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Abstract

We study pool-based active learning, where a learner has a large pool S of unlabeled
examples and can adaptively ask a labeler questions to learn these labels. The goal
of the learner is to output a labeling for S that can compete with the best hypothesis
from a given hypothesis classH. We focus on halfspace learning, one of the most
important problems in active learning.
It is well known that in the standard active learning model, learning the labels of
an arbitrary pool of examples labeled by some halfspace up to error ϵ requires at
least Ω(1/ϵ) queries. To overcome this difficulty, previous work designs simple
but powerful query languages to achieve O(log(1/ϵ)) query complexity, but only
focuses on the realizable setting where data are perfectly labeled by some halfspace.
However, when labels are noisy, such queries are too fragile and lead to high query
complexity even under the simple random classification noise model.
In this work, we propose a new query language called threshold statistical queries
and study their power for learning under various noise models. Our main algorith-
mic result is the first query-efficient algorithm for learning halfspaces under the
popular Massart noise model. With an arbitrary dataset corrupted with Massart
noise at noise rate η, our algorithm uses only poly log(1/ϵ) threshold statistical
queries and computes an (η + ϵ)-accurate labeling in polynomial time. For the
harder case of agnostic noise, we show that it is impossible to beat O(1/ϵ) query
complexity even for the much simpler problem of learning singletons (and thus for
learning halfspaces) using a reduction from agnostic distributed learning.

1 Introduction

Obtaining labeled examples is often challenging in applications as querying either human annotators
or powerful pre-trained models is time-consuming and/or expensive. Active learning aims to minimize
the number of labeled examples required for a task by allowing the learner to adaptively select for
which examples they want to obtain labels. More precisely, in pool-based active learning, the learner
has to infer the labels of a pool S of n unlabeled examples, and can adaptively select an example
x ∈ S and ask for its label.

Even though it is known that active learning can exponentially reduce the number of required labels,
this is unfortunately only true in very idealized settings such as datasets labeled by one-dimensional
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thresholds or structured high-dimensional instances (e.g., Gaussian marginals) [17, 4, 6, 7, 3, 19, 23].
It is well-known that without such distributional assumptions, even for linear classification in 2
dimensions, active learning yields no improvement over passive learning [15, 16].

Active Learning with Queries To bypass the hardness results and establish learning without
restrictive distributional assumptions [5, 33, 30, 31, 47, 10] introduce enriched queries, where the
learner is allowed to make more complicated queries. Broadly speaking, there are two lines of work
that study active learning with enriched queries. The first one designs queries based on the structure
of the hypothesis class it aims to learn. For example, [33] design comparison queries for learning
halfspaces in 2 dimensions, [31] design same-leaf queries for learning decision trees, and [8] design
derivative queries to learn polynomial threshold functions. The success of these queries heavily
depends on the relation between the hypothesis class and the properties of the queries and thus a
completely new query language has to be designed if the learning problem gets changed. The other
line of work such as [5, 10, 44] study mistake-based queries, asking questions like if a positive
example exists in a given set. These works break down a complicated learning problem into a small
number of simple statistical tasks that require only very few rounds of interactions with a labeler who
knows the hidden labels and can easily solve these tasks. These learning models can be formally
summarized as follows.
Definition 1.1 (Active Learning with Enriched Queries). Given a (multi)set of n unlabeled examples
S ⊆ X over a domain X , a learner A wants to output a hypothesis f̂ : X → {±1} by adaptively
submitting binary queries to a labeler who knows the hidden labels of the examples S. Each query
q : 2S×{±1} → {0, 1} is a function that takes a subset of examples in S together with their unknown
labels as input and outputs a number in {0, 1}. If f(x) : S → {±1} is the unknown labeling function,
the learner aims to make the error of f̂ ,

err(f) :=
1

n

∑
x∈S

1(f̂(x) ̸= f(x))

as small as possible compared to a target class of binary hypothesesH over X .

In the realizable setting where the unknown labeling function belongs to the target hypothesis class
H, several non-trivial hypothesis classes including the class of halfspaces have been proven efficiently
learnable using only a logarithmic number of rounds of interactions. For example, [10] shows for
any set S of n examples satisfying γ-margin condition with respect to the underlying halfspace h∗,
one can use O(d log(d/γ)) seed queries, which returns an example with a specified label in a given
region, to perfectly learn labels of all examples in S efficiently. More recently, [44] shows that for an
arbitrary set of n examples labeled by an arbitrary halfspace, efficiently learning all the labels only
requires Õ(d3 log(n)) region queries, which ask if an example with a specified label exists in a given
region.

While these results show that mistake-based queries are extremely powerful in the realizable case,
they fail to capture most practical cases where there is typically model misspecification or errors
in the data. In fact, it is not hard to see that even under tiny amounts of noise, these mistake-based
queries become essentially unusable and can be simulated by label queries. For example, if the labels
of the examples are flipped with probability η, say 10% (random classification noise [2]), then a
region query over a region that contains more than 10 examples will return “yes” with extremely high
probability, which provides no information to the learner. In fact, even for the more powerful seed
query used in [10], where in addition an example with the specified label is returned, [5] shows that if
an algorithm can learn the labels of a set of examples S with error η + ϵ, with ground truth in a given
hypothesis class H corrupted by η-level random classification noise using M(ϵ) queries, then one
can simulate such an algorithm using M(ϵ)/η label queries. Such a result implies even for simple
hypothesis classes such as the class of intervals in real line or the class of halfspaces in 2 dimensions,
one needs at least Ω(1/ϵ) seed/region queries to learn the labels of examples in a given dataset to
error η + ϵ. The gap between the realizable setting and the noise setting motivates the following
natural questions:

Can we design a simple noise-tolerant query language, that allows learning non-trivial hypothesis
classes efficiently with few queries?

Similar to [10, 35], in this work, we focus on the class of halfspaces, one of the most important
hypothesis classes in active learning.
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1.1 Learning Model And Our Contribution

We propose a new query language called Threshold Statistical Queries (TSQ), which generalizes the
region queries used in [10, 35] and study its power for learning halfspaces under noise.
Definition 1.2 (Threshold Statistical Queries (TSQ)). Let S be a set of examples in a domain X with
a corresponding labeling function f : S → {±1}. A threshold SQ query q(ϕ, τ) takes as input a
function ϕ(x, y) over S×{±1} and a threshold τ ∈ R, and answers whether

∑
x∈S ϕ(x, f(x)) ≥ τ .

TSQ is a simple generalization of region queries and vanilla label queries. For a region U ⊆ S and a
target label a ∈ {±1}, if ϕ(x, y) = 1(x ∈ U ∧ f(x) = a), then q(ϕ, 1) is exactly the region query,
where it checks if at least one example in U has label a ∈ {±1}. Furthermore, if |U | = 1, then
q(ϕ, 1) is exactly the classic label queries.

Our goal is to study the power of TSQ for active learning under different label noise models. We
consider 3 progressively more challenging noise models commonly studied in the literature: Random,
Massart and Adversarial.
Definition 1.3 (Active Learning under Label Noise). Let H be a hypothesis class over domain X .
Let S ⊆ X be a (multi)set of n examples and h∗ ∈ H be a ground truth function. For a parameter
η ∈ [0, 1/2), the labeling function f(x) over S is generated in the following way under the three
label noise models.

• Random Classification Noise (RCN) [2]: For each x ∈ S, f(x) is −h∗(x) with probability
η and h∗(x) otherwise.

• Massart Noise [41]: For each x ∈ S, f(x) = −h∗(x) with some unknown probability
η(x) ≤ η and h∗(x) otherwise.

• Adversarial Label Noise: For an unknown subset S′ containing η fraction of examples from
S, f(x) = −h∗(x) for all x ∈ S′ and f(x) = h∗(x) for all x ∈ S \ S′.

