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Abstract

Pre-trained chemical language models (CLMs)
excel in the field of molecular property predic-
tions, utilizing string-based molecular descrip-
tors such as SMILES for learning universal
representations. However, the one-dimensional
format of SMILES can impede the effective-
ness of the model because it lacks the topolog-
ical information necessary for accurate prop-
erty predictions. In this work, we introduce
HINT, a novel framework to enhance the under-
standing of molecular structures within CLMs
with topological fingerprints. HINT enhances
molecular representations of CLMs through
a molecular substructure prediction task and
fingerprint-based contrastive learning. Experi-
mental results on various tasks verify that HINT
significantly improves the molecular property
prediction performance of CLMs'.

1 Introduction

In the realms of drug discovery and materials sci-
ence, the application of deep neural networks to
molecular property prediction is increasingly rec-
ognized as valuable (Butler et al., 2018). Recently,
inspired by the success of the pre-trained language
models (Devlin et al., 2019; Liu et al., 2019), chem-
ical language models (CLMs) have been introduced
and shown their proficiency in predicting molecular
properties (Wang et al., 2019; Honda et al., 2019;
Chithrananda et al., 2020; Fabian et al., 2020; Ah-
mad et al., 2022; Ross et al., 2022). These CLMs
are trained on large-scale string-based molecular
descriptors to learn universal molecular representa-
tions. However, one-dimensional descriptors such
as Simplified Molecular-Input Line-Entry System
(SMILES) (Weininger, 1988) fall short in providing
topological information (Soares et al., 2023; Yiik-
sel et al., 2023). Thus, CLMs trained on SMILES
suffer from capturing the relationships between
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molecular structures and properties (Graff et al.,
2023).

In this work, we introduce HINT (enHancing
topological Information with coNTrastive learn-
ing), a novel framework to enhance the topological
understanding of CLMs. HINT leverages struc-
tural information contained in topological finger-
prints, notably Extended-Connectivity Fingerprints
(ECFPs) (Rogers and Hahn, 2010), to address the
limitation of SMILES. HINT continuously trains
pre-trained CLMs with multiple tasks: molecular
substructure prediction and topological fingerprint-
based contrastive learning. In the molecular sub-
structure prediction task, HINT trains the model to
predict the substructure information of molecules
hashed in ECFPs. Additionally, in the contrastive
learning task, the model learns the representation
by contrasting structurally similar and dissimilar
molecules that are identified using ECFPs.

We evaluate HINT with two strong CLMs (Ah-
mad et al., 2022; Ross et al., 2022) on various
tasks from MoleculeNet benchmarks (Wu et al.,
2018), including six classification and four regres-
sion tasks. HINT achieved performance improve-
ments of 4.77% and 4.54% on average for each
backbone, demonstrating its effectiveness in molec-
ular property prediction.

2 Methodology

2.1 Molecular Substructure Prediction

To enhance the topological understanding of CLMs,
we train the model to predict molecular substruc-
tures hashed in ECFPs. ECFPs are the fixed-length
binary vectors that hash identified substructures of
molecules into fixed-length binary vectors, with 1
representing the presence and O for the absence of
certain substructures. Through the prediction of
ECFPs, the model acquires the capability to detect
the presence of substructures, thereby improving
its understanding of the topological information of
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Figure 1: Illustration of HINT. We extract and construct a set of top-k similar molecules by measuring cosine
similarity among topological fingerprints. We then predict ECFP4 directly and perform contrastive learning to
maximize the agreement between pairs of structurally similar molecules.

molecules.

Specifically, we first extract 2048-dimensional
ECFP4 fingerprints from each molecule using RD-
Kit?>. We then project the molecular representation
to match the dimensions of the ECFP4 fingerprint,
facilitating the prediction of hashed substructures
within it. The molecular representation is obtained
by extracting final hidden representation of first
token from the CLM. Subsequently, we employ
Binary Cross Entropy (BCE) loss to define the sub-
structure prediction tasks.

2.2 Fingerprint-based Contrastive Learning

While molecular substructure prediction effectively
incorporates topological information, it may not
fully address the challenge of comprehending how
these structures correlate with molecular proper-
ties. Understanding such relationships is crucial
for accurately predicting functional outcomes, such
as reactivity, stability, and biological activity (Le
et al., 2012).

