ICLR 2022

Table 2: Classification datasets that are used in our analysis in Sec. 3.2.

Dataset
Name

OpenML
ID

Sample
Num.

Feature
Num.

1 space-ga 737 3107 6
2 pollen 871 3848 5
3 wilt 40983 4839 5
4 analcatdata-supreme 728 4052 7
5 phoneme 1489 5404 5
6 delta-ailerons 803 7129 5
7 visualizing-soil 923 8641 4
8 bank8FM 725 8192 8
9 compas-two-years 42192 5278 13
10 bank-marketing 1558 4521 16
11 mammography 310 11183 6
12 mozilla4 1046 15545 5
13 wind 847 6574 14
14 churn 40701 5000 20
15 sylvine 41146 5124 20
16 ringnorm 1496 7400 20
17 twonorm 1507 7400 20
18 houses 823 20640 8
19 airlines 42493 26969 7
20 eeg-eye-state 1471 14980 14
21 MagicTelescope 1120 19020 10
22 Amazon-employee-access 4135 32769 9
23 BNG(tic-tac-toe) 137 39366 9
24 BNG(breast-w) 251 39366 9
25 Click-prediction-small 1220 39948 9
26 electricity 151 45312 8
27 fried 901 40768 10
28 mv 881 40768 10
29 Run-or-walk-information 40922 88588 6
30 default-of-credit-card-clients 42477 30000 23
31 numerai28.6 23517 96320 21

Figure 11: Comparing increase in SMSEs in regression tasks with respect to the full model across
five different imputation methods, HGB, and (m)PROMISSING in MCAR, MAR, and MNAR set-
tings.

22

Under review as a conference paper at ICLR 2022

Table 3: Regression datasets that are used in our analysis in Sec. 3.2.

Dataset
Name

OpenML
ID

Sample
Num.

Feature
Num.

1 stock-fardamento02 42545 6277 6
2 auml-eml-1-d 42675 4585 10
3 delta-elevators 198 9517 6
4 sulfur 23515 10081 6
5 kin8nm 189 8192 8
6 wine-quality 287 6497 12
7 Long 42636 4477 19
8 Brazilian-houses 42688 10692 12
9 dataset-sales 42183 10738 14
10 BNG(echoMonths) 1199 17496 9
11 cpu-act 197 8192 21
12 house-8L 218 22784 8
13 Bike-Sharing-Demand 42712 17379 9
14 BNG(lowbwt) 1193 31104 9
15 elevators 216 16599 18
16 2dplanes 215 40768 10
17 COMET-MC-SAMPLE 23395 89640 4
18 diamonds 42225 53940 9
19 BNG(stock) 1200 59049 9
20 BNG(mv) 1213 78732 10
21 auml-url-2 42669 95911 12

Figure 12: Comparing AUC drops with respect to the full model across four different imputation
methods, HGB, and (m)PROMISSING in classification tasks.

23

Under review as a conference paper at ICLR 2022

Figure 13: Comparing increase in SMSEs with respect to the full model across four different impu-
tation methods, HGB, and (m)PROMISSING in regression tasks.

24

	Introduction
	Methods
	Experiments and Results
	Simulated Data
	OpenML Data
	Clinical Application: Psychosis Prognosis Prediction
	OPTiMiSE Dataset
	A Multi-Modal Model for PPP
	Evaluation and Comparison

	Summary and Conclusions
	Appendix
	Missing Data Mechanisms
	Activation of (m)PROMISSING Neurons
	Derivation of Eq. 3
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	A nanDense Layer
	Missing Data Simulations
	Supplementary Material for the Simulation Study
	Supplementary Materials for Experiments on OpenML Data