Given the unlabeled examples S, and an error parameter ϵ ∈ (0, 1), the goal of the learner is to
output a labeling f̂ over S such that with high probability err(f̂) ≤ η + ϵ

We remark that in our model, after the labeling f(x) is generated, the label of each example x ∈ S
will be fixed throughout the learning process, also known as persistent noise. This means if an
algorithm keeps querying the label of the same example, it will receive the same answer. Furthermore,
under the Random classification noise/Massart noise model, we will assume the size n of the dataset
S is large enough (poly(d, 1/ϵ)), because if n is small we have even no guarantee on the error of the
ground truth hypothesis. Our main algorithmic result is the first distribution-free halfspace learning
algorithm that achieves both computational efficiency and query efficiency under the (persistent)
Massart noise model and the Random Classification Noise model.
Theorem 1.4. LetH = {h(x) = sign(w · x) | w ∈ Sd−1} be the class of halfspaces over Rd. Given
parameters ϵ, δ ∈ (0, 1), a set S of n = poly(d, 1/ϵ, log(1/δ)) examples in X and TSQ query access
to an unknown labeling corresponding to a ground truth hypothesis h∗ ∈ H corrupted with Massart
noise η ∈ [0, 1/2), we can compute in poly(n) time a labeling f̂ such that err(f̂) ≤ η + ϵ, with
probability at least 1− δ, making Õ(d3 log3(1/ϵ)) threshold SQ queries.

Importantly, unlike [10], we make no structure assumption over the dataset S, and the query com-
plexity of our algorithm qualitatively matches the query complexity obtained by [35], which only
holds in the realizable setting. Theorem 1.4 shows a sharp separation between standard active
learning/region queries which require poly(1/ϵ) query complexity and threshold statistical queries
where poly log(1/ϵ) query complexity suffices under the Massart noise and Random classification
noise models. Furthermore, we will discuss in Appendix A that the TSQs we use in the algorithm
have very simple strictures. A natural question is whether TSQ can tolerate more complex noise.

Our second main result is a negative result showing that even using TSQ, it is still hard to achieve
query efficiency under the adversarial label noise even for simpler hypothesis classes such as the
class of singleton and the class of intervals and thus for the class of halfspaces. Formally, we have the
following theorem.
Theorem 1.5. LetH be the class of singleton functions over the domain X = N. For every ϵ ∈ (0, 1)
and m > Ω(1/ϵ), there is a set S of m examples over X and a labeling function f for S such that
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any learning algorithm A that makes less than Õ(1/ϵ) TSQs must output, with probability at least
1/3, a labeling function f̂ with error err(f̂) > opt + ϵ, where opt = minh∈H err(h).

As we can always embed an instance of learning singleton into an instance of learning a 2-dimensional
halfspace, Theorem 1.5 also implies a Ω̃(1/ϵ) query complexity for agnostic learning halfspaces with
TSQ. This shows a sharp separation of the performance of TSQ under different noise models and
leaves designing more robust query languages as an important future direction. From a technical
perspective, unlike usual approaches in the active learning literature which explicitly construct hard
instances [16, 28], we obtain our result via reduction from the agnostic distributed learning problem
studied by [32] for which a communication complexity lower-bound has been established. To the
best of our knowledge, this is the first result that connects distributed learning and active learning,
two seemingly unrelated learning models.

Though, Theorem 1.5 shows that agnostic learning up to error opt + ϵ cannot be achieved in a query
efficient way, inspired by the work of [5], it is possible to use only Õ(d log(1/ϵ)) TSQ to learn the
label of a dataset up to error O(opt) + ϵ for every hypothesis class with finite VC dimension, though
the running time of the algorithm is exponential. Such a result might be of independent interest
as how to efficiently learn a hypothesis up to error O(opt) + ϵ have already been studied in many
agnostic learning literature such as [13, 14, 22]. We leave the proof of Theorem 1.6 to Appendix C
due to the space limit.
Theorem 1.6. LetX be the space of examples andH be a hypothesis class overX with VC-dimension
d, there is an algorithm such that for every ϵ, δ ∈ (0, 1), for every set S of n examples, and for
every labeling function f(x), it makes Õ(d log(1/ϵ)) TSQs and outputs a labeling f̂ such that with
probability 1− δ, err(f̂) ≤ O(opt) + ϵ, where opt = minh∈H err(h).

1.2 Related Works

Active Learning with Mistake-Based Queries Learning with mistake-based queries has a long
history [1, 39, 5, 10]. A typical mistake-based query can be understood as follows. A learner selects
a subset of examples T ⊂ X and proposes a possible labeling for them to a labeler. The labeler will
return an example x ∈ T labeled incorrectly by the learner or return nothing when every example in
T is labeled correctly. Beyond being quite successful in theory, mistake-based queries also have wide
applications in commercial systems [11, 25]. In the realizable setting, it has been well-known that
such queries can be used to implement the Halving algorithm [38] and achieve O(d log(1/ϵ)) query
complexity for hypothesis classes of VC dimension d. However, it is only until very recently [10, 35]
that people know how to use these queries to design algorithms that achieve both computational
efficiency and query efficiency. In the noisy setting, [5] shows that even under random classification
noise, it is impossible to use such queries to do query-efficient learning even for very simple classes.
In this work, we propose TSQ as a robust generalization of these queries.

Statistical Query Learning Model Close to our threshold statistical learning model (TSQ) is the
classic statistical learning model (SQ) proposed by [34]. SQ was originally designed to overcome
random classification noise but has numerous applications in learning theory literature as a refinement
of the PAC learning model which captures most algorithms used in practice. It has been used as a tool
for obtaining efficient learning algorithms robust to noise [9] and as an evidence of computational
difficulty of a statistical problems [21]. In the SQ model, the learner has no direct access to any
example but can evaluate the expectation E(x,y)∼D ϕ(x, y) for an arbitrary bounded function ϕ(x, y)
within accuracy δ. This means in SQ model, a learning algorithm should consider both the time
used for computing ϕ(x, y) but also have to consider the final accuracy. On the other hand, a TSQ
is a boolean function of the unlabeled examples and their hidden labels. No matter the complexity,
any TSQ, q(ϕ) can be computed by the labeler accurately in time at most O(n). Furthermore, as
in SQ model, a learner has no access to individual examples, SQ learning does not naturally fit in
the active learning model. One even cannot implement classic active learning algorithms such as
CAL or Halving [27, 28] in the SQ model. As opposed to SQ, our TSQ model is more powerful as it
can isolate individual examples and thus fills such a gap. We remark that this more powerful type of
access is not needed for Theorem 1.4 and can be implemented with SQ queries of poly(ϵ) accuracy.

Learning Halfspaces with Massart Noise Active learning for halfspaces under Massart noise
also has a long history. Many works [4, 46, 3, 48] design learning algorithms that achieve both

4



computational efficiency and query efficiency under structured distributions such as the uniform
distribution over the unit sphere, the Gaussian distribution, and log-concave distributions. On the other
hand, without distributional assumptions, learning under Massart noise is much more challenging.
Computationally efficient learning algorithm for learning halfspaces under Massart noise [18, 12, 20]
were only recently discovered for passive learning. Our algorithm is the first one that works in an
active learning setting and achieves both computational efficiency and query efficiency.