Hence, we introduce a simple contrastive learn-
ing method based on topological fingerprints to
further enhance CLMs. This method is rooted in
the insight that molecules with similar structures of-
ten exhibit similar properties (Martin et al., 2002).
HINT trains models to distinguish between struc-
turally similar and dissimilar molecules in a con-
trastive manner. This approach is expected to facil-
itate the model’s ability to determine properties by
recognizing structural differences in molecules.

We first create a set of structurally similar
molecules, denoted as H, for each molecule in the
dataset. This process involves utilizing the ECFP4
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vectors extracted from the molecules. By calcu-
lating the cosine similarity between these vectors,
we are able to identify the top-k similar molecules.
Subsequently, we sample a batch of N molecules
and define the contrastive prediction task on pairs
of similar molecules. For each molecule in a batch,
we randomly select a similar molecule from H to
form the positive pair, resulting in 2N data points.

We then define the agreement between molecule
m and sampled molecule s as follows:

o(m,s) = exp(sim(M, S) /1), (1)

where M and S refer to the molecular representa-
tions of m and s, respectively. The 7 is the tem-
perature parameter for scaling. We employ the
NT-Logistic loss function (Chen et al., 2020) to
maximize agreement between positive pairs while
minimizing agreement between negative pairs. In-
stead of explicitly sampling negative examples, we
treat the other 2(/N — 1) molecules in a batch as neg-
ative examples. The fingerprint-based contrastive
loss is as follows:

a(mp, sp)
2N—-1 .
Zizl U(mh Sp)

Our final objective function is expressed as fol-
lows:

2

Lcor(mp,sp) = —log

L(myp, sp) = Lpor(mp) + Aor(my, sp), (3)

where ) is a non-negative hyper-parameter for bal-
ancing the objective functions. To ensure accu-
racy in learning, contrastive learning is omitted for
molecules that are not unique, specifically when
there are more than two similar molecules within a
batch for a particular molecule.
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BBBP Tox2I ClinTox HIV BACE SIDER | QM9 ESOL FreeSolv  Lipop
ROC ROC ROC ROC ROC ROC | MAE RMSE RMSE RMSE

D-MPNN (Yang et al., 2019) 712 689 905 750 853 632 - 0980  2.180  0.660

Graph  GeomGCL (Li etal., 2022) . 85.0 919 : - 64.8 0575  0.866  0.541
MOoICLR (Wang et al., 2022) 736 798 932 806 89.0  68.0 - L110 2200  0.650

HiMol (Zang et al., 2023) 732 762 737 § 846 625 | 3243 0833 2283  0.708
MOoIBERT (Fabian et al., 2020) 76.2 . - 783 866 . - 0531 0948 0.561
SELFormer (Yiiksel et al., 2023) 902 653 . 68.1 832 745 - 0682 2797 0735

Text  ChemBERTa-2 (Chithrananda etal., 2020) 701 48.1 519 747 809 490 | 2775 0949 1854  0.728
MoLFormer-XL (Ross et al., 2022) 915 845 946 813 867 657 | 1628 0248 0315  0.518

HINT¢ 714 499 535 752 828  S09 | 2541 0811 1806  0.705

HINT s 924 854 940 842 887 663 | 1445 0212 0301  0.508

Table 1: Main experimental results. Bold and Underline indicates best and second-best results, respectively.

a Cy G gap H €homo _ £lumo (R%) Uo U ZPVE
ChemBERTa2 05164 02026 1.2027 0.0057 1.0156 0.0040 0.0041 0.5260 27.3141 12618 1.1933 0.0010
MoLFormer-XL  0.3531 0.1594 0.2826 0.0040 0.2864 0.0041 0.0040 0.3691 17.2684 04758 0.3291  0.0004
HINT¢ 0.5051 0.1979 12765 0.0055 1.0731 0.0039 0.0041 05200 24.4382 1.1632 1.0849 0.0009
HINT 02786 0.1219 02773 0.0033 0.2203 0.0024 0.0028 0.3501 15.4922 0.2961 0.2936  0.0002
Table 2: Experimental results for QM9 subtasks.
3 Experimental Settings Source ESOL  FreeSolv  Lipop
p g QM9 0.236 0.307 0.510
Dat ¢ T 1 | 1 di ESOL 0.212 0.328 0.518
atasets. To evaluate molecular property predic- HINT,, FreeSolv | 0232 0301 0525
tion ability of CLMs, we conduct the experiments Lipop 0.228 0.340 0.508
on six classification® and four regression tasks* None | 0248 0315 0518

from the MoleculeNet benchmark (Wu et al., 2018).
For evaluation metrics, we report AUC-ROC for
classification, MAE for QM9, and RMSE for re-
maining regression tasks. Task descriptions can be
found in Tables 11 and 12 in Appendix.

