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Abstract

Pre-trained chemical language models (CLMs)001
excel in the field of molecular property predic-002
tions, utilizing string-based molecular descrip-003
tors such as SMILES for learning universal004
representations. However, the one-dimensional005
format of SMILES can impede the effective-006
ness of the model because it lacks the topolog-007
ical information necessary for accurate prop-008
erty predictions. In this work, we introduce009
HINT, a novel framework to enhance the under-010
standing of molecular structures within CLMs011
with topological fingerprints. HINT enhances012
molecular representations of CLMs through013
a molecular substructure prediction task and014
fingerprint-based contrastive learning. Experi-015
mental results on various tasks verify that HINT016
significantly improves the molecular property017
prediction performance of CLMs1.018

1 Introduction019

In the realms of drug discovery and materials sci-020

ence, the application of deep neural networks to021

molecular property prediction is increasingly rec-022

ognized as valuable (Butler et al., 2018). Recently,023

inspired by the success of the pre-trained language024

models (Devlin et al., 2019; Liu et al., 2019), chem-025

ical language models (CLMs) have been introduced026

and shown their proficiency in predicting molecular027

properties (Wang et al., 2019; Honda et al., 2019;028

Chithrananda et al., 2020; Fabian et al., 2020; Ah-029

mad et al., 2022; Ross et al., 2022). These CLMs030

are trained on large-scale string-based molecular031

descriptors to learn universal molecular representa-032

tions. However, one-dimensional descriptors such033

as Simplified Molecular-Input Line-Entry System034

(SMILES) (Weininger, 1988) fall short in providing035

topological information (Soares et al., 2023; Yük-036

sel et al., 2023). Thus, CLMs trained on SMILES037

suffer from capturing the relationships between038

1Our code is available at https://anonymous.
4open.science/r/HINT-0C2D

molecular structures and properties (Graff et al., 039

2023). 040

In this work, we introduce HINT (enHancing 041

topological Information with coNTrastive learn- 042

ing), a novel framework to enhance the topological 043

understanding of CLMs. HINT leverages struc- 044

tural information contained in topological finger- 045

prints, notably Extended-Connectivity Fingerprints 046

(ECFPs) (Rogers and Hahn, 2010), to address the 047

limitation of SMILES. HINT continuously trains 048

pre-trained CLMs with multiple tasks: molecular 049

substructure prediction and topological fingerprint- 050

based contrastive learning. In the molecular sub- 051

structure prediction task, HINT trains the model to 052

predict the substructure information of molecules 053

hashed in ECFPs. Additionally, in the contrastive 054

learning task, the model learns the representation 055

by contrasting structurally similar and dissimilar 056

molecules that are identified using ECFPs. 057

We evaluate HINT with two strong CLMs (Ah- 058

mad et al., 2022; Ross et al., 2022) on various 059

tasks from MoleculeNet benchmarks (Wu et al., 060

2018), including six classification and four regres- 061

sion tasks. HINT achieved performance improve- 062

ments of 4.77% and 4.54% on average for each 063

backbone, demonstrating its effectiveness in molec- 064

ular property prediction. 065

2 Methodology 066

2.1 Molecular Substructure Prediction 067

To enhance the topological understanding of CLMs, 068

we train the model to predict molecular substruc- 069

tures hashed in ECFPs. ECFPs are the fixed-length 070

binary vectors that hash identified substructures of 071

molecules into fixed-length binary vectors, with 1 072

representing the presence and 0 for the absence of 073

certain substructures. Through the prediction of 074

ECFPs, the model acquires the capability to detect 075

the presence of substructures, thereby improving 076

its understanding of the topological information of 077
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Figure 1: Illustration of HINT. We extract and construct a set of top-k similar molecules by measuring cosine
similarity among topological fingerprints. We then predict ECFP4 directly and perform contrastive learning to
maximize the agreement between pairs of structurally similar molecules.