2 Learning Halfspaces under Massart Noise

In this section, we present Theorem 1.4, our main algorithmic result. The full proof is left at
Appendix A. To start with, we give a high-level overview of how our algorithm works. Similar to
previous works on distribution-free learning halfspaces [9, 18, 35], our learning algorithms recursively
run two subroutines over the dataset S. The first subroutine is a weak learning algorithm that works
under structured datasets S′. More specifically, we assume that all points in the dataset have unit
norm and for every direction w ∈ Sd−1, there are at least Ω(1/d) fraction of the examples x in S′

such that |w · x| ≥ Ω(1/
√
d). Intuitively, the regions {x ∈ S′ | |w · x| ≥ Ω(1/

√
d)} correspond

to examples for which a halfspace with normal vector w is more confident about the label. If S′

contains a non-trivial fraction of examples in S and we can run a weak learning algorithm over S′

to learn a vector w that has a classification error η + ϵ over {x ∈ S′ | |w · x| ≥ Ω(1/
√
d)}, we

are able to label a non-trivial fraction of examples in S with a low error. In Section 2.1, we will
design such a learning algorithm that is robust to Massart noise and achieves query efficiency and
computational efficiency simultaneously. However, in general, it is not always possible to find a large
enough subset from S that is in an approximate radially isotropic position. Forster’s transform [26], a
powerful preprocessing technique can be used to solve this issue. Given any set of n examples in Rd,
we can always use Forster’s transform to find a subset of kn/d examples that lie in a k dimensional
subspace such that after a non-linear transformation, the transformed examples are in an approximate
radially isotropic position. This implies that if we can implement our weak learning algorithm over
the transformed data, each round, we are able to label 1/d fraction of the whole dataset with small
error and thus after d log(1/ϵ) rounds of weak learning, only ϵ fraction of the examples are unlabeled.
In Section 2.2, we will show how to use Forster’s transform to select a large fraction of the dataset for
the weak learning algorithm and how to implement the weak learning algorithm over the transformed
dataset using TSQ. Furthermore, we want to point out that the TSQs we use in our algorithms have
very simple structures. We leave the discussion in detail in Appendix A.

2.1 A Weak Learning Oracle

In this section, we present our weak learning algorithm, Algorithm 1, which plays a central role in
Theorem 1.4. Our main algorithmic result in this section is the following theorem, the proof of which
can be found in Appendix A.

Theorem 2.1. Let V ⊆ Rd be a subspace of dimension k and S ⊂ V be a set of n =
poly(k, 1/ϵ, log(1/δ)) examples with unit length. Let h∗(x) = sign(w∗ · x), w∗ ∈ Bk

1 be the
ground truth hypothesis. If for every unit vector w ∈ Bk

1 , at least 1/4d fraction of examples x ∈ S

satisfy |w · x| ≥ 1/(2
√
k), and u · w∗ ≥ 1/(4

√
k), then under the Massart noise model, for every

ground truth , with probability at least 1− δ, Algorithm 1 outputs (S′, f̂S′) such that |S′| ≥ n/(4k)

and f̂S′ has error at most η + ϵ over S′, using Õ(d2 log2(1/ϵ)) TSQ, in poly(n, k) time.

To understand why Algorithm 1 is robust to Massart noise, we need to understand why such a problem
is difficult. Let S be a subset of n example in an approximate radially isotropic position. Take the
algorithm in [35] as an example. Such an algorithm uses a modified perception algorithm to learn
some w that can perfectly classify all examples that have a large margin with respect to it. Namely,
in each round, either the current hypothesis wi perfectly classifies a large fraction of examples or
seed/region queries are used to quickly find an example in that region that is misclassified by wi,
which will be fed to the perception algorithm and improve wi. In the noisy setting, however, every
example x has a constant probability of being misclassified by wi. This implies we need to use
queries to find a “point” where w∗ and wi disagree. To do this, we associate each example x in
the region Si = {x ∈ S | |w · x| ≥ Ω(1/

√
d)}, with a variable Yx ∈ {0, 1}, where Yx = 1 if

sign(wi · x) ̸= y(x) and 0 otherwise. If the noise η(x) = η for every example x i.e. Massart noise
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Algorithm 1 WEAKLY LEARNING HALFSPACES (Labeling 1/d fraction of examples via TSQ)

Input: ϵ, δ ∈ (0, 1), subspace V ⊆ Rd of dimension k, S ⊂ V of n examples with unit length, u,
a unit vector in V
Output: S′ ⊆ S a subset of examples, f̂S′ : S′ → {±1} a labeling for S′

Let P0 = {x ∈ Bk
1 | u · x ≥ 1/(4

√
k)}, where Bk

1 is the unit ball in V .
Compute x0 ∈ P0 using Vaidya’s algorithm by Theorem 2.3.
for i = 0, . . . , Õ(k) do

Let wi = xi/ ∥xi∥
Check if over Swi

= {x ∈ S | |wi · x| ≥ 1
2
√
k
}, wi has error larger than η + ϵ via TSQ

If wi has error less than η + ϵ over Swi
, return (Swi

, sign(wi · x)) and stop the algorithm
Draw a random set U from Swi

of size m = Õ(k2/ϵ2).
For each x ∈ Swi

, define

ϕ(x, y) = (Yx(y)− η)/(wi · x),

where Yx = 1 if y ̸= sign(wi · x) and Yx = 0 otherwise.
Use Õ(d) TSQ to do binary searches along each coordinate and find some ci such that∥∥ci − 1

m

∑
x∈U ϕ(x, y)x

∥∥
∞ ≤ ϵ/(8k2).

Feed Vaidya’s algorithm by ((ci − ϵu/4)t, 0) and compute (Pi+1, xi+1).
Report Fail if nothing has been returned

model degenerates to the random classification noise model, then consider the following point

x̄ =
∑
x∈Si

(Yx − η)x =
∑
x∈S+

(Yx − η)x+
∑
x∈S−

(Yx − η)x,

where S+ is the subset of examples in Si where wi agrees with w∗ and S− = Si \ S+. For each
x ∈ S+, EYx = η, while for every x ∈ S−, EYx = 1 − η. This implies that in expectation,
E x̄ = (1− 2η)

∑
x∈S−

x. After properly scaling, this gives a point in Si where wi and w∗ disagree
due to the convexity of the problem and thus serves as a counter-example to run the perception
algorithm. In particular, since the contribution of each example x only depends on its true label, we
can draw random samples from Si and use TSQ along each coordinate to approximately find x̄ up to
high accuracy using very few queries via binary search.

However, for Massart noise, this is not the correct way to design a learning algorithm. This is because
η(x) is non-uniform over each x. For simplicity, we assume wi ·x > 0 for each x ∈ Si. As η(x) ≤ η,
a simple calculation shows that Ex̄ · w∗ ≤ 0, where the randomness only comes from the Massart
noise. The hope is that if wi has an error η+ ϵ over Si, then x̄ ·wi is larger than some positive number
so that we find a counter-example. This is unfortunately not true. Because wi · x are different and
η(x) are different, even if the error is large, some of the examples with large margins could force
x̄ points to the opposite direction, making x̄ · wi ≤ 0 as well. To overcome this issue, we consider
using a slightly more complicated statistic here, where we define

x̄ :=
∑
x∈Si

(Yx − η)
x

wi · x

instead. Such a point is still easy to approximate up to error ϵ with only d log(1/ϵ) TSQs, because it
is each to compute wi · x for each x ∈ Si. But more importantly, when wi has an error larger than
η + ϵ, in expectation wi and w∗ will always disagree on x̄ because

1

|Si|
wi · x̄ =

1

|Si|
∑
x∈Si

(Yx − η)
x

wi · x
· wi =

1

|Si|
∑
x∈Si

(Yx − η) > ϵ. (1)

Furthermore, as wi · x is large for every x ∈ Si, x̄ has a bounded norm and thus can serve as a
counter-example. A technical issue here is that the inequality E x̄ · w∗ ≤ 0 is quite fragile, due to
the randomness of the Massart noise, it is impossible to guarantee x̄ · w∗ ≤ 0 actually holds after
the labeling being fixed. This issue can be fixed using the following trick. Before run the learning
algorithm, we will randomly sample a unit vector u. We know from [45] that with constant probability
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u · w∗ > 1/
√
d and thus by shifting x̄ a little towards −u, this will give us a counter example and

guarantee the whole algorithm succeeds with a constant probability.