Training Setup. We use the dataset for each task
to train ChemBERTA-2 (Ahmad et al., 2022) and
MoLformer-XL (Ross et al., 2022) with HINT
framework, naming them HINT~ and HINT ;, re-
spectively. We then fine-tune the model on each
task. Additionally, we provide the performance of
two models without HINT for comparison. Further
details are in Appendix B.

4 Experimental Results

Main Results. Table 1 presents our experimen-
tal results. Our HINT¢ and HINT,; show per-
formance improvements of 4.77% and 4.54% on
average for each backbone. Especially, HINT
surpasses existing CLMs on eight tasks. It also
achieves comparable performance on the ClinTox
and SIDER datasets, demonstrating its versatility
in molecule property prediction.

Among the regression tasks, the QM9 task in-
volves predicting quantum chemical properties,
which is particularly challenging in the absence of
3D geometric information. Despite this, HINT 5,
achieves consistent improvements in performance

SBBBP, ClinTox, SIDER, Tox21, HIV, and BACE
*QM9, ESOL, FreeSolv, and Lipophilicity (Lipop)

Table 3: Evaluation of the transfer of topological infor-
mation. Source refers to the dataset used to train HINT.
Results with None refer to fine-tuning without HINT.

on the QM9 dataset compared to its baseline. Over-
all results of QM9 subtasks are shown in Table 2.
These results demonstrate the HINT’s ability to
effectively leverage molecular structures, enhanc-
ing prediction accuracy across various chemical
properties. For detailed insights, see Appendix C.

Transferring Topological Information. We
evaluate the generalizability of molecular represen-
tations obtained by HINT. By training the HINT
framework on three different regression tasks, we
cross-evaluate each model with unseen data. The
results in Table 3 often show improved perfor-
mance across these tasks, especially for HINT with
QMBO. This highlights the capability of HINT to ef-
fectively transfer topological information, confirm-
ing its wide applicability and robustness in boosting
performance across various regression tasks.

Topological Analysis. Following Ross et al.
(2022), we evaluate the encapsulated topological in-
formation of HINT 5, by analyzing the resemblance
between molecular structures and the attention ma-
trices. We calculate the cosine similarities between
average pooled attention matrices and molecular
structures. To facilitate this, we randomly select
3,000 molecules from QM9, PubChem (Kim et al.,
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Figure 2: Visualization of attention matrices from MoLFormer-XL and HINTj,, accompanied by the corresponding
molecular structure for ‘CC[C](O)CI1CCCC(IN+](=0)[O-])C1’ (ZINC001560407707).

QM9 PubChem ZINC
Bond Dist. Bond Dist. Bond Dist.
MoLFormer-XL  60.99 85.73 45.18 79.68 44.11 77.17
HINT ), 62.27 87.44 4576 80.67 44.31 78.89

Table 4: Evaluation of encapsulated topological infor-
mation. We use HINT, trained on QM9 dataset.
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Figure 3: Visualization of embeddings from each model.
We use HINT ; trained on QM9 dataset targeted €1ymo-

2019), and ZINC (Irwin et al., 2012) datasets and
extract bond connectivity and 3D distance matrices
using RDKit. The results in Table 4 and Figure 2
indicate that HINT can effectively enhance the ca-
pability of identifying molecular structures. More
examples can be found in Figure 5 and 6 in the
Appendix.

Visualization of Molecular Representations.
We perform a qualitative analysis by visualizing
molecular representations from MoLFormer-XL
and HINT, using the QM9 dataset. Dimension-
ality is reduced via UMAP (Mclnnes et al., 2018).

FCL MSP | ESOL FreeSolv Lipop

7 v [ 0212 0301 0508

v - 0220 0315 0524

HINTa 2 | 0240 0334 0526
] - | 0248 0315 0518

Table 5: Ablation study results. FCL and MSP refer
to fingerprint-based contrastive learning and molecular
substructure prediction, respectively.

The visualization in Figure 3 indicates minor dif-
ferences between the two models without fine-
tuning. Nonetheless, HINT,; with fine-tuning
demonstrates a finer distinction among molecules,
proving its ability to differentiate molecules while
preserving pre-trained representations. Additional
examples are in Figure 4 in the Appendix.