molecules.078

Specifically, we first extract 2048-dimensional079

ECFP4 fingerprints from each molecule using RD-080

Kit2. We then project the molecular representation081

to match the dimensions of the ECFP4 fingerprint,082

facilitating the prediction of hashed substructures083

within it. The molecular representation is obtained084

by extracting final hidden representation of first085

token from the CLM. Subsequently, we employ086

Binary Cross Entropy (BCE) loss to define the sub-087

structure prediction tasks.088

2.2 Fingerprint-based Contrastive Learning089

While molecular substructure prediction effectively090

incorporates topological information, it may not091

fully address the challenge of comprehending how092

these structures correlate with molecular proper-093

ties. Understanding such relationships is crucial094

for accurately predicting functional outcomes, such095

as reactivity, stability, and biological activity (Le096

et al., 2012).097

Hence, we introduce a simple contrastive learn-098

ing method based on topological fingerprints to099

further enhance CLMs. This method is rooted in100

the insight that molecules with similar structures of-101

ten exhibit similar properties (Martin et al., 2002).102

HINT trains models to distinguish between struc-103

turally similar and dissimilar molecules in a con-104

trastive manner. This approach is expected to facil-105

itate the model’s ability to determine properties by106

recognizing structural differences in molecules.107

We first create a set of structurally similar108

molecules, denoted as H , for each molecule in the109

dataset. This process involves utilizing the ECFP4110

2https://www.rdkit.org

vectors extracted from the molecules. By calcu- 111

lating the cosine similarity between these vectors, 112

we are able to identify the top-k similar molecules. 113

Subsequently, we sample a batch of N molecules 114

and define the contrastive prediction task on pairs 115

of similar molecules. For each molecule in a batch, 116

we randomly select a similar molecule from H to 117

form the positive pair, resulting in 2N data points. 118

We then define the agreement between molecule 119

m and sampled molecule s as follows: 120

σ(m, s) = exp(sim(M,S)/τ), (1) 121

where M and S refer to the molecular representa- 122

tions of m and s, respectively. The τ is the tem- 123

perature parameter for scaling. We employ the 124

NT-Logistic loss function (Chen et al., 2020) to 125

maximize agreement between positive pairs while 126

minimizing agreement between negative pairs. In- 127

stead of explicitly sampling negative examples, we 128

treat the other 2(N−1) molecules in a batch as neg- 129

ative examples. The fingerprint-based contrastive 130

loss is as follows: 131

LCL(mp, sp) = − log
σ(mp, sp)∑2N−1

i=1 σ(mi, sp)
. (2) 132

Our final objective function is expressed as fol- 133

lows: 134

L(mp, sp) = LBCE(mp) + λLCL(mp, sp), (3) 135

where λ is a non-negative hyper-parameter for bal- 136

ancing the objective functions. To ensure accu- 137

racy in learning, contrastive learning is omitted for 138

molecules that are not unique, specifically when 139

there are more than two similar molecules within a 140

batch for a particular molecule. 141
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BBBP Tox21 ClinTox HIV BACE SIDER QM9 ESOL FreeSolv Lipop
ROC ROC ROC ROC ROC ROC MAE RMSE RMSE RMSE

Graph

D-MPNN (Yang et al., 2019) 71.2 68.9 90.5 75.0 85.3 63.2 - 0.980 2.180 0.660
GeomGCL (Li et al., 2022) - 85.0 91.9 - - 64.8 - 0.575 0.866 0.541
MolCLR (Wang et al., 2022) 73.6 79.8 93.2 80.6 89.0 68.0 - 1.110 2.200 0.650
HiMol (Zang et al., 2023) 73.2 76.2 73.7 - 84.6 62.5 3.243 0.833 2.283 0.708