Though, we find a counter-example and can use it to run a perception algorithm in a similar way to
[35], this cannot give us a good query complexity. This is because (1) can only guarantee x̄ · wi > ϵ,
which requires to run the perception algorithm for O(1/ϵ2) rounds to converge to a good hypothesis.
Thus, we will solve this problem using Vaidya’s cutting plane method. We want to remind the
reader of the following convex feasibility problem, which is closely related to our halfspace learning
problem.
Definition 2.2 (Convex Feasibility Problem). Let K ⊂ Rd be a convex body. A separation oracle
with respect to K is a function on Rd such that for any input x ∈ Rd, if x ∈ K, then it reports “yes”,
otherwise it outputs some (ct, b) ∈ Rd+1 such that for every y ∈ K, c · y ≥ b but c · x ≤ b. Assuming
K ⊆ Bd

1 , given a separation oracle with respect to K and ϵ ∈ (0, 1), the convex feasibility problem
asks to either find some x ∈ K or prove that K does not contain a ball of radius ϵ.

There exists a long line of research for solving the convex feasibility problem for example, [43, 40, 37].
We will use these algorithms as a subroutine of our learning algorithm.
Theorem 2.3 (Vaidya’s Algorithm). Let K ⊂ P0 ⊆ Bd

1 be an unknown convex body. Vaidya’s
algorithm solves the convex feasibility problem for K as follows. In round i, it maintains a convex
body K ⊆ Pi ⊆ P0 and a point xi ∈ Pi and sends xi to the separation oracle of K. If the
oracle returns “yes”, then it claims xi ∈ K, otherwise it computes in poly(d, log(1/ϵ)) time
a pair of (Pi+1, xi+1) based on (cti, bi) the return of the separation oracle. In particular, after
T = Õ(d log(1/ϵ)) rounds, PT does not contain a ball of radius ϵ.

Let the unknown convex body K that we want to solve for the convex feasibility problem be a ball of
radius ϵ around w∗ and we want to run Vadidya’s algorithm to find some wi close to w∗. Consider the
Pi maintained by Vadiya’s algorithm. As with constant probability w∗ · u ≥ 1/

√
d as we mentioned

earlier, we can guarantee that 0 ̸∈ Pi. Let xi be the point used by Vadidya’s algorithm. Then we
will check the error of wi = xi/ ∥xi∥ over Si is large, which can be done with a single TSQ. If the
error is less than η + ϵ, we are done. Otherwise, we use Õ(d log(1/ϵ)) TSQ to approximately find a
counter example x̄ for wi. Importantly, the halfspace x̄ · w ≥ 0 separate xi and any w ∈ K. This
will make it possible to run the next round of Vadiya’s algorithm. Since we only care about examples
that have margin Ω(1/

√
d) with respect to wi, when wi is within a ball of radius 1/poly(d) centered

at w∗, every example in Si is agreed by wi and w∗ and thus wi is guaranteed to have error at most
η + ϵ. Furthermore, in each round, Vadiya’s algorithm shrinks the volume of Pi by a constant factor,
and after at most Õ(d log(1/ϵ)) rounds, we are guaranteed to find a good hypothesis. This gives a
weak learning algorithm with a desired query complexity.

2.2 From Weak Learning to Strong Learning

We leave the formal analysis of the algorithm to Appendix A and discuss two technical issues raised
in designing Algorithm 2. First, as required in Theorem 2.1, the dataset S should be large enough and
satisfy the structured assumption. Thus, to run Algorithm 1, we need to recursively select a dataset of
enough size that satisfies the structured assumption from the data we have not labeled. In fact, the
structured assumption can be fulfilled by a dataset that is in approximate radially isotropic position.
Definition 2.4 (Approximate Radially Isotropic Position). Let S be a multiset of non-zero points in
Rd, we say S is in ϵ-approximate radially isotropic position, if for every x ∈ S, ∥x∥ = 1 and for
every u ∈ Sd−1,

∑
x∈S(u · x)2/|S| ≥ 1/d− ϵ.

Lemma 2.5. Let S be a multiset of non-zero points in Rd that is in 1/2d-approximate radially

isotropic position. Then for every u ∈ Sd−1, we have Prx∼S

(
|u · x| ≥ 1/2

√
d
)
≥ 1/4d.

Recent results show that for any dataset S, one can efficiently find a non-trivial fraction of the data
and a non-linear transformation such that after the transform, the data are in approximate radially
isotropic position.
Theorem 2.6 (Approximate Forster’s Transform [24]). There is an algorithm such that given any set
of n points S ⊆ Rd \ {0} and ϵ > 0, it runs in time poly(d, n, log 1/ϵ) and returns a subspace V of
Rd containing at least dim(V )/d fraction of points in S and an invertible matrix A ∈ Rd×d such
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Algorithm 2 STRONG LEARNING HALFSPACES (Label S with few queries up to η + ϵ error )

Input: ϵ, δ ∈ (0, 1), S ⊂ Rd of n examples
Output: f̂ : S → {±1} a labeling for S
L← ∅, n← |S|
while |S| > ϵn/2 do

Apply Theorem 2.6 to S with ϵ = 1/2d to obtain a matrix A and a k-dimensional subspace V
Use a single TSQ to check if constant hypothesis +1(−1) has error η + ϵ over S ∩ V
if constant hypothesis has error at most η + ϵ/2 over S ∩ V then

Define f̂ to be the constant over S′ = S ∩ V
S ← S \ S′

else
Run Algorithm 1 over input parameter ϵ/2, δ/poly(d, log(1/ϵ)), V , fA(S ∩ V ) and a

random unit vector u ∈ V until some (S′, f̂S′) is output.
▷ Though Algorithm 1 is run over the transformed dataset fA(S ∩ V ), each TSQ can be

simulated over the original data as FA(x) preserves the ground truth label.
Define f̂(x) = f̂S′(FA(x)),∀x, FA(x) ∈ S′

S ← S \ S′

Define f̂ = 1 for the rest of ϵn/2 examples in S

return f̂

that FA(S ∩ V ) is in ϵ-approximate radially isotropic position up to isomorphic to Rdim(V ), where
FA(S ∩ V ) = {FA(x) := Ax/ ∥Ax∥ | x ∈ S ∩ V }.

Combine Theorem 2.6 and Lemma 2.5, we know that given any set of n examples S ⊆ Rd, we can
find a subset of at least kn/d examples SV := S ∩ V ⊆ S that lies in some k-dimensional subspace
V and some invertible matrix A such that FA(SV ) is in 1/2k-approximate radially isotropic position
(up to isomorphic to Rk). Now, for convenience, we assume our transformed data FA(SV ) is exactly
our original dataset and we focus on the transformed data. Notice that for each x ∈ SV , we have

sign(w∗ · x) = sign(A−Tw∗ ·Ax) = sign(A−Tw∗ · FA(x)) = sign(projA(V )(A
−Tw∗) · fA(x)),

which implies that each transformed example FA(x) is labeled by halfspace v∗ = projA(V )(A
−Tw∗)

and has the same label as x. So, we can use Algorithm 1 to learn their labels. However, as Algorithm 1
is run over the transformed data, we have to simulate every TSQ used by the algorithm via a TSQ over
the original data. This issue can be overcome using the following argument. Since FA is a bijection
between x and FA(x) and the outcome of the function ϕ(x, y) used in a TSQ for each example x
can be uniquely represented by two numbers, we can rewrite ϕ(FA(x), y) as a function of x for each
FA(x) such that for a TSQ as long as y(FA(x)) = f(x), the result of the query will be the same.
This gives us a way to simulate the TSQ over S.