Ablation Study. To assess the distinct contribu-
tions of HINT’s components to its enhanced per-
formance, we conduct ablation studies on three
regression tasks with HINT;, detailed in Table 5.
These demonstrate that the integration of the two
objective functions offers advantages over employ-
ing either method in isolation. Furthermore, using
our contrastive learning method alone resulted in
performance gains on ESOL and FreeSolv. This
finding implies that understanding the relationships
among molecules facilitates the effective integra-
tion of topological information.

5 Conclusion

We have introduced HINT, a novel framework that
enhances the topological understanding of CLMs
to improve property prediction. To do so, HINT
continually trains CLMs to predict the molecular
substructures and contrast structurally similar and
dissimilar molecules. Experimental results have
shown that our model better captures topological
information of molecules than baselines. Conse-
quently, HINT significantly improves the predic-
tion performance of CLMs on extensive tasks.



Limitations

While we have demonstrated the effectiveness of
HINT, a few limitations exist. First, our method
for identifying similar molecules leads to quadratic
computational complexity O(NN?) as we discussed
in Appendix D. Due to this limitation, we utilize
relatively small-scale datasets for the HINT frame-
work (<200K) compared to pre-training datasets
(>1B). To enable the application of the HINT to
large-scale datasets, we will explore the efficient
algorithms for identifying similar molecules.

Second, we leave the application of HINT to the
state-of-the-art model remains as future work. Due
to the unavailability of accessing the full version
MoLFormer-XL, our experiments were instead per-
formed with a variant trained on 10% of the pre-
training dataset (1.2B) as if MoLFormer-XL. Nev-
ertheless, we have achieved similar or even better
performance on many tasks with this variant model
using HINT, compared to the full model. There-
fore, we believe that HINT will also be effective
on the state-of-the-art models based on our com-
prehensive experimental results.

References

Walid Ahmad, Elana Simon, Seyone Chithrananda,
Gabriel Grand, and Bharath Ramsundar. 2022.
Chemberta-2: Towards chemical foundation models.
arXiv preprint arXiv:2209.01712.

Keith T Butler, Daniel W Davies, Hugh Cartwright,
Olexandr Isayev, and Aron Walsh. 2018. Machine
learning for molecular and materials science. Nature,
559(7715):547-555.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoftrey E. Hinton. 2020. A simple framework for
contrastive learning of visual representations. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119, pages 1597-1607.

Seyone Chithrananda, Gabriel Grand, and Bharath Ram-
sundar. 2020. Chemberta: large-scale self-supervised

pretraining for molecular property prediction. arXiv
preprint arXiv:2010.09885.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186.

Benedek Fabian, Thomas Edlich, Héléna Gaspar, Mar-
win Segler, Joshua Meyers, Marco Fiscato, and Mo-
hamed Ahmed. 2020. Molecular representation learn-
ing with language models and domain-relevant auxil-
iary tasks. arXiv preprint arXiv:2011.13230.

David E. Graff, Edward O. Pyzer-Knapp, Kirk E. Jordan,
Eugene I. Shakhnovich, and Connor W. Coley. 2023.
Evaluating the roughness of structure—property rela-

tionships using pretrained molecular representations.
Digital Discovery, 2:1452—1460.

Shion Honda, Shoi Shi, and Hiroki R. Ueda. 2019.
Smiles transformer: Pre-trained molecular finger-
print for low data drug discovery. arXiv preprint
arXiv:1911.04738.

John J. Irwin, Teague Sterling, Michael M. Mysinger,
Erin S. Bolstad, and Ryan G. Coleman. 2012. ZINC:
A free tool to discover chemistry for biology. J.
Chem. Inf. Model., 52(7):1757-1768.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119, pages 5156—
5165.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindu-
lyte, Jia He, Sigian He, Qingliang Li, Benjamin A.
Shoemaker, Paul A. Thiessen, Bo Yu, Leonid Za-
slavsky, Jian Zhang, and Evan Bolton. 2019. Pub-
chem 2019 update: improved access to chemical
data. Nucleic Acids Res., 47(Database-Issue):D1102—
D1109.