Text

MolBERT (Fabian et al., 2020) 76.2 - - 78.3 86.6 - - 0.531 0.948 0.561
SELFormer (Yüksel et al., 2023) 90.2 65.3 - 68.1 83.2 74.5 - 0.682 2.797 0.735
ChemBERTa-2 (Chithrananda et al., 2020) 70.1 48.1 51.9 74.7 80.9 49.0 2.775 0.949 1.854 0.728
MoLFormer-XL (Ross et al., 2022) 91.5 84.5 94.6 81.3 86.7 65.7 1.628 0.248 0.315 0.518
HINTC 71.4 49.9 53.5 75.2 82.8 50.9 2.541 0.811 1.806 0.705
HINTM 92.4 85.4 94.0 84.2 88.7 66.3 1.445 0.212 0.301 0.508

Table 1: Main experimental results. Bold and Underline indicates best and second-best results, respectively.

α Cv G gap H εhomo εlumo µ ⟨R2⟩ U0 U ZPVE
ChemBERTa-2 0.5164 0.2026 1.2027 0.0057 1.0156 0.0040 0.0041 0.5260 27.3141 1.2618 1.1933 0.0010
MoLFormer-XL 0.3531 0.1594 0.2826 0.0040 0.2864 0.0041 0.0040 0.3691 17.2684 0.4758 0.3291 0.0004
HINTC 0.5051 0.1979 1.2765 0.0055 1.0731 0.0039 0.0041 0.5200 24.4382 1.1632 1.0849 0.0009
HINTM 0.2786 0.1219 0.2773 0.0033 0.2203 0.0024 0.0028 0.3501 15.4922 0.2961 0.2936 0.0002

Table 2: Experimental results for QM9 subtasks.

3 Experimental Settings142

Datasets. To evaluate molecular property predic-143

tion ability of CLMs, we conduct the experiments144

on six classification3 and four regression tasks4145

from the MoleculeNet benchmark (Wu et al., 2018).146

For evaluation metrics, we report AUC-ROC for147

classification, MAE for QM9, and RMSE for re-148

maining regression tasks. Task descriptions can be149

found in Tables 11 and 12 in Appendix.150

Training Setup. We use the dataset for each task151

to train ChemBERTA-2 (Ahmad et al., 2022) and152

MoLformer-XL (Ross et al., 2022) with HINT153

framework, naming them HINTC and HINTM , re-154

spectively. We then fine-tune the model on each155

task. Additionally, we provide the performance of156

two models without HINT for comparison. Further157

details are in Appendix B.158

4 Experimental Results159

Main Results. Table 1 presents our experimen-160

tal results. Our HINTC and HINTM show per-161

formance improvements of 4.77% and 4.54% on162

average for each backbone. Especially, HINTM163

surpasses existing CLMs on eight tasks. It also164

achieves comparable performance on the ClinTox165

and SIDER datasets, demonstrating its versatility166

in molecule property prediction.167

Among the regression tasks, the QM9 task in-168

volves predicting quantum chemical properties,169

which is particularly challenging in the absence of170

3D geometric information. Despite this, HINTM171

achieves consistent improvements in performance172

3BBBP, ClinTox, SIDER, Tox21, HIV, and BACE
4QM9, ESOL, FreeSolv, and Lipophilicity (Lipop)

Source ESOL FreeSolv Lipop

HINTM

QM9 0.236 0.307 0.510
ESOL 0.212 0.328 0.518

FreeSolv 0.232 0.301 0.525
Lipop 0.228 0.340 0.508
None 0.248 0.315 0.518

Table 3: Evaluation of the transfer of topological infor-
mation. Source refers to the dataset used to train HINT.
Results with None refer to fine-tuning without HINT.