3 Agnostic Learning with Threshold SQ

In this section, we study learning with TSQs under the more challenging adversarial label noise
proving Theorem 1.5. In the previous section, we saw that using TSQ, learning halfspaces only
requires polylog(1/ϵ) rounds of interactions. We show in this section that this is not the case for the
adversarial label noise. We show that it is impossible to reduce the query complexity from poly(1/ϵ)
to polylog(1/ϵ) even for very simple classes such as the class of singletons (and thus the class of
the halfspace in high dimensions). The classic method of proving query complexity lower bound
[15, 16, 28] is to construct a hard instance directly. However, as there are infinite types of TSQs to be
considered, it is impossible to construct a single hard instance that defeats all types of TSQs. Instead,
we will build a reduction from a hardness result on agnostic distributed learning [32] that we define
as follows.
Definition 3.1 (Agnostic Distributed Learning). Let X be the space of examples. Let a, b be two
learners and S =< Sa, Sb > be a collection of labeled examples, where Sa is the (multi)set of
labeled examples owned by a and Sb is the (multi)set of labeled examples owned by b. a, b only
knows their own sample set. A learning protocol is a communication strategy, where in each round of
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communication a sends information by bits to b and after reviving information sent from a, b sends
information by bits back to a and finally the learning protocol outputs a hypothesis f̂ : X → {±1} .
The error of f̂ is

err(f̂) :=
1

|S|
∑
x∈S

1(f̂(x) ̸= f(x)),

where f(x) is the true label of x. Let S be a collection of labeled examples, and H be a hypothesis
class. Given an accurate parameter ϵ ∈ (0, 1), the goal of the agnostic distributed learning problem
is to design a learning protocol that outputs some f̂ such that err(f̂) ≤ minh∈H err(h) + ϵ while
minimizing the number of bits communicated in the learning protocol.

In this paper, we will make use of the following slightly easier problem of agnostic distributed
learning singleton functions, where the unlabeled examples owned by a, b are known to each other
and they want to output a labeling with error at most opt.

Problem 3.2 (Distributed Learning Singleton). Consider the agnostic distributed problem. Let
S =< Sa, Sb > be a collection of examples, where for u ∈ {a, b}, Su = {(i, yiu)}ni=1, where
yui ∈ {±1} for i ∈ [n]. Let H = {hi(x) = 21(x = i) − 1 | i ∈ N} be the class of singleton
functions. The goal is to design a (randomized) learning protocol that outputs a hypothesis f̂ such
that err(f̂) ≤ minh∈H err(h) + ϵ for ϵ = 1/4n with probability at least 2/3.

[32] shows the following hardness result for Problem 3.2.

Theorem 3.3 (Lemma 3 in [32]). If there is a (randomized) learning protocol that can solve
Problem 3.2 using T (n) bits of communication, then there is a (randomized) protocol that can solve
the set-disjointness problem with T (n) log(n) bits of communication.

According to [29], solving the set disjointness problem requires Ω(n) bits of communication, and
thus solving Problem 3.2 requires Ω̃(n) = Ω̃(1/ϵ) bits of communication. The central result we use
to prove Theorem 1.5 is the following technical lemma, which means if one can agnostically learn
the class of singleton functions with error opt using T (n) queries, then one can design a learning
protocol for Problem 3.2 with T (n)polylog(n) bits of communication. This is enough to prove
Theorem 1.5, because given the hardness of Lemma 3.4, we can create a hard problem by making
multiple copies of each example used in the proof of Lemma 3.4. This preserves the error of every
hypothesis h : X → {±1}. We leave more details to Appendix B and in the rest of this section, we
give an overview of the proof of Lemma 3.4.

Lemma 3.4. Let S ⊆ N be a multiset of 2n examples and f(x) be a hidden labeling function.
Let H = {hi(x) = 21(x = i) − 1 | i ∈ N} be the class of singleton functions. If there is an
algorithm A that can make T (n) TSQ and outputs some f̂ such that err(f̂) ≤ minh∈H err(h) + ϵ,
with ϵ = 1/4n, then there is a learning protocol that can solve Problem 3.2 with O(T (n)polylog(n))
bits of communications.

ConsiderA to be a learning algorithm for singleton functions that can learn up to error opt with T (n)
queries. Since both a, b know the unlabeled examples owned by each other and know the labels of
examples owned by themselves, we will design a learning protocol for a, b to check the answer to each
TSQ used by A together using only polylog(n) bits of communication. Recall that in the definition
of TSQ, each qi answers if

∑
x∈S ϕ(x, y) ≥ τ , where ϕ(x, y) given every x is a two-value function.

Thus, to check the answer of qi, it is sufficient to check if
∑

x∈Sa
ϕ(x, y) ≥ τ −

∑
x∈Sb

ϕ(x, y). One
possible way to check the answer is to let a send the number

∑
x∈Sa

ϕ(x, y) to b. However, if a TSQ
is very complicated, communicating such a number would cost too many bits. Two arguments are
made to address this problem. First, we claim that we can assume every outcome of

∑
x∈Sa

ϕ(x, y)

and τ −
∑

x∈Sb
ϕ(x, y) is an integer with bit complexity n. Intuitively, this is because there are at

most 2n different outcomes for
∑

x∈Sa
ϕ(x, y) and τ −

∑
x∈Sb

ϕ(x, y) and we can explicitly create
a map from each outcome to such an integer. Second, we show that to compare a pair of integers with
bit complexity n only polylog(n) bits of communication are required. To see why this is true, we can
expand integers Ia =

∑
x∈Sa

ϕ(x, y) and Ib = τ −
∑

x∈Sb
ϕ(x, y) into binary strings. Then Ia > Ib

if and only if there exists some index i such that (Ia)j = (Ib)j for each j > i but (Ia)j > (Ib)j for
each j = i. Thus, to compare Ia, Ib, we only need to binary search the first index j such that the
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partial binary strings of Ia, Ib are different. Since checking whether two binary strings are equal only
requires O(log n) bits of communication, we only need O(log2 n) bits of communication to compare
the two integers.
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Supplementary Material

A Omitted Proofs and Discussions in Section 2

A.1 Proof of Theorem 2.1

Proof of Theorem 2.1. Since u · w∗ ≥ 1/(4
√
k), we know that w∗ ∈ P0, furthermore, K :=

Bk
ϵ/poly(k)(w

∗) ∩ P0 contains a ball in V with radius at least ϵ/poly(k). In particular, 0 ̸∈ P0. We
will first show that every time Algorithm 1 computes ((ci − u/4)t, 0), it separates xi and K.

For a given round i in Algorithm 1, for every x ∈ S, Yx = 1 implies that wi misclassifies x.
According to Algorithm 1, we know that when ((ci − u/4)t, 0) is computed, it must be the case
where Ex∼Swi

Yx ≥ η + ϵ. We remark that we can use a single TSQ to check if Ex∼Swi
Yx ≥ η + ϵ

by querying if the number of mistakes made by wi over Swi is larger than (η + ϵ)|Swi |.

Since U is a random subset of Swi
with size m = Õ(k2/ϵ2), by Hoeffding’s inequality we know that

with probability at least 1− poly(δ), 1
m

∑
x∈U Yx ≥ η + ϵ/2. We first show that given this happens,

c̄i :=
1
m

∑
x∈U ϕ(x, y)x must have large correlation with wi. We have

c̄i · wi :=
1

m

∑
x∈U

ϕ(x, y)x · wi =
1

m

∑
x∈U

(Yx(y)− η)

(wi · x)
(x · wi) =

1

m

∑
x∈U

(Yx(y)− η) ≥ ϵ/2,

where in the last inequality we use the fat that 1
m

∑
x∈U Yx ≥ η + ϵ/2. On the other hand, we show

that with high probability, 1
m

∑
x∈U ϕ(x, y)x · w∗ ≤ ϵ/(20

√
k). To see this, we first consider any

fixed x ∈ S. If sign(wi · x) = sign(w∗ · x), then under the Massart noise model, in expectation we
have

E
y(x)

ϕ(x, y)x · w∗ = E
y(x)

Yx(y)− η

(wi · x)
(w∗ · x) = η(x)− η

(wi · x)
(w∗ · x) ≤ 0.