Mario Krenn, Qianxiang Ai, Senja Barthel, Nessa
Carson, Angelo Frei, Nathan C. Frey, Pascal
Friederich, Théophile Gaudin, Alberto Alexander
Gayle, Kevin Maik Jablonka, Rafael F. Lameiro, Do-
minik Lemm, Alston Lo, Seyed Mohamad Moosavi,
José Manuel Ndpoles-Duarte, AkshatKumar Nigam,
Robert Pollice, Kohulan Rajan, Ulrich Schatzschnei-
der, Philippe Schwaller, Marta Skreta, Berend
Smit, Felix Strieth-Kalthoff, Chong Sun, Gary Tom,
Guido Falk von Rudorff, Andrew Wang, Andrew D.
White, Adamo Young, Rose Yu, and Aldn Aspuru-
Guzik. 2022. SELFIES and the future of molecular
string representations. Patterns, 3(10):100588.

Tu Le, V Chandana Epa, Frank R Burden, and David A
Winkler. 2012. Quantitative structure—property re-
lationship modeling of diverse materials properties.
Chemical reviews, 112(5):2889-2919.

Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, and
Hui Xiong. 2022. Geomgcl: Geometric graph con-
trastive learning for molecular property prediction.
In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2022 Virtual


https://doi.org/10.48550/ARXIV.2209.01712
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
http://arxiv.org/abs/2010.09885
http://arxiv.org/abs/2010.09885
http://arxiv.org/abs/2010.09885
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
http://arxiv.org/abs/2011.13230
http://arxiv.org/abs/2011.13230
http://arxiv.org/abs/2011.13230
http://arxiv.org/abs/2011.13230
http://arxiv.org/abs/2011.13230
https://doi.org/10.1039/D3DD00088E
https://doi.org/10.1039/D3DD00088E
https://doi.org/10.1039/D3DD00088E
https://api.semanticscholar.org/CorpusID:207863425
https://api.semanticscholar.org/CorpusID:207863425
https://api.semanticscholar.org/CorpusID:207863425
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/ci3001277
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://doi.org/10.1093/NAR/GKY1033
https://doi.org/10.1093/NAR/GKY1033
https://doi.org/10.1093/NAR/GKY1033
https://doi.org/10.1093/NAR/GKY1033
https://doi.org/10.1093/NAR/GKY1033
https://doi.org/10.1016/J.PATTER.2022.100588
https://doi.org/10.1016/J.PATTER.2022.100588
https://doi.org/10.1016/J.PATTER.2022.100588
https://doi.org/10.1609/AAAI.V36I4.20377
https://doi.org/10.1609/AAAI.V36I4.20377
https://doi.org/10.1609/AAAI.V36I4.20377

Event, February 22 - March 1, 2022, pages 4541-
4549.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and
Yaron Lipman. 2019. Provably powerful graph net-
works. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
2153-2164.

Yvonne C Martin, James L Kofron, and Linda M Trapha-
gen. 2002. Do structurally similar molecules have

similar biological activity? Journal of medicinal
chemistry, 45(19):4350-4358.

Leland Mclnnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

David Rogers and Mathew Hahn. 2010. Extended-
connectivity fingerprints. J. Chem. Inf. Model.,
50(5):742-754.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan,
Inkit Padhi, Youssef Mroueh, and Payel Das. 2022.
Large-scale chemical language representations cap-
ture molecular structure and properties. Nat. Mac.
Intell., 4(12):1256-1264.

Eduardo Soares, Emilio Vital Brazil, Karen
Fiorela Aquino Gutierrez, Renato F. G. Cerqueira,
Daniel P. Sanders, Kristin Schmidt, and Dmitry Yu.
Zubarev. 2023. Beyond chemical language: A
multimodal approach to enhance molecular property
prediction. arXiv preprint arXiv:2306.14919.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Roberto Todeschini and Viviana Consonni. 2010.
Molecular descriptors. Recent Advances in QSAR
Studies, pages 29—-102.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998-6008.

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun,
and Junzhou Huang. 2019. SMILES-BERT: large
scale unsupervised pre-training for molecular prop-
erty prediction. In Proceedings of the 10th ACM

International Conference on Bioinformatics, Compu-
tational Biology and Health Informatics, BCB 2019,
Niagara Falls, NY, USA, September 7-10, 2019, pages
429-436.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir
Barati Farimani. 2022. Molecular contrastive learn-
ing of representations via graph neural networks. Na-
ture Machine Intelligence, 4(3):279-287.