on the QM9 dataset compared to its baseline. Over- 173

all results of QM9 subtasks are shown in Table 2. 174

These results demonstrate the HINT’s ability to 175

effectively leverage molecular structures, enhanc- 176

ing prediction accuracy across various chemical 177

properties. For detailed insights, see Appendix C. 178

Transferring Topological Information. We 179

evaluate the generalizability of molecular represen- 180

tations obtained by HINT. By training the HINT 181

framework on three different regression tasks, we 182

cross-evaluate each model with unseen data. The 183

results in Table 3 often show improved perfor- 184

mance across these tasks, especially for HINT with 185

QM9. This highlights the capability of HINT to ef- 186

fectively transfer topological information, confirm- 187

ing its wide applicability and robustness in boosting 188

performance across various regression tasks. 189

Topological Analysis. Following Ross et al. 190

(2022), we evaluate the encapsulated topological in- 191

formation of HINTM by analyzing the resemblance 192

between molecular structures and the attention ma- 193

trices. We calculate the cosine similarities between 194

average pooled attention matrices and molecular 195

structures. To facilitate this, we randomly select 196

3,000 molecules from QM9, PubChem (Kim et al., 197

3



Bond Connectivity Matrix 3D Distance Matrix Attention Matrix (MoLFormer-XL) Attention Matrix (HINT)

Figure 2: Visualization of attention matrices from MoLFormer-XL and HINTM , accompanied by the corresponding
molecular structure for ‘CC[C](O)C1CCCC([N+](=O)[O-])C1’ (ZINC001560407707).

QM9 PubChem ZINC
Bond Dist. Bond Dist. Bond Dist.

MoLFormer-XL 60.99 85.73 45.18 79.68 44.11 77.17
HINTM 62.27 87.44 45.76 80.67 44.31 78.89

Table 4: Evaluation of encapsulated topological infor-
mation. We use HINTM trained on QM9 dataset.

MoLFormer-XL w/o Fine-tuning

 𒊹 Lumo <0 Hartree

 𒊹 Lumo >=0 Hartree


HINT w/o Fine-tuning

 𒊹 Lumo <0 Hartree

 𒊹 Lumo >=0 Hartree


 𒊹 Lumo <0 Hartree

 𒊹 Lumo >=0 Hartree


 𒊹 Lumo <0 Hartree

 𒊹 Lumo >=0 Hartree


MoLFormer-XL with Fine-tuning HINT with Fine-tuning

Figure 3: Visualization of embeddings from each model.
We use HINTM trained on QM9 dataset targeted εlumo.

2019), and ZINC (Irwin et al., 2012) datasets and198

extract bond connectivity and 3D distance matrices199

using RDKit. The results in Table 4 and Figure 2200

indicate that HINT can effectively enhance the ca-201

pability of identifying molecular structures. More202

examples can be found in Figure 5 and 6 in the203

Appendix.204

Visualization of Molecular Representations.205

We perform a qualitative analysis by visualizing206

molecular representations from MoLFormer-XL207

and HINTM using the QM9 dataset. Dimension-208

ality is reduced via UMAP (McInnes et al., 2018).209

FCL MSP ESOL FreeSolv Lipop

HINTM

✓ ✓ 0.212 0.301 0.508
✓ - 0.220 0.315 0.524
- ✓ 0.240 0.334 0.526
- - 0.248 0.315 0.518

Table 5: Ablation study results. FCL and MSP refer
to fingerprint-based contrastive learning and molecular
substructure prediction, respectively.

The visualization in Figure 3 indicates minor dif- 210

ferences between the two models without fine- 211

tuning. Nonetheless, HINTM with fine-tuning 212

demonstrates a finer distinction among molecules, 213

proving its ability to differentiate molecules while 214

preserving pre-trained representations. Additional 215

examples are in Figure 4 in the Appendix. 216

Ablation Study. To assess the distinct contribu- 217

tions of HINT’s components to its enhanced per- 218

formance, we conduct ablation studies on three 219

regression tasks with HINTM , detailed in Table 5. 220

These demonstrate that the integration of the two 221

objective functions offers advantages over employ- 222

ing either method in isolation. Furthermore, using 223

our contrastive learning method alone resulted in 224

performance gains on ESOL and FreeSolv. This 225

finding implies that understanding the relationships 226

among molecules facilitates the effective integra- 227

tion of topological information. 228

5 Conclusion 229

We have introduced HINT, a novel framework that 230

enhances the topological understanding of CLMs 231

to improve property prediction. To do so, HINT 232

continually trains CLMs to predict the molecular 233

substructures and contrast structurally similar and 234

dissimilar molecules. Experimental results have 235

shown that our model better captures topological 236

information of molecules than baselines. Conse- 237

quently, HINT significantly improves the predic- 238

tion performance of CLMs on extensive tasks. 239
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Limitations240