Similarly, if sign(wi · x) ̸= sign(w∗ · x), then

E
y(x)

ϕ(x, y)x · w∗ = E
y(x)

Yx(y)− η

(wi · x)
(w∗ · x) = 1− η(x)− η

(wi · x)
(w∗ · x) ≤ 0.

Thus, for any possible subset U ⊆ S, it always holds that 1
|U |ϵ

∑
x∈U Ey(x) ϕ(x, y)x ·w∗ ≤ 0, where

the randomness comes from the Massart noise model. In Algorithm 1, each x ∈ U satisfies |wi · x| ≥
1/(4
√
k). This implies that it always holds for each x ∈ U that ϕ(x, y)x ·w∗/ϵ ∈ (−4

√
k/ϵ, 4

√
k/ϵ).

Since U is a random subset of ˜k2/ϵ2 examples from Swi , by Hoeffding’s inequality, we have

Pr

(
1

mϵ

∑
x∈U

ϕ(x, y)x · w∗ − 1

mϵ

∑
x∈U

E
y(x)

ϕ(x, y)x · w∗ ≥ 1

20
√
k

)
≤ exp(−ϵ2m

k2
) ≤ 1− poly(δ).

Thus, with high probability c̄i · w∗ ≤ ϵ/(20
√
k).

Notice that for each coordinate j,
∣∣c̄ij∣∣ ≤ 4

√
k. Along each coordinate j, we are able to use TSQ

of the type 1
|U |ϵ

∑
x∈U ϕ(x, y)(x)j ≥ τ to binary search c̄ij up to error ϵ/(8k2) in O(log(k/ϵ)) ≤

O(log(d/ϵ)) rounds of interactions. Since we have found ∥ci − c̄i∥∞ ≤ ϵ/(8k2), we know that

ci · wi ≥ c̄i · wi − ϵ/(8k) ≥ ϵ/2− ϵ/(8k) ≥ 3ϵ/8

ci · w∗ ≤ c̄i · w∗ + ϵ/(8k) ≤ ϵ/(20
√
k) + ϵ/(8k) ≤ ϵ/(17

√
k).

However, ci itself cannot separate xi from K as it could be the case that both ci · w∗ and ci · wi are
positive. However, since u · w∗ ≥ 1/(4

√
k) and ∥u∥2 = 1, ci − ϵu/4 can separate wi from K. This

can be viewed as follows. On the one hand,

(ci − ϵu/4) · wi ≥ ci · wi − ϵ/4 ≥ ϵ/8 > 0,

which means (ci − uϵ/4) · xi > 0. On the other hand, for every x ∈ K, we have

(ci − ϵu/4) · x ≤ (ci − ϵu/4) · w∗ + ϵ/poly(k) ≤ ϵ/(17
√
k)− ϵ/(16

√
k) + ϵ/poly(k) < 0.
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As long as Algorithm 1 computes (ci − ϵu/4), with high probability it will separate xi from K. In
particular, by Theorem 2.3, we know that after T = Õ(k log(1/ϵ)) rounds, any point in PT must be
at most ϵ/poly(log(1/ϵ)) close to w∗. This implies that over SwT

= {x ∈ S |wT | · x ≥ 1/(2
√
k)},

wT and w∗ agrees on every single example in SwT
. Thus, after Õ(k log(1/ϵ)) rounds, Algorithm 1

is guaranteed to output some wi such that wi has an error at most η + ϵ over the region Swi
. By our

assumption, Swi
has a size at least n/(4k). This proves the correctness of the algorithm.

Finally, we compute the query complexity of the algorithm. In each round of Algorithm 1, we use 1
TSQ to check if the current hypothesis is good enough and use Õ(d log(1/ϵ)) TSQ to find a good
approximation of the separation hyperplane. Since there are at most Õ(k log(1/ϵ)) rounds, the query
complexity of Algorithm 1 is Õ(d2 log2(1/ϵ))

A.2 Proof of Theorem 1.4

Proof of Theorem 1.4. We start by showing the correctness of Algorithm 2. We will show that in
each round of Algorithm 2, |S′| ≥ |S|/d and f̂ over S has error at most η + ϵ/2. Given this to be
correct, after at most O(d log(1/ϵ)) rounds, Algorithm 2 labels (1− ϵ/2) fraction of the examples
with an error of η + ϵ/2, leaving at most ϵ/2 fraction of the examples unlabeled. This means f̂ has
error at most η + ϵ.

By Lemma 2.5 and Theorem 2.6, we know that in each round of Algorithm 2, we can compute we
find a subspace V that contains k/d fraction of the unlabeled data in S and a matrix A that can make
FA(S ∩ V ) in approximate radially isotropic position. If w∗ ⊥ V , then the ground truth labels of
examples in S ∩ V are the same and thus with high probability a constant hypothesis achieves an
error of at most η + ϵ over S ∩ V .

Now we assume w∗ is not orthogonal to V and we will show that by running Algorithm 1 Õ(log(1/δ))
times, we are able to label S′ ⊆ S ∩ V , a subset of at least 1/k-fraction of examples in S ∩ V with
error at most η + ϵ. To see this, we first argue that labeling S ∩ V is equivalent to labeling the
transformed data FA(S ∩ V ). We notice that for every x ∈ V , we have

sign(w∗ · x) = sign(A−Tw∗ ·Ax) = sign(A−Tw∗ · FA(x)) = sign(projA(V )(A
−Tw∗) · FA(x)),

which implies that we can view FA(V ) to be labeled by a halfspace v∗ = projA(V )(A
−Tw∗)

furthermore, x and FA(x) have the same ground truth label. If we associate y(FA(x)) = f(x) for
each x ∈ V , then the label y(FA(x)) of FA(x) can be seen as created by halfspace sign(v∗ · x)
under the Massart noise model such that η(FA(x)) = η(x),∀x. Thus, if we are able to find a
subset FA(S

′ ∩ V ) ⊆ FA(S ∩ V ) and label examples in FA(S
′ ∩ V ) up to error η + ϵ/2, then

we are able to label the labels of the corresponding examples in S′ up to η + ϵ/2. We will use
Algorithm 1 to do this. Since FA(S ∩ V ) are in approximate radially isotropic position, we know
from that Lemma 2.5 that for every unit vector w ∈ V , at least 1/(4k) fraction of examples in
FA(S ∩ V ) satisfied |FA(x) · w| ≥ 1/(2

√
k). Thus, once Algorithm 1 outputs a labeling f̂S′ for

S′ ⊆ FA(S ∩ V ), the size of S′ is at least |FA(S ∩ V )|/(4k) ≥ |S|/(4d) and the error of f̂S′ must
be at most η + ϵ/2. By Theorem 2.1, we need some unit vector u that has a non-trivial correlation
with the target halfspace A−Tw∗ for the transformed data. By randomly select a unit vector in V ,
with constant probability (see [45]), we can guarantee that u · projA(V )(A

−Tw∗) ≥ 1/(4
√
k). Thus

by repeating Algorithm 1 several times, with high probability, it will output some labeling function.
However, to run Algorithm 1, we have to implement TSQ over the transformed data while we can
only make TSQ over the original data. Such an issue is easy to address. Since FA is a bijection
between x and FA(x) and the outcome of the function ϕ(x, y) for each example x can be uniquely
represented by two numbers, we can rewrite ϕ(FA(x), y) as a function of x for each FA(x) such
that for a TSQ as long as y(FA(x)) = f(x), the result of the query will be the same. As we have
mentioned that y(FA(x)) = f(x) holds for every example, we conclude that we can simulate each
TSQ over the transformed data via a TSQ over the original data. This finishes the proof of the
correctness of Algorithm 2.

Finally, we calculate the query complexity of Algorithm 2. By Theorem 2.1, we know that every time
we run Algorithm 1, we make Õ(d2 log2(1/ϵ)) queries. Since every round of Algorithm 2, we run
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Algorithm 2 O(log(1/ϵ)) rounds and there are at most O(d log(1/ϵ)) rounds, we conclude the query
complexity of Algorithm 2 is O(d3 log3(1/ϵ)). In particular, by Theorem 2.6 and Algorithm 1, each
subroutine of the algorithm can be implemented in polynomial time, we conclude that Algorithm 2
can be run in polynomial time.