David Weininger. 1988. Smiles, a chemical language
and information system. 1. introduction to methodol-
ogy and encoding rules. J. Chem. Inf. Comput. Sci.,
28(1):31-36.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg,
Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. 2018. Moleculenet:
a benchmark for molecular machine learning. Chem-
ical science, 9(2):513-530.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu,
Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhao-
jun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang,
et al. 2019. Pushing the boundaries of molecular
representation for drug discovery with the graph at-
tention mechanism. Journal of medicinal chemistry,

63(16):8749-8760.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor W.
Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam
Mathea, Andrew Palmer, Volker Settels, Tommi S.
Jaakkola, Klavs F. Jensen, and Regina Barzilay.
2019. Analyzing learned molecular representa-
tions for property prediction. J. Chem. Inf. Model.,
59(8):3370-3388.

Atakan Yiiksel, Erva Ulusoy, Atabey Unlii, Gamze
Deniz, and Tunca Dogan. 2023. Selformer: molecu-
lar representation learning via selfies language mod-

els. Machine Learning: Science and Technology,
4.

Xuan Zang, Xianbing Zhao, and Buzhou Tang. 2023.
Hierarchical molecular graph self-supervised learn-
ing for property prediction. Communications Chem-
istry, 6(1):34.


https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://doi.org/10.1021/CI100050T
https://doi.org/10.1021/CI100050T
https://doi.org/10.1021/CI100050T
https://doi.org/10.1038/S42256-022-00580-7
https://doi.org/10.1038/S42256-022-00580-7
https://doi.org/10.1038/S42256-022-00580-7
https://api.semanticscholar.org/CorpusID:259262169
https://api.semanticscholar.org/CorpusID:259262169
https://api.semanticscholar.org/CorpusID:259262169
https://api.semanticscholar.org/CorpusID:259262169
https://api.semanticscholar.org/CorpusID:259262169
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://api.semanticscholar.org/CorpusID:53914124
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3307339.3342186
https://doi.org/10.1145/3307339.3342186
https://doi.org/10.1145/3307339.3342186
https://doi.org/10.1145/3307339.3342186
https://doi.org/10.1145/3307339.3342186
https://api.semanticscholar.org/CorpusID:231979472
https://api.semanticscholar.org/CorpusID:231979472
https://api.semanticscholar.org/CorpusID:231979472
https://doi.org/10.1021/CI00057A005
https://doi.org/10.1021/CI00057A005
https://doi.org/10.1021/CI00057A005
https://doi.org/10.1021/CI00057A005
https://doi.org/10.1021/CI00057A005
https://api.semanticscholar.org/CorpusID:217680306
https://api.semanticscholar.org/CorpusID:217680306
https://api.semanticscholar.org/CorpusID:217680306
https://doi.org/10.1021/ACS.JCIM.9B00237
https://doi.org/10.1021/ACS.JCIM.9B00237
https://doi.org/10.1021/ACS.JCIM.9B00237
https://api.semanticscholar.org/CorpusID:258049084
https://api.semanticscholar.org/CorpusID:258049084
https://api.semanticscholar.org/CorpusID:258049084
https://api.semanticscholar.org/CorpusID:258049084
https://api.semanticscholar.org/CorpusID:258049084

Appendix

In this section, we supplement our main content
with additional experiments and analysis.

A Related Work

Topological fingerprints, such as ECFPs, have been
introduced to encode molecules into binary vec-
tors using rule-based algorithms (Todeschini and
Consonni, 2010; Rogers and Hahn, 2010). Earlier
machine learning approaches employed neural net-
works trained on fingerprints in supervised settings
for predicting molecular properties.

Recent advancements in natural language pro-
cessing (Vaswani et al., 2017; Devlin et al., 2019;
Liu et al., 2019) have led to the proposal of
pre-trained Chemical Language Models (CLMs)
trained with textual notations of molecules. Chem-
BERTa (Chithrananda et al., 2020), a transformer-
based model trained on SMILES for molecular
property prediction, has demonstrated enhanced
predictive capability with masked language mod-
eling (Devlin et al., 2019). Ross et al. (2022) have
introduced MoLFormer-XL, which incorporates
rotary position embedding (Su et al., 2024) and lin-
ear attention (Katharopoulos et al., 2020) with 1.2
billion chemical strings, showcasing superior per-
formance on molecular predictions with scaled-up
pre-training data.