While we have demonstrated the effectiveness of241

HINT, a few limitations exist. First, our method242

for identifying similar molecules leads to quadratic243

computational complexity O(N2) as we discussed244

in Appendix D. Due to this limitation, we utilize245

relatively small-scale datasets for the HINT frame-246

work (<200K) compared to pre-training datasets247

(>1B). To enable the application of the HINT to248

large-scale datasets, we will explore the efficient249

algorithms for identifying similar molecules.250

Second, we leave the application of HINT to the251

state-of-the-art model remains as future work. Due252

to the unavailability of accessing the full version253

MoLFormer-XL, our experiments were instead per-254

formed with a variant trained on 10% of the pre-255

training dataset (1.2B) as if MoLFormer-XL. Nev-256

ertheless, we have achieved similar or even better257

performance on many tasks with this variant model258

using HINT, compared to the full model. There-259

fore, we believe that HINT will also be effective260

on the state-of-the-art models based on our com-261

prehensive experimental results.262
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Appendix443

In this section, we supplement our main content444

with additional experiments and analysis.445

A Related Work446

Topological fingerprints, such as ECFPs, have been447

introduced to encode molecules into binary vec-448

tors using rule-based algorithms (Todeschini and449

Consonni, 2010; Rogers and Hahn, 2010). Earlier450

machine learning approaches employed neural net-451

works trained on fingerprints in supervised settings452

for predicting molecular properties.453

Recent advancements in natural language pro-454

cessing (Vaswani et al., 2017; Devlin et al., 2019;455

Liu et al., 2019) have led to the proposal of456

pre-trained Chemical Language Models (CLMs)457

trained with textual notations of molecules. Chem-458

BERTa (Chithrananda et al., 2020), a transformer-459

based model trained on SMILES for molecular460

property prediction, has demonstrated enhanced461

predictive capability with masked language mod-462

eling (Devlin et al., 2019). Ross et al. (2022) have463

introduced MoLFormer-XL, which incorporates464

rotary position embedding (Su et al., 2024) and lin-465

ear attention (Katharopoulos et al., 2020) with 1.2466

billion chemical strings, showcasing superior per-467

formance on molecular predictions with scaled-up468

pre-training data.469

Furthermore, efforts have been made to address470

the fact that SMILES is considered less topologi-471

cally aware compared to graph-based information.472

Yüksel et al. (2023) have introduced SELFormer,473

a CLM based on SELFIES (Krenn et al., 2022),474

aimed at learning robust molecular representations.475

Soares et al. (2023) have demonstrated that combin-476

ing CLMs with physiochemical features improved477

property predictions. In our work, we focus on478

incorporating topological information using topo-479

logical fingerprints into existing transformer-based480

CLMs.481

B Implementation Details482

We train the models with the HINT framework483

on each dataset of downstream tasks before fine-484

tuning them. For HINTC , we utilize ChemBERTa-485

2 trained on 250k molecules form ZINC dataset486

(Irwin et al., 2012)5. HINTM is initialized with a487