A.3 On the TSQs Used by Algorithm 2

In this section, we want to discuss the TSQs used by Algorithm 2 and argue that these TSQs have
simple structures and are easy to communicate and implement. There are two types of TSQs used by
Algorithm 2.

First, the algorithm needs to check whether a hypothesis h = sign(w · x) has an error larger than
τ over a given region U . In other words, we want to use TSQs to approximate the conditional
expectation, Ex 1(sign(w · x) ̸= f(x) | x ∈ U). To express this using TSQ, for each x ∈ U ,
we define ϕ(x, y) = 1/|U | if sign(w · x) ̸= y and 0 otherwise. For each x ∈ S \ U , we define
ϕ(x, y) = 0. In particular, in Algorithm 2 each U we use is just some random samples drawn from
S ∩ {x ∈ V | |FA(x) · w| ≥ Ω(1/

√
d)}. To communicate such a TSQ, a learner only needs to

communicate such a query, a learner only needs to communicate to the labeler, (v,A), the parameters
for a Forster’s transformation, w, the hypothesis maintained by the algorithm, τ , the threshold used by
the TSQ and a random seed to guide the labeler to do sampling. The labeler receives these parameters,
computes the answer to the TSQ, and returns a binary answer to the learner.

The second type of TSQ can be seen as a weighted sum of the mistakes made by the current hypothesis
h over a region U . Recall the notation used in Algorithm 1, (Yx(y)−η)/(wi ·x), where Yx(y) = 1 if
h makes a mistake at x. The algorithm wants to approximate the point Ex(FA(x)(Yx(y)− η)/(wi ·
FA(x)) | x ∈ U), which is equivalent to get an approximation of the point from each coordinate.
Similarly, every U used by the algorithm is a random set sample from S ∩ {x ∈ V | |FA(x) · w| ≥
Ω(1/

√
d)}. To communicate such a query, a learner will communicate (v,A), the parameters for a

Forster’s transformation, w, the hypothesis maintained by the algorithm, i, the coordinate the learner
want to approximate, τ , the threshold used by the TSQ and a random seed to guide the labeler to do
sampling.

This shows that the TSQs used by Algorithm 2 is simple from both a computational view and a
communication complexity view.

B Omitted Proofs in Section 3

B.1 Proof of Lemma 3.4

Proof of Lemma 3.4. Notice that the learning algorithm A can be described as follows. In round i, A
constructs a TSQ qi (possibly using randomness), submits qi to the labeler, and receives the answer
to qi. Given A, we will design a learning protocol as follows. In round i, the learner a, b will check
the answer of qi together by sending bits to each other and construct the next TSQ qi+1 based on the
answer and using A. If they use only K(n) bits of communication to check qi in each round, then
since A will output some ĥ such that err(f̂) ≤ minh∈H err(h) + ϵ after T (n) rounds, the total bits
of communication is at most T (n)K(n).

We can without loss of generality assume the randomness used to implement A is public so that
in each round, both a and b know exactly the TSQ qi. Otherwise, by Newman’s theorem [36],
we only need to use another O(log n) bits of communication to simulate the randomness used
by A. Recall that in the definition of TSQ, each qi answers if

∑
x∈S ϕ(x, y) ≥ τ , where ϕ(x, y)

given every x is a two-value function. Thus, to check the answer of qi, it is sufficient to check if∑
x∈Sa

ϕ(x, y) ≥ τ−
∑

x∈Sb
ϕ(x, y). Although a can compute

∑
x∈Sa

ϕ(x, y) and sends the number
to b, communicating a single number

∑
x∈Sa

ϕ(x, y) might need a lot of bits of communication. In
the rest of the proof, we will design a protocol that use only O(log2 n) bits of communication to
check the answer of qi.
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First, we show that we can without loss of generality assume every outcome of
∑

x∈Sa
ϕ(x, y) and

τ −
∑

x∈Sb
ϕ(x, y) is an integer with bits complexity n. We observe that both

∑
x∈Sa

ϕ(x, y) and
τ −

∑
x∈Sb

ϕ(x, y) have at most 2n outcomes. As a and b all know all possible outcomes, they
can explicitly construct a maps Fa, which maps each of the possible outcomes of

∑
x∈Sa

ϕ(x, y)
to an integer between 0 and 2n − 1 and a map Fb, which maps each of the possible outcomes of
τ −

∑
x∈Sb

ϕ(x, y) to an integer between 0 and 2n − 1. Given these two explicit maps, if a and
b can use communication to learn Fa(

∑
x∈Sa

ϕ(x, y)) and Fb(τ −
∑

x∈Sb
ϕ(x, y)), then they can

reconstruct
∑

x∈Sa
ϕ(x, y) and τ −

∑
x∈Sb

ϕ(x, y). In the rest of the proof, we prove based on this
assumption.

Next, we design a protocol that uses O(log2 n) bits of communication. After a determine∑
x∈Sa

ϕ(x, y), a know an integer Ia such that Ib = τ −
∑

x∈Sb
ϕ(x, y) >

∑
x∈Sa

ϕ(x, y) if
and only if Ib > Ia. So it remains to show that given two integers Ia, Ib with bit complexity n, we
are able to compare these two integers with O(log n) bits of communication. To do this, we first
represent Ia, Ib by binary strings of length n. Notice that Ia > Ib if and only of there exists some
index i such that (Ia)j = (Ib)j for j > i but (Ia)j > (Ib)j for j = i. This implies that to compare
Ia and Ib it is sufficient to find the largest index i∗ such that (Ia)j = (Ib)j for each j > i∗ and
compare (Ia)i∗ and (Ib)i∗ . Such an index can be found via binary search. Specifically, given i we
want to check if (Ia)j = (Ib)j for each j < i. If the two partial binary strings are equal, then we
decrease i, otherwise we increase i. After O(log n) rounds, we successfully find such an index i∗. It
is well-known that checking the equality of two binary strings of length n can be done via a simple
randomized protocol by communicating O(log n) bits [36, 42]. Thus, in total, with O(log2 n) bits of
communication, we are able to compare Ia, Ib and thus can check the answer of the TSQ.

This gives a randomized learning protocol that uses O(T (n) log2(n)) bits of communication.

B.2 Proof of Theorem 1.5

Proof of Theorem 1.5. Let ϵ ∈ (0, 1). For simplicity, we write ϵ = 1/4n and let S be a multiset of
2n examples over N. Given any labeling function f(x) over S and every m ≥ 2n such that m/(2n)
is an integer, we create a multiset S′ of size m in the following way. For each x ∈ S we create
m/(2n) copies x′ for x such that for each copy x′ it has a hidden label equal to f(x). Denote by
f ′ the labeling function over S′. Notice that for every hypothesis h : N → {±1}, the error of h
over S′ and the error of h over S are the same. This implies that if we have a learning algorithm
such that for every S′ ⊆ N and every labeling function f ′, it can output a hypothesis f̂ using
T (1/ϵ) = T (4n) TSQs such that with probability 2/3 f̂ has an error opt + ϵ, then f̂ has an error at
most opt+ϵ over the original dataset S. By Lemma 3.4, we know that this implies a learning protocol
that solve Problem 3.2 with O(T (1/ϵ) log2(1/ϵ)) = O(T (4n) log2(n)) bits of communication. By
Theorem 3.3, this implies a communication protocol that solves the set disjointness problem of
size n using O(T (1/ϵ) log3(1/ϵ)) = O(T (4n) log3(n))) bits of communication. By [29], we know
that to solve a set disjointness problem of size n, any (randomized) protocol has a communication
complexity of Ω(n). This implies that T (1/ϵ) = Ω̃(1/ϵ).