Furthermore, efforts have been made to address
the fact that SMILES is considered less topologi-
cally aware compared to graph-based information.
Yiiksel et al. (2023) have introduced SELFormer,
a CLM based on SELFIES (Krenn et al., 2022),
aimed at learning robust molecular representations.
Soares et al. (2023) have demonstrated that combin-
ing CLMs with physiochemical features improved
property predictions. In our work, we focus on
incorporating topological information using topo-
logical fingerprints into existing transformer-based
CLMs.

B Implementation Details

We train the models with the HINT framework
on each dataset of downstream tasks before fine-
tuning them. For HINT, we utilize ChemBERTa-
2 trained on 250k molecules form ZINC dataset
(Irwin et al., 2012)°. HINT);, is initialized with a
publicly available MoLFormer-XL trained on 10%

Shttps://huggingface.co/seyonec/
ChemBERTa_zinc250k_v2_ 40k

of its original pre-training dataset. The original
version is trained on 1.2 billion molecules from
the ZINC and PubChem dataset (Kim et al., 2019).
The hyperparameter settings we used for the ex-
periment are shown in Table 6. We attempted to
determine the optimal settings for each task to re-
port the highest scores, as shown in Tables 7 and
8. In addition to that information, we use AdamW
as our optimizer and we do not apply any learning
rate scheduler.

For the fine-tuning, we adhere to the recom-
mended train, validation, and test splits from Wu
et al. (2018) and closely follow the experimental
settings established by each baseline (Ahmad et al.,
2022; Ross et al., 2022). All experiments are con-
ducted on two NVIDIA RTX A6000 GPUs and
four NVIDIA RTX A5000 GPUs.

HINT 5/ HINT ¢

Backbone MoLFormer-XI.  ChemBERTa-2

# Pram. 46M 83M
Batch Size {32, 64, 128, 256}

Learning Rate {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
A {0.1,0.2,0.3,0.4, 0.5}
# Mols {5, 10, 50}
Epoch {10, 30, 50, 100}

Table 6: Detailed settings for training HINT framework.

Epochs | ESOL  FreeSolv  Lipop

100 0.234 0.301 0.524

50 0.246 0.332 0.517

HINT » 30 0.212 0.359 0.522
10 0.230 0.352 0.508

0 0.248 0.315 0.518

Table 7: Ablation study of contrastive learning. Results
with 0 epoch refer to fine-tuning without HINT.

#Mols | ESOL  FreeSolv Lipop

top-50 | 0.227 0.316 0.528

top-10 | 0.212 0.334 0.513

HINTa 005 | 0228 0301 0.508
None | 0.248 0.315 0.518

Table 8: Evaluation of number of similar molecules
(# Mols) for the fingerprint-based contrastive learning.
Results with None refer to fine-tuning without HINT.

C Further Insights from QM9

To clarify the advantage of our HINT across differ-
ent models, we present all results for the 12 sub-
tasks of the QM9 dataset in Table 9. Comparing
models with HINT to those without, models with
MoLFormer-XL (M-XL) show significant improve-


https://huggingface.co/seyonec/ChemBERTa_zinc250k_v2_40k
https://huggingface.co/seyonec/ChemBERTa_zinc250k_v2_40k

QM9 A-FP 123-gnn DTNN ~ MPNN C-2 HINTc M-XL M-XLT HINTy
o 0.492 0.27 0.95 0.89 0.5164  0.5051 0.3327  0.3531 0.2768
Cy 0.252 0.0944 0.27 0.42 0.2026 0.1979  0.1447  0.1594 0.1219
G 0.893 0.0469 243 2.02 1.2027 1.2765 03362  0.2826 0.2773

gap 0.00528  0.0048 0.112 0.0066 0.0057 0.0055  0.0038  0.0040 0.0033
H 0.893 0.0419 243 2.02 1.0156 1.0731  0.2522  0.2864 0.2203

Ehomo 0.00358 0.00337 0.0038 0.00541 | 0.0040  0.0039  0.0029  0.0041 0.0024
Elumo 0.00415 0.00351 0.0051  0.00623 | 0.0041 0.0041  0.0027  0.0040 0.0028
I 0.451 0.476 0.244 0.358 0.5260  0.5200 0.3616  0.4349 0.3501
(R?) 26.839 22.90 17.00 28.5 273141 244382 17.062 17.2684 15.4922
Uy 0.898 0.0427 243 2.05 1.2618 1.1632 03211  0.4758 0.2961

U 0.893 0.111 243 2.00 1.1933 1.0849  0.2522  0.3291 0.2936
ZPVE 0.00207  0.00019 0.0017 0.00216 | 0.0010  0.0009  0.0003  0.0004 0.0002
Avg MAE  2.6355 1.9995 23504  3.1898 2.7754 2.5406  1.5894 1.628 1.445

Table 9: Evaluation results of SMILES-based methods on QM9 dataset. Baseline results are taken from (Wu et al.,
2018; Xiong et al., 2019; Maron et al., 2019; Ross et al., 2022). Bold and Underline indicates best and second-best
results, respectively. MoLFormer-XL with { refers to the model using 10% of pre-train data.