publicly available MoLFormer-XL trained on 10%488

5https://huggingface.co/seyonec/
ChemBERTa_zinc250k_v2_40k

of its original pre-training dataset. The original 489

version is trained on 1.2 billion molecules from 490

the ZINC and PubChem dataset (Kim et al., 2019). 491

The hyperparameter settings we used for the ex- 492

periment are shown in Table 6. We attempted to 493

determine the optimal settings for each task to re- 494

port the highest scores, as shown in Tables 7 and 495

8. In addition to that information, we use AdamW 496

as our optimizer and we do not apply any learning 497

rate scheduler. 498

For the fine-tuning, we adhere to the recom- 499

mended train, validation, and test splits from Wu 500

et al. (2018) and closely follow the experimental 501

settings established by each baseline (Ahmad et al., 502

2022; Ross et al., 2022). All experiments are con- 503

ducted on two NVIDIA RTX A6000 GPUs and 504

four NVIDIA RTX A5000 GPUs. 505

HINTM HINTC

Backbone MoLFormer-XL ChemBERTa-2
# Pram. 46M 83M

Batch Size {32, 64, 128, 256}
Learning Rate {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}

λ {0.1, 0.2, 0.3, 0.4, 0.5}
# Mols {5, 10, 50}
Epoch {10, 30, 50, 100}

Table 6: Detailed settings for training HINT framework.

Epochs ESOL FreeSolv Lipop

HINTM

100 0.234 0.301 0.524
50 0.246 0.332 0.517
30 0.212 0.359 0.522
10 0.230 0.352 0.508
0 0.248 0.315 0.518

Table 7: Ablation study of contrastive learning. Results
with 0 epoch refer to fine-tuning without HINT.

# Mols ESOL FreeSolv Lipop

HINTM

top-50 0.227 0.316 0.528
top-10 0.212 0.334 0.513
top-5 0.228 0.301 0.508
None 0.248 0.315 0.518

Table 8: Evaluation of number of similar molecules
(# Mols) for the fingerprint-based contrastive learning.
Results with None refer to fine-tuning without HINT.

C Further Insights from QM9 506

To clarify the advantage of our HINT across differ- 507

ent models, we present all results for the 12 sub- 508

tasks of the QM9 dataset in Table 9. Comparing 509

models with HINT to those without, models with 510

MoLFormer-XL (M-XL) show significant improve- 511
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QM9 A-FP 123-gnn DTNN MPNN C-2 HINTC M-XL M-XL† HINTM

α 0.492 0.27 0.95 0.89 0.5164 0.5051 0.3327 0.3531 0.2768
Cv 0.252 0.0944 0.27 0.42 0.2026 0.1979 0.1447 0.1594 0.1219
G 0.893 0.0469 2.43 2.02 1.2027 1.2765 0.3362 0.2826 0.2773
gap 0.00528 0.0048 0.112 0.0066 0.0057 0.0055 0.0038 0.0040 0.0033
H 0.893 0.0419 2.43 2.02 1.0156 1.0731 0.2522 0.2864 0.2203
εhomo 0.00358 0.00337 0.0038 0.00541 0.0040 0.0039 0.0029 0.0041 0.0024
εlumo 0.00415 0.00351 0.0051 0.00623 0.0041 0.0041 0.0027 0.0040 0.0028
µ 0.451 0.476 0.244 0.358 0.5260 0.5200 0.3616 0.4349 0.3501
⟨R2⟩ 26.839 22.90 17.00 28.5 27.3141 24.4382 17.062 17.2684 15.4922
U0 0.898 0.0427 2.43 2.05 1.2618 1.1632 0.3211 0.4758 0.2961
U 0.893 0.111 2.43 2.00 1.1933 1.0849 0.2522 0.3291 0.2936
ZPVE 0.00207 0.00019 0.0017 0.00216 0.0010 0.0009 0.0003 0.0004 0.0002
Avg MAE 2.6355 1.9995 2.3504 3.1898 2.7754 2.5406 1.5894 1.628 1.445

Table 9: Evaluation results of SMILES-based methods on QM9 dataset. Baseline results are taken from (Wu et al.,
2018; Xiong et al., 2019; Maron et al., 2019; Ross et al., 2022). Bold and Underline indicates best and second-best
results, respectively. MoLFormer-XL with † refers to the model using 10% of pre-train data.