C Proof of Theorem 1.6

In this section, we prove Theorem 1.6 by presenting the following Algorithm 3. Our algorithm is
inspired by [5], where they design an algorithm that learns a hypothesis class H with finite VC
dimension up to error O(opt) + ϵ using O(d log(1/ϵ)) class-conditional queries, which returns an
example with a specified label in a given region. Unlike their algorithm, our algorithm does not
need such a strong query. Instead, our algorithm makes O(d log(1/ϵ)) TSQs to achieve the same
guarantee. Furthermore, each TSQ used in Algorithm 3 only checks if a given hypothesis has an error
larger than some threshold over a given region.

Proof of Theorem 1.6. If opt ≤ ϵ, the learning up to error O(opt) + ϵ is equivalent to learning up
to error O(ϵ) and η = ϵ can be used as an upper bound for opt. So, we assume that η = opt ≥ ϵ,
because we can always guess some η such that η/2 ≤ opt ≤ η via a doubling trick, which will only

16



Algorithm 3 APPROXIMATE AGNOSTIC LEARNING(Learning a labeling up to O(opt) error)

Input: Dataset S of size n, hypothesis class H with VC dimension d, η, an upper bound of opt
Output: f̂ , a labeling of S
Let H0 be an ϵ-cover of the hypothesis class H with respect to the uniform distribution over S
Let fH0 be a labeling over S. For each x ∈ S, fH0(x) agrees with the majority of H0 at x.
Use a single TSQ to check if the error η0 of fH0 over S is larger than O(η)
If η0 ≤ O(η), output fH0

while the error ηi of fHi larger than O(η) do ▷ This can be checked with a single TSQ
for j = 1, . . . , T = O(log(1/δ)) do

Keep drawing random subsets Sj of size 1/(50η) from S until Sj gets accepted
We accepted Si if we find at least 1 example in Sj are misclassified by fHi

using a single
TSQ

if More than 1/6 fraction of the hypothesis in Hi agrees with fHi
over Sj then

Mark all the hypothesis in Hi that agrees with with fHi
over Sj

else
Find a subset of Ŝj ⊆ Sj such that ξ-fraction of the hypothesis in Hi agrees with fHi

over Ŝj , where ξ ∈ [1/6, 2/3].
Use a single TSQ to check if over Ŝj , fHi

makes no mistake. If so, mark all hypotheses
that disagree with fHi

at any single example over Ŝj , otherwise mark the hypothesis in Hi agrees
with fHi

over Ŝj

Remove all hypotheses in Hi that are marked more than 0.1T times and Hi+1 be the set of
remaining hypothesis
return fHi

make the final guarantee worse up to a constant factor. Denote by h∗ ∈ H0 the hypothesis that has
the smallest error over S. By the definition of ϵ-cover, we know that err(h∗) ≤ η + ϵ.

We show that with high probability, in each round of Algorithm 3, either err(hHi
) is at most 250η

or a constant fraction of the hypothesis in Hi gets removed. In particular, we will show that h∗ will
always stay in Hi and thus after Õ(d log(1/ϵ)) rounds, we are guaranteed to output some hypothesis
with small error.

Assume that err(hHi
) > 250η. We say a set Sj is good if it contains no example x such that

h∗(x) ̸= f(x). We first show that given a set Sj accepted by Appendix C, with a non-trivial
probability it is good.

Pr (Sj is good | Sj is accepted) =
Pr (Sj is good and Sj is accepted)

Pr (Sj is accepted)
≥ Pr (Sj is good and Sj is accepted)
≥ 1−Pr (Sj is not good)−Pr (Sj is not accepted) .

Since the noise rate is η, we know from the definition of ϵ-cover that h∗ has an error at most 2η. This
implies that in expectation, a random SJ contains 1/25 example that is misclassified by h∗.

Pr (Sj is not good) = Pr (Sj contains one example misclassified byh∗) ≤ 1/25 = 0.04.

On the other hand, since err(hHi
) > 250η, a random example has a probability at most 1− 1/(250η)

not misclassified by hHi
and this

Pr (Sj is not accepted) ≤ (1− 1/(250η))1/(50η) ≤ e−5 ≤ 0.01. (2)

Thus, with a probability of at least 95%, an accepted set Sj is good. In particular, h∗ misclassified no
example in SJ . This implies that h∗ will not get marked when Sj is good. And thus in expectation,
h∗ will not get marked for more than T/20 times. By Hoeffding’s inequality, this implies with high
probability h∗ will not get removed from Hi. On the other hand, for every Sj that gets accepted more
than 1/6 of the hypothesized in Hj must get marked. To show this, we consider two cases. In the first
case, more than 1/6 fraction of the hypothesis in Hi agrees with fHi

over Sj . In this case, according
to Algorithm 3, all hypothesizes in Hi that agree with fHi

over Sj will get marked and more than
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1/6 fraction of the hypothesis in Hi will be marked. In the second case, we show that there must
be a subset of Ŝj ⊆ Sj such that ξ-fraction of the hypothesis in Hi agrees with fHi

over Ŝj , where
ξ ∈ [1/6, 2/3]. We order Sj in an arbitrary order x1, x2, . . . , xm, where m = |Sj |. For each t ∈ [m],
we use H(t) to denote the set of hypothesises in Hi that agree with hHi

for x1, . . . , xt. From the
above discussion, we know that |H(m)| ≤ |Hi|/6. On the other hand, we know by the definition of
hHi

that |H(1)| ≥ |Hi|/2. If |H(1)| ≤ 2|Hi|/3, then we are done. Otherwise, there must be a largest
t∗ such that |H(t∗)| ≥ 2|Hi|/3. We claim that |Hi|/6 ≤ |H(t∗+1)| ≤ 2|Hi|/3. This is because at
most |Hi|/2 hypothesises in Hi will disagree with hHi

over xt+1 and will get deleted from H(t∗).
This implies that we can choose Ŝj = {x1, . . . , xt+1}. Given this, whether hHj

makes a mistake
over Ŝj or not, at least 1/6 fraction of the hypothesis will be marked.

We next use this fact to show that in each round, a constant fraction of the hypotheses in Hi will be
removed. Assuming that c-fraction of the hypotheses in Hi gets removed from Hi. On the one hand,
for each accepted Sj , at least |Hi|/6 hypotheses are marked. So the total number of marks we made
is at least T |Hi|/6. On the other hand, since only c-fraction of the hypotheses are marked by more
than 0.1T times. The total number of marks we made is at most c|Hi|T + 0.1(1− c)|Hi|T . As the
following inequality always holds

c|Hi|T + 0.1(1− c)|Hi|T ≥ T |Hi|/6,

we conclude c ≥ 2/27. According to [28], the size of the ϵ-cover of H is at most O(d/ϵ)d. Since h∗

is also included in Hi, after at most k = Õ(d log(1/ϵ)) rounds, h∗ will be the only hypothesis not
removed. Since h∗ has an error at most 2η, if Appendix C runs for k rounds, then h∗ will be output.
So, before the kth round, some hHi

must be output and has error O(η) = O(opt). This proves the
correctness of Algorithm 3.

Finally, it remains to prove the query complexity of Algorithm 3. We notice by Equation (2) that
when hHi

has an error larger than 250η, a random Sj has only probability less than 0.01 not getting
accepted. This implies that to get an accepted Sj , we only need to make Õ(1) TSQs to check whether
hHi has zero error over Sj . Since checking the error of hHj and marking hypothesizes after some
Sj gets accepted will only take us O(1) TSQs. In each round of Algorithm 3, we will make at most
Õ(1) TSQs. Since there are at most Õ(d log(1/ϵ)) rounds in Algorithm 3, we conclude the query
complexity of Algorithm 3 is Õ(d log(1/ϵ)).
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• The assumptions made should be given (e.g., Normally distributed errors).
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of the mean.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is theoretical and we do not see any immediate implications on
society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This work does not use any assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not use any assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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