#samples  Extraction time (sec) Identification time (sec)

FreeSolv 642 <1 11
ESOL 1,128 <1 12
SIDER 1,427 <1 12
ClinTox 1,478 <1 12
BACE 1,513 1 11
BBBP 2,039 1 12
Lipophilicity 4,200 2 13
Tox21 7,831 3 17
HIV 41,127 24 95
QM9 133,885 44 892

Table 10: Time required for extracting ECFP4 fingerprints and identifying similar molecules. We use an NVIDIA
A5000 GPU with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz for this experiment.

ment across tasks. Additionally, HINT, outper-
forms the original MoLFormer-XL, even though
we utilize its variant that trained on a smaller por-
tion of the pre-training dataset. This demonstrates
the efficacy of our framework. However, HINT~
occasionally exhibits lower performance compared
to its backbone, ChemBERTa-2 (C-2). This dis-
crepancy could be attributed to the robustness of
the model, considering ChemBERTa-2 is trained
on a much smaller dataset than MoLFormer-XL.
This observation suggests that models with a more
robust representation of molecules benefit more
from our framework. Moreover, we notice that
our framework sometimes yields inferior results
on a few tasks compared to models that leverage
molecular graphs. Based on this observation, we
propose the direct integration of graph informa-
tion into CLMs as a promising direction for future
research.

D Extracting Additional Features

In this work, we utilize topological fingerprints to
enhance the topological understanding of CLMs.
However, the process of extracting these additional

features and identifying similar molecules incurs
additional computational costs. Notably, we ob-
served that identifying similar molecules is more
time-consuming than the feature extraction process
itself. Furthermore, as indicated in Table 10, the du-
ration required for these operations escalates with
the increase in dataset size, potentially hindering
the application of the HINT framework in the pre-
training phase for enhancements. This highlights
the necessity for more efficient algorithms for iden-
tifying similar molecules as a pivotal consideration,
aiming to streamline the application of the HINT
framework and optimize pre-training efforts.



Descriptions

#tasks  # samples
BBBP  Blood brain barrier penetration dataset 1 2,039
Tox21  Toxicity measurements on 12 different targets 12 7,831
ClinTox  Clinical trial toxicity of drugs 2 1,478
HIV Ability of small molecules to inhibit HIV replication 1 41,127
BACE  Binding results for a set of inhibitors for 5— secretase 1 1 1,513
SIDER  Drug side effect on different organ clases 27 1,427
Table 11: Classification benchmarks from MoleculeNet.
Descriptions # samples
QM9 12 quantum mechanical calculations of small organic molecules with upto nine heavy atoms 133,885
ESOL Water solubility dataset 1,128
FreeSolv Hydration free energy of small molecules in water 642
Lipophilicity =~ Octanol/water distribution coefficient of molecules 4,200
Table 12: Regression benchmarks from MoleculeNet.
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Figure 4: Visualization of embeddings of each model without fine-tuning. We use HINT ,; trained on QM9 dataset

B

for this analysis. The name in the bracket refers to the dataset we use to extract embeddings.




MoLFormer-XL

MoLFormerXL : Layer 2

HINT: Layer 1 HINT: Layer 2 HINT: Layer 3 HINT: Layer 5 HINT: Layer 6

HINT: Layer 7 HINT: Layer 0 - HINT: Layer 11

Figure 5: Visualization of attention matrices from MoLFormer-XL and HINT; with QM9 dataset, accompanied by
the corresponding molecular structure for ‘CC[C@H](NC(=O)NC[C@H](C)N(C)Cclccccel)cleccecclOC(F)F
from PubChem. Both models are not fine-tuned.
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Figure 6: Visualization of attention matrices from MoLFormer-XL and HINT»,; with QM9 dataset, accompanied
by the corresponding molecular structure for ‘CC(Sclnc2ccecc2s1)C(=0)NC(C)(CO)CICC1’ from ZINC. Both
models are not fine-tuned.
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