# samples Extraction time (sec) Identification time (sec)
FreeSolv 642 < 1 11

ESOL 1,128 < 1 12
SIDER 1,427 < 1 12
ClinTox 1,478 < 1 12
BACE 1,513 1 11
BBBP 2,039 1 12

Lipophilicity 4,200 2 13
Tox21 7,831 3 17
HIV 41,127 24 95
QM9 133,885 44 892

Table 10: Time required for extracting ECFP4 fingerprints and identifying similar molecules. We use an NVIDIA
A5000 GPU with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz for this experiment.

ment across tasks. Additionally, HINTM outper-512

forms the original MoLFormer-XL, even though513

we utilize its variant that trained on a smaller por-514

tion of the pre-training dataset. This demonstrates515

the efficacy of our framework. However, HINTC516

occasionally exhibits lower performance compared517

to its backbone, ChemBERTa-2 (C-2). This dis-518

crepancy could be attributed to the robustness of519

the model, considering ChemBERTa-2 is trained520

on a much smaller dataset than MoLFormer-XL.521

This observation suggests that models with a more522

robust representation of molecules benefit more523

from our framework. Moreover, we notice that524

our framework sometimes yields inferior results525

on a few tasks compared to models that leverage526

molecular graphs. Based on this observation, we527

propose the direct integration of graph informa-528

tion into CLMs as a promising direction for future529

research.530

D Extracting Additional Features531

In this work, we utilize topological fingerprints to532

enhance the topological understanding of CLMs.533

However, the process of extracting these additional534

features and identifying similar molecules incurs 535

additional computational costs. Notably, we ob- 536

served that identifying similar molecules is more 537

time-consuming than the feature extraction process 538

itself. Furthermore, as indicated in Table 10, the du- 539

ration required for these operations escalates with 540

the increase in dataset size, potentially hindering 541

the application of the HINT framework in the pre- 542

training phase for enhancements. This highlights 543

the necessity for more efficient algorithms for iden- 544

tifying similar molecules as a pivotal consideration, 545

aiming to streamline the application of the HINT 546

framework and optimize pre-training efforts. 547
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Descriptions # tasks # samples
BBBP Blood brain barrier penetration dataset 1 2,039
Tox21 Toxicity measurements on 12 different targets 12 7,831

ClinTox Clinical trial toxicity of drugs 2 1,478
HIV Ability of small molecules to inhibit HIV replication 1 41,127

BACE Binding results for a set of inhibitors for β− secretase 1 1 1,513
SIDER Drug side effect on different organ clases 27 1,427

Table 11: Classification benchmarks from MoleculeNet.

Descriptions # samples
QM9 12 quantum mechanical calculations of small organic molecules with upto nine heavy atoms 133,885
ESOL Water solubility dataset 1,128

FreeSolv Hydration free energy of small molecules in water 642
Lipophilicity Octanol/water distribution coefficient of molecules 4,200

Table 12: Regression benchmarks from MoleculeNet.

MoLFormer-XL (ClinTox)


HINT (ClinTox)


MoLFormer-XL (BBBP)


HINT (BBBP)


MoLFormer-XL (HIV)


HINT (HIV)


Figure 4: Visualization of embeddings of each model without fine-tuning. We use HINTM trained on QM9 dataset
for this analysis. The name in the bracket refers to the dataset we use to extract embeddings.
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HINT


MoLFormer-XL


Figure 5: Visualization of attention matrices from MoLFormer-XL and HINTM with QM9 dataset, accompanied by
the corresponding molecular structure for ‘CC[C@H](NC(=O)NC[C@H](C)N(C)Cc1ccccc1)c1ccccc1OC(F)F’
from PubChem. Both models are not fine-tuned.
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HINT


MoLFormer-XL


Figure 6: Visualization of attention matrices from MoLFormer-XL and HINTM with QM9 dataset, accompanied
by the corresponding molecular structure for ‘CC(Sc1nc2ccccc2s1)C(=O)NC(C)(CO)C1CC1’ from ZINC. Both
models are not fine-tuned.
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